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Many image processing methods applied to magnetic resonance (MR) images directly or indirectly rely
on prior knowledge of the statistical data distribution that characterizes the MR data. Also, data distri-
butions are key in many parameter estimation problems and strongly relate to the accuracy and precision
with which parameters can be estimated. This review paper provides an overview of the various dis-
tributions that occur when dealing with MR data, considering both single-coil and multiple-coil acqui-
sition systems. The paper also summarizes how knowledge of the MR data distributions can be used to
construct optimal parameter estimators and answers the question as to what precision may be achieved
ultimately from a particular MR image.

© 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Introduction

Magnetic resonance imaging (MRI) is the diagnostic tool of
choice in biomedicine. It is able to produce high-quality three-
dimensional images containing an abundance of physiological,
anatomical and functional information. A voxel's grey level within
anMR image represents the amplitude of the radio frequency signal
coming from the hydrogen nuclei (protons) within that voxel. To
draw reliable diagnostic conclusions from MR images, visual in-
spection alone is often insufficient. Quantitative data analysis is
required to extract the information needed. Such an analysis can
almost without exception be formulated as a parameter estimation
problem. The parameters of interest can simply be the values of the
true MR signal underlying the noise corrupted data points [1e3],
but also proton densities (in the construction of proton density
maps [4,5]), relaxation time constants (in the construction of T1, T2
and T�2 maps [4e11]) or diffusion parameters (in diffusion MRI)
[12e14]. Different estimators can be constructed to estimate one
and the same parameter, but it is well known that the best esti-
mators (in terms of accuracy and precision) are constructed by
properly taking the statistical distribution of the data into account.
Hence, knowledge of the MRI data distribution is of vital
importance.
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This review paper gives an overview of the various distributions
that occur when dealing with MR data, considering both single-coil
and multiple-coil systems. The paper also summarizes how
knowledge of these distributions can be used to construct optimal
estimators and to answer the question as to what precision may be
achieved ultimately from a particular MR image.

The organization of the paper is as follows. Section 2 briefly re-
views MR signal detection and introduces a statistical model of the
complex valued raw MR data acquired in the so-called k-space (i.e.,
the spatial frequencydomain). Section3 thendescribes the statistical
distribution of the reconstructed images in the spatial domain,
assuming the data have been acquired using a single-coil system.
Complex images as well as magnitude and phase images, which can
be constructed from the complex images straightforwardly, are
considered. Since image acquisition with multiple coils is becoming
more and more common nowadays, Section 4 describes the distri-
bution of complex and magnitude images acquired with multiple-
coil systems. Section 5 reviews the theory that explains how
knowledge of the distribution of the MR images can be used to (i)
derive a lower bound on the variance of any unbiased estimator of
parameters from these images (the so-called Cram�er-Rao Lower
Bound), and (ii) to construct themaximumlikelihood (ML) estimator,
which attains this lower bound at least asymptotically. In Section 6,
this theory is applied to (i) derive theCRLB for unbiased estimation of
the underlying true signal amplitude from (single-coil) magnitude
images and, (ii) derive theML estimator for this estimation problem.
In Section 7, conclusions are drawn.

Notation: throughout this paper, vectors will be underlined and
matrices will be expressed in capital letters. Furthermore, random
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variables (RVs) will be expressed in bold face. The operators E½,�
and Varð,Þ denote the expectation and variance of a random vari-
able, respectively. The real part of a complex valued variable z is
denoted as zR and the imaginary part as zI. The complex conjugate
of X is denoted as X* and the transpose and complex conjugate
transpose of X are denoted as XT and XH, respectively. Furthermore,
we use fx(x) to denote the probability density function (PDF) of the
random variable x. The conditional PDF of the RV x conditioned on
the RV y is denoted as fxjyðxjyÞ. The modified Bessel function of the
first kind of order n is denoted as Inð,Þ. The symbol ı denotes

ffiffiffiffiffiffiffi
�1

p
.

Signal detection and modeling

This section briefly reviews the mathematics behind signal
detection inMRI and describes the concepts of signal demodulation
and quadrature detection. The section is to a large extent based on
Refs. [15e19]. For a more comprehensive description, the reader is
referred to those references. The final purpose of the section is to
introduce a statistical model of the detected MR signal.

Modeling the noise free signal

In MRI, an object is placed in a strong static, external, homog-
enous magnetic field B0 that polarizes the protons in the object,
yielding a net magnetic moment oriented parallel to B0. Let's as-
sume that B0 points in the z-direction. Next, a radio frequency pulse
is applied that generates another, oscillating magnetic field B1
perpendicular to B0. This so-called excitation field tips away the net
magnetic moment from the z-axis, producing a magnetization
component transverse to the static field. This transverse magneti-
zation component precesses at the so-called Larmor frequency

u0 ¼ g

����B0����;
with g the gyromagnetic ratio. This precessing magnetization
vector induces a voltage in the receiver/detector coil (a conducting
loop). Spatial information can be encoded in the received signal by
augmenting B0 with additional, spatially varying magnetic fields.
These so-called gradient fields vary linearly in space and are
denoted as Gx, Gy and Gz. For example, when Gx is applied, the
strength of the static magnetic field will vary with position in the x-

direction as
����BzðxÞ���� ¼ ����B0����þ Gxx, where the subscript z is used to

denote that the magnetic field points in the z-direction. In this way,
gradient fields can be used to make the precession frequency vary
linearly in space. MRI signal detection is based on Faraday's law of
electromagnetic induction and the principle of reciprocity [15].
Assuming a static inhomogeneous magnetic field pointing in the z-
direction, the (noise free) voltage signal v(t) in the receiver coil is
related to the transverse magnetization distributionMxyðr; tÞ of the
object by the expression [15]

vðtÞ ¼
Z
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with r ¼ ðx; y; zÞT the position in the laboratory frame, t¼ 0þ the
time instant immediately after the excitation pulse, uðrÞ the free
precession frequency, T2 a relaxation time constant, Br;xyðrÞ the
detection sensitivity of the coil, frðrÞ the reception phase angle, and
feðrÞ the initial phase shift introduced by RF excitation. The
detection sensitivity Br;xyðrÞ is defined as the xy vector component
of the field generated at r by a unit current in the coil. The phase
contributions frðrÞ and feðrÞ take a value between 0 and 2p
depending on the direction of, respectively, Br;xyðrÞ and Mxyðr;0þÞ
in the transverse plane [15]. Assuming that a frequency encoding
gradient Gx was turned on during the signal read out (i.e., during
data acquisition), we have

u
�
r
�
¼ u0 þ Du

�
r
�
; (2)

with

Du
�
r
�
¼ gGxx; (3)

where DuðrÞ is the spatially varying resonance frequency in the
Larmor-rotating frame, i.e., the coordinate systemwhose transverse
plane is rotating clockwise at an angular frequency u0 [15].
Furthermore, if we assume that a so-called phase encoding gradient
Gy was turned on for a time interval Tpe before the signal read out,
we have to add a position dependent initial phase contribution
fpeðrÞ to v(t):

vðtÞ ¼
Z
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with

fpe

�
r
�
¼ gGyyTpe: (5)

MR image reconstruction concerns the inverse problem of
reconstructing the transverse magnetization distribution Mxyðr; tÞ
from the voltage signal v(t). If we assume that a slice selective
gradient Gz has been applied in the z-direction during the excitation
period, only protons in the selected slice (at, say, z¼ z0) are excited,
so that Mxyðx; y; z0; tÞ ¼ Mxyðx; y; tÞ [18]. The MRI reconstruction
problem then reduces to producing a spatial map in two di-

mensions. Assuming that

�����Mxyðr;0þÞ
�����e�t=T2ðrÞ is relatively constant

during data acquisition, Eq. (4) can be simplified to

vðtÞ ¼
Z
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with tacq the time at the center of the acquisition and

Mxy

�
r; tacq

�
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�����Mxy

�
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.
T2
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e
ıfe
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In practice, DuðrÞ≪u0 and v(t) is a high frequency bandpass
signal centered about the frequency ±u0. The high-frequency na-
ture of v(t) may cause unnecessary problems for electronic circuits
in later processing stages [15]. In practice, these problems are cir-
cumvented by exploiting the following property of the bandpass
signal v(t). It can be shown that the bandpass signal v(t) can be
represented as [19]
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vðtÞ ¼ <½~vðtÞexpðıu0tÞ�; (8)
where<½z� denotes the real part of the complex number z and ~vðtÞ is
the so-called complex envelope of v(t), which can be written as

~vðtÞ ¼ ~vRðtÞ þ ı~vIðtÞ; (9)

with
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and
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The signal ~vRðtÞ is called the in-phase component and ~vIðtÞ is
called the quadrature component of v(t). Note that it follows from
Eqs. (8) and (9) that the original bandpass signal v(t) can be written
in terms of ~vRðtÞ and ~vIðtÞ as:

vðtÞ ¼ ~vRðtÞcosðu0tÞ � ~vIðtÞsinðu0tÞ: (12)

Since in practice DuðrÞ≪u0, Eqs. (10) and (11) can be simplified
to

~vRðtÞ ¼ u0
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and

~vIðtÞ ¼ u0
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and the complex envelope can be written as

~vðtÞ¼u0
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Note that both ~vRðtÞ and ~vIðtÞ are lowpass signals. In practice, the
signals ~vRðtÞ and ~vIðtÞ can be obtained from the original signal v(t)
by multiplying v(t) by a reference sinusoidal signal and then low-
passing filtering to remove the high-frequency component. This
method is known as the signal demodulation method, or the phase
sensitive detection (PSD) method [15]. Using 2cos(u0t)
and �2sin(u0t) as reference signals, signal demodulation yields
~vRðtÞ and ~vIðtÞ, respectively. This detection scheme is known as
quadrature detection. Quadrature detection thus produces two data
streams with a 90� phase difference. When put in complex form,
with ~vRðtÞ being treated as the real part and ~vIðtÞ as the imaginary
part, these data streams together constitute the complex envelope
~vðtÞ of v(t). Note that, given u0, all information content of v(t) is
preserved in the complex envelope ~vðtÞ.

