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Summary

Computed Tomography (CT) is a non-destructive imaging technique that allows

visualization of interior structures. With CT, an object can be virtually recon-

structed based on multiple X-ray projection images, recorded at different direc-

tions. Many applications benefit from CT: medical diagnostics, drug trials on

small animals, price-optimization of diamonds, materials science, etc.

Conventional reconstruction algorithms (such as FBP and SIRT) are often not

suited for accurate analysis as reconstruction artefacts may impede the creation

of high quality images. In X-ray CT, only a limited number of projection images

can be acquired due to the radiation exposure to the scanned object. Also, if an

object to be scanned is too large to fit inside the field of view of the scanner, the

projection data is truncated.

Prior to quantitative image analysis, a segmentation algorithm is often per-

formed on the reconstructed images. However, given that this process is posterior

to the reconstruction (Fig. 3a), the segmented images are likely to suffer from the

same artefacts as the reconstructed images.

In this work, novel approaches are introduced to create high quality segmented

images from as little projection data as possible. These approaches are divided into

two categories, corresponding to the two major parts in this work. In Part I, several

tomographic segmentation methods are proposed. These methods exploit available

projection data to enhance the segmentation accuracy (Fig. 3b). In Part II, discrete

tomography methods are discussed. These techniques combine reconstruction and

segmentation into a single algorithm (Fig. 3c) and exploit prior knowledge about

the scanned objects (e.g. their grey levels) to create highly accurate reconstructions

from a limited number of projections.

Part I: Tomographic Segmentation

Global thresholding is a widely applied method to create segmented images. The

quality of the resulting segmentations is dependent on the threshold values, the

choice of which is commonly based solely on the reconstructed image. In the first

part of this work, tomographic segmentation algorithms are presented that make

use of the available projection data to estimate the optimal threshold values more

accurately than classical methods do.

In Chapter 2, the Projection Distance Minimization (PDM) method is dis-

cussed. In PDM, the optimal segmentation is assumed to be the one whose forward

projection is the closest to the measured projection data. To find this minimum,

several optimization strategies are compared.

In Chapter 3, the Segmentation Inconsistency Minimization (SICM) method is
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Figure 3: (a) Conventional workflow of a typical tomographic application. (b) Workflow
with tomographic segmentation. (c) Workflow with discrete tomography.

proposed. In SICM, a single threshold value is estimated that separates the most

dense material from all other materials. The optimal dense object segmentation

is the one for which the residual projection data — the forward projection of

the part of the image that does not belong to the dense object — is minimally

inconsistent. Contrary to PDM, where each image pixel is classified into one of

only a few distinct grey levels, SICM can be applied if the non dense objects are

non-homogeneous.

Part II: Discrete Tomography

Discrete reconstruction methods for tomography limit the set of possible recon-

structions to those that contain only a small number of distinct grey levels. High

quality reconstructions can then be computed from substantially fewer projection

directions, thus reducing the radiation exposure to the scanned object.

In Chapter 4, an iterative discrete tomography method, called Discrete Alge-

braic Reconstruction Technique (DART), is discussed. By exploiting prior knowl-

edge about the grey levels of each of the scanned materials, DART often results

in high quality reconstructed images even if only a few projection angles are mea-

sured, if the angular range is limited, or if the projection data is truncated.

A key problem when applying DART to experimental datasets is its assumption

that the set of grey levels in the unknown reconstructed image is known (Fig. 4a).

Obtaining such knowledge in practice is non-trivial. Even if the attenuation value

of each material is known in advance, accurate hardware calibration is required

to translate these values into grey levels to be used in the reconstruction. Such

xvi
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Figure 4: Schematic overview of various methods to estimate the grey level for use in DART.
(a) User expertise is used to set the correct parameters. (b) An optimization strategy is used
to automatically minimize the Euclidean distance between the forward projection of the DART
reconstructed image and the measured projection data. (c) The DGLS method is used prior
to DART to semi-automatically estimate the correct grey levels. (d) The PDM segmentation
strategy is used within each DART iteration to automatically estimate the optimal grey levels
and threshold values.

a calibration depends on various properties of the scanning system, which are

typically not available to the user.

