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DART: A Practical Reconstruction Algorithm for
Discrete Tomography

Kees Joost Batenburg and Jan Sijbers

Abstract—In this paper, we present an iterative reconstruction
algorithm for discrete tomography, called discrete algebraic recon-
struction technique (DART). DART can be applied if the scanned
object is known to consist of only a few different compositions,
each corresponding to a constant gray value in the reconstruction.
Prior knowledge of the gray values for each of the compositions
is exploited to steer the current reconstruction towards a recon-
struction that contains only these gray values. Based on experi-
ments with both simulated CT data and experimental CT data,
it is shown that DART is capable of computing more accurate re-
constructions from a small number of projection images, or from
a small angular range, than alternative methods. It is also shown
that DART can deal effectively with noisy projection data and that
the algorithm is robust with respect to errors in the estimation of
the gray values.

Index Terms—Discrete tomography, image reconstruction, seg-
mentation, prior knowledge.

I. INTRODUCTION

T OMOGRAPHY is an important technique for noninvasive
imaging with applications in medicine, industry, and sci-

ence. It is applicable in scenarios where series of projection im-
ages of an object are available, acquired for a range of angles. A
reconstruction of the object is subsequently computed from the
projection images by a reconstruction algorithm.

A range of reconstruction algorithms are available, which
differ in reconstruction accuracy, requirements on the projec-
tion geometry, and computational load (see, e.g., [9], [16], [19],
and [21]). Classical filtered backprojection (FBP) techniques are
still commonly used. Algebraic reconstruction methods, which
are based on modeling the reconstruction problem as a large
system of linear equations which is solved by iterative methods,
are gradually becoming more common in tomography practice.
Such algorithms can potentially yield more accurate reconstruc-
tions in some cases, at the expense of increased computation
time.

In many applications of tomography, it makes sense to exploit
available prior knowledge of the unknown object. Incorporation
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of this knowledge in the reconstruction algorithm can poten-
tially result in a reduction of the required number of projections,
increased accuracy of the reconstruction, or an improved ability
to deal with noisy projection data.

The problem of reconstructing images, or more general sig-
nals, from a small number of weighted sums of their values
has recently attracted considerable interest in the field of com-
pressed sensing [13], [14], [26], [27]. In particular, it was proved
that, if the image is sparse, it can be reconstructed accurately
from a small number of measurements with very high proba-
bility, as long as the set of measurements satisfies certain ran-
domization properties [11]. In many images of objects that occur
in practice, the image itself is not sparse, yet the boundary of the
object is relatively small compared to the total number of pixels.
In such cases, sparsity of the gradient image can be exploited by
total variation minimization [8], [10], [28].

In this paper, we consider a different type of prior knowl-
edge, where it is assumed that the unknown object consists of a
small number (i.e., two to five) of different materials, each corre-
sponding to a characteristic, approximately constant gray level
in the reconstruction. Such prior knowledge is available in a
wide range of tomography applications: when performing X-ray
tomography of industrial objects, the compositions in these ob-
jects (e.g., aluminum, plastic, air) are often known in advance
[23], [24]. If a bone is scanned (in vitro) in a micro-CT scanner,
one can sometimes assume that the bone has a single constant
density [7]. As a third example, we mention the reconstruction
of homogeneous nanoparticles by electron tomography [6].

The problem of reconstructing images containing a small set
of gray levels from their projections has been studied in the
fields of discrete tomography and geometric tomography. Geo-
metric tomography deals with the reconstruction of geometric
objects from data about its sections, its projections, or both [15].
Images of such objects can be considered as binary images,
where the first gray level (i.e., black) corresponds to the exte-
rior of the object and the second gray level (white) corresponds
to the interior. Much of the work on geometric tomography
is concerned with rather specific objects, such as convex or
star-shaped objects. According to [17] and [18], the field of dis-
crete tomography deals with the reconstruction of images from
a small number of projections, where the set of pixel values is
known to have only a few discrete values. The literature on dis-
crete tomography contains some conflicting definitions of the
field. Originally, the main focus was on the reconstruction of
(typically binary) images for which the domain was a discrete
set, inspired by applications in crystallography.

The focus of the algorithm described in this paper is some-
what different from both geometric and discrete tomography.
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First, our approach deals not only with binary images, but also
with images that contain three or more gray levels. There is
no fixed upper bound on the number of gray levels. However,
the proposed techniques will only be effective if the number
of gray levels is small (i.e., five or fewer). Compared with dis-
crete tomography, which focuses on reconstruction from a small
number of projections (i.e., four or fewer), our approach is more
general. If tens or even hundreds of projection images are avail-
able, prior knowledge of the gray levels in the reconstruction
can still be used effectively to improve the quality of the recon-
struction, in particular when the projection data are noisy.

A variety of reconstruction algorithms have been proposed
for discrete tomography problems. In [25], a primal–dual sub-
gradient algorithm is presented for reconstructing binary images
from a small number of projections. This algorithm is applied
to a suitable decomposition of the objective functional, yielding
provable convergence to a binary solution. In [5], a similar re-
construction problem is modeled as a series of network flow
problems in graphs, that are solved iteratively. Both [20] and [1]
consider reconstruction problems that may involve more than
two gray levels, employing statistical models based on Gibbs
priors for their solution. For all these approaches, the required
computation time becomes a major obstacles when dealing with
image sizes used in practice.