To get more insight in the relation between v(t) and its quad-
rature and in-phase components, consider the signal

vþðtÞ ¼ ~vðtÞexpðıu0tÞ; (16)

which is known as the analytic signal (or pre-envelope) of v(t) and
can be written as

vþðtÞ ¼ vðtÞ þ ı v^ðtÞ; (17)

with v
^ðtÞ ¼ H½vðtÞ� [16], which will be denoted as v

^ðtÞ ¼ H½vðtÞ�. In
other words, v^ðtÞ is the response of a dynamic systemwith impulse
response function

hðtÞ ¼ 1
pt

(18)

and corresponding frequency response function

HðıuÞ ¼ �ısgnðuÞ; (19)

with sgn(u) the sign of u. The filter (19), which is known as a
quadratic filter [16], has a constant amplitude jHðıuÞj ¼ 1 (all pass),
and its phase equals �p/2 for u> 0 and p/2 for u< 0. The effect of
forming the complex signal vþ(t) is to remove the redundant nega-
tive frequency components of the Fourier transform. Indeed, it fol-
lows from above that the Fourier transform V

^ðuÞ of v
^ðtÞ is given by

V
^ðuÞ ¼ �ısgnðuÞVðuÞ; (20)

with V(u) the Fourier transform of v(t) and, as follows from Eqs. (17)
and (20),

VþðuÞ ¼ VðuÞ þ sgnðuÞVðuÞ: (21)

Furthermore, the Fourier transform of the complex envelope ~vðtÞ
is given by

~VðuÞ ¼ Vþðuþ u0Þ: (22)

Using the Hilbert transform pairs H[cos(ut)]¼ sin(ut) and H
[sin(ut)]¼�cos(ut), and Bedrossian's theorem [20] it can be shown
that:

~vRðtÞ ¼ vðtÞcosðu0tÞ þ v
^ðtÞsinðu0tÞ; (23)

~vIðtÞ ¼ v
^ðtÞcosðu0tÞ � vðtÞsinðu0tÞ: (24)

Finally, if we assume that the receiver coil has a homogenous
reception field, which may, for example, be a valid assumption in a
single coil based on a birdcage volume resonator [15], the signal
expression (15) can be further simplified to

~vðtÞ ¼
Z
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where the complex notation
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has been used and a scaling constant ¼u0e
ıp/2 has been omitted

[15]. Substituting Eqs. (3) and (5) in Eq. (25) then yields
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~v
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Z
object

where the mapping relation between (t,Gy) and k ¼ ðkx; kyÞT is
given by

kx ¼ 1
2p

gGxt; (28)

ky ¼ 1
2p

gGyTpe: (29)

Hence, the signal ~vðkÞ in the so-called k-space is the 2D spatial
Fourier transform ofMxyðr; tacqÞ, which is the quantity of interest to
be reconstructed (i.e., the image). Note that if feðrÞ is small or
(ideally) zero, the imaginary component of Mxyðr; tacqÞ can be
neglected making the image to be reconstructed real valued. In
practice, however, the realness constraint is often violated because
object motion and magnetic field inhomogeneities introduce a
nonzero phase to the image function [15]. Obviously, a straight-
forward reconstruction of the image is obtained by inverse Fourier
transforming the data, but before we come to that, we will first
consider the effect of noise. It should be noted that the assumption
of a homogenous reception field is generally invalid for single-coil
acquisitions that use so-called surface coils [21]. In that case, the
detection sensitivity has to be taken into account and Eq. (15) can
no longer be simplified to Eq. (25).
Modeling the noise

So far, we have considered noiseless signals. In practice, how-
ever, the signal v(t) will be disturbed by noise, which is mainly
caused by thermal motion (Brownian motion) of electrons within
the body's conducting tissue and the receiving coil(s) [22]. This
thermal noise, which was investigated experimentally by Johnson
[23] and theoretically by Nyquist [24], is often referred to as
Johnson noise. It can be modeled as additive zero mean white
Gaussian noise with variance (or, power) [25,26]

s2w ¼ 2kbT
�
Rcoil þ Rbody

�
; (30)

where kb denotes Boltzmann's constant, T the absolute temperature
and Rcoil and Rbody the effective resistance of the coil and the body,
respectively.

Hence, the raw MR signal can be modeled as:

vðtÞ ¼ vðtÞ þ nwðtÞ; (31)

with nw(t) a stationary zero mean Gaussian white noise process
with variance s2w. Note that the signal v(t) is band limited to fre-
quencies u such that jjuj � u0j � maxrDuðrÞ. The noise, however,
has a spectrum that exists over the entire frequency range and can
be separated into two components: (i) the out-of-band noise
component no(t) and (ii) the in-band noise component n(t) [17]:

nwðtÞ ¼ noðtÞ þ nðtÞ: (32)

The in-band noise component n(t) can be obtained by filtering
the raw data by an (ideal) bandpass filter with a passband that
corresponds with the bandpass signal v(t). Note that this filter
leaves the bandpass signal v(t) unaffected. Furthermore, note that
n(t) is obtained from a Gaussian process through a linear operation.
Hence, the process n(t) is also a Gaussian process. It is commonly
known as a bandpass “white” Gaussian noise process, having a
power spectral density function that is symmetrical about u0. It can
be shown that n0(t) is independent of both v(t) and n(t) and can be
discarded without any loss of information [17]. In what follows, we
will assume that bandpass filtering has been applied to eliminate
the out-of-band noise component.

Now, it can be shown that the band pass white Gaussian noise
process n(t) can be written in the form [16]

nðtÞ ¼ ~nRðtÞcosðu0tÞ � ~nIðtÞsinðu0tÞ; (33)

with ~nRðtÞ and ~nIðtÞ zero mean lowpass stationary Gaussian pro-
cesses described by

~nRðtÞ ¼ nðtÞcosðu0tÞ þ n
^ðtÞsinðu0tÞ; (34)

~nIðtÞ ¼ n
^ðtÞcosðu0tÞ � nðtÞsinðu0tÞ (35)

with n
^ðtÞ the Hilbert transform of n(t), where the Hilbert transform

x
^ðtÞ of a stochastic process x(t) is given by the output of the system
(19) with input x(t), that is [16]

x
^ðtÞ ¼ 1

pt
�xðtÞ ¼ 1

p

Z∞
�∞

xðtÞ
t � t

dt: (36)

with ) the convolution operator. Note the analogy of Eqs. (34) and
(35) with (23) and (24). It can easily be shown that since n(t) is a
stationary process, the process n

^ðtÞ is also stationary [16].
Furthermore, it can be been shown that the following relations hold
[16]:

Rn^nð0Þ ¼ 0; (37)

RnðtÞ ¼ R~nR
ðtÞcosðu0tÞ; (38)

R~nR
ðtÞ ¼ R~nI

ðtÞ ¼ RnðtÞcosðu0tÞ þ Rn^nðtÞsinðu0tÞ; (39)

R~nR~nI
ðtÞ ¼ �R~nI ~nR

ðtÞ ¼ 0; ct (40)

with Rn^nðtÞ the cross-correlation function between the processes
n
^ðtÞ and n(t), Rn(t) the autocorrelation function of the process
n(t), R~nR

ðtÞ the autocorrelation function of the process ~nRðtÞ, R~nI
ðtÞ

the autocorrelation function of the process ~nIðtÞ, and R~nR~nI
ðtÞ the

cross-correlation function of the processes ~nRðtÞ and ~nIðtÞ. It fol-
lows from Eqs. (37) that, for a given t, the zero mean Gaussian
random variables n(t) and n

^ðtÞ are orthogonal (and thus uncor-
related) and it follows from Eqs. (39) and (40) that the zero mean
processes ~nRðtÞ and ~nIðtÞ have equal autocorrelation functions and
are orthogonal.

