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Abstract. Realistic virtual mannequins, that represent body shapes that occur in 

the target population, are valuable tools for product developers who design 

near-body products. Statistical shape modeling is a promising approach to map 

out the variability of body shapes. The strength of statistical shape models 

(SSM) is their ability to capture most of the shape variation with only a few 

shape modes. Unfortunately, the shape variation captured by SSMs of human 

bodies is often polluted by variations in posture, which substantially reduces the 

compactness of those models. In this paper, we propose a fast and data driven 

framework to build a posture invariant SSM. The normalized SSM is shown to 

be substantially more compact than the non-normalized SSM. Using five shape 

modes, the normalized SSM is 23% more compact than the non-normalized 

SSM. 
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1 Introduction 

When designing near-body products, product developers often rely on virtual de-

sign mannequins. The disadvantage of current mannequins is that they are a simpli-

fied representation of the population [1]. Statistical shape modeling is a well-known 

technique in 3D anthropometric analyses. It allows gaining a better understanding of 

the variation in shape present in a population. SSMs are highly valuable for product 

designers since ergonomic products for a specific target population can be designed 

from these models. By adapting the shape parameters of the SSM, a new, realistic 

shape can be formed. Product developers may exploit SSMs to serve as input for vir-

tual design mannequins and explore the body shapes belonging to a specific percentile 

of a target group, to visualize extreme shapes. On the other hand, an SSM can visual-
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ize a specific body shape, which is useful for customization. Reed et al. [2] developed 

a pose modification technique. Nevertheless, posture has a high influence on their 

results. 

When building an SSM from 3D body scans, body posture has a significant influ-

ence on the shape modes. Even when the subjects are instructed to maintain a stand-

ard pose, there are slight posture variations noticeable, especially in the region of the 

arms. This is the case in e.g. the  Civilian American and European Surface Anthro-

pometry Resource (CAESAR) database [3]. As a result, some shape variances are 

incorrectly correlated with posture. 

Most posture deformation techniques are based on rotating and translating the body 

parts. In particular, applying linear blend skinning (LBS) to a surface mesh with a 

simplified skeleton consisting of joints and bones, is a popular approach [4]. Posture 

normalization is commonly done by transforming each body part separately. The dis-

advantage of  LBS, is that the result may look unnatural, because LBS cannot com-

pensate for muscle bulging. 

Another common approach is separating the shape space from the posture space. 

Wuhrer et al. [5] did a posture-invariant shape analysis using the Laplace operator. 

This is very computationally intensive for surface meshes with many vertices, because 

an optimization problem needs to be solved for every vertex. The SCAPE method [6] 

is a data-driven method that learns a posture deformation model that derives the non-

rigid shape deformation as a function of the posture of the articulated skeleton. The 

advantage of this technique is that it generates more realistic shapes including the 

simulation of muscle bulging. However, a drawback of SCAPE is that a skeleton has 

to be defined for every surface mesh, which is time-consuming and error-prone.  

In this paper, we propose a fast, skeleton-less, data-driven method to perform sta-

tistical shape modeling in a posture invariant way by minimizing the influence of 

posture, because we solely want to capture body shape variability. The remainder of 

this paper is organized as follows. First, the approach for building an SSM is detailed. 

Second, the approach for feature modification and identity removal is described. 

Then, the technique for posture normalization is discussed. In the results section, the 

several components of the framework are tested and evaluated. Finally, a conclusion 

is formulated. 

2 Methods 

In this section, the developed framework is described. First, an SSM is built from a 

population of 3D human body shapes [7]. Next, the identity of these training shapes is 

removed, by modifying the features of each shape so that they are equal to the average 

features. From these shapes without identity, a posture model is built. This model 

captures only the posture of a new input shape. The translation of each vertex from 

the posture model to the mean posture is calculated and applied to the input shape, 

which results in a posture-normalized shape. 



2.1 Statistical Shape Model (SSM) 

An SSM is built from a population of 𝑁 shapes, with every shape consisting of 𝑛 

vertices. The population is represented by a 3𝑛-dimensional point cloud, where each 

point represents a shape. This cloud can be represented by a mean shape and 𝑁 − 1 

eigenmode vectors, where the first eigenmode describes the largest variance in the 

population, the second eigenmode the second largest variance perpendicular to the 

first, etc. In an SSM, the mean shape 𝒙 ∈ ℝ3𝑛 and the main shape modes, the princi-

pal component (PC) modes 𝑷 ∈ ℝ3𝑛×(𝑁−1), are incorporated. This means that a new 

shape 𝒚 ∈ ℝ3𝑛 can be formed by a linear combination of the PCs: 

 

 𝒚 =  𝒙  +  𝑷𝒃 , (1) 

 

with 𝒃 ∈ ℝ(𝑁−1) the vector containing the SSM parameters. 

2.2 Feature Modification 

A specific feature of an individual's shape, such as its height, can be adapted by 

adding a linear combination of PCs to the individual's shape vector. The weights for 

this linear combination, the so-called feature vector, are computed via multiple linear 

regression of the PC weights on the body features for the population of individuals. 