Recently, a new reconstruction algorithm for discrete to-
mography, called DART (Discrete Algebraic Reconstruction
Technique) was proposed. DART alternates iteratively between
“continuous” update steps, where the reconstruction is consid-
ered as an array of real-valued unknowns, and discretization
steps, which incorporate the prior knowledge of the gray levels
in the image.

Application of this algorithm to experimental electron tomog-
raphy data has already resulted in several important new insights
in the properties of nanomaterials, as alternative techniques are
not available at this scale [3], [4], [6], [29]. However, a full de-
scription of the algorithmic details has been lacking thus far.
Also, DART is a heuristic algorithm without guaranteed conver-
gence properties which calls for a thorough experimental valida-
tion of algorithm properties. In this paper, we provide a detailed
presentation of the DART algorithm and validate this technique
by extensive experiments based on simulated projection data,
as well as real X-ray CT data. We investigate its ability to re-
construct images from a small number of projections and from
projections acquired along a small angular range, comparing
DART with several alternative algorithms. We also present ex-
perimental results on the robustness of DART with respect to
noise in the projection data and errors in the discrete gray levels
used for reconstruction.

The outline of this paper is as follows. In Section II, mathe-
matical notation is introduced to describe the tomographic re-
construction problem and the reconstruction problem for dis-
crete tomography is stated formally. The Simultaneous Alge-
braic Reconstruction Technique (SART) algorithm for contin-
uous tomography is briefly reviewed, as it is used as a subrou-
tine in our implementation of DART. The DART algorithm is
described in Section III. Section IV presents the set of phantom
images used in our simulation experiments and describes the ex-
perimental setup. Section V reports on extensive experiments,

comparing DART with three alternative reconstruction algo-
rithms, investigating its robustness with respect to noise and er-
rors in the gray-level assumptions, and describing experimental
convergence properties. Section VI concludes this paper.

II. NOTATION AND CONCEPTS

A. Problem Definition

This paper deals with an algebraic reconstruction algorithm,
where the reconstruction problem is represented by a system of
linear equations. Our description is restricted to the reconstruc-
tion of 2-D images from 1-D projections, but can be general-
ized to higher dimensional settings in a straightforward manner.
The reconstructed image is represented on a rectangular grid
of size . Projections are measured as sets of de-
tector values for various angles, rotating around the object. We
denote the number of projection angles by and the number
of detector values for each projection by . Hence, the total
number of measured detector values is given by . Put

. Let denote the mea-
sured data elements for all projections, collapsed into a single
vector. The projection process in tomography can be modeled
as a linear operator that maps the image
(representing the object) to the vector of measured data:

(1)

The matrix is called the projection matrix.
The entries of correspond to the pixel values of the reconstruc-
tion. The entry determines the weight of the contribution of
pixel to measurement , which usually represents the length of
the intersection between the pixel and the projected line.

This leads to the following standard reconstruction problem
in tomography:

Problem 1: Let be a given projection matrix and
be a vector of measured projection data. Find

such that .
In practice, the projection data often contains noise or other

errors, in which case a solution is sought for which
is minimal w.r.t. some norm .

In this paper, we consider the reconstruction of images that
consist of only a few different gray levels, which are known a
priori. This results in the following reconstruction problem for
discrete tomography.

Problem 2: Let be a given projection matrix
and be a vector of measured projection data. Let

be the prescribed number of image gray levels and
denote the set of gray levels. Find such

that .
Note that the set is not convex. As a consequence, many

algorithms from convex optimization that can be used to solve
the general algebraic reconstruction problem cannot be used di-
rectly for discrete tomography.

B. SART Algorithm

The DART algorithm that will be proposed in Section III al-
ternates iteratively between “continuous” update steps, where
the reconstruction is considered as an array of real-valued un-
knowns, and discretization steps, which incorporate the prior
knowledge of the gray levels in the image. For the continuous
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step, a range of algebraic reconstruction methods can be used
(e.g., ART, SART, SIRT). For the experiments in this paper, we
have implemented a version of DART that uses the SART algo-
rithm as a subroutine. Here, we briefly review the SART algo-
rithm for continuous tomography.

In the SART algorithm [2], the current reconstruction is
updated for each projection angle separately. Various ordering
schemes can be used for the angle selection. The description
given below relates to our specific implementation of SART,
which uses a randomized scheme.

The projection matrix and vector can be decomposed
into blocks of rows as

...
... (2)

where each block represents the projection oper-
ator for a single angle and each block represents the corre-
sponding projection data.

For and , put .
For and , put . Fur-
thermore, let be the set of all permutations of the numbers

and let be a random element of .
The SART algorithm starts with an initial guess and

iteratively computes a new estimate from the
previous estimate by the update equation

(3)

where and is a relaxation factor. A
single sweep through all projection angles, applying a sequence
of update steps, is referred to as a SART iteration.

III. DART ALGORITHM

Here, we describe the DART algorithm. DART utilizes a
continuous iterative reconstruction algorithm, such as ART,
SART, or SIRT, as a subroutine. Within the general descrip-
tion of DART, we refer to the selected continuous method as
ARM (Algebraic Reconstruction Method). In the examples and
experimental results, SART will be used as the ARM. Before
giving a concise description of the operations performed in
the DART algorithm, we will first give a brief overview of the
algorithmic ideas.

