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Abstract

In discrete tomography, a scanned object is assumed to consist of only

a few di�erent materials. This prior knowledge can be e�ectively exploited

by a specialized discrete reconstruction algorithm such as Discrete Alge-

braic Reconstruction Technique (DART) [2], which is capable of providing

more accurate reconstructions from limited data compared to conventional

reconstruction algorithms. However, like most iterative reconstruction al-

gorithms, DART su�ers from long computation times. To increase the

computational e�ciency as well as the reconstruction quality of DART,

a multiresolution version of DART (MDART) is proposed, in which the

reconstruction starts on a coarse grid with big pixel (voxel) size. The

resulting reconstruction is then resampled on a �ner grid and used as an

initial point for a subsequent DART reconstruction. This process contin-

ues until the target pixel size is reached. Experiments show that MDART

can provide a signi�cant speed-up, reducing missing wedge artefacts and

improving feature reconstruction in the object compared with DART be-

ing iterated for the same time, making its use with large datasets more

feasible. The biggest improvement is achieved for the objects without very

�ne structures and for datasets where only a few projections are available,

either from a full or from a limited angular range.

Keywords: computed tomography, DART, discrete tomography, mul-

tiresolution, prior information.
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1 Introduction

Computed tomography is a non-invasive imaging technique which is based on

reconstruction of an object from a series of projection images. It has appli-

cations on all scales, ranging from 3D imaging of nanomaterials by electron

microscopy to the reconstruction of electron-density maps of the solar corona

[1, 3]. In many of these applications, it is highly desirable to reduce the num-

ber of projections taken, or it is even impossible to acquire many projections.

In materials science, for example, reducing the number of acquired projections

leads to faster imaging which allows to increase the time resolution to study the

evolution of structural changes in materials induced by stress or temperature

[8]. In electron tomography, the electron beam gradually damages the object,

also limiting the number of projections that can be acquired [10].

A wide range of reconstruction algorithms is available. Analytical recon-

struction algorithms, such as Filtered Back Projection (FBP) [4], require a

large number of projections acquired from a full angular range to obtain recon-

structions of acceptable quality. Iterative reconstruction algorithms, such as the

Simultaneous Iterative Reconstruction Technique (SIRT) [6], allow to incorpo-

rate prior knowledge about the object into the reconstruction process to relax

these requirements in the projection data. Various forms of prior knowledge

about the object can be used. Sparsity of image derivative magnitude is used in

a total-variation (TV) minimization algorithm to address the few-view, limited-

angle and bad-bin reconstruction problems [15]. In interior tomography, prior

knowledge of the grey values within a small area inside the object can lead to

more clinically feasible imaging [17]. Information about the edges of the object

is shown to improve the reconstruction quality in the case of the few-view prob-

lem [5]. Finally, prior knowledge about a small number of materials forming

the object allows to use Discrete Algebraic Reconstruction Technique (DART),
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which can yield accurate reconstructions from a small number of projections or

from a small angular range [2]. In this algorithm, continuous update steps over a

subset of pixels are alternated with discretization steps in which prior knowledge

is added to the reconstruction. DART has been successfully applied in electron

tomography [1, 20], micro-CT [18] and magnetic resonance imaging (MRI) [14].

Being an iterative reconstruction algorithm, DART su�ers from long computa-

tion times which complicates its use for large datasets or for applications where

computation time is crucial.

To decrease computation time or, alternatively, improve reconstruction qual-

ity achieved in a certain computation time, a new approach is proposed in which

the available projection data is �rst reconstructed using DART on a coarse grid.

The obtained reconstruction is then resampled on a grid with smaller pixels and

used as a starting point for a subsequent DART reconstruction. This process

is iteratively repeated until the target pixel size is reached. The proposed ap-

proach can extend the area of applicability of DART, allowing its application

to large experimental datasets.

The structure of this paper is as follows. In Section 2 our approach is ex-

plained. Section 3 describes experiment setups and presents the obtained re-

sults. The approach is discussed in Section 4. Finally, conclusions are drawn in

Section 5.