By applying a scaled version of the feature vector to the shape vector of an individual, 

its shape can be adapted to match a specific feature value [8].  

Suppose we know 𝑓 features 𝒇𝑖 = [𝑓1  𝑓2  …  𝑓𝑓   1]
𝑇

 ∈ ℝ𝑓+1 and the PC weights 

𝒃𝑖 ∈ ℝ𝑁−1 of each shape 𝑖 from the dataset. Then, a mapping matrix 𝑴 ∈

ℝ(𝑁−1)×(𝑓+1), describing the relationship between the PC weights matrix 𝑩 =

[𝒃1  𝒃2  …   𝒃𝑁] ∈ ℝ(𝑁−1)×𝑁 and the feature matrix 𝑭 = [𝒇1  𝒇2   …   𝒇𝑁] ∈ ℝ(𝑓+1)×𝑁 

is calculated by [9]: 

 

 𝑴 =  𝑩𝑭+ , (2) 

 

where 𝑭+ is the pseudoinverse of 𝑭.  With this mapping matrix, new PC weights 𝒃 

can be generated from given features 𝒇 as follows: 

 

 𝒃 =  𝑴𝒇 . (3) 

 

2.3 Identity Removal 

Next, the identity of each shape is removed. This means that for each shape, the 

features are adjusted so that they are equal to the average features. As a result, all 

shapes look similar. 

First, the specific PC weight vector 𝒃𝑖 of instance 𝑖 is extracted from the PC matrix 

𝑩 as the 𝑖th
 column vector of 𝑩. Second, the delta feature vector Δ𝒇, which is the vec-

tor that holds the values that should be added to the current features to become equal 



to the average features, is calculated by extracting the specific features 𝒇𝑖 (defined as 

the 𝑖th
 column of 𝑭) of instance 𝑖 from the average features 𝒇̅ of the population: 

 

 Δ 𝒇 =  𝒇̅  − 𝒇𝑖 . (4) 

 
Next, the delta PC weights vector Δ𝒃 that should be added to the current PC 

weights to adjust the body shape, is calculated by multiplying the mapping matrix 𝑴 

with the calculated delta features Δ𝒇: 

 

 Δ𝒃 =  𝑴 ⋅ Δ𝒇 . (5) 

 
These delta weights are added to the original PC weights 𝒃𝑖 to obtain the PC 

weights 𝒃′𝑖 of the shape with average features: 

 

 𝒃𝑖
′ = 𝒃𝑖 + Δ𝒃 . (6) 

 
Finally, the new shape without identity, 𝒙𝑖

′, is calculated by multiplying the new 

weights 𝒃𝑖
′ with the PC vectors 𝑷 of the SSM and adding them to the mean shape 𝒙: 

 

 𝒙𝑖
′ = 𝒙 + 𝑷𝒃𝑖

′  . (7) 

 
After removing the identity of each shape, a new SSM is built from the shapes 

without identity. The result is a posture model, where the shape variances are mainly 

the posture variances. 

2.4 Posture Normalization 

To normalize the posture of a shape, it is corresponded with the statistical posture 

model by elastic surface registration and the PC weights of this shape, using the pos-

ture model, are calculated. Because this model mostly contains posture variations, 

only the posture of the target shape is captured. In Fig. 1, the workflow of posture 

normalization of an example shape is shown. 

 
Fig. 1. Example of workflow of posture normalization. Note that the arms are more 

bent in the original shape than in the posture normalized shape 
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First, the input shape, 𝒙𝑗, is scaled, so it has the same size as the posture model. 

Then, the posture PC weights 𝒃𝑗 of 𝒙𝑗 are calculated by multiplying the inverse PC 

matrix 𝑷 by the distance vector between each vertex of the input surface mesh and the 

mean surface mesh 𝒙. These posture PC weights only denote differences in posture 

compared to the mean posture. 

 

 𝒃𝑗  =  𝑷𝑇 (𝒙𝑗 − 𝒙) . (8) 

 

The posture 𝒙𝑗
′ of the input shape is reconstructed from the calculated posture PC 

weights 𝒃𝑗: 

 

 𝒙𝑗
′ =  𝒙  +  𝑷𝒃𝑗 . (9) 

 
Finally, the normalized shape 𝒙𝑗 is calculated by subtracting the posture influence 

𝑷𝒃𝑗  on the shape from the original shape 𝒙𝑗: 

 

 𝒙𝑗 = 𝒙𝑗 − 𝑷𝒃𝒋 . (10) 

 

3 Experiments and Results 

In this section, the results of the framework are described. 

3.1 Statistical Shape Model (SSM) 

An SSM was built from 700 subjects (350 men, 350 women) in standing pose from 

the CAESAR database [3] whose 3D scans were registered using the same template 

surface mesh, a digitally modeled body consisting of 100k uniformly distributed ver-

tices, shown in Fig. 2. No posture changes were made to these meshes yet.  