A. Overview of DART

Fig. 1 shows a flowchart of DART. A continuous reconstruc-
tion is computed as a starting point, using the ARM. Subse-
quently, a number of DART iterations are performed.

Suppose that we want to reconstruct the binary image from
Fig. 2(a) from only 12 projections. We assume that the two gray
levels (black and white) are known in advance. The continuous
SART algorithm is chosen as the ARM. Fig. 2(b) shows the
ARM reconstruction after ten iterations.

From the reconstructed image in Fig. 2(b), it is difficult to
decide where the edges of the object are exactly. However, the
thresholded reconstruction in Fig. 2(c) shows that, if we look
only at the interior of the object that is not too close to the

Fig. 1. Flowchart of the DART algorithm.

Fig. 2. Various steps of the DART algorithm. (a) Original phantom. (b) ARM
recon. (c) Threshold recon. (d) Free pixels after ARM. (e) Recon after ARM.
(f) Final recon.

boundary, the pixels in the thresholded image have the right
gray level. The same holds for pixels in the background region
that are far away from the object boundary. Next, we locate
the boundary region of the object in the thresholded image,
which is defined as the set of all pixels that are adjacent to at
least one pixel having a different gray level. We now move back
to the original gray level ARM reconstruction. All pixels that
are not in are assigned their thresholded value, either black
or white. Next, several ARM iterations are performed again,
while keeping the pixels that are not in fixed at the assigned
threshold values, that is, the only pixels that are updated by
ARM are the pixels in . In this way, the number of variables
in the linear equation system in (1) is vastly reduced, while
the number of equations remains the same. The result of the
boundary reconstruction after one ARM iteration is shown
in Fig. 2(d), where the gray levels have been scaled to show
the range of gray levels present in the boundary pixels. In
regions of the boundary where too many white pixels have been
fixed, the surrounding boundary pixels have strongly negative
pixel values, to compensate. The opposite occurs at parts of the
boundary where the extent of the background has been overesti-
mated in the first thresholded ARM reconstruction. In this way,
the values of the boundary pixels indicate how the boundary
should be adapted in a new estimate of the object. Fig. 2(e)
shows the complete reconstruction obtained by merging the
boundary with the fixed interior and background.
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Fig. 3. Basic steps of the algorithm.

In the ARM step, each of the boundary pixels is allowed to
vary independently, which may result in large local variations
of the pixel values. In experiments, we observed that smoothing
must be applied to the boundary after the ARM step. This com-
pletes the DART iteration.

Subsequently, a thresholded version of the image is computed
again, and each of the steps just described is repeated itera-
tively. As a consequence of the boundary update step, the set
of boundary pixels will change between subsequent iterations,
allowing for movement of the object boundary.

The final result of this procedure, after four iterations, is shown
in Fig. 2(f). It is nearly identical to the original phantom image.

The approach of fixing all pixels that are not on the boundary
works well for the reconstruction of single objects that contain
no holes. To allow for the formation of new boundaries that
are not connected to the current boundary, a subset of the non-
boundary pixels is selected in each iteration that is not fixed, and
updated along with the boundary pixels. Allowing nonboundary
pixels to be updated is also crucial for dealing with noisy pro-
jection data and gray level errors, as will be demonstrated in
Sections V-D and V-E. If the boundary is relatively small com-
pared with the image size, the noise from the projection data
will be concentrated in the narrow boundary. Selecting a random
subset of nonboundary pixels to be updated in each DART-iter-
ation (up to 50%, or even more), largely maintains the capability
to reconstruct an image from few projections, while greatly in-
creasing the accuracy in case of noisy data.

B. Algorithm Definition

Here, we will formally define the DART algorithm. For a
fixed projection geometry, the input of DART consists of the
vector of measured projection data (see (1)) and the set

of gray levels in the reconstructed image. Fig. 3
shows a pseudo-code representation DART.

The first approximate reconstruction is computed using the
ARM. After computing the start solution, DART enters an itera-
tive procedure. In each iteration, the following steps are carried
out:

1) Segmentation: The current reconstruction is segmented
to obtain an image that has only gray levels from the set

. For the experiments in Section V, we
used a simple global threshold scheme for the segmentation
as defined below. Alternative, more advanced segmentation
techniques may lead to improved convergence or more accurate
reconstruction results in some cases.

Let be the current reconstruction at the start of iteration
of the DART algorithm. A segmented reconstruction

is computed from , where each pixel is assigned
one of the gray values according to a thresholding
scheme using thresholds , where

(4)

Define the threshold function as

...
(5)

As a shorthand notation, we also define the threshold function
of an image as

(6)

2) Selection of Free Pixels: The set of
boundary pixels is computed from the segmented reconstruc-
tion . We denote the neighborhood of pixel by

. Various connectivity definitions can be used here.
We used the 8-connected neighborhood for the experiments in
this paper. A pixel is called a boundary pixel if
for at least one .

The set of free pixels that will be subjected
to a DART update, is composed by starting with
and augmenting with nonboundary pixels in a randomized
procedure. Let be the fix probability. Each element
of the nonboundary pixels is included in with probability

independently. Note that the random selection process will
be different in the computation for each new DART update. This
allows for changes in image areas that are not near any of the
boundary pixels.

