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Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in

electron tomography. Due to artifacts related to image series acquisition and reconstruction, global

thresholding of reconstructions computed by established algorithms, such as weighted backprojection

or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially

Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense

nanoparticles of constant composition. The particles are segmented directly by the reconstruction

algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As

no properties are assumed for the other compositions of the sample, the technique can be applied to

any sample where dense nanoparticles must be segmented, regardless of the surrounding composi-

tions. For both experimental and simulated data, it is shown that PDART yields significantly more

accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Electron tomography deals with the reconstruction of a three-
dimensional (3D) representation of a microscopy sample from a
tilt series of two-dimensional (2D) images. This technique has
been applied successfully in materials science since the late
1980s [1]. Several imaging modes have been used for acquiring
the projection images, in particular, bright-field TEM [2,3], annu-
lar dark field TEM [4], high-angle annular dark-field scanning TEM
(HAADF STEM) [5–9], and energy-filtered TEM (EFTEM) [10–13].

Quantitative interpretation of the reconstructed 3D volume is
often hampered by the presence of artifacts: structured distor-
tions that do not correspond with the actual sample. In particular,
limits on the number of projection images imposed by sample
contamination or beam damage give rise to such artifacts. Further-
more, the limited spacing for specimen holders in between the pole
pieces of the objective lens often restricts the range of tilt angles to
about 7701, leading to a missing wedge in the collected data. As a
consequence, features perpendicular to the electron beam are better
resolved than features parallel to the beam, resulting in anisotropic
resolution and distortions of the structure.
ll rights reserved.
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dts).
For many imaging tasks in materials science, the goal is to obtain
an accurate segmentation of particular structures (i.e., particles,
pores, tubules, etc.). Of particular importance is the problem of
segmenting nanoparticles within various matrix materials [5–7,14].
Due to artifacts related to image acquisition and reconstruction,
segmenting these structures from gray level volumes computed by
established algorithms, such as weighted backprojection (WBP) or
SIRT [15], may result in unreliable and subjective segmentations. In
practice, reconstructions are often segmented using a global thresh-
old. Since the threshold is estimated visually, this approach is highly
subjective. Moreover, it does not account for the effect that the
intensity of the features in the reconstruction strongly depends on
their size [16]. Fully manual segmentation may avoid this effect, but
remains a time consuming and subjective approach.

Recently, discrete tomography algorithms have demonstrated
the ability to overcome some of these limitations by exploiting
prior knowledge. Discrete tomography is based on the assump-
tion that the sample consists of only a few different compositions.
Two rather different variants of discrete tomography have been
applied to electron tomography. The first variant was recently
applied to the reconstruction of crystalline nanoparticles at
atomic resolution [17,18]. For this variant, it is assumed that the
crystal contains only a few atomic species, and that the atoms lie
on a regular grid. Together, these assumptions allow to create a
reconstruction from as few as two or three projections. For the
second variant, which can be applied at lower resolutions, it is
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only assumed that the sample consists of a few different compo-
sitions, each corresponding to a particular gray level in the
reconstructed image. The discrete tomography algorithms that
appear in this paper are of the second variant.

Major advantages of discrete tomography algorithms are that
they require fewer projection images compared to alternative
methods such as SIRT, and that missing wedge artifacts are strongly
reduced [19]. Moreover, as the final result of the reconstruction
process is a segmented image, a separate segmentation step is no
longer required. The Discrete Algebraic Reconstruction Technique

(DART) for discrete tomography has been successfully applied to a
broad range of material samples [20–23]. The main restriction for
using discrete tomography is that the entire sample must satisfy the
discreteness requirement. If the sample contains a mixture of
compositions, the results of discrete tomography cannot be relied
upon, as the key assumptions are violated.

In this paper, we introduce the Partially Discrete Algebraic

Reconstruction Technique (PDART) for computing accurate segmenta-
tions of dense nanoparticles of constant composition, regardless of
the compositions in the remaining part of the sample. Embedded
nanoparticles such as catalyst particles are often dense structures
compared to their surroundings (e.g., porous materials), resulting in
a high gray level in the reconstructed image. PDART is based on the
assumption that the densest composition occurs in homogeneous
regions that have a constant gray level. These dense regions are
segmented discretely, while the surrounding regions are recon-
structed using continuously varying gray levels. If the assumption
of a homogeneous densest composition holds, the imaging mode
that is used to record the tilt series – HAADF STEM for both samples
in this paper – is not a restriction on the applicability of PDART, as
long as the selected imaging mode is compatible with tomography.
PDART imposes no restrictions on the nature of the sample (except
that the densest composition must be homogeneous), which means
that the application of the algorithm is not restricted to any specific
type of samples.