In Part II of this work, several schemes are presented for automatic grey level

estimation.

� In Section 4.4, the Euclidean distance between the forward projection of a

DART reconstruction and the measured projection data is proposed as a

cost function to evaluate a chosen set of grey levels. A global optimization

strategy (e.g. simplex search or adaptive surrogate modelling) can then be

applied to find the optimal grey levels (Fig. 4b).

� In Chapter 5, the Discrete Grey Level Selection (DGLS) approach is pre-

sented for semi-automatic estimation of the grey levels. In DGLS, the user

first selects an image region that can be expected to correspond to a homo-

geneous region in the original object. In certain cases, knowledge of such a

constant region allows for reliable estimation of the grey level corresponding

to the selected region. The results of DGLS can subsequently be used to run

DART (Fig. 4c).

� In Chapter 6, an extension to DART is proposed. Projection Distance Min-

imization DART (PDM-DART) combines discrete reconstruction with fully

automatic grey level estimation. PDM-DART adaptively selects the optimal

grey levels within each DART iteration such that the Euclidean distance be-

tween the forward projection of the intermediate segmented image and the

measured projection data is minimal.

In CT, accurate segmentation of structures that are small with respect to the

reconstruction pixel size, poses a very complex and difficult problem as recon-
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structed images often lack contrast due to a partial volume effect (PVE). High

resolution projection acquisition can provide a solution, but is often not feasible

due to X-ray dose limitations, limited scanning time or hardware constraints. The

conventional approach to reduce PVEs without increasing the X-ray dose is to

upsample the reconstruction voxel grid, allowing for a more accurate representa-

tion and potentially improving the overall visualization of small structures. This

upsampling is also known as super-resolution and typically results in a limited

data reconstruction problem: the number of equations (measured projection data)

remains the same while the number of unknowns (reconstruction voxels) increases

significantly.

In Chapter 7, a novel super-resolution approach is proposed to improve the

detection of small structures in low resolution CT acquisitions. By incorporating

prior knowledge about the object materials to compensate for the lack of high

resolution projection data (i.e. to apply DART), the proposed approach effectively

increases the spatial resolution of the tomographic reconstructions.

Part III: Conclusions and Appendices

In Chapter 8, conclusions are drawn. Subsequently, Appendix A provides a concise

introduction to the tomographic software framework that was developed at the

Vision Lab of the University of Antwerp.
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—Lasciate ogni speranza, voi ch’entrate.

Dante Alighieri, Inferno, 1309. 1
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CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.1: (a) Wilhelm Conrad Röntgen (1845-1923) (b) An X-ray image of the hand of
Anna Bertha, Röntgen’s wife. (c) One of the first CT scanners at the EMI central research
laboratories. Designed by Sir Godfrey Hounsfield (1919-2004).

In this chapter, a concise introduction is given to the topic of X-ray physics

and transmission Computed Tomography imaging (CT). The term tomography

is derived from two Greek words: “tomos”, meaning section, and “graphein”,

meaning to write, i.e. tomography concerns the visualization of slices through

certain objects.

A brief history of transmission tomography is given in Section 1.1. In Sec-

tion 1.2, light is thrown upon the physical background of tomography such as X-ray

generation and photon attenuation. Following, the mathematical background and

the tomographic reconstruction algorithms are discussed in Section 1.3. In the

ensuing Section 1.4, the typical workflow of a tomographic application — from the

scanning of an object to its analysis — is illustrated. Special attention is given to

what can go wrong, the so-called tomographic artefacts. Ultimately, Section 1.5

discusses a selection of the various applications where computed tomography is

commonly applied.