3) ARM With Fixed Pixels: Consider the system of linear
equations

... (7)
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Fig. 4. Phantom images that were used for the simulation experiments. (a) Phantom 1. (b) Phantom 2. (c) Phantom 3. (d) Phantom 4. (e) Phantom 5. (f) Phantom
6. (g) Phantom 7. (h) Phantom 8. (i) Phantom 9. (j) Phantom 10.

where denotes the th column vector of . We now define
the operation of fixing a variable at value . It transforms
the system in (7) into the new system

...

...

(8)

The new system has the same number of equations as the orig-
inal system, whereas the number of variables is decreased by
one.

Let be the set of fixed pixels. In each
iteration of the DART algorithm, all pixels are fixed at
their values , reducing the number of variables from down
to . The resulting system is then solved using
a constant number of iterations of the ARM. If the fixed pixels
have been assigned the “correct” values with respect to the un-
known original object, solving the remaining linear system will
provide better values for the remaining unfixed pixels, compared
to solving the original underdetermined system. When solving
underdetermined reconstruction problems, the first few itera-
tions of the DART algorithm will often fix a numerous pixels at
incorrect values. As demonstrated in Section V, the algorithm
still demonstrates convergence towards the unknown original
object, even if some of the fixed pixels are assigned incorrect
values in one or more iterations.

4) Smoothing Operation: Reducing the number of variables
by fixing a subset of pixels can cause heavy fluctuations in the
values of the pixels that are not fixed: the ARM will attempt to
match noise in the projection data, as well as errors that result
from pixels that are fixed at incorrect values, by adjusting just
the values of the free pixels. As a means of regularization, a
Gaussian smoothing filter of radius 1 is applied to the boundary
pixels after applying the ARM.

5) Termination Criterion: As DART is a heuristic algorithm,
we cannot provide a formal statement of the conditions under
which the algorithm will converge. Our experimental results
demonstrate that for a variety of relevant images the algorithm
converges rapidly to an accurate reconstruction of the original
object that was used to obtain the projections; see Section V-E.

As a termination criterion, either the total projection error
, defined as

(9)

can be used, or a fixed number of DART iterations can be
performed.

IV. EXPERIMENTS

Here, we describe a series of experiments, for both simulation
data and experimental CT data, that were carried out to eval-
uate the reconstruction performance of DART and to compare
its performance with commonly used reconstruction methods.

A. Phantom Images

The simulation experiments were based on ten phantom im-
ages, shown in Fig. 4. Phantoms 1–8 are pixel-based phantoms,
represented on a pixel grid. The first six phantoms are binary
with varying complexity, whereas phantoms 7 and 8 contain
three or more gray levels. The last two phantoms, 9 and 10, are
geometric phantoms that are defined as a superposition of geo-
metric objects and cannot be represented exactly on a pixel grid.

The size of phantoms 1–8 is 512 512 pixels, which is an
image size that is also common in practical CT applications.
This is also the image size used for the reconstructions. For all
phantoms, including the geometric phantoms 9 and 10, the pro-
jection for each angle consists of 512 detector values, where the
length of the detector is equal to the width (and height) of the
image. For phantoms 1–8, this implies that the spacing between
consecutive detectors is equal to the pixel size of the phantom. In
all simulation experiments reported in this paper, a parallel beam
geometry was used. However, the approach can be extended in
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a straightforward manner to any other acquisition geometry by
using a different projection matrix.

B. Quantitative Evaluation of Reconstruction Algorithms

Various simulation experiments were run in which the recon-
struction accuracy of DART was compared to other well known
reconstruction methods. In particular, a comparison was per-
formed between the following four algorithms.

1) FBP: A standard implementation of FBP was used that
performs linear interpolation in the projection domain and uses
a Ram-Lak filter.

2) SART: A variant of the SART algorithm as described in
Section II-B, performing 200 iterations. This number is large
enough to ensure that convergence has been nearly reached. For
noiseless projection data, performing so many iterations does
not result in degraded reconstruction quality, as is common for
high noise levels. We observed that the reconstruction result im-
proves if a positivity constraint is incorporated, setting negative
pixel values to zero after each update step. We report on the re-
sults obtained by this variant of SART, as it yields better results
than without the constraint in all testcases.

3) TVMin: Chambolle’s algorithm for Total Variation Mini-
mization (TVMin) was used, as described in [12]. The output of
this algorithm depends on several parameters, for which appro-
priate settings were determined manually. We used
(regularization parameter), (descent step) and 20
subiterations. We refer to the original article for details about
the method and its parameters.

4) DART: The DART algorithm, using the SART algorithm
as described in Section II-B as the ARM. The main loop was
repeated 200 times, typically more than enough to obtain con-
vergence. In each iteration, three iterations of SART were per-
formed, updating only the pixels in . For the experiments in
Sections V-A and V-B, the fix probability was kept constant at

.
These experiments were based on perfect projection data that

was not perturbed by noise or other errors. In particular, the
reconstruction accuracy of DART in comparison to alternative
approaches was studied:

1) as a function of the number of projections, with the pro-
jection angles regularly distributed between 0 and 180 de-
grees;

2) as a function of the angular range of the projections.
In a second series of experiments, the robustness of DART

was studied with respect to the assumptions made about the pro-
jection data and the object to be reconstructed. Real-world pro-
jection data always contains a certain amount of experimental
noise. Also, DART assumes the gray levels in the phantoms to
be known a priori. In practical applications, these gray levels are
often only known approximately. Experiments have been per-
formed to assess the following:

1) robustness of DART with respect to noise in the projection
data;

2) robustness of DART with respect to errors in the input gray
levels.