This paper is structured as follows. In Section 2, the problem of
segmenting dense particles is introduced, and the PDART algo-
rithm is defined. Section 2 also introduces the figure of merit that
is used for quantitative evaluation of the results. It concludes by
describing how the parameters of the algorithm can be optimized
automatically. In Section 3, the capabilities of PDART are assessed
using two different experimental datasets and a number of
simulation experiments. The results are discussed in Section 4
and conclusions are drawn in Section 5.
2. Algorithm

Before describing the PDART algorithm, we start by giving an
example of its applicability. Fig. 1 illustrates the problem of
nanoparticle segmentation. Fig. 1a shows a phantom (i.e., a
simulated image), representing a microscopy sample that contains
Fig. 1. A simulation phantom and several reconstructions. The phantom represents a cy

a material of varying composition. (a) Phantom, (b) WBP, (c) SIRT, (d) DART and (e) PD
nanoparticles of only a few pixels each, embedded in a cylinder of
varying composition. From this phantom, a synthetic dataset was
created by calculating 28 evenly spaced projections in the range of
7701. Fig. 1 also shows WBP (Fig. 1b), SIRT (Fig. 1c), DART (Fig. 1d),
and PDART (Fig. 1e) reconstructions of this dataset.

The gray level reconstructions computed by WBP and SIRT
have limited visual quality, as a result of the small number of
projection angles and their limited angular range. When thresh-
olding these images to determine the size and shape of the
particles, it is not clear how the threshold should be chosen in
an optimal way. The DART reconstruction, shown in Fig. 1d, is
already segmented, yet the segmentation is not accurate at all
when compared to the original phantom. The varying composi-
tion of the disk surrounding the nanoparticles violates the key
discreteness assumption imposed by the DART algorithm. The
PDART reconstruction, shown in Fig. 1e, seems much more
accurate than the other reconstructions.
2.1. Algorithm description

The PDART algorithm has been designed to allow for accurate
particle segmentation in cases where neither continuous methods
nor fully discrete tomography leads to good results. The algorithm
is based on the assumption that the particles have a constant
composition, and that this composition represents the highest
gray level in the reconstructed volume. PDART combines an
iterative reconstruction algorithm, such as SIRT, with intermedi-
ate segmentation steps. Once pixels have been identified as
‘‘particle’’, they are directly segmented (i.e., their value is set to
the constant gray level for the particles) and kept fixed at this
value in subsequent SIRT iterations. Note that, throughout this
paper, we use the additive variant of SIRT, as described in [24].

Fig. 2 shows a flowchart of the PDART algorithm. Besides
having the projection data as input, the algorithm has two
parameters: a threshold t and a gray level r4t, which corre-
sponds to the gray level of the particles. Optimal values for both
parameters can be determined automatically, as is outlined in
Section 2.3.

Initially, the set F of fixed pixels is empty. In an iterative loop,
the algorithm starts by performing one or more SIRT iterations on
the entire image volume. Whenever one or more pixels are
assigned a higher gray level than the threshold t, it is decided
that these pixels belong to a particle. Such pixels are added to F:
their gray level is set to r and is kept fixed at this value during all
subsequent SIRT iterations. In this way, the set F gradually
expands as pixels are added, until some termination condition
is satisfied. Typically, one aims for terminating the algorithm
when no new pixels have been added to F for a sufficiently large
number of iterations.

In its original form, the SIRT algorithm computes a weighted
least square solution of the system Wx¼ p, where x denotes the
unknown image, p denotes the projection data, and W denotes the
lindrical sample that contains nanoparticles of only a few pixels each, embedded in

ART.



Fig. 2. Flowchart of the PDART algorithm.

