Proceedings of the 13th International Conference
on Computational and Mathematical Methods

in Science and Engineering, CMMSE 2013
24-27 June, 2013.

The ASTRA Tomography Toolbox

Willem Jan Palenstijn', K. Joost Batenburg®!' and Jan Sijbers!

L iMinds- Vision Lab, Universiteit Antwerpen, Belgium
2 CWI, Amsterdam, The Netherlands

emails: WillemJan.Palenstijn@ua.ac.be, Joost.Batenburg@cwi.nl,
Jan.Sijbers@ua.ac.be

Abstract

We present the ASTRA (All Scale Tomographic Reconstruction Antwerp) toolbox:
an open source, GPU-accelerated library for 3D image reconstruction in tomography.
While most of the current software tools available for tomography offer only limited
flexibility in the geometry of the experimental setup and the set of available reconstruc-
tion algorithms, the ASTRA toolbox provides a set of highly flexible building blocks
that can be used to construct advanced reconstruction algorithms, effectively removing
these limitations. We describe how the design of the ASTRA toolbox allows for full
flexibility in specifying the geometry while still maintaining an efficient mapping onto
the underlying hardware. The ASTRA toolbox comes with a MATLAB interface for
easy user interaction and is available for both Windows and Linux.

Key words: tomography, GPU computing, software

1 Introduction

The aim of tomographic reconstruction is to create a 3D representation of an object starting
from a series of its projections, taken along a range of angles. Depending on the type of
tomography, projection images are acquired using X-rays, electrons, or some other type
of beam that interacts with the object. Traditionally, reconstruction is performed using
backprojection methods such as Filtered Backprojection (FBP) and adapted versions like
Feldkamp-Davis-Kress (FDK) [9]. These algorithms are computationally efficient, but suffer
from artefacts if only limited, or highly noisy projection data is available.

Algebraic methods employ a linear model of the projection process, effectively solving
the linear system Wa = p, where the matrix W denotes the projection operator, the

©CMMSE ISBN: 978-84-616-2723-3

THE ASTRA ToMOGRAPHY TOOLBOX

vector p denotes the projection data, and the vector x corresponds to the image to be
reconstructed. Algebraic methods can yield more accurate reconstructions, but are typically
much slower due to their iterative nature. Examples of such methods are the Simultaneous
Algebraic Reconstruction Technique (SART)[9], the Simultaneous Iterative Reconstruction
Technique (SIRT)[6], or Conjugate Gradients Least Squares (CGLS)[8].

More recently, sophisticated algorithms have been developed that are capable of incor-
porating various kinds of prior knowledge in the reconstruction. As examples, we mention
the FISTA algorithm [3, 4] for Total Variation minimization (TV-min) and the Discrete
Algebraic Reconstruction Technique (DART) for discrete tomography [2].

A common drawback of iterative methods, and particularly those that involve prior
knowledge, is that significantly more computation time is required to perform reconstruc-
tions compared to backprojection methods. Typically, the computationally most expensive
parts are the so-called Forward Projection (algebraically the evaluation of W) and Back
Projection (algebraically W7Ty). Efficient implementations of these operations are therefore
essential.

Various software packages have been developed for tomographic reconstruction. Some
of these packages were designed with a particular application in mind, are often highly
optimized and typically employs a fixed set of reconstruction algorithms (e.g., [1, 12]).
On the other hand, there are several toolboxes available that are specifically aimed at
algorithm development (e.g., [5, 7]), but these are more suitable for prototyping than for
the development of high-performance algorithms that can process large datasets.

The ASTRA toolbox is an open source toolbox that aims to fill this gap by providing
flexible high-performance implementations of Forward Projection (FP) and Back Projection
(BP) operators, as well as ready-to-use iterative reconstruction algorithms built on top of
these. By exposing building blocks that are both flexible and highly efficient, the ASTRA
toolbox is not only suitable for prototyping, but the resulting algorithms can immediately
be applied to large experimental datasets with high efficiency. The toolbox uses NVIDIA
Graphics Processing Units (GPUs) to accelerate the computation, and has a MATLAB
interface for convenient algorithm prototyping.

The toolbox is available as open source software (GPLv3) and can be downloaded from
http://visionlab.ua.ac.be/software/ for Windows and Linux operating systems.

In the following sections, the features and performance characteristics of the ASTRA
toolbox are summarized.

2 Features
As mentioned in the introduction, the ASTRA toolbox utilizes GPU acceleration to pro-

vide high-performance and flexible building blocks for advanced reconstruction algorithm
development in MATLAB.