In analogy with Eqs. (9) and (17), we can define the complex
processes

~nðtÞ ¼ ~nRðtÞ þ ı~nIðtÞ; (41)

and

nþðtÞ ¼ nðtÞ þ ın
^ðtÞ ¼ enðtÞexpðıu0tÞ; (42)

representing the complex envelope and the analytic signal associ-
ated with n(t). Note that the last equality in Eq. (42) follows from
Eqs. (34) and (35).
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Modeling the noise disturbed MR signal

Let's now combine the results obtained in the Sections 2.1 and
2.2 and define

vþðtÞ ¼ ~vðtÞexpðıu0tÞ; (43)

with

~vðtÞ ¼ ~vðtÞ þ ~nðtÞ; (44)

where ~vðtÞ and ~nðtÞ are the previously defined complex envelopes
of the signal v(t) and the noise process n(t), respectively. The
signal ~vðtÞ thus represents the complex envelope of the noise
disturbed signal v(t)þ n(t). It follows from above that ~vðtÞ can be
described as

~vðtÞ ¼ ~vRðtÞ þ ı~vIðtÞ; (45)

with

~vRðtÞ ¼ ~vRðtÞ þ ~nRðtÞ; (46)

the noise disturbed in-phase component and

~vIðtÞ ¼ ~vIðtÞ þ ~nIðtÞ; (47)

the noise disturbed quadrature component. It can be shown that
the signals ~vRðtÞ and ~vIðtÞ can be obtained by applying the signal
demodulation method described in Section 2.1, the noise contri-
butions to the in-phase and quadrature detection channel being
equal to ~nRðtÞ and ~nIðtÞ, respectively.

In summary, the noise disturbed MR data obtained by quadra-
ture detection using a single receiver coil can be described in
complex form as:

~vðtÞ ¼ ~vRðtÞ þ ~nRðtÞ þ ı½evIðtÞ þ enIðtÞ�: (48)

where ~vRðtÞ and ~vIðtÞ are the in-phase (or, real) and quadrature (or,
imaginary) components of the noiseless signal and ~nRðtÞ and ~nIðtÞ
are two zero mean Gaussian, orthogonal processes that describe
the in-phase and quadrature component of the noise, respectively.
Sampling

InMRI practice, the signal Eq. (48) will be sampled, and sampling
may affect the correlation properties of the noise. Recall that the
noise process n(t) is assumed to be the result of bandpass filtering a
continuous time white Gaussian noise process nw(t) over a band
centered around u0, where the width W of the band corresponds
with the passband of the bandpass signal v(t). Furthermore, recall
that the power spectral density function (and thus variance) of nw(t)
was equal to s2w. Then, the autocorrelation function of the bandpass
“white” noise process n(t) is given by Ref. [19]

RnðtÞ ¼ 2s2w

sin
�
W
2 t

�
pt

cosðu0tÞ: (49)

By comparison with Eq. (38) we have

R~nR
ðtÞ ¼ R~nI

ðtÞ ¼ 2s2w

sin
�
W
2 t

�
pt

: (50)

If we sample the complex envelope ~nðtÞ ¼ ~nRðtÞ þ ı~nIðtÞ at the
Nyquist rate of us¼ 2p/Dt¼W, we have:
R~nR
ðlDtÞ ¼ R~nI

ðlDtÞ ¼ s2wW
p

sinðplÞ
pl

¼ s2wW
p

d½l�; (51)

with l2ℤ and d½,� the Kronecker delta function. Furthermore, as
derived earlier,

R~nR~nI
ðtÞ ¼ �R~nI~nR

ðtÞ ¼ 0: (52)

Hence,

R~nR
½l� ¼ R~nI

½l� ¼ s2wW
p

d½l�; (53)

and

R~nR~nI
½l� ¼ �R~nI~nR

½l� ¼ 0; (54)

where R~nR
½l� ¼ R~nR

ðlDtÞ, R~nI
½l� ¼ R~nI

ðlDtÞ, R~nR~nI
½l� ¼ R~nR~nI

ðlDtÞ and
R~nI~nR

½l� ¼ R~nI~nR
ðlDtÞ. Hence, the discrete random process obtained

by sampling ~nðtÞ at the Nyquist rate is complex white Gaussian
noise [19].

Its worthwhile mentioning that, assuming frequency encoding
along the x-direction, it follows from Eq. (3) that the bandwidth W
is directly related to the field of view in the x-direction:

W ¼ 2max
r

Duð r Þj j ¼ 2gmax
x

Gxxj j ¼ g Gxj jFOVx; (55)

with FOVx the field of view in the x-direction.

Modeling k-space data

It follows from Eqs. (25), (28) and (29) that, for a given value of
Gy, sampling the signal ~vðtÞ at sample intervals Dt corresponds
with sampling the k-space along a line of constant ky at sample
intervals Dkx¼ (1/2p)gGxDt. Assuming a rectilinear sampling
scheme, ~vðt;GyÞ is sampled line by line, and the two-dimensional
sampling problem can be treated along each dimension sepa-
rately. Using the mapping relations (28) and (29), it can be shown
that the largest sampling intervals permissible by the Nyquist
criterion are

Dt ¼ 2p
gjGxjFOVx

(56)

and

DGy ¼ 2p
gTpeFOVy

; (57)

with FOVy the field of view in the y-direction [15].
Finally, let zðkÞ denote the signal ~vðt;GyÞ that has been mapped

to the k-space (i.e., spatial frequency space), using the mapping
relations (28) and (29:

z
�
k
�
≡~v
�
k
�
¼ ~vR

�
k
�
þ ~nR

�
k
�
þ ı
hevI�k�þ enI

�
k
�i

: (58)

Furthermore, assume that the k-space has been Nyquist
sampled in the sample points k1;…; kN and define the complex
random vector

z ¼

0BBBB@
z
�
k1

�
«

z
�
kN

�
1CCCCA (59)
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and the complex deterministic vector

s ¼

0BBBB@
s
�
k1

�
«

s
�
kN

�
1CCCCA; (60)

with sðkiÞ ¼ sRðkiÞ þ ısIðkiÞ, for i¼1,…,N. It follows from the analysis
described in Section 2.4 that the real and imaginary parts zRðkiÞ and
zIðkiÞ of the complex random variables zðkiÞ are independent,
Gaussian distributed with equal variance s2K ¼ s2wW=p, which im-
plies that

cov
�
zR

�
ki

�
; zI

�
kj

��
¼ 0;ci; j (61)

and

cov
�
zR

�
ki

�
; zR

�
kj

��
¼ cov

�
zI

�
ki

�
; zI

�
kj

��
¼ s2Kd½i� j�:

(62)

Using basic theory on complex Gaussian distributions (see
Appendix A), it then follows that the joint probability density
function of the complex random variable z is given by:

fzð z Þ ¼ 1
pNdet Szð Þ expf � ð z� s ÞHS�1

z ð z� sÞg; (63)

with Sz ¼ 2s2K IN , where IN is the identity matrix of order N. This is
usually denoted by

z�CN
�
s;2s2KIN

�
: (64)

This PDF is called the joint circularly complex normal distribu-
tion, also known as the complex multivariate normal (or Gaussian)
PDF [19,27].

Expression (64) is the main result of this section and forms the
starting point of Section 3, in which we will analyze how the data
distribution changes when z is further processed for the purpose of
image reconstruction.
MRI data distributions of single-coil images

From the complex data in the k-space (i.e., the spatial frequency
domain) a so-called reconstructed MR image in the spatial domain
can be obtained by taking the inverse two-dimensional (2D)
Discrete Fourier Transform (DFT). From the complex valued
reconstructed image thus obtained, magnitude and phase images
can be created straightforwardly. As illustrated in Section 2, the
pixel values of the magnitude image are directly related to the
strength of the transverse component of the net transverse
magnetization in the volume elements, voxels, in the selected tis-
sue slice. The phase image is often discarded since it may exhibit
incidental phase variations due to RF angle inhomogeneity, filter
responses, system delay, noncentred sampling windows, a time-
varying behavior due to radio frequency angle inhomogeneity,
system delay, field inhomogeneities, chemical shift, etc. [28e30].
Magnitude images are immune to these effects. Nevertheless,
phase images may contain valuable information. For example,
phase images are used to measure flow [31e35] or susceptibility
[36e40].

In this section, wewill describe the distribution of reconstructed
complex, magnitude and phase images acquired with a single-coil
acquisition system. The distribution of images acquired with
multiple-coils systems will be described in Section 4.
Statistical distribution of single-coil complex images

As was derived in Section 2, the complex data acquired in k-
space, often referred to as the raw data, can (pixelwise) be
described as

z
�
k
�
¼ s
�
k
�
þ n

�
k
�
; (65)

with sðkÞ the complex noise free data and nðkÞ additive noise that
can be modeled as a zero mean circular complex Gaussian random
variable (see Appendix A), whose PDF is given by

f
n
�
k
��n�k�� ¼ 1

2ps2K
exp

�
�
���n�k����2.�2s2K��: (66)

This is usually denoted as

n
�
k
�
� CN

�
0;2s2K

�
; (67)

which implies that the real and imaginary components nRðkÞ and
nIðkÞ of nðkÞ are independent identically distributed (i.i.d.) zero-
mean Gaussian random variables with variance s2K (see Appendix
A). That is,

nR

�
k
�
� N

�
0; s2K

�
; (68)

nI

�
k
�
� N

�
0; s2K

�
; (69)

and covðnRðkÞ;nIðkÞÞ ¼ 0. Moreover, it follows from Eq. (66) that
the RV nðkÞ has the same distribution as the RV eıqnðkÞ;cq2ℝ. The
RV nðkÞ is therefore called circularly symmetric [41].