Fig. 3. Illustration of several stages of the PDART algorithm. (a) Phantom. (b)

Iteration 8 of PDART, before the application of the threshold. (c) Pixels that are

added to F at iteration 8. (d) Iteration 8, after the application of the threshold. (e)

PDART at iteration 57. (f) PDART at iteration 150.
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projection operator. As pixels are added to F within the PDART
algorithm, the number of unknowns in this system is reduced, while
the number of equations remains the same, thereby improving the
reconstruction for pixels that do not (yet) belong to F.

As an illustration, Fig. 3 shows several intermediate steps of the
PDART algorithm, using the phantom from Fig. 1a. In this particular
example, the first pixels cross the threshold t at the eighth iteration
(Fig. 3b). At this point, the result is still exactly the same as for SIRT,
since no pixels have been fixed yet. The pixels that crossed the
threshold are then added to the set F of fixed pixels (Fig. 3c) and
fixed for the remainder of the reconstruction process (Fig. 3d).
During the following iterations, the process of discovering and fixing
more and more particle pixels continues until all of them are found
at, in this example, iteration 57 (Fig. 3e). No new pixels are found
during the following iterations, although the reconstruction quality
of the background keeps improving somewhat. The result after 150
iterations is shown in Fig. 3f.
2.2. Figure of merit

After computing a reconstruction, the projections of the recon-
structed image can be computed, and subsequently compared with
the measured projections. The difference between the computed
projections and the measured dataset is calculated by taking the
sum of squares of the differences for all projection pixels, resulting
in a number that indicates how well the reconstruction adheres to
the measured projection data. Mathematically, this is known as the
projection distance, defined as dprðxÞ ¼ JWx�pJ2. It is this projection
distance that we use as a figure of merit. For phantoms, we can also
calculate the phantom distance, which is defined as dphðxÞ ¼ Jx�hJ2,
where h denotes the phantom image. The phantom distance
directly measures the difference between the reconstruction and
the phantom.
2.3. Parameter optimization

In the flowchart of Fig. 2, the threshold t and the gray level r
are assumed to be known in advance. Their values may be set
manually. A good value for r can be determined by calculating the
average value within one or more particles in a SIRT reconstruc-
tion. For t, a value that is somewhat higher than the highest gray
level in the background material generally leads to accurate
reconstructions. However, although this manual procedure may
lead to satisfactory results, it is also subjective.

A more objective way to determine optimal values for t and r
is to search for those values that result in a reconstruction that
corresponds maximally to the measured tilt series. After comput-
ing the PDART reconstruction for particular values ðt,rÞ, the
projection distance can be computed, resulting in a number that
indicates the quality of a particular pair ðt,rÞ. By optimizing the
reconstruction quality over the space of possible values for t and
r, their optimal values can be determined. In the case studies that
follow, this optimization was performed by applying an uncon-
strained nonlinear optimization, using the derivation-free
Nelder–Mead simplex algorithm [25]. This procedure needs in
the order of 100 reconstructions to reach a precision of three
significant digits for the threshold and gray level.
3. Experiments

In this section, we report on a series of experiments that were
performed to assess the capabilities of the PDART algorithm. The
experiments were conducted based on phantom objects, as well
as experimental electron tomography datasets of two different
samples.

The phantom study in Section 3.1 illustrates the basic differ-
ences between PDART and DART, and establishes that PDART can
be an alternative for DART in cases where that algorithm is not
applicable.

In Sections 3.2 and 3.3, PDART is applied to two different
experimental datasets, to further investigate the properties of the
algorithm. The reconstructions from the experimental datasets
also show that PDART is applicable in practice.

The first experimental sample is a heterogeneous catalyst,
consisting of metal nanoparticles on a mesoporous silica support,
acquired using an angular range of �701 to þ721. The second
sample consists of Pb nanoinclusions in a crystalline Si matrix,
acquired using an On-Axis Rotation Tomography Holder, allowing
for image acquisition over the full angular range.

To validate the reconstruction results for both datasets, simula-
tion phantoms that resemble the experimental sample were
designed. For these phantoms, reconstructions with known ground



Table 1
Optimal values for thresholds and gray levels, and the corresponding projection

and phantom distances.

