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Abstract 9 
In X-ray computed tomography, the 3D structure of a scanned object can be 10 
reconstructed from a number of projection images of the object acquired from different 11 
directions. Conventional tomographic reconstruction algorithms represent the 12 
reconstructed volume on a voxel grid. Such representation is, however, not well suited 13 
for polyhedral objects arising in many industrial applications, since such objects are 14 
first voxelized during the reconstruction and then processed in order to obtain a polygon 15 
mesh representing the surface of the object. These transformations lead to loss of details 16 
and may induce artefacts that hinder posterior image processing. 17 
In this work, a new approach is proposed in which a contour polygon of the object is 18 
directly estimated from the projection data. The approach is based on simulated 19 
projections of the polygon model and optimization of the vertex positions in the model 20 
with respect to the distance between the simulated and the original projection data 21 
(projection distance). The obtained results demonstrate the ability of the proposed 22 
algorithm to accurately represent the contour of the object even in case of noisy 23 
projection data. 24 
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Introduction 41 

X-ray computed tomography is an imaging technique that is capable of revealing the 3D structure 42 
of a scanned object with numerous applications in medicine, research (e. g., materials research), 43 
and industry (e. g., quality control). A typical workflow in industrial quality control involving 44 
computed tomography includes manufacturing of an object according to a CAD model, the 45 
reconstruction of the object using a tomographic reconstruction algorithm, segmentation, 46 
estimation of a polygon mesh representing the surface of the segmented object, and comparison 47 
with the CAD model used during manufacturing [1,2]. 48 
 49 
Conventional tomographic reconstruction algorithms, such as FBP [3], SIRT [4], or DART [5], 50 
represent the reconstructed volume on a voxel grid. This representation is not well suited for 51 
polyhedral objects arising in many industrial applications, since such representation can lead to 52 
loss of details in the object and to introduction of image artefacts [6]. Moreover, artefacts in the 53 
reconstructed volume can hinder posterior processing [1]. 54 
 55 
To generate a polygon mesh of the surface, contouring techniques, such as Marching Cubes [7] 56 
and its modifications, are widely used. These techniques create a triangular mesh using 57 
interpolation between attenuation values calculated on the voxel grid. Recently, a technique [8] 58 
has been proposed, where reconstruction on an iteratively deformed tetrahedral mesh is used 59 
instead of reconstruction on a regular voxel grid. These methods, however, are sensitive to noise 60 
and reconstruction artefacts and require a high resolution reconstruction to reproduce sharp edges 61 
on an object [7,8]. 62 
 63 
In this work, a new approach is proposed in which parameters of a model representing the object 64 
are directly estimated from the projection data, eliminating need for reconstruction on the pixel 65 
(voxel) grid and therefore decreasing related drawbacks. Our approach is based on optimization 66 
of an analytical model of the object with respect to a difference between the simulated projections 67 
of the model and the original projection data. Such models are readily available in many 68 
application domains, e. g., in industrial quality control, where objects being controlled are 69 
manufactured according to CAD models. In the present paper, we focus on the two-dimensional 70 
case and use polygons as the models to estimate the contour of the object. Two particular 71 
problems, Edge estimation and Polygon estimation, relevant for diamond processing, are 72 
considered. 73 
 74 
 75 

Method 76 

In tomography, the projection process can be modeled as a linear operator determined by the 77 
projection geometry, which leads to a system of linear equations 78 
 pWx  , (1.1) 79 

where mRp  is the projection data, nRx  is an image representing the object on a pixel 80 

(voxel) grid, nmRW   is the projection matrix with m  being the number of detector elements 81 
multiplied by the number of projection angels and n  being the number of pixels in the image. For 82 
any image nRs  we can define the difference between its simulated projections and the 83 
measured projection data as 84 
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)( pWssd  , (1.2) 85 

which is known as the projection distance. Analogously, a projection operator MW  for a model-86 

based representation of the object and the projection distance 
2

)( ptWtd MM   for any model 87 

t  can be defined. 88 
 89 

 90 
 91 

Figure 1: Schematic overview of the proposed model estimation approach. 92 
 93 
 94 
Our approach is to find the parameters of the model t  of the object that minimize the projection 95 
distance )(td M  between the acquired projection data and simulated projections of that model. 96 
 97 
Consider projection data p  (Figure 1d) which was acquired from the unknown object 98 
(Figure 1a). The approach consists in adjusting parameters of a model of the object (Figure 1b), 99 
which is then analytically projected. Next, the obtained projection data of the model (Figure 1e) 100 
is compared to the measured projection data of the object using the projection distance. The 101 
parameters that minimize the projection distance are retained as the parameters of the model 102 
representing the object. 103 
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 104 
The above described approach is very general and can be applied to a variety of models 105 
representing objects arising in different domains where computed tomography is applied. In the 106 
present paper, we consider two particular problems relevant for diamond processing. 107 
 108 