1.1 A brief history of transmission tomography

The German physicist Wilhelm Conrad Röntgen (Fig. 1.1a) is generally considered

the father of medical radiology imaging. In 1895, while experimenting with various

types of vacuum tubes, he discovered X-rays. When, in a fully darkened room,

he passed an electrostatic charge through a Hittord-Crookes tube entirely covered

2



1.1. A BRIEF HISTORY OF TRANSMISSION TOMOGRAPHY

by a black cardboard, he noted a fluorescent effect on a barium platinocyanide

screen lying on a bench about a metre away from the vacuum tube. With further

experiments, he noted that these X-rays — X for unknown — can penetrate

objects where light cannot and that their absorption depends on the density of

the object. This lead to the advent of radiographies, or X-ray images, which are

still commonly used in modern medicine. As radiographies allow visualization of

the inside of a patient without the use of a knife, it is generally called a non-

invasive image modality. One of the first radiographies is shown in Fig. 1.1b, an

X-ray image of Röntgen’s wife’s hand. Röntgen’s findings were published in [1],

for which he was awarded the very first Nobel Prize in Physics in 1901.

X-ray images are very useful for looking inside opaque objects. However, from

a single such image, it is not possible to know the exact position of each internal

structure. Consider an X-ray image taken of a human head with a tumour inside.

Is the tumour in the centre of the head or is it more near the skull? To answer this

question, multiple X-ray images should be taken, each from a different perspective,

i.e. with a different location of the X-ray source and detector. However, even then,

exact information about the object shape is not available. For that, transmission

Computed Tomography (CT) had to be invented.

?
Figure 1.2: Schematic overview of the inverse problem. Given multiple X-ray images of an
object, how to reconstruct the interior of the object?

The mathematical foundation for tomography was developed in 1917 by the

Austrian mathematician Johann Radon (1887-1956) [2]. He introduced a transfor-

mation operator, called the Radon transform, that defines a projection of a certain

two-dimensional object function, f(x, y), by an infinite series of straight line inte-

grals. He also specified the inverse Radon transform and noted that, if the Radon

transform is known for each projection direction, f(x, y) can be exactly recon-

structed. This is called the inverse problem or reconstruction problem (Fig. 1.2).

The Radon transform and its inverse are further introduced in Section 1.3.1.2.
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CHAPTER 1. INTRODUCTION

Due to the computational complexity of the Radon transform, it took another

40 years before solutions to the inverse problem were applied to X-ray images. In

1963, the physicist Allan MacLeod Cormack (1924-1998) laid out the mathematical

basics for an implementation of tomographic reconstruction. In 1971, Sir Godfrey

Hounsfield (1919-2004), a British engineer working at the EMI research laborato-

ries1, validated Cormack’s work by building a prototype CT scanner (Fig. 1.1c).

In such a scanner, an X-ray source and X-ray detector rotate round the object

or patient, taking radiographic images under several angles. For their contribu-

tion to medicine, both Cormack and Hounsfield were awarded the Nobel Prize in

Physiology in 1979.

In the first generation of CT scanners, the spatial resolution was very low and

the aperture (the diameter of the opening) was so small that it was only suited

for head imaging. Also, they used a translating source and detector, called par-

allel beam projection (Fig. 1.3a). This resulted in long scanning times and high

radiation dose to patients. Subsequent generations of scanners have seen great

advances in the spatial resolution (up to sub-millimetre precision) and great re-

ductions in scanning time and radiation dose. The scanning geometry has evolved

from the primitive parallel beam projection to fan beam projection (Fig. 1.3b),

to circular cone beam projection (Fig. 1.3c), and to helical cone beam projection

(Fig. 1.3d). These different scanning geometries (also projection geometries) are

subject to further introduction in Section 1.3.1.1.

CT has also been applied outside the field of medicine. In the 1950s, tomo-

graphic principles were already being used to map the regions of emitted microwave

radiation from the disk of the sun. For visualization of small objects, table-top

µCT-scanners have been introduced that reach a very high spatial resolution. They

are of use in biomedical research and in materials science. Other imaging systems

where tomography can be applied include electron microscopes (even up to atom-

ical resolution [3]) and at synchrotron facilities (high energy X-ray beam lines).