Phantom Algorithm t r dpr dph

Discrete, 90 projections N/A 1 0 0

SIRT 0.772 0.928 641 32.0

DART 0.710 1.00 130 8.54

PDART 0.368 0.99 161 9.79

Discrete, 36 projections SIRT 0.843 0.977 334 38.6

DART 0.608 1.00 42.4 5.55

PDART 0.368 1.00 103 15.8

Partially discrete, 90 projections N/A 1 0 0

SIRT 0.766 0.926 654 31.9

DART 0.516 0.964 702 54.9

PDART 0.494 1.00 266 23.0
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truth were computed, thereby allowing a direct comparison with
the original object.

Throughout this section, the results for PDART are compared
with SIRT and, for the phantom study, with DART. Since both
PDART and DART result in reconstructions that are already
segmented, the results from those algorithms are compared with
segmented SIRT reconstructions. The segmentation was per-
formed by taking a pair ðt,r), and setting all pixels with a value
that exceeds t to r. The optimal pair ðt,r) was determined by
minimizing the projection distance, using the optimization pro-
cedure from Section 2.3.

3.1. Phantom study

For the phantom study, two phantoms containing dense elliptical
particles were designed. For the first phantom (Fig. 4a), the particles
are embedded in a homogeneous material; for the second one
(Fig. 4h), in a continuously varying material. The gray value of the
homogeneous background from Fig. 4a is the mean of the gray
values of the background from Fig. 4h. The dimensions of both
phantoms are 512�512 pixels.

From the discrete phantom (Fig. 4a), a synthetic dataset using 90
projections at evenly spaced 21 intervals was created. The resulting
reconstructions are shown in the top row of Fig. 4. Visually, the
results for DART (Fig. 4c) and PDART (Fig. 4d) seem to be of
comparable quality. In the SIRT reconstruction (Fig. 4b), the size of
the particles seems to be underestimated, and reconstruction artifacts
are visible in the background material. Table 1 (rows 1–4) shows the
numerical results for this experiment. In Table 1, the values for t and
r that yield the minimum projection distance dpr are shown, together
with the phantom distance dph for the same pair ðt,rÞ. The numerical
Fig. 4. A discrete and a partially discrete phantom and several reconstructions. The

projections for the first and second rows, respectively. The third row shows the partially

(b) SIRT, (c) DART, and (d) PDART from 90 projections. (e) SIRT, (f) DART, and (g) PDA

PDART from 90 projections.
results from Table 1 (rows 1–4) confirm the visual assessment, but
indicate that DART adheres better to the projection data than PDART
for this fully discrete dataset (the value for dpr is lower), even though
this is not clear from the visual appearance of the reconstruction. This
is confirmed by the phantom distance dph.

From the same discrete phantom of Fig. 4a, a second synthetic
dataset using 36 projections at evenly spaced 51 intervals was
created. The resulting reconstructions are shown in the middle
row of Fig. 4. The DART reconstruction (Fig. 4f) is virtually
identical to that of Fig. 4c, even though the number of projections
was reduced from 90 to 36. The quality of the PDART reconstruc-
tion (Fig. 4g) has decreased somewhat, mainly in the background
material. This effect is more obvious for SIRT (Fig. 4e), as is
the underestimation of the particle sizes for that algorithm.
first two rows show the discrete phantom and reconstructions, using 90 and 36

discrete phantom and reconstructions, using 90 projections. (a) Discrete phantom.

RT from 36 projections. (h) Partially discrete phantom. (i) SIRT, (j) DART, and (k)



Fig. 5. HAADF STEM projection image from the tilt series of the Catalyst sample.

Fig. 6. DART reconstruction of a slice of the Catalyst dataset in the xz-plane. The

brightness of the support material was increased for clarity.

Fig. 7. Detail of the reconstruction of the catalyst dataset at different numbers of iterat

shows (a) SIRT and (b) PDART reconstructions using 50 iterations. The second row show

(e) SIRT and (f) PDART reconstructions using 150 iterations.
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The numerical results in Table 1 (rows 5–7) confirm this, and
show that the difference between DART and PDART has increased,
both for dpr and for dph. The results for both synthetic datasets
based on the discrete phantom suggest that, for a fully discrete
sample, DART should be the algorithm of choice.