In all experiments, the total number of pixels from the recon-
structed image that differ from the original phantom image was
used as a performance metric. We refer to this number as the
pixel error of a reconstruction.

To compare the results of algorithms that yield greylevel
images with the results of DART, the reconstructed images
were segmented using the well known Otsu segmentation [22],
yielding the required discrete set of gray levels.

C. Experiments for Experimental CT Data

A diamond was scanned at 70 kVp in a Scanco CT 40
X-ray scanner with a circular cone beam geometry. Projections
were acquired at 266 angles between 0 and 187 degrees, using
a 1024 56 (transaxial axial) pixel detector. A series of cir-
cular cone beam scans was performed at equally spaced axial
positions, to cover the length of the diamond. After the scan,
the data was rebinned to the parallel beam geometry, yielding
a 1024 256 sized sinogram per slice with projection angles
distributed equally between 0 and 180 degrees. Although the
complete diamond spanned 1221 slices in the axial direction,
only the first 260 slices were used for reconstruction. The
reason for using only a portion of the dataset is that from slice
300 and onwards, the diamond extends beyond the field of
view of the CCD (so-called truncation) and a reliable reference
reconstruction cannot be obtained. The reconstruction quality
of DART was compared to that of SART for a small number of
15 projections, in which the SART reconstruction based on all
250 projections was used as a reference. A similar comparison
between DART and SART was carried out in a limited-angle
experiment, based on a subset of 51 projections, with angles
distributed equally along an interval of 108 .

V. RESULTS AND DISCUSSION

Here, we present the results of a series of experiments, com-
paring the reconstructions computed by DART with alternative
approaches, and investigating the dependency of the results on
the fix probability. We also present reconstruction results of a
3-D volume, based on experimental CT data of a raw diamond.

A. Varying the Number of Projections

We first consider the reconstruction accuracy of DART as a
function of the number of projections, where it is assumed that
the projection angles are regularly distributed between 0 and 180
degrees.

Fig. 5 shows the pixel error as a function of the number of
projections for phantoms 3, 6, 7, and 8, for the FBP, SART,
TVMin, and DART algorithms. The results show that DART
consistently yields more accurate reconstructions than FBP and
SART. The pixel error for DART is only rarely larger than for
TVMin, and in many cases it is much lower (e.g., phantom 3
with ten projections, phantom 7 with eight projections, phantom
8 with 40 projections).

As an illustration of the results, Fig. 6 shows DART recon-
structions of phantoms 3 and 7 for various projection numbers.
Although the reconstruction gradually improves as the number
of projections is increased, there appears to be a certain min-
imum number of projections for each phantom that is required
to obtain an almost perfect reconstruction. For phantom 3 and
7, the number of projections for which the DART reconstruc-
tion is nearly perfect, was 10 and 8, respectively. These DART
reconstructions are shown in the last column of Fig. 6. As a com-
parison, the corresponding FBP, SART, and TVMin reconstruc-
tions are shown in Fig. 7. Fig. 6 also demonstrates an important
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Fig. 5. Pixel error � as a function of the number of projections used in the
reconstruction. (a) Phantom 3. (b) Phantom 6. (c) Phantom 7. (d) Phantom 8.

Fig. 6. DART reconstructions of phantom 3 (row 1) and phantom 7 (row 2) for
various projection numbers. (a) � � �. (b) � � �. (c) � � ��. (d) � � �. (e)
� � �. (f) � � �.

feature of DART, and discrete tomography algorithms in gen-
eral: the resulting reconstruction is already a segmented image
that does not require additional segmentation steps.

B. Limited Angle Problems

In the previous series of experiments, we considered recon-
struction problems that can also be solved accurately by contin-
uous reconstruction methods such as FBP and SART, as long
as sufficiently many projections are available. This is not the
case for limited angle problems, which occur frequently in elec-
tron tomography and industrial tomography and in some med-
ical applications.

Here, we present reconstruction results of DART from a lim-
ited angular range of projections. Fig. 8 shows the pixel error for
phantoms 1–6 as a function of the angular range, for the FBP,
SART, TVMin, and DART algorithms. Here, 180 constitutes a
full angular range and projections are sampled at 1 intervals.
Therefore, the number of projections increases linearly with the
angular range.

Fig. 7. Comparison of FBP (row 1), SART (row 2), TVMin (row 3), and DART
(row 4) for phantom 3 using ten projections (column 1), phantom 5 using 20
projections (column 2), and phantom 7 using eight projections (column 3), re-
spectively. (a) FBP, � � ��. (b) FBP, � � ��. (c) FBP, � � �. (d) SART,
� � ��. (e) SART, � � ��. (f) SART, � � �. (g) TVMin, � � ��. (h) TVMin,
� � ��. (i) TVMin, � � �. (j) DART, � � ��. (k) DART, � � ��. (l) DART,
� � �.