Furthermore, as explained in Section 2, the noise process nðkÞ can
be assumed to be stationary so that s2K does not depend on k. More-
over, as was shown in Section 2, if we assume that the k-space was
sampledat theNyquist rate, thecomplexGaussiandistributedsample
points in the k-space are uncorrelated (and therefore independent).

Next, a complex image in the spatial domain (or, image space) is
obtainedby taking the inverseDFTof the complexdata in the k-space.
Due to the linearity and orthogonality of the Fourier transform, the
complex data points in the image space are also independent
Gaussian distributed, as is illustrated in Appendix B. Hence, the
complex image in the spatial domain can (pixelwise) be modeled as

z
�
r
�
¼ s
�
r
�
þ n

�
r
�
; (70)

with

s
�
r
�
¼ sR

�
r
�
þ ısI

�
r
�
; (71)

the noise free signal and

n
�
r
�
¼ nR

�
r
�
þ ınI

�
r
�

(72)

the additive noise contribution, and nðrÞ � CN ð0; 2s2Þ, with
s2 ¼ ð1=NÞs2K , whereN is the number of points used to compute the
inverse DFT (see Appendix B). This implies that

nR

�
r
�
� N

�
0; s2

�
; (73)
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nI

�
r
�
� N

�
0; s2

�
; (74)

and

cov
�
nR

�
r
�
;nI

�
r
��

¼ 0: (75)

The probability density function (PDF) of the complex Gaussian
RV zðrÞ is then given by

f
z
�
r
��z�r�� ¼ 1

2ps2
exp

0@�

���z�r�� s
�
r
����2

2s2

1A; (76)

which is usually denoted as zðrÞ � CN ðsðrÞ; 2s2Þ.
Statistical distribution of single-coil magnitude images

A magnitude image is obtained by taking (pixel by pixel) the
root sum of squares (SoS) of the real and imaginary part of the
complex image zðrÞ:

mð r Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2Rð r Þ þ z2I ð r Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzð r Þj2

q
: (77)

For notational convenience, we will suppose that all the equa-
tions are pixelwise andwrite z andm instead of zðrÞ andmðrÞ. It can
be shown that the random variable m is Rician distributed. Its PDF
fm(m) is given by Ref. [42]

fm mð Þ ¼ m
s2

e�
a2þm2

2s2 I0
ma
s2

� �
3mð Þ; (78)

where I0ð,Þ is the 0th order modified Bessel function of the first
kind and a2 ¼ s2R þ s2I , with sR and sI the real and imaginary part of
s ¼ E½z�. The unit step Heaviside function 3ð:Þ is used to indicate that
the expression for the PDF ofm is valid for non-negative values ofm
only.

The shape of the PDF (78) depends on the Signal to Noise Ratio
(SNR), which we will define as a/s. In the special case a¼ 0 (no
signal, SNR ¼ 0), the Rician PDF turns into a Rayleigh PDF given by
Ref. [43,44]

fmðmÞ ¼ m
s2

e�
m2

2s2 3ðmÞ: (79)

For increasing values of the SNR, that is, for SNR/∞, the
asymptotic expansion of I0(x) when x is large is [45]

I0 xð Þ � exffiffiffiffiffiffiffiffiffi
2px

p 1þ 1
8x

þ 1$9

2!$ 8xð Þ2
þ 1$9$25

3!$ 8xð Þ3
þ…

" #
: (80)

Then, for sufficiently large x, I0ðxÞzex=
ffiffiffiffiffiffiffiffiffi
2px

p
and the Rician

distribution (78) can be approximated as follows:

fmðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2ps2a

r
exp

 
� ðm� aÞ2

2s2

!
; (81)

or even further by a Gaussian distribution with corresponding PDF

fmðmÞ ¼ 1
s
ffiffiffiffiffiffi
2p

p exp

 
� ðm� aÞ2

2s2

!
: (82)

The moments (or raw moments) of the Rician distribution can
be expressed analytically as [46]
E½mr� ¼
�
2s2

�r=2
G
�
1þ r�

1F1

�
� r

;1;� a2
2

	
; (83)
2 2 2s

where Gð,Þ represents the Gamma function and 1F1ð,; ,; ,Þ denotes
the confluent hypergeometric function of the first kind. The first
four moments of the Rice PDF are given by Ref. [47]

E½m� ¼ s

ffiffiffi
p

2

r
e�

a2

4s2

��
1þ a2

2s2

�
I0

�
a2

4s2

�
þ a2

2s2
I1

�
a2

4s2

�	
; (84)

E
h
m2
i
¼ a2 þ 2s2; (85)

E
h
m3
i
¼ s3

ffiffiffi
p

2

r
e�

a2

4s2

��
3þ 3

a2

s2
þ a4

2s4

�
I0

�
a2

4s2

�
þ
�
2
a2

s2

þ a4

2s4

�
I1

�
a2

4s2

�	
; (86)

E
h
m4
i
¼ a4 þ 8s2a2 þ 8s4; (87)

with I1ð,Þ denoting the 1st order modified Bessel function of the
first kind. Note that the even moments are simple polynomials. The
expressions for the odd moments are more complex and have been
derived using the fact that the confluent hypergeometric function
can be expressed in terms of modified Bessel functions [45]. The
variance of the Rician distributed RV m is given by

VarðmÞ ¼ E
h
m2
i
� E½m�2

¼ a2 þ 2s2

� ps2

2
e�

a2

2s2

��
1þ a2

2s2

�
I0

�
a2

4s2

�
þ a2

2s2
I1

�
a2

4s2

�	2
:

(88)

Since the Rayleigh PDF is a special case of the Rice PDF (with
a¼ 0), expressions for its moments can be directly derived from the
expressions above, yielding [48]

E½mr� ¼
�
2s2

�r=2
G
�
1þ r

2

�
; (89)

or explicitly for the first four moments:

E½m� ¼
ffiffiffi
p

2

r
s; (90)

E
h
m2
i
¼ 2s2; (91)

E
h
m3
i
¼ 3

ffiffiffi
p

2

r
s3; (92)

E
h
m4
i
¼ 8s4; (93)

and the variance (88) simplifies to

VarðmÞ ¼ s2
�
2� p

2

�
: (94)

At high SNR, on the other hand, the Rician PDF tends to a
Gaussian PDF and (88) will reduce to the simple expression

VarðmÞ ¼ s2: (95)
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3.3. Statistical distribution of single-coil phase images

Recall from Section 3.1 that the PDF of the complex Gaussian RV
z with mean s and variance 2s2 is given by

fzðzÞ ¼ 1
2ps2

exp

 
�

���z� s
���2

2s2

!
; (96)

which is usually denoted as z � CNðs; 2s2Þ. If we write z in polar
coordinates, we get z¼meıq, where the real valued RVs m and q

denote the magnitude and phase of z, respectively. Similarly, the
complex mean s can also be written in polar coordinates: s¼ aeıf.
The joint PDF of m and q is obtained by rewriting Eq. (96) as

fm;qðm; qÞ ¼ 1
2ps2

exp

 
�

���meıq � aeıf
���2

2s2

!
: (97)

As discussed above, the magnitude m is Rician distributed. Its
PDF is given by (78). The conditional distribution of the phase q,
given the magnitude, follows a so-called Tikhonov distribution
[49,50]:

fqjmðqjmÞ ¼ exp½lcosðq� fÞ�
2pI0ðlÞ

; (98)

with l¼ma/s2. It is obtained by dividing Eq. (97) by Eq. (78). The
marginal PDF of the phase q is obtained by integrating (97) over m
yielding [51e53]

fqðqÞ ¼ 1
2p

exp
�
� 1
2

�a
s

�2	
�
h
1þ k

ffiffiffi
p

p
exp

�
k2
�
ð1þ erfðkÞÞ

i
;

(99)

with erfð,Þ the error function

erfðxÞ ¼ 2ffiffiffi
p

p
Zx
0

e�t2dt; (100)

and

k ¼ 1ffiffiffi
2

p a
s
cosðq� fÞ: (101)

Note that, unlike zR and zI, the RVs m and q are generally not
independent. However, when a¼ 0, Eqs. (98) and (99) reduce to a
uniform PDF fqjmðqjmÞ ¼ fqðqÞ ¼ 1=2p and m and q are indepen-
dent. For high SNR on the other hand, Eq. (99) tends to the Gaussian
PDF [53]

fqðqÞ ¼ 1ffiffiffiffiffiffi
2p

p a
s
exp

"
� a2ðq� fÞ2

2s2

#
: (102)
3.4. Simplifications at high SNR

Note that in polar coordinates, the complex images can (pixel-
wise) be described as

z
�
r
�
¼ m

�
r
�
e
ıq

�
r
�
¼ a

�
r
�
e
ıf

�
r
�
þ
�����n�r�

�����eıj
�
r
�

(103)

with
����n�r����� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
R

�
r
�
þ n2

I

�
r
�r
; (104)

the Rayleigh distributed magnitude of the noise and

j
�
r
�
¼ tan�1

0B@nI

�
r
�

nR

�
r
�
1CA; (105)

the uniformly distributed phase of the noise. The random variables���nðrÞ��� and jðrÞ are independent and their statistical properties do

not depend on r. From nowon, the dependence of z,m, a, f, n and j

on r is assumed but dropped from the notation. Expression (103)
can be rewritten as

z ¼ eıf
�
aþ

���n���eıðj�fÞ
�

¼ eıfðaþ jnjcosðj� fÞ þ ıjnjsinðj� fÞÞ; (106)

with jnjcosðj� fÞ the noise component that is collinear (i.e., in
phase) with the signal and jnjsinðj� fÞ the noise component that
is out of phase with the signal. It follows from Eq. (106) that

m≡jzj ¼ jaþ jnjcosðj� fÞ þ ıjnjsinðj� fÞj: (107)

Starting from Eq. (103) and assuming that j is distributed uni-
formly, independent of the value of jnj, Hayes and Roemer [54]
analyzed the variance of m at high SNR by replacing squares and
square roots by power series expansions to second order in jnj=a,
resulting in

VarðmÞ≊
E
h���n���2i
2

: (108)

Hayes and Roemer [54] found that the approximation (108) is
equivalent to ignoring the noise that is out of phase with the signal,
that is, by ignoring the imaginary part of the last term in (106).
Indeed it can be shown straightforwardly that

Varðaþ jnjcosðj� fÞÞ ¼
E
h���n���2i
2

: (109)

Hence, one may conclude that in the high SNR case (i.e.,
SNR	 10), only the noise in-phase with the signal will contribute to
the magnitude image, whereas the contribution of the out-of phase
noise can be neglected [54,55].