From the partially discrete phantom (Fig. 4h), a third synthetic
dataset using 90 projections at evenly spaced 21 intervals was
created. The resulting reconstructions are shown in the last row of
Fig. 4. For this third dataset, the results are markedly different. It
is clear that the quality of the DART reconstruction (Fig. 4j) is
quite bad. The reason that DART fails is that the model that is
imposed by DART, namely that the sample is fully discrete, does
not apply. The model that PDART (Fig. 4k) assumes is correct: the
dense particles are discrete, and they are embedded in a continu-
ously varying material. The visual results are confirmed by the
numerical results in Table 1 (rows 8–11). Both dpr and dph are now
higher for DART than for SIRT (Fig. 4i), while the values for PDART
are still lower, as for the preceding experiments. This implies that
PDART should be the algorithm of choice for a partially discrete
sample that contains homogeneous dense particles.

3.2. Sample I: heterogeneous catalyst

The sample is a heterogeneous catalyst, consisting of metal
nanoparticles on a mesoporous silica support (called Catalyst
hereafter) [16].

An HAADF STEM tilt series was acquired using an FEI Tecnai
F20 ST microscope operated at an acceleration voltage of 200 kV.
The sample was mounted on a Fischione Model 2020 Advanced
Tomography Holder. The series was recorded using 21 tilt angle
increments over a range of �701 to þ721. Fig. 5 shows a single
projection image from the tilt series. The size of the projection
images is 1280�1280 pixels. To increase the SNR, the projection
images were downsampled by a factor of 2 in both dimensions.

In principle, the Catalyst dataset appears to be suitable for a fully
discrete DART reconstruction, as it has just two compositions. How-
ever, as Fig. 6 shows, it was not possible to reconstruct the supporting
ions. The brightness of the support material was increased for clarity. The first row

s (c) SIRT and (d) PDART reconstructions using 100 iterations. The third row shows
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particle as a uniform structure using DART. The fine porous structure
of the supporting particle results in heavy partial volume effects, such
that the particle cannot be properly represented by a constant gray
Fig. 8. Isosurface rendering of the (a) SIRT and (b) PDART reconstructions of the

Catalyst sample. The PDART reconstruction is shown behind the SIRT reconstruc-

tion for comparison.

Fig. 9. Three orthogonal slices through a large catalyst particle (top row) and a small partic

used for the large and small particles. (a) SIRT, large, (b) segmented SIRT, large, (c) PDART
level. As a result of the mismatch within the support, the segmenta-
tion of the catalyst particles also degrades. If one would only assume
discreteness of the catalyst particles, the support would be recon-
structed using continuous gray levels, thereby mitigating this
problem. We therefore expect that PDART will be more suitable.

The experimental dataset was reconstructed in 3D using both
SIRT and PDART. Optimal parameters t and r were determined
from the projection data, using the procedure outlined in
Section 2.3. Both algorithms were run for 100 iterations. For
experimental samples, the effect of noise has to be taken into
account when determining the optimal number of iterations. This
is due to the well-known effect that for iterative algorithms, such
as SIRT, the influence of noise in the projection data starts
dominating the reconstruction after a certain number of itera-
tions (known as semi-convergence). This effect carries over to
PDART, since it uses SIRT. Fig. 7 shows that the number of
iterations is less important for PDART than it is for SIRT. For
PDART at 50 iterations (Fig. 7b), there is still a hint of the typical
blur that surrounds the particles in the PDART reconstruction
during the early stages of reconstruction (also see Fig. 3d for an
extreme example of this effect). At 100 iterations (Fig. 7d), this
effect has greatly diminished. The difference with the reconstruc-
tion at 150 iterations is small, although the effect of the noise
starts to become apparent.

Fig. 8 shows isosurface renderings of the catalyst particles in
the resulting reconstructions. From Fig. 8, it can be observed that
the thresholded SIRT reconstruction is lacking many of the small
particles. Fig. 9 shows a set of 2D slices through the reconstructed
volume, both for a large catalyst particle (top row), and for a small
one (bottom row). The same thresholds were used as for the
isosurface renderings from Fig. 8. From the middle column of
Fig. 9, it can be clearly observed that the threshold for SIRT, which
appears suitable for the large particle, is not at all suitable for
segmenting the small particle. As a consequence, no single
threshold can be found for which the entire volume is segmented
with reasonable accuracy. On the other hand, the PDART recon-
structions for both particles, which were also computed using a
single pair ðt,rÞ, do not suffer from this problem.
le (bottom row) in the reconstruction of the Catalyst sample. The same threshold was

, large, (d) SIRT, small (e) segmented SIRT, small and (f) PDART, small.