2 Motivation and approach

We will now brie�y outline the basic concepts of the DART algorithm [2]. This

algorithm combines iterative update steps and intensity discretization steps,

where the prior knowledge of the grey levels is incorporated into the reconstruc-

tion.

A �ow chart of DART is shown in Fig. 1. The algorithm starts by calculat-
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ing an initial reconstruction using an algebraic reconstruction method (ARM).

Although SIRT [6] is used as the ARM throughout the paper, any iterative

reconstruction algorithm could have been used. This reconstruction is then seg-

mented. Usually, only the pixels close to the object boundary can be misclassi-

�ed whereas the con�dence in the classi�cation of the interior of the object and

background pixels located far from the object boundary is high. Therefore all

pixels are assigned to either �xed (F ) or non-�xed (U) pixel sets. The non-�xed

pixel set U contains all boundary pixels, i. e. pixels having at least one adjacent

pixel with a di�erent grey level. A randomly chosen fraction of non-boundary

pixels is also added to the set of non-�xed pixels to allow the formation of new

boundaries. The remaining pixels form the �xed pixel set F . Next, several ARM

iterations are performed for the non-�xed pixels while keeping the values in the

�xed pixels unchanged. After that a termination criterion is checked (examples

of termination criteria are given later in this Section). If the criterion is not met,

the reconstruction is smoothed, �nishing one DART iteration. The process is

iteratively repeated until a speci�ed convergence criterion is met.

While DART has shown its e�cacy in reconstruction of micro-CT [18] and

electron tomography [1, 20] datasets, in some cases DART can su�er from slow

convergence, leading to long computation times required to �nd a practically

acceptable reconstruction. Figure 2b illustrates one of such cases, where DART

is capable of providing an accurate reconstruction only after a long iteration

process. For the same phantom, Segmented SIRT (SSIRT) converges rapidly,

though yielding a reconstruction of a poor quality (Fig. 2) (the de�nition of the

relative number of misclassi�ed pixels (RNMP) and a detailed description of

the experiment conditions are given in Section 3.1). Such behaviour of DART is

explained by a highly inaccurate initial ARM reconstruction. Being calculated

from only a few projections, the initial reconstruction often contains strong
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artefacts which then require many DART iterations in order to reduce these

artefacts. Therefore, improving the initial reconstruction will lead to faster

convergence and smaller computation time or to more accurate reconstructions

after a �xed computation time.

In [20], applying masking during the computation of the initial SIRT re-

construction signi�cantly reduced the missing wedge artefacts in the initial re-

construction and allowed to improve the resulting DART reconstruction. This

improvement was attributed to a better estimation of grey values used in DART

as those grey values were calculated from the initial reconstruction. While in-

accurate grey values may indeed result in inferior quality of the DART recon-

structions, even correct grey values do not guarantee fast and accurate recon-

structions simultaneously (Fig. 2).

The idea of the proposed multiresolution approach is to �rst start a DART

reconstruction on a coarse reconstruction grid and then use the resampled re-

sulting reconstruction as a starting point for a subsequent reconstruction on a

�ner grid (Fig. 3). The use of coarser grids makes the reconstruction problem

less ill-posed as the number of unknowns decreases and the number of equa-

tions remains the same. This allows to compute a good estimation of the object

and then improve it on �ner grids to reveal �ner structures which cannot be

reconstructed on the initial coarse grid.

Since DART is a heuristic algorithm, there is no formal de�nition of the

conditions which guarantee the convergence of the reconstruction process. The

following termination criteria can be used in practice:

• a certain number of iterations are performed;

• the relative number of modi�ed pixels is smaller than a given threshold.

If only a few pixels change their values during the iteration, the object is

mainly reconstructed;
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• the di�erence in the projection distance (Eq. (1)) between the reconstruc-

tions after two consecutive iterations is smaller than a given threshold.

This means that the reconstruction stops improvement.

The projection distance for a reconstruction x ∈ Rn is de�ned as

D (x) = ‖Wx− p‖2 , (1)

where W ∈ Rm×n is the projection matrix and p ∈ Rm denotes the measured

projection data.