©CMMSE ISBN: 978-84-616-2723-3

W. J. PALENSTIIN, K. J. BATENBURG, J. SIJBERS

Specifically, it has the following features.

e Support for 2D geometries (parallel beam, fan beam) and 3D geometries (cone beam,
parallel beam) with full flexibility for choosing the positions of source and detectors.

e Reconstruction voxel size independent of detector pixel size for higher or lower reso-
lution reconstructions.

e Standard iterative algorithms with full GPU acceleration.

e Accelerated FP and BP for use in custom algorithms from MATLAB.

A distinguishing feature is that in the 3D geometries, it is possible to freely position
the detector in 3D space for each projection direction separately, as well as the X-ray source
(for cone beam geometries) or ray direction (for parallel beam geometries). This allows the
transparent use of less traditional trajectories such as dual tilt axis setups, modelling any
misalignment in experimental setups, or even the formation of diffraction spots in X-ray
diffraction contrast CT [11].

To illustrate basic usage of the toolbox from MATLAB, we show a script executing a
SIRT reconstruction of a 2D slice using GPU acceleration. The downloadable version of the
ASTRA toolbox contains additional sample scripts.

This script shows the concepts of setting up the geometry, creating data objects, setting
up a reconstruction algorithm, and running it.

% Set up the geometry:

% A 256x256 reconstruction volume, and 180 projection angles

% between 0 and pi, with 256 detector pixels of width 1.0.

vol_geom = astra_create_vol_geom (256, 256);

proj_geom = astra_create_proj_geom (’parallel’, 1.0, 256,
linspace2 (0,pi,180));

% Create the ASTRA data objects for the sinogram and reconstruction.
% The matrix ’data’ is expected to already contain the sinogram.

sinogram_id = astra_mex_data2d (’create’, ’—sino’, proj_geom , data);
rec_id = astra_mex_data2d(’create’, '—vol’, vol_geom, 0);

)

i

% Set up the parameters for a reconstruction using the GPU.
% This will use SIRT. Other GPU options include

% SART CUDA, EM.CUDA, FBP.CUDA.

cfg = astra_struct (’SIRT_.CUDA"’);

cfg . ReconstructionDatald = rec_id;

©CMMSE ISBN: 978-84-616-2723-3

THE ASTRA ToMOGRAPHY TOOLBOX

cfg.ProjectionDatald = sinogram_id;

% Add constraints to limit the reconstruction to the interval [0,1]
cfg.option.MinConstraint = 0.0;

cfg.option.MaxConstraint = 1.0;

% Create the algorithm object from the configuration structure

alg_id = astra_mex_algorithm (’create’, cfg);

% Run 150 iterations of the algorithm

)

astra_mex_algorithm (’iterate >, alg_id, 150);

% Get and show the result
rec = astra_mex_data2d(’get’, rec.id);
figure; imshow(rec, []);

% Clean up. Note that the used GPU memory is tied up in the
% algorithm object , and main RAM in the data objects.
astra_mex_algorithm (’delete >, alg_id);

astra_mex_data2d (’delete’, rec.id);
astra_mex_data2d (’delete ’, sinogram_id);

3 Performance

To illustrate the GPU performance of the ASTRA toolbox, we report the results of a series
of benchmarks.

The first set of experiments, in Table 1, consists of volumes reconstructed as a stack
of 2D slices using the SIRT algorithm. The reconstructions were carried out on three
datasets with sizes typical for Electron Microscopy, which are also used as benchmarks in
[1, 10, 13, 14]. We compared our performance against these results. We have used a NVIDIA
GTX 280 and GTX 680 for this test. The reported times are in seconds for a single SIRT
iteration of the entire volume.

All three datasets consisted of 61 projection images of size 356 x 506 for Dataset A,
712 x 1024 for Dataset B, and 1424 x 2024 for Dataset C. The reconstructed volumes were
356 x 506 x 148, 712 x 1012 x 296, and 1424 x 2024 x 591 voxels, respectively.

The second set of experiments, in Table 2, shows the performance for true 3D recon-
structions with a cone beam geometry. These reconstructions require more memory to
perform, so we have used a NVIDIA Tesla M2090 with 6GB RAM for this benchmark. The
reported times are again in seconds for a single SIRT iteration of the entire volume. Both
datasets use 180 projection images of sizes 256 x 256 and 512 x 512. The reconstruction

©CMMSE ISBN: 978-84-616-2723-3

W. J. PALENSTIIN, K. J. BATENBURG, J. SIJBERS

volumes are 256 x 256 x 256 and 512 x 512 x 512 voxels, respectively.

The third and final set of experiments, in Table 3, shows the performance for even larger
3D reconstructions, utilizing multiple NVIDIA Tesla M2090 cards simultaneously. This set
of constructions uses an Electron Microscopy geometry with slightly misaligned positioning
so the reconstruction can not be carried out as a stack of 2D reconstructions. Both datasets
use 80 projections, of sizes 512 x 512 and 1024 x 1024. The corresponding reconstruction
volumes were 512 x 512 x 512 and 1024 x 1024 x 1024 voxels, respectively.