A more in-depth overview of various applications that can benefit from the use of

CT is given in Section 1.5.

Recent research efforts have focused, amongst others, on dual energy systems,

where two X-ray sources with a different energy spectrum are combined to gen-

erate reconstructions with enhanced contrast between tissue types [4]; on spectral

imaging and photon counting detectors [5] that in the future might eliminate beam

hardening artefacts [6]; on phase contrast imaging [7]; on improved reconstruction

methods that generate highly accurate reconstructions from very noisy projection

data [8]; on dynamic (4D) imaging to visualize cardiac movement; etc.

1EMI is also well known for its popular record label. It could therefore be argued that
the founding fathers of computed tomography were in fact The Beatles as their record sales
substantially increased the budget of the EMI company.

4
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source

single detector

(a) parallel beam (2D)

source

1D detector array

(b) fan beam (2D)

2D detector array

source

(c) circular cone beam (3D)

2D detector array

source

(d) helical cone beam (3D)

Figure 1.3: Various scanning geometries.

1.2 The physics of transmission CT

This section investigates the physical processes that occur when an X-ray projec-

tion image is created. In Fig. 1.4, one can observe three major phases. (1) X-rays

are generated, (2) X-rays interact with matter when traversing an object, and (3)

X-rays are measured in a detector cell. Note that only the processes that occur

in common medical applications are considered here. Other tomographic imaging

modalities, e.g synchrotron radiation, are not discussed.

1.2.1 X-ray generation

X-rays are a form of electromagnetic radiation emitted by charged particles (usu-

ally electrons) in changing atomic energy levels or in slowing down in a Coulomb

force field. They have a wave-length which is smaller than that of UV-light and

are typically generated in a vacuum tube in which a cathode is placed at one side

and an anode — commonly made of tungsten — at the other (Fig. 1.5).

5
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X-ray 
generation

X-ray–matter interaction X-ray 
detection

source detector

X-ray beam

Figure 1.4: Schematic overview of the path of an X-ray beam, from source to detector.

When a high voltage is applied between the cathode and the anode of such an

X-ray tube, electrons are accelerated from the cathode to the anode and hit the

anode at very high speed. In the anode material the fast electrons undergo multiple

interactions with electrons and nuclei and lose their energy, mostly gradually. Most

of this energy dissipates as heat, as such the anode has to be well-cooled. However,

in the energy loss processes also X-rays can be produced in the following ways:

� If the energy transfer in an interaction with an electron of an anode atom

is large enough, ionisation of the anode atom can occur. If an electron is

removed from an inner shell, an outer shell electron can fill its gap, thereby

generating an X-ray photon. The energy of this photon equals the difference

in binding energy of the two shells. These so-called characteristic X-rays give

rise to peaks in the emitted X-ray spectrum.

� If a fast electron is deflected and decelerated while interacting with a nucleus,

a photon is emitted with an energy equal to the kinetic energy lost by the

electron. This effect is called Bremsstrahlung. The energy of the emitted

photon can have any value between zero and the initial fast electron energy,

depending on the distance between the electron and the nucleus. This effect

gives rise to a continuous contribution in the emitted X-ray spectrum, with a

maximum photon energy equal to the kinetic energy of the electrons hitting

the anode, hence depending on the applied high voltage.

These processes keep on occurring as long as the electric current is applied,

thus generating an X-ray beam. Each X-ray beam has a certain intensity, a value

proportional to the number of photons. This intensity is not fixed along the path

of the X-ray beam. In the next subsection it is shown that the intensity decreases

as the beam passes through a material. Let I(ξ) denote the intensity of the X-ray

beam at the point ξ along the path of the beam. Define I(0) = I0, the incident

beam intensity, the intensity of an X-ray beam at its source.

6



1.2. THE PHYSICS OF TRANSMISSION CT
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X-rays

vacuum
cooling e-

Figure 1.5: Schematic visualization of an X-ray tube.