Fig. 10. Isosurface rendering of the Catalyst (a) phantom and reconstructions for (b) SIRT and (c) PDART. The phantom is shown behind the SIRT and PDART

reconstructions for comparison.

Table 2
Optimal values for thresholds and gray levels, and the corresponding projection

and phantom distances.

Sample Algorithm t r dpr dph

Catalyst SIRT 1.16 1.81 10 259 N/A

PDART 0.403 2.03 10 018 N/A

Phantom N/A 1 0 0

SIRT 0.531 0.828 3311 210

PDART 0.164 0.977 2880 149

Fig. 11. HAADF STEM projection image from the tilt series of the Pb–Si sample,

showing the needle shaped structure of the sample.

Fig. 12. DART reconstruction of a slice of the Pb–Si dataset in the xz-plane. The

brightness of the Si matrix material was increased for clarity.
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To validate the results for the experimental dataset, a detailed
simulation of a mesoporous support particle with catalyst particles
on its surface was performed in cooperation with the Fraunhofer
ITWM, Germany. The dimensions of the phantom are 548�548�
325 pixels. From the phantom, a synthetic dataset was created,
consisting of 72 projections at evenly spaced 21 intervals, producing
the same 381 missing wedge as in the original tilt series of the
Catalyst dataset. Poisson noise was applied to the simulated projec-
tion images. This setup resembles the conditions under which the
experimental dataset was recorded. The SIRT and PDART algorithms
were both run for 100 iterations. The segmented volumes for the
phantom image and for both algorithms are shown in Fig. 10. In
accordance with the reconstructions from the experimental data, the
segmentation computed by PDART contains particles of all sizes,
whereas from the segmented SIRT reconstruction a number of small
particles are missing.

The numerical results for the reconstruction quality are
summarized in Table 2. The projection distance dpr for PDART is
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lower than for the other reconstructions, which means that it
corresponds more accurately to the projection data. This suggests
that the value for r that was found by PDART is also closer to the
true value than the value that was found by SIRT. For the
Fig. 13. Isosurface rendering of the (a) SIRT and (b) PDART reconstructions of the

Pb–Si sample. The PDART reconstruction is shown behind the SIRT reconstruction

for comparison.

Fig. 14. Three orthogonal slices through the reconstructions of the Pb–Si sample for (a

rectangles), yz-plane (vertical rectangles).
phantom, the numbers for dph confirm the results for dpr. More-
over, the value for r is indeed closer to the correct value of 1.

3.3. Sample II: Pb in Si inclusions

The second sample consists of Pb nanoinclusions in a crystal-
line Si matrix (called Pb–Si hereafter). A micro-pillar sample was
prepared by FIB milling, using an FEI Nova Nanolab 200 DualBeam
system. The procedure to prepare these dedicated micro-pillar
samples is explained in more detail in [26].

The sample was mounted on a Fischione Model 2050 On-Axis
Rotation Tomography Holder, which allowed to acquire a series
with a tilt range of 7901. An HAADF STEM tilt series was
recorded using 21 tilt angle increments, using a JEOL JEM-3000F
microscope operated at an acceleration voltage of 300 kV. Fig. 11
shows a single projection image from the tilt series. The size of
the projection images is 512�512 pixels.

As for the Catalyst dataset, the Pb–Si dataset appears to be
suitable for a fully discrete DART reconstruction, as it has just two
compositions. However, Fig. 12 demonstrates that also in this
case discrete tomography failed to reconstruct the matrix mate-
rial as a uniform structure. Artifacts related to the inherent
difficulty of aligning the projections of micro-pillar samples have
as a result that the Si matrix cannot be properly represented by a
constant gray level. If we assume that only the Pb particles are
discrete, we can avoid degrading the accuracy of the reconstruc-
tion of those particles by the artifacts in the Si matrix. Hence,
PDART is again expected to be more suitable.

Using 70 iterations for both SIRT and PDART, the experimental
dataset was reconstructed in 3D. Stopping the reconstruction at
) SIRT, (b) segmented SIRT and (c) PDART; xz-plane (squares), xy-plane (horizontal



Fig. 15. Isosurface rendering of the Pb–Si (a) phantom and reconstructions for (b) SIRT and (c) PDART. The phantom is shown behind the SIRT and PDART reconstructions

for comparison.