Assuming n � CNð0;2s2Þ, jnj is Rayleigh distributed and (108)
reduces to

VarðmÞ≊ 2s2

2
¼ s2: (110)

Note that this observation is in agreement with the earlier
mentioned result that for high SNR the distribution of m tends to
Nða; s2Þ. Furthermore, remark that if the signal aeıf to be recon-
structed (i.e., the image) is known to be real valued and positive (i.e.,
f¼ 0), expression (107) reduces to

m ¼ jzj ¼ jaþ jnjcosðjÞ þ ıjnjsinðjÞj; (111)

which can be rewritten as

m ¼ jzj ¼ jaþ nR þ ınIj (112)
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In this case, the out of phase noise component corresponds with
the imaginary part of the noise. It now follows from the analysis
above, that for high SNR and f ¼ 0, one may reasonably assume
that one is dealing solely with the real part of the noise as is often
practiced [55]. Note that this assumption will no longer be valid at
low(er) SNR. Furthermore, the realness assumption is often
violated because object motion and magnetic field in-
homogeneities introduce a nonzero phase f to the images.

4. Statistical distribution of multiple-coil images

So far, we have assumed that the images are acquired with a
single receiver coil. However, image acquisition with multiple coils
is becoming more and more common nowadays. Therefore, this
section considers the distribution of MR images acquired by
multiple-coil systems.

Before we continue, it should be mentioned that parallel MRI
(pMRI) methods are outside the scope of this paper. pMRI allows
reducing the acquisition time by subsampling the k-space, at the
expense of aliasing and other artifacts in the image space. As a
consequence, SoS can no longer be used as reconstruction method.
Reconstruction methods such as sensitivity encoding (SENSE) and
GeneRalized Autocalibrated Partially Parallel Acquisition (GRAPPA)
have been introduced to suppress or correct these artifacts. For a re-
viewof pMRImethods, the reader is referred to [56]. Furthermore, for
an analysis of the noise in GRAPPA and SENSE reconstructed images,
see Ref. [57] and Ref. [58], respectively. Generally, the distribution of
images acquiredbypMRImethods is still a subjectof current research.

4.1. Statistical distribution of multiple-coil complex images

When images are acquired with multiple (say L) receiver coils,
the k-space is effectively sampled L times, resulting in L sets of
complex raw data. Taking the inverse DFT of each of these data sets
results in L complex images in the image space. We have seen
above, that the pixels of each of these complex images can be
modeled as circularly complex Gaussian random variables (i.e., as
complex random variables whose real and imaginary parts are in-
dependent, Gaussian distributed with equal variance):

zl
�
r
�
� CN

�
sl
�
r
�
;2s2l

�
; l ¼ 1;…; L (113)

with slðrÞ the expected value and 2s2l the variance of the pixels of
the complex image acquiredwith the lth coil. Note that the variance
of the real and imaginary part of zlðrÞ is given by s2l . Define (for each
r) the complex random vector

z
�
r
�
¼

0BB@ z1
�
r
�

«

zL
�
r
�
1CCA; (114)

and the complex deterministic vector

s
�
r
�
¼

0BB@ s1
�
r
�

«

sL
�
r
�
1CCA: (115)

In what follows, we will write z and s instead of zðrÞ and sðrÞ to
simplify the notation. Next, let zR denote the real part and zI the
imaginary part of z and define

SR ¼ covðzR; zRÞ; (116)
SI ¼ covðzI; zIÞ; (117)

SIR ¼ ST
RI ¼ covðzI; zRÞ; (118)

and

w ¼
0@ z

z�

1A: (119)

Then it can be shown that the PDF of z is given by (see Appendix
A) [59]

1
pL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSwÞ

p exp


� 1
2

�
w� E

h
w
i�H

S�1
w

�
w� E

h
w
i��

(120)

where the elements of w correspond with those of w and
Sw¼ cov(w,w).

Next, suppose that we can assume that the correlation structure
of the real parts of the noise at the different coils is equal to the
correlation structure of the imaginary parts, that is,

SR ¼ SI : (121)

Furthermore, let's suppose that we can assume that

SIR ¼ �ST
IR: (122)

If condition (121) and condition (122) are both satisfied, Eq.
(120) simplifies to a so-called joint circularly complex normal dis-
tribution [59], also known as the complex multivariate Gaussian
PDF [19] (see Appendix A):

fzð z Þ ¼ 1
pLdet Szð Þ expf � ð z� s ÞHS�1

z ðz� sÞg; (123)

where the elements of the vector z correspond with those of z and
Sz ¼ covðz; z Þ ¼ 2SR þ 2ıSIR. This is usually denoted as
z � CNðs;SzÞ.

Note that condition (122) implies that SIR has a zero main di-
agonal. This means that the real and imaginary part of each
component zk of z are uncorrelated, which is a valid assumption, as
was derived in Section 2. Furthermore, a sufficient, but not neces-
sary, condition for (122) to be satisfied is

SIR ¼ O; (124)

with O the L� L null matrix. In that case, the real part of zk and the
imaginary part of zl are uncorrelated not only for k¼ l, but also for
ks l. This seems to be a reasonable assumption that is often
(implicitly) practiced [57,60].

Moreover, if we not only assume that conditions (121), (122) and
(124) are satisfied, but additionally assume that there is no corre-
lation between the coils and that the variance of the noise at each
coil is the same, then SR and SI will be diagonal matrices with
identical eigenvalues:

SR ¼ SI ¼ s2IL; (125)

where IL is the identity matrix of order L. In this case,

Sz ¼ 2s2IL (126)

and Eq. (123) further simplifies to
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fzð zÞ¼ 1
pLdet Szð Þ expf�

1
2s2

ð z� s ÞHð z� s Þg¼ 1

2ps2
� Le� 1

2s2
j z� s j22 ;

(127)

with j z� s j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

l¼1 zl � slj j2
q

the [2-norm of the complex vector

z� s. That is, z � CNðs;2s2ILÞ. Note that Eq. (127) reduces to Eq.
(76) if L¼ 1.

4.2. Statistical distribution of multiple-coil magnitude images

When images are acquiredwithmultiple receiver coils and the k-
space is fully sampled, a composite magnitude image can be ob-
tained by pixelwise taking the root of the sum of squares (SoS) [61]:

mL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

�
z2Rl

þ z2Il

�vuut ; (128)

with L the number of coils and zRl
and zIl the real and imaginary

component of the complex image obtained from the raw data ac-
quired by the lth coil. Note that we again suppose that all the
equations are pixelwise and write mL instead of mLðrÞ. If the vari-
ance of the noise at each coil is the same and there are no corre-
lations, the PDF of mL is given by Ref. [62,63]

fmLðmÞ ¼ mL

s2aL�1e
�m2þa2

2s2 IL�1

�
ma
s2

�
3ðmÞ; (129)

where a2 ¼ sHs ¼PL
l¼1ðs2Rl

þ s2Il Þ ¼
PL

l¼1

���sl���2, with sRl
and sIl the

means of the real and imaginary components of the complex image
pixel values obtained from raw data acquired with the lth coil. The
PDF (129) is known as the generalized Rice distribution and is directly
related to the so-called non-central chi (nc� c) distribution. Indeed,
it can be shown that the scaled random variable mL0 ¼ mL=s, being
the root sum of squares of a set of 2L independent Gaussian random
variables with unit variance, has a nc� c distribution, with 2L de-
grees of freedom and non-centrality parameter

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

��sRl

s

�2
þ
�sIl
s

�2�vuut ¼ a
s
: (130)

Its PDF is given by

fmL0ðmÞ ¼ mLe�
m2þa2

s2
2�

a
s

�L�1 IL�1

�ma
s

�
3ðmÞ: (131)

It follows from Eqs. (129) and (131), that
fmLðmÞ ¼ ð1=sÞfmL0ðm=sÞ. This relation can also be derived directly
using basic theory on random variable transformation [64]. In fact,
both Eqs. (129) and (131) are often referred to as nc-c distributions.
In the remainder of this paper, we will follow this convention and
refer to Eq. (129) as a nc� c distribution as well.