In our experiments, the modi�ed projection distance criterion was used:

iterations were stopped if the criterion held for three consecutive iterations.

Let MDART q denote the multiresolution DART algorithm which operates

on q reconstruction grids or, alternatively, performs q − 1 switchings to a �ner

reconstruction grid, in which the pixel size is halved. This algorithm starts

from the pixel size which is 2q−1 times bigger than the target pixel size. Note

that MDART 1 is then identical to the conventional DART. Figure 4 illustrates

these concepts showing the reconstruction grids and the projection geometry for

MDART 2. Note that detector elements and projecting rays remain unmodi�ed

allowing to use the available projection data unaltered.

3 Experiments

3.1 Noiseless simulations

A number of simulation experiments were run using phantom images to demon-

strate the proposed approach. In all simulation experiments described in the

paper, the size of the phantoms was 4096 × 4096 pixels while reconstructions

were performed on a reconstruction grid of 1024×1024 pixels to reduce the e�ect

of the pixelation on the reconstructions. A number of m equiangular fan beam
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projections were computed from the original phantoms using Joseph's projec-

tion method [7]. A detector with n = 1024 elements was used. All experiments

presented in the paper were implemented using the ASTRA toolbox [13] where

GPU acceleration was used extensively [12].

Four reconstruction algorithms were compared:

• Segmented SIRT (SSIRT). The well known SIRT reconstruction algo-

rithm [6] was used to calculate the reconstructions which were then seg-

mented using a global threshold for a fair comparison.

• DART [2]. An initial reconstruction was calculated using 50 SIRT itera-

tions, 10 SIRT iterations were applied to the non-�xed pixels during each

DART iteration.

• MDART 4 andMDART 2. All parameters of the underlying DART al-

gorithm were identical to the described above. Reconstruction resampling

was performed using the bilinear interpolation.

Correct grey values and a global threshold were used in the simulation experi-

ments. All participating algorithms were stopped after a certain iteration time.

The quality of the reconstructions was assessed by calculating the relative num-

ber of misclassi�ed pixels (RNMP) according to

RNMP
(
I, Ĩ
)
=

∣∣∣{(i, j) | Ĩ (i, j) 6= I (i, j)
}∣∣∣

|{(i, j) | I (i, j) > 0}|
, (2)

where I is the original phantom and Ĩ denotes the reconstruction resampled on

the same grid as I using the nearest-neighbour interpolation.

In the �rst series of experiments four phantom images (Fig. 5) were used.

Phantom 1 (Fig. 5a) is a disk with a number of holes of radius 100 pixels. It is

identical to the phantom used in Section 2 (Fig. 2a). Phantom 2 (Fig. 5b) rep-

resents a cylinder head of an internal combustion engine, Phantom 3 (Fig. 5c)
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is a Siemens star-like phantom, Phantom 4 (Fig. 5d) consists of a number of

intersecting ellipses and has three grey values, whereas the former three phan-

toms are binary. From these phantoms, a number m equiangular projections

were computed. These projections were then reconstructed using the algorithms

under consideration.

The obtained results are shown in Figs. 6 and 7, which suggest that MDART

can provide signi�cantly better reconstruction quality in only a fraction of com-

putation time compared to SSIRT and DART, especially when there are only a

few projections available.

For the second series of experiments, a number of phantoms were used, each

consisting of a disk with randomly placed circular holes of a particular size

(Fig. 8). Three phantoms were created for each hole size. For these phantoms,

projections from complete and from the limited angular ranges were computed

in order to evaluate the applicability of the proposed approach for objects with

features of various size and for the datasets with the missing wedge.

Figure 9 presents the obtained results after 30 s iteration time, demonstrat-

ing the average RNMP over the phantoms with the holes of the particular size

together with the standard errors (shown as shaded areas in the plots). Fig-

ure 10 shows the corresponding reconstructions of one of the phantoms with

holes of radius 50 pixels calculated from 20 projections with 90◦ missing wedge.