In Fig. 3, the first three PC modes of the SSM built from the original shapes are 

shown. There is clearly an influence of posture visible in the third mode. 

 
Fig. 2. Reference mesh, uniformly resampled to 100k vertices. 



 
Fig. 3. The first three eigenmodes of the non-normalized SSM, built from the original shapes. A 

posture variation is clearly noticeable in the third mode, where the position of the arms and 

shoulders differs. 
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3.2 Posture Model 

In Fig. 4, two examples of identity removal are shown. The resulting shapes look 

more similar than the original shapes. 

 

 
Fig. 4. Two examples of identity removal. The body features are averaged out, so mainly pos-

ture differences remain. 

The posture model is shown in Fig. 5. The posture model was cut off at 12 shape 

modes to reduce shape related variations and remove noise from higher modes. This 

number was empirically determined. 

3.3 Poseture normalization case 

To evaluate the performance of the posture normalization algorithm, the posture of 

an individual from the CEASAR dataset, which was not included in the dataset of the 

posture model, was three times slightly modified by applying linear blend skinning 

(LBS) on the surface mesh [4]. Then, the posture of the modified shapes was normal-

ized. In an ideal case, the normalized shapes are equal to each other. The result of the 

posture deformation and posture normalization is shown in Fig. 6. The average dis-

tance between the posture normalized shape was (1.08 ± 3.60) 𝑚𝑚. 

Normalizing the posture of a shape took around 10 𝑠 on a computer with an Intel® 

Core™ i7-5960X CP @ 3.00GHz processor and 23.4 GB memory. 

3.4 Normalized Statistical Shape Model 

Every input shape of the original SSM was corrected for posture. These shapes 

served as input to build a new, posture normalized, SSM. The first three shape modes 

of this posture normalized SSM are shown in Fig. 7. 



 
Fig. 5. The first three eigenmodes of the posture model. Posture variation is mainly visible in 

the region of the arms and torso. For every shape, the average shape is overlaid in light gray to 

show the difference in posture more clearly. 
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Fig. 6. Posture normalization case. The same input shape was deformed by applying LBS (up-

per row). The result of the posture normalization algorithm is shown in the lower row. The 

average distance between the posture normalized shape is shown in the right figure in mm. 

3.5 Model Performance – Compactness 

Compactness is a widely used measure for quantifying the correspondence quality 

of an SSM [10], [11]. A compact SSM is a model that can represent body shapes with 

only a small number of shape modes. The compactness is expressed as the sum of 

variances of the SSM,  

 

 𝐶(𝑚) = ∑ λi
𝑚
𝑖=1  , (11) 

   

where 𝜆𝑖 is the variance in shape mode 𝑖, and 𝐶(𝑚) is the compactness using 𝑚 

modes.  

The results are shown in Fig. 8. Note that the normalized SSM is more compact 

than the non-normalized SSM. To describe more than 90% of the shape variation 

inside the population, the non-normalized SSM requires seven shape modes, while 

only two shape modes were sufficient for the normalized SSM. Using only one shape 

mode, the normalized SSM is 16% more compact than the non-normalized SSM. For 

five shape modes, an improvement of 23% was observed, and an improvement of 
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25% using ten shape modes. From 14 shape modes, the difference in compactness 

converged to 27%. 

 
Fig. 7. First three eigenmodes of the posture normalized SSM. The modes describe body shape 

variances better compared to the shape modes of the non-normalized SSM, shown in Fig. 5. 

Note that the third mode of the normalized SSM describes mainly gender, while the third mode 

of the non-normalized SSM describes mainly the position of the arms. 
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Fig. 8. Compactness graph, first 30 shape modes. The average deviation from the mean shape 

to describe shapes with a specific number of shape modes is shown. The normalized SSM sub-

stantially is more compact than the non-normalized SSM and more of its variance is captured 

with less modes. 

4 Conclusion and Further Work 

In this work, we proposed a technique to perform statistical shape analysis in a pos-

ture-invariant way. It allows us to study the shape variations in a database of human 

body shapes in slightly varying postures. The posture model can be used to normalize 

any shape that is brought into correspondence with this model in a fast and precise 

way. 

The results have shown that statistical shape analysis of a posture normalized 

population results in more shape related variations than performing the same analysis 

on a non-normalized population. The normalized SSM is a more compact representa-

tion of the population, compared to the non-normalized shape SSM. Hence, less shape 

modes are needed to describe a certain percentage of the population. 

Our SSM is a valuable tool for product designers for creating more realistic, virtual 

mannequins, that are a better representation of the population, and using this 

knowledge to improve the ergonomics of their products. It is also a first step towards 

posture invariant statistical shape analysis of body shapes in varying poses, e.g. for 

predicting the body shape in seated pose from a body shape in standing pose by map-

ping the PC weights from one pose to another. 

Further fine-tuning of the posture normalization algorithm is necessary. Therefore, 

we will test our algorithm on multiple body scans of the same person in slightly dif-

ferent postures to validate and optimize the precision of our posture normalization 

algorithm.  
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