The results show that, with a few exceptions, DART consis-
tently yields more accurate reconstructions than the three alter-
native methods. As an illustration of the resulting reconstruc-
tions, Fig. 9 shows results for SART, TVMin and DART, applied
to phantoms 1 and 5, using varying angular ranges. The strong
prior knowledge imposed by DART appears to be very powerful
for dealing with limited angle problems, as was already demon-
strated in several practical electron tomography problems [6].

C. Geometrical Objects

The simulation experiments described above were performed
with the pixelized phantoms 1–8. In practical situations, the ob-
jects scanned are of course not pixelized. In order to test the
impact of the discretization of the phantom objects on a regular
grid on the performance of DART, additional simulations ex-
periments with continuous phantoms were set up. To this end,
continuous phantom studies were performed with FBP, SART,
TVMin and DART based on phantoms 9 and 10 for a varying
number of projections as well as for a limited angular range of
projections.
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Fig. 8. Limited angle experiments: pixel error � as a function of the angular
range of the projections for FBP, SART, TVMin, and DART. (a) Phantom 1.
(b) Phantom 2. (c) Phantom 3. (d) Phantom 4. (e) Phantom 5. (f) Phantom 6.

Fig. 9. Comparison of SART (column 1), TVMin (column 2), and DART
(column 3) for phantom 1 (row 1) with an angular range of � � �� and
phantom 5 (row 2) with an angular range of � � �� . (a) SART, � � �� .
(b) TVMin, � � �� . (c) DART, � � �� . (d) SART, � � �� . (e) TVMin,
� � �� . (f) DART, � � �� .

Fig. 10 shows the continuous pixel error as a function of
the number of projections used in the reconstruction of the geo-
metric phantoms 9 and 10. This pixel error is computed analyt-
ically from the intersection of the continuous phantom image
with the rasterized and segmented reconstruction, and corre-
sponds to the total area where the reconstruction and phantom
are different (taking the area of a pixel as 1). Fig. 11 shows the

Fig. 10. Pixel error� as a function of the number of projections used in the re-
construction using equally distributed projection angles for FBP, SART, TVMin,
and DART. (a) Phantom 9. (b) Phantom 10.

Fig. 11. Limited angle experiments for the geometric objects phantoms: pixel
error� as a function of the projections’ angular range for FBP, SART, TVMin,
and DART. (a) Phantom 9. (b) Phantom 10.

Fig. 12. Pixel error� as a function of the number of projections for DART re-
constructions of phantom 3 and for DART reconstructions of phantom 3 shifted
by 0.5 pixels in both directions.

continuous pixel error as a function of the angular range for
FBP, SART, TVMin, and DART, based on an angular step of
1 between the projections. Both experiments show that DART
performs well compared with FBP, SART, and TVMin in terms
of the continous pixel error .

In addition, an experiment was performed based on the pix-
elized phantom 3, to evaluate the quality of DART reconstruc-
tions as a function of the number of projections, where the orig-
inal phantom was shifted over half a pixel in both directions
before computing the projection data. The shift was performed
analytically, representing each pixel as a square of constant gray
level. Note that the shifted phantom cannot be represented ex-
actly on the pixel grid used for reconstruction. The reconstructed
image was shifted back, again analytically, and then compared
with phantom 3. Fig. 12 shows the pixel error of the DART
reconstructions, as a function of the number of projections. Note
that there is no significant difference between the shifted and the
nonshifted reconstruction for a number of projections smaller
than 10. From and onwards, the difference between the
shifted and non-shifted reconstruction becomes noticeable at the
border area, as can be observed from Fig. 13. Nevertheless, it is
clear that DART performs well, even for nonpixelized objects.



2550 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Fig. 13. DART reconstructions of phantom 3 from ten projections. (a) DART
reconstruction based on nonshifted phantom. (b) Difference between phantom
and nonshifted reconstruction (DART error). (c) DART reconstruction based on
shifted phantom. (d) Difference between phantom and shifted reconstruction
(DART error).

So far, we have compared the reconstruction quality for FBP,
SART, TVMin, and DART, based on perfect, noiseless simula-
tions. Also, we assumed that the set of gray levels to be used
in DART is perfectly known. In the next sections, we will turn
our attention exclusively to DART and investigate the robust-
ness of DART with respect to noise on the projection data and
with respect to errors in the assumptions on the gray levels. The
parameter , that determines the fraction of nonboundary pixels
that is kept fixed in the ARM iterations, plays an important role
in these cases, and it will be varied in the experiments.

D. Noisy Projection Data

From the phantom images, CT projections were simulated as
follows. First, the Radon transform of the images was computed,
resulting in a sinogram for which each data point represents the
line integral of attenuation coefficients. Then, (noiseless) CT pro-
jection data were generated where a mono-energetic X-ray beam
was assumed.1 The projections were then polluted with Poisson
distributed noise where the number of counts per detector ele-
ment was varied from up to . Next, the noisy
sinogram of the attenuation coefficients was obtained by dividing
the CT projection data by the maximum intensity and computing
the negative logarithm. In this way, simulated projection images
were obtained for varying signal-to-noise ratios (SNRs). Finally,
the simulated, noisy CT images were reconstructed.