These plots demonstrate the ability of MDART to provide reconstructions of

signi�cantly higher quality compared to SSIRT and DART and to reduce miss-

ing wedge artefacts. The biggest gain compared to DART is achieved in the

experiments with bigger missing wedge and smaller number of projections. The

poor performance of MDART 4 on the phantoms with the hole radii of 30 pix-

els is explained by the fact that on the coarsest reconstruction grid used by

MDART 4 such holes have a radius of less than one pixel which complicates
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their detection with a discrete reconstruction algorithm. Note that for the holes

of radius 60 pixels or bigger MDART 4 shows the best results among all con-

sidered algorithms gaining from the use of coarser grids.

3.2 Simulations with noise

In order to evaluate the proposed multiresolution approach in a more realistic

situation, Poisson noise was added to one of the experiments shown in Sec-

tion 3.1. For the cylinder head phantom (Fig. 5b), K = 5 noisy sets of projec-

tion data were obtained for each noise level. For each noisy projection dataset

the reconstructions were built as described in Section 3.1. The mean values of

RNMP
(
I, Ĩ
)
over these K reconstructions after 25 s iteration time are shown

in Fig. 11, from which we see that the proposed method can outperform SSIRT

and DART even in the presence of noise. This plot also demonstrates a slightly

higher MDART 4 robustness against noise compared to MDART 2.

3.3 Real experiments

The following experiments were conducted in order to demonstrate the perfor-

mance of the proposed multiresolution approach on real data.

For the �rst experiment, a hardware phantom with a diameter of 70 mm

was scanned using HECTOR micro-CT system developed by UGCT (the Ghent

University Centre for X-ray Tomography, Belgium) in collaboration with X-Ray

Engineering (XRE bvba, Ghent, Belgium) [9]. For this object, a full-angle cone-

beam dataset was acquired containing 2401 projections of 2000 × 2000 pixels.

The source-detector distance was 1250 mm and the source-object distance was

275 mm. One slice from this dataset was reconstructed with 1000 iterations of

SIRT (Fig. 12a) on a 2000×2000 reconstruction grid with a pixel size of 44 μm.

In the second experiment, a gypsum jaw model was scanned using a desktop
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micro-CT system SkyScan-1172 (Bruker-MicroCT, Belgium). A full-angle cone-

beam dataset consisting of 400 projections of 1984 × 524 pixels was acquired.

One slice from this dataset was reconstructed on a 1984×1984 grid with a pixel

size of 34.7 μm using 500 SIRT iterations (Fig. 12b).

Finally, a coral was scanned on the TOMCAT beamline [16] at the Swiss

Light Source, Paul Scherrer Institut (Villigen, Switzerland). A full-angle parallel-

beam dataset consisting of 1001 projections of 1022× 378 pixels was acquired.

One slice from this dataset was reconstructed on a 1022 × 1022 grid using 500

SIRT iterations (Fig. 12c).

The reconstructions using all available projections (Fig. 12) were segmented

using the Otsu segmentation algorithm [11] and used as a ground truth in the

following experiments. A number of m projections of the same slice were chosen

to form datasets with limited angular ranges. These datasets were then recon-

structed using the algorithms described in Section 3.1. Since true grey values to

be used in DART and MDART were not known, these values were estimated as

mean values in each segmentation class of the Otsu segmentation of the SIRT

reconstructions shown in Fig. 12.

The obtained results are presented in Figs 13 and 14. Figures 13a, 13c and

13e demonstrate the ability of MDART to signi�cantly speed up the reconstruc-

tion process and to yield more accurate results compared to SSIRT and DART.