When a/ 0, the PDF of mL turns into a generalized Rayleigh
PDF [31,62]:

fmLðmÞ ¼ 2m2L�1�
s
ffiffiffi
2

p �2L
GðLÞ

exp
�
� m2

2s2

�
3ðmÞ; (132)

which can be rewritten as [65]
fmLðmÞ ¼ 1
GðLÞs2

�
m
2s2

�L�1
mLexp

�
� m2

2s2

�
3ðmÞ: (133)

The moments of the generalized Rice PDF can be expressed
analytically as [66]:

E
�
mr

L
� ¼ �2s2�r=2G½ð2Lþ rÞ=2�

GðLÞ 1F1

�
� r
2
; L;3� a2

2s2

�
: (134)

or, equivalently [67],

E
�
mr

L
� ¼ �2s2�r=2e�m2þa2

2s2
G½ð2Lþ rÞ=2�

GðLÞ 1F1

�
2Lþ r

2
; L;

a2

2s2

�
;

(135)

using the transformation 1F1ða; b; zÞ ¼ ez1F1ðb� a; b;�zÞ [45]. The
mean of mL is given by Ref. [31]

E½mL� ¼
ffiffiffi
2

p
s

G

�
Lþ 1

2

�
GðLÞ 1F1

�
� 1
2
; L;� a2

2s2

�
: (136)

Again, the even moments turn out to be simple polynomials:

E
h
m2

L

i
¼ 2Ls2 þ a2; (137)

E
h
m4

L

i
¼ 4L2s4 þ 4Ls4 þ 4a2Ls2 þ 4a2s2 þ a4: (138)

For a¼ 0, we obtain the moments of the generalized Rayleigh
PDF:

E
�
mr

L
� ¼ �2s2�r=2G½ð2Lþ rÞ=2�

GðLÞ ; (139)

which, using some general properties of the Gamma function Gð,Þ,
yields for the mean value and variance [65]

E½mL� ¼
1$3$5/ð2L� 1Þ
2L�1ðL� 1Þ!

ffiffiffi
p

2

r
s; (140)

and

VarðmLÞ ¼ E
h
m2

L

i
� E½mL�2

¼
 
2L�

�
1$3$5/ð2L� 1Þ
2L�1ðL� 1Þ!

�2
p

2

!
s2: (141)

Furthermore, it can be shown that the PDF of the random
variable

qL ¼ m2
L ¼

XL
l¼1

�
z2Rl

þ z2Il
�

(142)

is given by Ref. [31]

fqL
ðqÞ ¼ 1

2s2
e�

a2þq
2s2

�
q
a2

�L�1
2

IL�1

� ffiffiffi
q

p
a

s2

�
3ðqÞ: (143)

The PDF (143) is directly related to the so-called non-central chi-
square PDF. Indeed, it can be shown that the random variable
qL0 ¼ qL=s

2, being the sum of squares of a set of 2L independent
Gaussian random variables with unit variance, has a non-central
chi-square (nc�c 2) distribution, with 2L degrees of freedom and
non-centrality parameter a2/s2. Its PDF is given by Ref. [68]
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fqL0ðqÞ ¼
1
2
e�

a2

s2
þq

2

�
qs2

a2

�L�1
2

IL�1

� ffiffiffi
q

p a
s

�
3ðqÞ: (144)

It follows from Eqs. (143) and (144), that
fqL

ðqÞ ¼ ð1=s2ÞfqL0ðq=s2Þ. This relation can also be derived directly
using basic theory on random variable transformation [64]. In fact,
since Eq. (143) is often also referred to as a nc� c2 distribution
[57,60,69], wewill from now on refer to both Eqs. (143) and (144) as
nc� c2 distributions. The variance of m2

L follows directly from Eqs.
(137) and (138):

Var
�
m2

L

�
¼ E

h
m4
i
�
�
E
h
m2
i�2 ¼ 4a2s2 þ 4Ls4: (145)

It is worthwhile mentioning that the generalized Rice distri-
bution also applies to MR data acquired in Phase Contrast Magnetic
Resonance (PCMR) imaging, which is a technique that is widely
used to detect flow [31,32,70].

Recall that to arrive at the generalized Rice distribution (129)
and the nc� c2 distribution (143), we had to assume that there
are no correlations between the coils and the variance of the noise
at each coil is the same. In mathematical terms, these assumptions
imply that the conditions (124) and (125) should be satisfied.
However, in phased array (multiple-coil) systems noise correlations
may exist [54,61,71]. Furthermore, the noise variance may differ
from coil to coil. Generally, the noise correlation matrix could be
determined experimentally from a reasonably large set of samples
reflecting mere noise [60,72]. Taking noise correlations into ac-
count, Aja-Fern�andez et al. [57,60] considered the case in which
SR ¼ SI is allowed to have nonzero off-diagonal elements, where
the off-diagonal elements represent the correlations between each
pair of coils. Holding on assumption (124), this yields
z � CNðE½z�;SzÞ, with Sz ¼ 2SR. In this more general case, the PDF
of m2

L cannot be derived, but the mean and variance are given by
Ref. [19,57]

E
h
m2

L

i
¼ a2 þ 2trðSRÞ; (146)

Var m2
L

� �
¼ 4sHSR sþ4kSRk2F ¼ 4sHSR sþ4tr SRð Þ; (147)

with k$kF the Frobenius norm and trð,Þ the trace operator. Note that
the mean (146) remains unaffected by noise correlation.

Aja-Fern�andez et al. [60] show that although the data in this
case is not strictly nc� c2 distributed, in practical cases this dis-
tribution is still a very accurate approximation if so-called effective
parameters are considered. By using the method of moments, the
so-called effective number of coils Leff and the effective noise
variance s2eff can be derived [60]:

Leff ¼
a2tr SRð Þ þ tr SRð Þð Þ2

sHSR sþkSRk2F
; (148)

s2eff ¼
tr SRð Þ
Leff

: (149)

Generally, noise correlations will reduce the number of degrees
of freedom of the nc� c2 distribution and increase the effective
variance of the noise. Note that Leff and s2eff depend on the signal
and hence on the position within the image. As a result, the sta-
tistics of the noise will be spatially variant, and the noise becomes
non-stationary [73].
Parameter estimation

Now that we have analyzed the statistical distribution(s) of MR
images, we will next show how knowledge of this distribution can
be used to estimate parameters from these images with optimal
accuracy and precision. Furthermore, we will address the question
as to what precision may be achieved ultimately from a particular
MR image.

Suppose that one wants to estimate a parameter vector
q ¼ q1; q2;…; qKð ÞT from a set of N data points (i.e., observations)
w1,…,wN that have a joint PDF

fw1;w2;…;wN

�
w1;w2;…;wN ; q

�
; (150)

which depends on q. The observationsmay represent pixel values of
an MR complex, magnitude or phase image, whereas the parame-
ters q may, for example, represent the underlying true amplitude
and phase values [2,46], or proton densities and relaxation times
[5]. In Section 5.1, it will be shown how the parameterized PDF
(150) can be used to compute the so-called Cram�er-Rao lower
bound (CRLB), which is a lower bound on the variance of any un-
biased estimator of the parameters. Then, in Section 5.2, it will be
shown how from the same PDF the maximum likelihood (ML)
estimator, having favorable statistical properties, may be derived.

The Cram�er-Rao lower bound

Obviously, different estimators can be used to estimate q. To
assess and compare their performances, quality measures such as
accuracy and precision can be used. The accuracy of an estimator is
expressed in terms of its bias, which is defined as the deviation of
the expected value of the estimator from the true value of the
parameter:

b
�bq� ¼ E

�bq	� q: (151)

The bias represents the systematic error. If the bias of an esti-
mator is zero, the estimator is called unbiased. The precision of an
estimator is defined by its variance, or, in the more general case of
vector valued parameters, by its covariance matrix:

cov
�bq� ¼ E

"�bq � E

�bq	��bq � E

�bq	�T
#
: (152)

The diagonal elements of covðbq Þ represent the variances of the
elements of bq , whereas the non-diagonal elements represent the
covariances between the elements of the estimator. Note, that pre-
cision is ameasure of the non-systematic error. It concerns the spread
of the estimates if the experiment is repeated under the same con-
ditions. Generally, different estimators will have different precisions.
However, it canbe shownthatunder general regularityconditions the
covariance matrix of any unbiased estimator bq satisfies [74]

cov bq� �
	 F�1; (153)

with

F ¼ �E

2664v2lnfw1;w2;…;wN

�
w1;w2;…;wN; q

�
vqvqT

3775 (154)

the so-called called Fisher information matrix. Inequality (153) ex-
presses that the difference between the left-hand and right-hand
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member is positive semi-definite. A property of a positive semi-
definite matrix is that its diagonal elements cannot be negative.
This means that the diagonal elements of covðbq Þ, that is, the vari-
ances of the elements of bq , are larger than or equal to the corre-
sponding diagonal elements of F�1. Hence, F�1 represents a lower
bound to the variances of all unbiased bq . The matrix F�1 is called
the Cram�er-Rao Lower Bound (CRLB).
Maximum likelihood estimation