Fig. 14 shows the pixel error as a function of the number of
counts for various values of the fix probability , for phantoms
1–8. From that figure, it can be concluded that, for low SNR (low
number of counts), the pixel error will in general be smaller if
is small, e.g., . For high SNR (high number of counts),
choosing a high value of (e.g., ) yields more accurate

1More advanced CT simulation experiments, for example, taking into account
scatter and beam-hardening, could as well have been performed, but would, to
our view, unnecessarily complicate the discussion of the experimental results.

Fig. 14. Pixel error� as a function of the number of counts (SNR) for various
values of the fix probability �. (a) Phantom 1 �� � ���. (b) Phantom 2 �� �
���. (c) Phantom 3 �� � ���. (d) Phantom 4 �� � ���. (e) Phantom 5 �� �
����. (f) Phantom 6 �� � ����. (g) Phantom 7 �� � ���. (h) Phantom 8
�� � ���.

reconstructions, but still must be less than 1 to obtain optimal
results for some of the phantoms, due to the inability to create
new boundaries if is set to 1. The observation that for high
noise levels a low fix probability yields the best results can be
explained by the fact that during the ARM iterations, all noise
will be distributed between the free pixels. If there are too few
free pixels, the value of these pixels will be determined mainly
by the noise, resulting in inferior reconstructions.

E. Prior Knowledge on the Grey Levels

DART requires prior knowledge of the gray levels to be used
in the reconstruction. In practical applications, these gray levels
are often only known approximately. Therefore, experiments
have been performed to assess the robustness of DART with re-
spect to errors in the gray levels used for the reconstruction.

Fig. 15(a) shows the pixel error of the DART reconstruc-
tion as a function of the assumed gray value of the object for
phantom 2. If the assumed gray level is overestimated or un-
derestimated, the projection error is redistributed over the set
of free pixels. Clearly, the smaller the number of free pixels
is, the higher the update contribution per pixel will be, which
will result in a large overshoot or undershoot of the updated
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Fig. 15. Pixel error � as a function of gray level(s) � that was/were used as
prior knowledge for DART. (a) Phantom 2. (b) Phantom 7 �� � �����.

Fig. 16. Phantom 2: difference between the DART reconstruction �� � ���
and the original phantom when the gray level � is overestimated. The true gray
level of the phantom was 255. (a) � � ��	
 � � ����. (b) � � ��
 � � ����.
(c) � � ���
� � ����. (d) � � ��	
� � ����. (e) � � ��
� � ����. (f)
� � ���
� � ����.

pixel. If the undershoot or overshoot is large enough to cross
the threshold used in the DART segmentation step, the DART
reconstruction will be affected at that position. This can visu-
ally be observed in Fig. 16 where the DART reconstructions are
shown for , and (the true gray value of the
phantom image was ). Fig. 16(a)–(c) shows the DART
error images for . These figures show that, with in-
creasing offset from the true gray level , the number
of incorrectly reconstructed pixels at the border as well as in
the interior part steadily and significantly increases.

However, if the fix probability is lowered (
, the dependency of as a function of decreases. Note

Fig. 17. Convergence rate: projection error as a function of the number of it-
erations. (a) Phantom 2 �� � ��. (b) Phantom 3 �� � ��. (c) Phantom 5
�� � ���. (d) Phantom 7 �� � ��.

that, for or , less than 0.5% of the pixels is mis-
classified, even if the offset of the assumed gray value from the
true gray value deviates up to 10% from the true gray value. This
is mainly because the interior pixels are not affected as long as
the smoothing and thresholding DART step results in correctly
classified pixels. The classification of the border pixels, are less
affected by the smoothing step. Once the smoothing is insuffi-
cient to classify even the interior pixels correctly, bumps appear
in the interior area and a sudden increase of is noticed (e.g.,
at for ). This classification behavior is visual-
ized in Fig. 16(d)–(f), where the DART error images are shown
for .

Hence, for appropriate values of the fix probability , DART
was observed to be robust with respect to the prior knowledge
on the true gray level of the object. Similar experiments where
run for objects with more than one gray level, as in phantom 7.
In Fig. 15(b), is shown as a function of and , which are
the assumed gray levels of phantom 7 (the true values where 127
and 255, respectively). The 3-D plot also indicates that DART
is, within reasonable range, robust against errors in the prior
knowledge on the true gray levels.

F. Convergence

A relevant question about any iterative scheme is its conver-
gence behavior and computational stability, since it not only af-
fects the reconstruction time but often the quality of the recon-
structed image as well.

For phantoms 2, 3, 5, and 7, the total projection error as
well as the total pixel error was computed as a function of
the number of iterations for fixed probability levels of 0.50, 0.85,
0.99, and 1.00, based on noiseless projection data. Fig. 17(a)–(d)
shows the convergence rate of the total projection error for
phantoms 2, 3, 5, and 7, respectively. The number of projec-
tions used was and , respectively. From Fig. 17,
it can be observed that DART converges in a smooth way, al-
though convergence to a solution that satisfies the projection
data cannot be guaranteed. From the Fig. 17, it is clear that the
fix probability plays an important role in the convergence be-
havior of DART. For all experiments, setting close to (but not
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Fig. 18. Convergence rate: phantom error as a function of the number of it-
erations. (a) Phantom 2 �� � ��. (b) Phantom 3 �� � ���. (c) Phantom 5
�� � ���. (d) Phantom 7 �� � ���.

equal to) 1.0 resulted in the highest convergence rate. Recall that
fixing all nonboundary pixels (i.e., ) would prevent the
creation of holes in the object during the iterations. Hence, tiny
holes, if missed in the segmentation step of the first iteration,
such as in phantom 2, would never be found, resulting in a rela-
tively large projection error for after convergence [see,
for example, Fig. 17(a)]. On the other hand, the smaller the fix
probability, the larger the number of pixels is over which the
projection error is redistributed during the ARM operation and
the smaller the probability that a pixel is changed after thresh-
olding, resulting in a slow convergence.