Figures 13b, 13d and 13f con�rm that MDART su�ers from the missing wedge

in the projection data less than other considered algorithms. Lower performance

of all compared algorithms on the jaw model dataset without the missing wedge

compared to the dataset with the 30◦ missing wedge (Fig. 13d) is explained by

the dependency of the reconstruction quality on the actual projection directions

for some objects, especially if there are only a small number of projections used

[19]. Moderate performance of MDART 4 on the coral dataset (Figs. 13e and
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13f) compared to the performance of DART and MDART 2 is caused by the

presence of very �ne details in the object, which cannot be reconstructed on

the coarsest reconstruction grid used by this algorithm. Examples of the recon-

structions of the hardware phantom using m = 20 projections with 90◦ missing

wedge shown in Fig. 14 suggest that the proposed approach, and MDART 4

in particular, can signi�cantly reduce missing wedge artefacts and improve fea-

ture reconstruction for real objects. Therefore, experimental studies conform

to the simulations described in Section 3.1, showing the ability of the proposed

approach to faster yield reconstructions of superior quality compared to those

produced by SSIRT and DART for real datasets.

4 Discussion

The proposed multiresolution DART algorithm starts reconstruction on a coarse

reconstruction grid and then uses the resampled resulting reconstruction as an

initial point for a new reconstruction process on a �ner grid, iteratively switching

to the new grid until the target pixel size is reached. In our experiments, the

following pixel size was always two times smaller than the current one. A certain

variation in the pixel size changing strategy can have additional bene�ts in terms

of computation time.

Experiments show that the proposed approach allows to create accurate

reconstructions signi�cantly faster than DART. Speed-up comes from the fol-

lowing two facts: iteration time decreases together with the number of pixels

in the reconstruction and DART converges faster when starting from a better

initial reconstruction. More accurate initial reconstruction results from the fact

that use of the coarse grids makes the reconstruction problem less ill-posed de-

creasing the number of unknowns while preserving the number of equations.

This is especially important in case when the limited number of projections is
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available or the projections were acquired from a limited angular range since the

initial reconstruction calculated from such data can su�er from strong artefacts

which sometimes slow down the convergence of conventional DART.

The choice of the starting pixel size has a signi�cant in�uence on the per-

formance of the proposed approach. On the one hand, the smaller the features

present in the object, the smaller should be the starting pixel size. On the other

hand, the bigger the starting pixel, the higher the potential for a speed-up and

for robustness against noise. This trade-o� should be made having a particular

reconstruction problem in mind.

The proposed multiresolution approach can broaden the use of DART for

large experimental datasets. It also allows to further decrease the number of

projections required to obtain accurate reconstructions in a reasonable time.

5 Conclusion

We proposed the multiresolution DART algorithm for discrete tomography. This

approach is based on the iterative use of a resampled reconstruction created on

a coarse grid as a starting point for a subsequent reconstruction on a �ner grid.

Our experiments showed that the proposed approach can lead to accurate re-

constructions calculated in only a fraction of time compared to DART. The

biggest improvement is reached for the datasets with very small number of pro-

jections and acquired from a limited angular range. Reconstructions of the real

datasets demonstrated an ability of the multiresolution DART to signi�cantly

decrease the missing wedge artefacts and improve feature reconstruction in the

object compared to the conventional DART algorithm being iterated for the

same time.
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background and object pixels, respectively. . . . . . . . . . . . . 33
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Input: projection data

Output: current reconstruction

Compute an initial ARM
reconstruction

Segment the
reconstruction

Identify fixed
pixels F

Identify non-fixed
pixels U

Apply new ARM iterations
to U, keep F fixed

Stop
criterion

met?

Smooth the
reconstruction

No

Yes

Fig. 1: Flow chart of DART [2].
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(c) SSIRT, RNMP = 0.206 (d) DART, RNMP = 0.016

Fig. 2: Phantom, 4096 × 4096 pixels size, with holes of radius 100 pixels (a)
and RNMP as a function of the computation time for the reconstruction of
this phantom using SSIRT and DART from m = 20 projections (b), which
demonstrate the slow convergence of DART for some datasets. Error images
for SSIRT (c) and DART (d) reconstructions after 500 s iteration time. Red
and green in the error images correspond to misclassi�ed background and object
pixels, respectively, black and yellow represent correctly classi�ed background
and object pixels, respectively.
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Input: projection data, current
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Target
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Output: current reconstruction
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Fig. 3: Flow chart of the multiresolution DART algorithm.
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(a) (b)