To construct the maximum likelihood (ML) estimator of the
unknown parameter q from a set of available observationsw1,…,wN,
we substitute these observations (i.e., numbers) for the corre-
sponding independent variables in Eq. (150). The expression that
results depends only on the unknown parameters q. If we now
regard these parameters as variables, the deterministic function

L
�
q;w1;w2;…;wN

�
(155)

that results is called the likelihood function. The Maximum Likeli-
hood estimate bqML of the parameter q is now defined as the value of
q that maximizes the likelihood function:
bqML

�
¼ argmax

q
L
�
q;w1;w2;…;wN

�
(156)

or, equivalently,
bqML

�
¼ argmax

q
lnL
�
q;w1;w2;…;wN

�
(157)

in which lnLð,Þ is called the log-likelihood function. The ML esti-
mator has a number of favorable statistical properties [75]. First, it
can be shown that this estimator achieves the CRLB asymptotically,
that is, for an infinite number of observations. Therefore, it is
asymptotically most precise (or, asymptotically efficient). Second, it
can be shown that theML estimator is consistent, whichmeans that
it converges to the true value of the parameter in a statistically well
defined way if the number of observations increases. Third, the ML
estimator is asymptotically normally distributed, with a mean
equal to the true value of the parameter and a covariance matrix
equal to the CRLB. If these asymptotic properties also apply to a
finite or even small number of observations can often only be
assessed by estimating from artificial, simulated observations.
Finally, the ML estimator is known to have the invariance property.
That is, if bq ML is the ML estimator of q, and if gðqÞ is any function of
q, then the ML estimator of a ¼ gðqÞ is given by ba ¼ gðbq MLÞ.

Note that the observations (i.e., pixels)m1,…,mN fromwhich the
parameter of interest q is estimated (using theML estimator) can be
selected locally or non-locally. In the first case, the parameter is
estimated from pixels in a local neighborhood within which the
parameter is assumed to be constant (cfr., [46,66]). In the second
case, the pixels for the ML estimation of the true underlying
parameter are selected in a non local way based on, for example,
the intensity similarity of the pixel neighborhoods. This similarity
can bemeasured using, for example, the Euclidean distance [76,77],
sparseness in a transform domain [78,79], or, as proposed recently,
the KolmogoroveSmirnov (KS) test [80].
Estimation of signal and noise from magnitude images

To illustrate the practical application of the theory summarized
in Section 5, we will now consider, as an illustrative example, the
problem of estimating the underlying true signal amplitude from a
single-coil magnitude image. For this estimation problem, the CRLB
and the ML estimator are derived. For the case of multiple-coil
images, the CRLB and ML estimator can be derived in a similar
way (see, e.g., [67,81]).

Consider a set of N independent pixel values of a magnitude
image taken from a region in which the underlying true signal
amplitude a is assumed to be constant. The joint PDF
fm1

,m2
,…,mN

(m1,m2,…,mN) of these pixel values (from now on called
observations) is then given by the product of the marginal PDFs
fmi(mi) of the individual observations constituting this set:

fm1;m2;…;mN m1;m2;…;mN ; a; s
2

� �
¼
YN
i¼1

fmi mi; a;s
2

� �
: (158)

For single-coil images, fmi ðmi; a; s2Þ is given by the Rician PDF
Eq. (78). Note that the joint PDF depends on the true signal
amplitude a and the noise standard deviation s, as expressed in the
notation used.
6.1. CRLB

The CRLB can be derived from Eqs. (153)e(154) and (158) and
(78). If the noise variance s2 is known, the CRLB, is given by Ref. [9]:

CRLB ¼ s2

N

�
h� a2

s2

��1

; (159)

with

h ¼ E

2664m2

s2

I21

�
am
s2

�
I20

�
am
s2

�
3775; (160)

The expectation value in Eq. (160) can be evaluated numerically.
If the noise variance s2 is unknown and has to be estimated
simultaneously with the signal parameter a, the elements of the
Fisher information matrix F with respect to the parameter vector
q ¼ ða; s2ÞT are given by Ref. [2]:

Fð1;1Þ ¼ N
s2

�
h� a2

s2

�
(161)

Fð1;2Þ ¼ Fð2;1Þ ¼ Na
s4

�
1þ a2

s2
� h

�
(162)

Fð2;2Þ ¼ N
s4

�
1þ a2

s2
ðh� 1Þ � a4

s4

�
(163)

where F(i,j) denotes the (i,j)th element of the matrix F and h is given
by Eq. (160). Finally, the CRLB for unbiased estimation of (a,s2) is
obtained by simple inversion of the 2� 2 matrix F.
Maximum likelihood estimator

To construct the Maximum Likelihood (ML) estimator of the
unknown parameters a and s2 from a set of available magnitude
observations m1,…,mN we substitute these observations (i.e.,
numbers) for the corresponding independent variables in Eq. (158).
The thus obtained Likelihood function is then given by

L a; s2;m1;m2;…;mN

� �
¼
YN
i¼1

mi

s2
e�

a2þm2
i

2s2 I0
mia
s2

� �
(164)
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and the Maximum Likelihood estimates baML and bsML of the pa-
rameters a and s are found by maximizing the likelihood function
with respect to a and s [2]:

baML; bs2
ML

n o
¼ argmax

a;s2

YN
i¼1

mi

s2
e�

a2þm2
i

2s2 I0
mia
s2

� �
; (165)

or, equivalently, since the logarithm is a monotonically increasing
function,

fbaML; bs2
MLg

¼ argmax
a;s2

lnL a; s2;m1;m2;…;mN

� �

¼ argmax
a;s2

ln
QN
i¼1

mi

s2
e
�a2 þm2

i
2s2 I0

mia

s2

� �

¼ argmax
a;s2

 PN
i¼1

ln
mi

s2

� �
�PN
i¼1

m2
i þ a2

2s2
þ
XN
i¼1

lnI0
ami

s2

� �!
:

(166)

Note that if the noise variance s2 is known, Eq. (166) simplifies
to

baML ¼ argmax
a

 XN
i¼1

ln I0

�
ami

s2

�
� Na2

2s2

!
: (167)

Yakovleva et al. [82] recently introduced a new technique to
calculate the ML estimates of a and s2. This technique effectively
reduces the task of solving a system of two nonlinear equations
with two unknown variables, to the task of solving just one equa-
tion with one unknown variable. Using Yakovleva's technique,
finding the ML estimates of both s2 and a is therefore not more
complicated (in terms of computational cost) than finding the ML
estimate of a only (with s2 known).
Discussion

Note that in the more general case, the underlying signal
amplitude a can be a parametric function f ðqÞ of an unknown
parameter vector q, where typical elements of q are proton density r
and relaxation time constants T1; T2; T�2. In this case, the same
theory (described in Section 5) that was used to derive the CRLB
and ML estimator of the parameter a, can straightforwardly be
applied to derive the CRLB and ML estimator of q [5].

Furthermore, ML estimates can also be obtained from the
complex valued images. It was shown by Sijbers and den Dekker [2]
that ML estimation of the underlying true signal amplitude from
complex data with equal underlying true phase values is generally
better in terms of the mean squared error (MSE) than ML estima-
tion frommagnitude data. However, if the phase values vary within
the region from which the amplitude is estimated, ML estimation
from magnitude data is significantly better in terms of the MSE.

Finally, for a list of series expansions, recursive relations and
polynomial approximations of modified Bessel functions that have
been proven useful in the numerical calculation of ML estimates
from magnitude images, the reader is referred to Appendix C.
Discussion and conclusions

In this review paper, it has been shown that the raw complexMR
data points acquired in the spatial frequency domain (i.e., the k-
space) are characterized by a joint circularly complex Gaussian
distribution, with a diagonal covariance matrix. After taking the
inverse DFT, we obtain a complex image in the spatial domain (i.e.,
the image space). Due to the linearity and the orthogonality of the
DFT, the pixels of this so-called reconstructed image are also jointly
circularly complex Gaussian distributed with a diagonal covariance
matrix. Taking the magnitude and phase, however, are nonlinear
operations. Therefore, magnitude and phase images are no longer
Gaussian distributed. The PDFs ofmagnitude andphase imageshave
beendescribed in this paper. Inparticular, it has been shown that the
pixels of magnitude images obtained by single-coil acquisition are
Rician distributed, whereas magnitude images acquired using a
multiple-coil system (and using the sum of squares reconstruction
algorithm) are nc� c distributed, under the assumption that the
noise variance at each coil is the same and there are no inter-coil
noise correlations. If this assumption is not valid, the noise in the
magnitude images becomes spatially non-stationary. In this case, it
is no longer possible to derive an exact expression for the distribu-
tion of the image pixel values, although, under certain conditions,
accurate approximations may still be given.

Furthermore, it has been summarized how knowledge of the
distribution of MR images can be used to (i) derive the precision
that may be achieved ultimately when estimating parameters from
a particular MR image and (ii) to construct themaximum likelihood
(ML) estimator, which achieves this precision at least
asymptotically.