  109 
 a) b) 110 

 111 
Figure 2: (a) Edge estimation and (b) Polygon estimation. 112 

 113 
 114 
In Edge estimation (Figure 2a), we aim at estimating the slope of one edge of the object assuming 115 
that an approximate position and slope of that edge is available and there is no prior model of the 116 
object. A trapezium is used as an analytical model, parameterized with rotation, shift, length of 117 
the top basis and the base angles. The optimization of the projection distance is performed only 118 
for a part of the available projection data that is located in proximity to the projections of the 119 
edge in question and corresponds to X-rays being roughly parallel to it. 120 
 121 
In Polygon estimation (Figure 2b), a complete object is estimated assuming the availability of a 122 
prior polygonal model representing the object. The optimization is iterative, and during each 123 
iteration each vertex is adjusted while keeping the other vertices fixed. This procedure allows to 124 
split the optimization in a high-dimensional search space into several optimizations in two-125 
dimensional search spaces. 126 
 127 
In both cases, we assume that the objects are homogeneous without any holes and that their 128 
attenuations are known. To optimize the projection distance, an interior-point method for 129 
nonlinear programming [9] is used. It is an iterative algorithm that combines a line search method 130 
computing steps by factoring the primal-dual equations and a trust region method employing 131 
conjugate gradient iterations. Bounds for the parameters of the model can be used to restrict the 132 
search space. These bounds depend, in principle, on the accuracy of the prior model. 133 
 134 
 135 
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Experiments 136 

Simulation experiments 137 

A number of experiments were set up by simulating projection data of a polygonal phantom to 138 
demonstrate the proposed approach. In all experiments described in this section, a detector with 139 
1044 elements was used, 500 projections were computed and Poisson noise was added to obtain 140 
5  datasets for each noise level. 141 
 142 

 143 
 144 

Figure 3: Angle error as a function of the photon count for the edge estimation. 145 
 146 
 147 

 148 
 149 

Figure 4: Mean vertex shift error as a function of the photon count for the polygon estimation. 150 
 151 
 152 
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In the first series of experiments, the ability of the proposed approach to handle Edge estimation 153 
problem was evaluated. For each noisy dataset computed for the object shown in Figure 2a, the 154 
slope of one edge was estimated as described in Section Method, and the mean angle error was 155 
plotted (Figure 3) together with the standard error (shown as shaded area in the plot). 156 
 157 
In the second series of experiments, the polygon representing the object was estimated using the 158 
prior model (shown in Figure 2b together with the object), which was obtained from the object by 159 
randomly shifting each vertex, the mean shift was 12.17 units. For each noisy dataset the vertex 160 
positions were estimated, and the mean distances between the true and estimated vertex positions 161 
were calculated (Figure 4). 162 
 163 
The results demonstrate the ability of the proposed approach to achieve subpixel accuracy in 164 
polygon estimation (Figure 4) and to accurately determine edge slopes (Figure 3), confirming that 165 
the proposed approach can accurately estimate parameters of a model representing the object 166 
based on the projection data even in the presence of noise. 167 
 168 

Real experiments 169 

Two cone-beam datasets were acquired using a desktop micro-CT system SkyScan-1172 170 
(Bruker-MicroCT, Belgium), size of each projection image was 1000×524. The objects were 171 
known to be homogeneous, their attenuation was calculated as the mean attenuation in an inner 172 
region. One slice from each dataset was used as the projection data to demonstrate the 173 
performance of the proposed approach on real data. 174 
 175 
For the first experiment, 280 projections of a diamond with a polished facet were acquired. The 176 
proposed approach was applied to estimate the slope of the polished facet, for which an initial 177 
model was roughly determined using SIRT reconstruction of the same slice (Figure 5a). The 178 
obtained result is shown in Figure 5b. 179 
 180 

  181 
 a) b) 182 

 183 
Figure 5: Facet estimation in a diamond: SIRT reconstruction overlaid with initial (a) and final (b) models. 184 

 185 
 186 



DABRAVOLSKI ET AL. 
 

7 

In the second experiment, 515 projections of an almost polished diamond were acquired. The 187 
polygon representing an initial model was again roughly determined using SIRT reconstruction 188 
(Figure 6a) and supplied into the proposed approach. The resulting polygon is presented in 189 
Figure 6b. While the final model may appear to slightly overestimate the object, e. g., in the 190 
bottom right corner of the figure, enlarged plots (Figures 6c, 6d) suggest the presence of material 191 
there, and the lower attenuation of the object in that area might have been caused by a 192 
reconstruction artefact. 193 
 194 

  195 
 a) b) 196 

 197 

  198 
 c) d) 199 

 200 
Figure 6: Polygon estimation in a diamond: SIRT reconstruction overlaid with initial (a) and final (b) models and 201 

the corresponding enlarged fragments (c) and (d). 202 
 203 
 204 
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The proposed model estimation approach demonstrates plausible and promising results on the 205 
real datasets, allowing to compute the parameters of the models representing the scanned objects, 206 
and is potentially robust against reconstruction artefacts. Nevertheless, further validation of this 207 
approach is required. 208 
 209 
 210 

Discussion and conclusion 211 

In this paper, a projection-based polygon estimation approach for X-ray computed tomography 212 
was proposed. In this approach, a model representing the contour of the object is directly 213 
estimated from projection data, eliminating need for reconstruction on the pixel (voxel) grid. 214 
While polygon models were used to represent the objects throughout the paper, this technique is 215 
readily extensible to other representations, such as splines. 216 
 217 
Experiments show that the proposed approach can accurately estimate the parameters of the 218 
models representing the objects even in the presence of noise and has great potential to enhance 219 
diamond processing or quality assessment of industrial parts. 220 
 221 
Future work will focus on the extension of the proposed approach to three-dimensional models 222 
and non-homogeneous objects and further validation on real datasets. 223 
 224 
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