Fig. 4: Projection geometry and reconstruction grids used by MDART 2: (a)
the coarse reconstruction grid and (b) the target reconstruction grid.
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(a) (b)

(c) (d)

Fig. 5: Phantoms 1�4 (a-d), 4096× 4096 pixels.
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(a) Phantom 1, m = 20

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

Computation time, s

R
N

M
P

 

 

SSIRT
DART
MDART 2
MDART 4

(b) Phantom 1, m = 50
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(c) Phantom 2, m = 20
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(d) Phantom 2, m = 50

Fig. 6: RNMP as a function of the computation time for the reconstructions of
Phantoms 1�2 (Figs. 5a and 5b) fromm projections (a-d). Black and grey points
on the MDART curves mark the moments of switching to a �ner reconstruction
grid.
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(a) Phantom 3, m = 20
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(b) Phantom 3, m = 30
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(c) Phantom 4, m = 10

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

Computation time, s

R
N

M
P

 

 

SSIRT
DART
MDART 2
MDART 4

(d) Phantom 4, m = 20

Fig. 7: RNMP as a function of the computation time for the reconstructions of
Phantoms 3�4 (Figs. 5c and 5d) fromm projections (a-d). Black and grey points
on the MDART curves mark the moments of switching to a �ner reconstruction
grid.
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(a) (b)

Fig. 8: Examples of the phantoms, 4096× 4096 pixels size, with holes of radius
50 (a) and 80 (b) pixels used in the experiments of Section 3.1.
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(b)

Fig. 9: RNMP for the reconstructions of the phantoms with various hole sizes
from m = 20 projections after 30 s iteration time: (a) as a function of the hole
radius for the 90◦ missing wedge and (b) as a function of the missing wedge for
the phantoms with the hole radius of 50 pixels.
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(a) SSIRT (b) DART (c) MDART 2

(d) RNMP = 0.147 (e) RNMP = 0.064 (f) RNMP = 0.007

Fig. 10: Reconstructions of the phantom with holes of radius 50 pixels of unit
size after iterating for 30 s with SSIRT (a), DART (b) and MDART 2 (c) using
m = 20 projections with 90◦ missing wedge together with the corresponding
error images (d-f). Red and green in the error images correspond to misclassi�ed
background and object pixels, respectively, black and yellow represent correctly
classi�ed background and object pixels, respectively.
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Fig. 11: RNMP as a function of the photon count for the reconstructions of
the cylinder head phantom (Fig. 5b) from m = 20 projections with noise as
described in Section 3.2. The iteration process was stopped after 25 s.
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(a) Hardware phantom (b) Jaw model (c) Coral

Fig. 12: SIRT reconstructions of slices of the real datasets using all available
projections: (a) the hardware phantom, 2401 projections, (b) the jaw model,
400 projections, (c) the coral, 1001 projections.
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(a) Hardware phantom, m = 20
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(b) Hardware phantom, m = 20, 50 s
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(c) Jaw model, m = 15
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(d) Jaw model, m = 15, 50 s
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(e) Coral, m = 20
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(f) Coral, m = 20, 50 s

Fig. 13: RNMP for the reconstructions of the real datasets (Fig. 12) as a function
of the computation time from the data with the missing wedge (a, c, e) and as a
function of the missing wedge after 50 s iteration time (b, d, f). Missing wedge
is 90◦ in (a) and (c) and 30◦ in (e). Black and grey points on the MDART
curves (a, c, e) mark the moments of switching to a �ner reconstruction grid.
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(a) SSIRT (b) RNMP = 0.084

(c) DART (d) RNMP = 0.042

(e) MDART 2 (f) RNMP = 0.024

(g) MDART 4 (h) RNMP = 0.013

Fig. 14: Reconstructions of the hardware phantom after iterating for 50 s with
SSIRT (a), DART (c), MDART 2 (e) and MDART 4 (g) using m = 20 projec-
tions with 90◦ missing wedge together with the corresponding error images (b, d,
f, h). Red and green in the error images correspond to misclassi�ed background
and object pixels, respectively, black and yellow represent correctly classi�ed
background and object pixels, respectively.
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