Finally, we note that data distributions in MR images that were
generated using nonlinear reconstruction techniques may be very
different from those of conventional Fourier based reconstruction
[83e86]. Nonlinear reconstruction techniques have been shown to
be successful in reconstructing high-resolution images from sub-
sampled data. Such techniques are becoming increasingly popular,
as the demand for shorter scan times without significantly affecting
image quality increases. It has been noted [87] that although the
convergence and other deterministic properties of nonlinear
reconstruction methods are well established, little is known about
how noise in the source data influences noise in the final recon-
structed image. In Refs. [87], the noise distribution from nonlinear
reconstructed MR images was determined in an experimental way.
Depending on the level of subsampling, the noise distribution was
observed to vary from a Rayleigh distribution to a log-normal dis-
tribution with increasing level of subsampling. For future research,
it would be highly valuable to fully characterize the MR data dis-
tribution from solid theoretical derivations.
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Appendix A. The complex multivariate Gaussian distribution

The following analysis is to a large extent based on Ref. [59]. Let
zR and zI be the real vectors

zR ¼
�
zR1

…zRL

�T

(A.1)

and

zI ¼
�
zI1…zIL

�T

(A.2)

with jointly Gaussian distributed random variables and define
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t ¼
 
zR
zI

!
(A.3)

and

z ¼ z1…zLð ÞT ; (A.4)

with zl ¼ zRl
þ ızIl . Next, define

w ¼
0@ z

z�

1A: (A.5)

The covariance matrix of the complex vector z is defined by its
(m,n)th element

covðzm; znÞ ¼ E
�ðzm � E½zm�Þ

�
z�n � E

�
z�n
��

: (A.6)

Therefore,

cov
�
z; z
�
¼ E

��
z� E

h
z
i��

z� E
h
z
i�H	

: (A.7)

Similarly,

cov
�
w;w

�
¼

0B@ cov
�
z; z
�

cov
�
z; z�

�
cov

�
z�; z

�
cov

�
z�; z�

�
1CA; (A.8)

with covðz�; zÞ ¼ covðz; z�ÞH , where covðz; z�Þ is known as the
pseudo-covariance matrix of z [88]. Furthermore, it can be shown
that cov(z,z) and cov(z,z*) can be expressed in terms of the
covariance matrices of zR and zI:

covðz; z�Þ ¼ SR � SI þ ı SIR þ SRIð Þ; (A.9)

covðz; z Þ ¼ SR þ SI þ ı SIR � SRIð Þ: (A.10)

with

SR ¼ cov zR; zRð Þ; (A.11)

SI ¼ cov zI; zIð Þ; (A.12)

and

SIR ¼ ST
RI ¼ covðzI; zRÞ: (A.13)

Since the elements of t are jointly Gaussian distributed, it can be
shown that the PDF of z is given by Ref. [59]:

1
pL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSwÞ

p exp


� 1
2

�
w� E

h
w
i�H

S�1
w

�
w� E

h
w
i��

(A.14)

with Sw ¼ covðw;w Þ. This is usually denoted as
z � CNðE½z�;Sz;CÞ, with Sz ¼ covðz; z Þ the covariance matrix of z
and C ¼ covðz; z�Þ the pseudo-covariance matrix of z.

Next, consider the special case that

E½ðzm � E½zm�Þðzn � E½zn�Þ� ¼ E½ðzm � E½zm�Þ�ðzn � E½zn�Þ�� ¼ 0;
(A.15)

that is, covðz; z�Þ and covðz�; zÞ are L� L null matrices. Then, the
complex random variables z are called circularly complex and
Sw ¼ Sz O
O S�

z

� �
; (A.16)

where O is the L� L null matrix. Substituting Eq. (A.16) in (A.14)
yields the so-called joint circularly complex normal distribution
[59], also known as the complex multivariate normal (or Gaussian)
PDF [19,27]:

fz
�
z
�
¼ 1

pLdetðSzÞ
exp



�
�
z� E

h
z
i�H

S�1
z

�
z� E

h
z
i��

:

(A.17)

This is usually denoted as z � CNðE½z�;SzÞ. Note that complex
random variables for which condition Eq. (A.15) holds (i.e., with
a vanishing pseudo-covariance matrix) are often called proper
[88]. Furthermore, note that it follows from Eqs. (A.9) and (A.10)
that condition (A.15) is satisfied if and only if SR ¼ SI and
SIR ¼ �SRI ¼ �ST

IR

� 
, where the skew-symmetry of SIR implies

that SIR has a zero main diagonal, which means that the real and
imaginary part of each component zk of z are uncorrelated. Note
that condition (A.15) also implies that for zero mean z we have
E½zkzl� ¼ 0. The vanishing of covðz; z�Þ and covðz�; zÞ does not,
however, imply that the real part of zk and the imaginary part of
zl are uncorrelated for ks l [88]. Finally, note that if condition
(A.15) is satisfied, the covariance matrix Sz can be written as

Sz ¼ 2SR þ 2ıSIR: (A.18)

Appendix B. Covariance of two-dimensional DFT

Suppose that the 2D data set in the k-space consists of M�M
complex data points. These data points can be described by aM�M
matrix Z, but the data can also be described by a vector of N¼M2

elements that is obtained by stacking the columns of Z. Let's define
this vector by

z
�
k
�
¼

0BBBB@
z
�
k1

�
«

z
�
kN

�
1CCCCA; (B.1)

with

E
h
z
�
k
�i

¼

0BBBB@
s
�
k1

�
«

s
�
kN

�
1CCCCA: (B.2)

Similarly, the 2D data in the image space obtained by applying
the 2D inverse discrete Fourier transform is described by the N� 1
vector

z
�
r
�
¼

0BBBB@
z
�
r1

�
«

z
�
rN

�
1CCCCA: (B.3)

Now, it can be shown that

z
�
r
�
¼ 1

N
XHz

�
k
�
; (B.4)

where X is an N�N matrix given by
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X ¼ A5A; (B.5)

where 5 denotes the Kronecker product and

A ¼

a0 a0 a0 / a0

a0 a1 a2 / aM�1

a0 a2 a4 / a2ðM�1Þ
« « « 1 «

a0 a M�1ð Þ
… a M � 1ð Þ2

0BBBBB@

1CCCCCA; (B.6)

with a¼ e�ı2p/M. Note that Eq. (B.4) is a linear operation. This im-
plies that if zðkÞ is Gaussian distributed, its inverse DFT zðrÞwill also
be Gaussian distributed. Furthermore, it can be shown straight-
forwardly that the covariance matrix of zðrÞ is given by

Cov
�
z
�
r
�
; z
�
r
��

¼ E

��
z
�
r
�
� E
h
z
�
r
�i��

z
�
r
�
� E
h
z
�
r
�i�H	

¼ 1
N2X

HSzX;

(B.7)

with

Sz ¼ covð z ð k Þ; z ð k ÞÞ: (B.8)

Note that if
P

z ¼ 2s2K IN , with IN the N�N diagonal matrix,
expression (B.7) simplifies to

Cov
�
z
�
r
�
; z
�
r
��

¼ 2s2K
N2 XHX ¼ 2s2K

N
IN; (B.9)

since XHX¼NIN. Finally, if

z
�
k
�
� CN

�
s; 2s2KIN

�
; (B.10)

then

z
�
r
�
� CN

 
1
N
XHs;2

s2K
N

IN

!
: (B.11)
Appendix C. Modified Bessel functions of the first kind of
integer order

The series expansion of the nth order modified Bessel function
of the first kind is given by

InðxÞ ¼
�x
2

�n X∞
m¼0

ðx=2Þ2m
m!Gðmþ nþ 1Þ: (C.1)

Furthermore, the following recursive relationships hold:

Inþ1ðxÞ ¼ �
�
2n
x

�
InðxÞ þ In�1ðxÞ (C.2)

In�1ðxÞ þ Inþ1ðxÞ ¼ 2I0nðxÞ; (C.3)
with I0nðxÞ ¼ d=dxInðxÞ. Moreover,

I�nðxÞ ¼ InðxÞ: (C.4)

In the region x≪n, InðxÞ becomes, asymptotically, a simple power
of its argument [89]

InðxÞz1
n!

�x
2

�n
; n 	 0; (C.5)

whereas in the region x[n, In(x) is well approximated by Ref. [89]

InðxÞz 1ffiffiffiffiffiffiffiffiffi
2px

p expðxÞ: (C.6)

For jxj � 3:75, the following polynomial approximations hold
[45]

x
1
2e�xI0 xð Þ ¼ 0:39894228þ 0:01328592t�1 þ 0:00225319t�2

� 0:00157565t�3 þ 0:00916281t�4

� 0:02057706t�5 þ 0:02635537t�6

� 0:01647633t�7 þ 0:00392377t�8 þ 31;

(C.7)

and

x
1
2e�xI1 xð Þ ¼ 0:39894228� 0:03988024t�1 � 0:00362018t�2

þ 0:00163801t�3 � 0:01031555t�4

þ 0:02282967t�5 � 0:02895312t�6

þ 0:01787654t�7 � 0:00420059t�8 þ 32;

(C.8)

with t¼ x/3.75,
�� 31
��<1:9� 10�7 and

�� 32
��<2:2� 10�7.

Practical algorithms for accurate numerical calculation of Bessel
functions using the relations described above can be found in
Ref. [89].
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