Table 3
Optimal values for thresholds and gray levels, and the corresponding projection

and phantom distances.

Sample Algorithm t r dpr dph

Pb–Si SIRT 0.631 0.829 1832 N/A

PDART 0.347 0.855 1704 N/A

Phantom N/A 1 0 0

SIRT 0.653 0.925 1157 74.8

PDART 0.221 0.989 751 30.5

Fig. 16. Algorithm selection tree.
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70 iterations avoided emphasizing the noise, while producing
clearly delineated particles. As before, optimal parameters t and r
were determined from the projection data, using the procedure
outlined in Section 2.3. Fig. 13 shows isosurface renderings of the
Pb particles in the resulting reconstructions. It is apparent that the
segmented SIRT reconstruction is lacking many of the small parti-
cles. This is confirmed by Fig. 14, which shows three orthogonal
slices through the reconstruction.

The results for this experimental sample were validated using a
3D phantom modeled after the original Pb–Si dataset. The dimen-
sions of the phantom are 332�332�73 pixels. From the phantom, a
synthetic dataset was created, consisting of 90 projections at evenly
spaced 21 intervals. Poisson noise was applied to the simulated
projection images. This setup resembles the conditions under which
the experimental dataset was recorded. The SIRT and PDART algo-
rithm were both run for 70 iterations. The segmented volumes for the
phantom image and for both algorithms are shown in Fig. 15. As for
the reconstructions from the experimental data, the smaller particles
seem to be missing from the segmented SIRT reconstruction.

The numerical results for the reconstruction quality are summar-
ized in Table 3. As for the Catalyst dataset, the projection distance
for PDART is lower than for the other reconstructions, which means
that it has closer correspondence to the projection data. This again
suggests that the value for r that was found by PDART is closer to
the true value than the value that was found by SIRT.

4. Discussion

The case studies in this paper show two substantially different
experimental datasets that could not be reconstructed success-
fully using discrete tomography. Since they both contain dense
particles as their main composition of interest, they are suitable
for application of the PDART algorithm. The algorithm is straight-
forward to implement, which makes it applicable in practice. The
results from PDART seem to improve on the segmentation of SIRT
reconstructions that were created using a threshold that was
optimized to match the projection data.
In both studies, the particles are accurately segmented, regard-
less of their size. The reconstructions of the different samples and
phantoms also show that the parameters of the method can be
optimized in an objective manner. This makes the algorithm an
alternative to manual segmentation, since, even if a comparable
segmentation is created manually, there will always be subjective
judgment involved.

The results for the experimental datasets, together with the
phantom study, suggest that PDART is a useful alternative to DART,
since the algorithm allows samples for which a fully discrete
reconstruction is not possible to still benefit from the techniques
of discrete tomography. The four algorithms that were applied in
this paper are shown in an algorithm selection tree in Fig. 16. If a full
set of projections is available, or if computing resources are limited,
WBP can still be the algorithm of choice. However, if sufficient
computing resources are available, iterative techniques have com-
pelling advantages, like a lower sensitivity to noise. Another
important advantage is that they allow to exploit prior knowledge,
which leads to (partially) discrete algorithms. If a sample is fully
discrete, DART is the best option. If only the densest material is
homogeneous, PDART retains a number of the advantages of discrete
tomography, while providing a SIRT reconstruction of the back-
ground. If no assumptions can be made, SIRT is the most generally
applicable algorithm, which is also widely available.
5. Conclusions

We have presented a novel reconstruction algorithm for
partially discrete tomography. The new method has two main
benefits.
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First, a partially discrete technique is useful to expand the set
of samples for which concepts of discrete tomography can be
applied. The method presented in this paper is a practical one in
this regard, since it is applicable to the common problem of dense
particle segmentation. The method retains two advantages of
discrete tomography: the densest composition is automatically
segmented, and it can produce reconstructions that are more
accurate than SIRT.

Second, the method automatically determines the gray level
that should be used for the densest composition in an objective
manner, by locating the value that makes the resulting recon-
struction closest to the original projection images. This property
of the algorithm should make it easier to draw quantitative
conclusions from the reconstructions.
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