Dataset A | Dataset B | Dataset C
Xt et al. — GTX 280 [14] 2.10 10.66 58.47
Vézquez et al. — Tesla C2050 [13] 3.70 37.91
Agulleiro et al. — Xeon 5405 (8 thr.) [1] 0.35 2.94 24.55
ASTRA — GTX 280 [10] 0.45 2.00 11.13
ASTRA — GTX 680 0.35 1.27 6.67

Table 1: Comparison of runtime (in seconds) for a single SIRT iteration of various recent
CPU and GPU implementation.

256 x 256
0.42

512 x 512
3.28

ASTRA — Tesla M2090

Table 2: Benchmarks of ASTRA runtime (in seconds) for a single SIRT iteration.

512 x 512 x 512 | 1024 x 1024 x 1024
ASTRA — 1x Tesla M2090 2.32 26.13
ASTRA — 2x Tesla M2090 1.58 17.51
ASTRA — 4x Tesla M2090 1.62 9.92

Table 3: Benchmarks of ASTRA runtime (in seconds) for a single SIRT iteration, using
multiple GPUs.

4 Conclusion

In this paper, we have presented the ASTRA toolbox: an open source, GPU-accelerated
toolbox for 3D tomographic image reconstruction with a user friendly Matlab interface.
The reported benchmarks show that the ASTRA toolbox outperforms current state-of-the-
art tomography software libraries with respect to computational speed. Since it allows
full flexibility of the acquisition geometry, it provides a basis for the rapid development

©CMMSE ISBN: 978-84-616-2723-3

THE ASTRA ToMOGRAPHY TOOLBOX

of advanced iterative reconstruction methods, which can then be applied directly to large
experimental datasets.

Acknowledgements

This work was financially supported by the iMinds-SuperCT project (Interdisciplinary In-
stitute for Technology, a research institute founded by the Flemish Government).

References

1]

2]

J.-I. Agulleiro and J. J. Ferndandez. Evaluation of a multicore-optimized implementation
for tomographic reconstruction. PLOS ONE, 7(11):e48261, 2012.

K. J. Batenburg and J. Sijbers. DART" a practical reconstruction algorithm for discrete
tomography. IEEE Transactions on Image Processing, 20(9):2542-2553, 2011.

A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems. IEEE Transactions on Image Processing,
18(11):2419-2434, 20009.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

J. Fessler. Image reconstruction toolbox. http://web.eecs.umich.edu/~fessler/
code/.

P. Gilbert. Iterative methods for the 3D reconstruction of an object from projections.
Journal of Theoretical Biology, 36(1):105-117, 1972.

P. C. Hansen and M. Saxild-Hansen. AIR tools — a MATLAB package of algebraic
iterative reconstruction methods. Journal of Computational and Applied Mathematics,
236(8):2167-2178, 2012.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear sys-
tems. Journal of Research of the National Bureau of Standards, 157(49):409-436, 1952.

A. C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging. SIAM,
2001.

W. J. Palenstijn, K. J. Batenburg, and J. Sijbers. Performance improvements for
iterative electron tomography reconstruction using graphics processing units (GPUs).
Journal of Structural Biology, 176:250-253, 2011.

©CMMSE ISBN: 978-84-616-2723-3

W. J. PALENSTIIN, K. J. BATENBURG, J. SIJBERS

[11] P. Reischig, A. King, L. Nervo, N. Vigano, Y. Guilhem, W. J. Palenstijn, K. J. Baten-
burg, M. Preuss, and W. Ludwig. Advances in X-ray diffraction contrast tomography:

flexibility in the setup geometry and application to multiphase materials. Journal of
Applied Crystallography, 46(2):297-311, 2013.

[12] K. Thielemans, S. Mustafovic, and C. Tsoumpas. STIR: software for tomographic
image reconstruction release 2. In Nuclear Science Symposium Conference Record,
2006, IEEE, volume 4, pages 2174-2176, 2006.

[13] F. Vézquez, E. M. Garzén, and J. J. Ferndndez. Matrix implementation of simul-
taneous iterative reconstruction technique (SIRT) on GPUs. The Computer Journal,
54(11):1861-1868, 2011.

[14] W. Xu, F. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard, and K. Mueller. High-
performance iterative electron tomography reconstruction with long-object compensa-
tion using graphics processing units (GPUs). Journal of Structural Biology, 171(1):142—
153, 2010.

©CMMSE ISBN: 978-84-616-2723-3