Fig. 18(a)–(d) shows the convergence rate of the phantom
error (i.e., the number of pixel errors in the reconstruction) for
phantoms 2, 3, 5, and 7, respectively. All figures show a mono-
tonically decreasing pixel error as a function of the number of
iterations.

The total number of iterations required for convergence is sig-
nificantly larger than for classical iterative reconstruction algo-
rithms, such as SART, where often just two iterations are used in
practice. However, the fact that DART can reduce the number of
required projections significantly, as well as the fact that only a
subset of the pixels is updated by the ARM, will result in faster
individual iterations. As actual reconstruction times are highly
implementation dependent, we merely give an indication of the
running times: for our experiments based on phantoms of size
512 512, the reconstruction time on a single modern CPU core
varied between 10 s (phantom 1, 5 projections, ) and
20 min (phantom 6, 50 projections, ).

The experiments in Sections V-A and V-B demonstrate that
DART converges to an accurate reconstruction of the original
phantom for a broad range of phantoms, provided that a min-
imal, but sufficient number of projections are available, yet there
is no absolute guarantee that the reconstruction computed by
DART will accurately represent the original object or even that
its projections correspond closely to the original projection data.
A compromise between the attractive features of DART and
favorable formal convergence properties can be found by ap-
plying a postprocessing step to DART. Applying an algorithm

Fig. 19. Visualizations of reconstruction results for the experimental diamond
�CT dataset. (a) SART-250, (b) SART-A, (c) DART-A.

for continuous tomography that does guarantee convergence in
the sense of minimal total projection error, such as SIRT, while
using the DART reconstruction as the initial reconstruction, will
result in a gray level reconstruction that may not be entirely dis-
crete, but is likely to be close to the DART reconstruction.

G. Experimental Data

Five reconstructions have been computed for the experi-
mental CT diamond dataset described in Section IV-C, and
they are given here.

• SART-250. A SART reconstruction from 250 projections,
using four iterations over all 250 angles.

• SART-15. A SART reconstruction from 15 projections,
using 35 iterations over all 15 angles. The angles were se-
lected by approximating constant angular steps between 0
and 180 degrees, each time choosing the nearest available
projection angle.

• DART-15. A DART reconstruction from the same 15 pro-
jections as the SART-15 reconstruction, using
and 20 DART iterations. The gray level for the interior of
the diamond was determined from the SART-250 recon-
struction.

• SART-A. A SART reconstruction from limited-angle pro-
jection data based on 51 projections with angles distributed
equally along an interval of 108 degrees, using 10 iterations
over all 51 angles.

• DART-A. A DART reconstruction from the same 51 pro-
jections as the SART-A reconstruction, using and
20 DART iterations.

Fig. 19(a) shows a 3-D surface rendering of a clipped section
from the reconstructed volume, based on the SART-250 recon-
struction. As it is not obvious to assess reconstruction quality
based on the surface rendering, we opted for an alternative vi-
sualization, based on three orthogonal slices through the recon-
struction. Fig. 19(b) and (c) each show three partial orthogonal
slices through the reconstructed volume in a 3-D frame. The par-
tial cross sections are more suitable for visual comparison with
the SART-250 reconstruction.

The results show that the DART-A limited-angle reconstruc-
tion approximates the SART-250 full-angle reconstruction quite
well, much better than the SART-A reconstruction for the corre-
sponding subsets of projections. Similar results were observed
for the DART-15 reconstruction, when compared to SART-15.
We expect that the accuracy of the presented DART reconstruc-
tions is mainly limited by beam hardening effects in the projec-
tion data, which could in principle be compensated for to further
improve reconstruction quality. beam hardening effects.
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VI. CONCLUSION

In this paper, we have presented the DART algorithm, which
can be used for tomographic reconstruction if the scanned ob-
ject is known to consist of only a few different compositions,
each corresponding to a constant gray value in the reconstruc-
tion. DART has already been applied successfully to a range of
experimental datasets, but a full description of the algorithmic
details as provided in this paper has been lacking thus far. As
DART is a heuristic algorithm, we have presented a thorough
experimental validation of algorithm properties, comparing the
resulting reconstruction accuracy to several alternative methods,
and investigating the robustness of DART with respect to noise
and gray level errors. The results show that DART yields more
accurate reconstructions than the alternative methods in most
of the experiments. Robustness is largely determined by the fix
probability, that can be set according to the specific properties of
a reconstruction problem at hand. Lowering the fix probability
parameter results in an algorithm that is robust with respect to
noise and errors in the set of gray levels used in the reconstruc-
tion. Various steps in the presented algorithm, such as the seg-
mentation step and determination of the set of free pixels, can
potentially be improved upon, which we will investigate in fu-
ture research.
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