It should be noted that the generated photons of a beam have a variable energy

level. Such an X-ray beam is referred to as a polychromatic X-ray beam. This is

in contrast to a monochromatic X-ray beam, in which all photons have the same

energy. For polychromatic X-ray beams, define I0(E), the incident beam intensity

of photons with energy E.

1.2.2 X-ray–matter interaction

After an X-ray photon is generated, it traverses the object in the scanner. Common

effects that can occur include:

� The photoelectric effect. The photon interacts with an atom and is fully

absorbed. As a result a photoelectron is ejected from one of the shells of the

atom, whereby the kinetic energy of the electron equals the initial photon

energy minus the binding energy of the electron in the atom. As such, the

incoming photon energy has to be larger than the electron binding energy.

� Compton scattering. The incoming photon interacts with an electron

(assumed to be at rest) and changes direction, whereby part of its energy is

transferred to the electron. After the process one obtains a scattered photon

and a recoil electron. The energy transferred to the electron depends on the

scattering angle and the incoming photon energy and has a value between

zero and a fraction of the incoming photon energy.

� Pair production. In the Coulomb field of a nucleus, a photon with an

energy which exceeds twice the electron rest mass energy (i.e. 1022 keV)

disappears and an electron-positron pair is created. The excess photon en-

ergy above 1022 keV appears as kinetic energy of the electron and positron.

The required photon energy for this process is much higher than that being

used in medical imaging2.

2Note that even though CT is commonly referred to as “non-invasive imaging modality”, it
is by no means completely safe as the X-ray photons effectively alter the atoms of the patient.
A high radiation dose — due to high energy X-ray photons and/or a long exposure time —
therefore severely increases the chance of destroying cells, and thus also of cancer incidence. It
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The likelihood of any of these three effects happening for a monochromatic

beam at a certain point ξ along its path is correlated to the attenuation factor.

This value depends on the atomic number and the density of the material at that

location. Let µ(ξ) denote the attenuation factor at point ξ.

Consider a section of the X-ray beam of length ∆ξ and assume that the atten-

uation factor of the object is constant in this section. The intensity of the beam

at the start of this section, I(ξ), is then decreased by a fraction that depends on

that attenuation factor. The intensity at the end of the section, I(ξ + ∆ξ), thus

becomes:

I(ξ + ∆ξ) = I(ξ)− µ(ξ)I(ξ)∆ξ.
�� ��1.1

Taking the limit ∆ξ → 0 of Eqn. 1.1 yields the total intensity change at point ξ:

dI

I(ξ)
= −µ(ξ)dξ.

�� ��1.2

1.2.3 X-ray detection

If an X-ray photon has passed through the object without being absorbed, it is

measured by an X-ray detector. Various types of detectors exist: gas detectors,

solid-state scintillator detectors, solid-state flat-panel detectors, etc. Rather than

describing how these detectors actually work — which is explained in great detail

in works such as [9] — this section focusses on what is actually measured, i.e. the

intensity of the X-ray beam at the detector point.

Consider a monochromatic beam. Integration of Eqn. 1.2 along the entire X-ray

beam yields the measured intensity I:

I = I0e
−

∫
µ(ξ)dξ.

�� ��1.3

Eqn. 1.3 is called the law of Beer-Lambert. One should note that, due to the

exponential nature of Eqn. 1.3, the measured intensity has a non-linear connection

to the attenuation coefficients. For the reconstruction of the attenuation values

(Section 1.3), this is very inconvenient. Therefore, the measured intensity data

must first be linearized. Define the measured attenuation A, also referred to as

log-corrected data, by

A = − ln

(
I

I0

)
=

∫
µ(ξ)dξ.

�� ��1.4

Eqn. 1.3 and Eqn. 1.4 assume a monochromatic beam, i.e. beams where

each photon has the same energy. While some radiation sources indeed provide

is thus crucial to use algorithms that create accurate images from low dose scans.

8



1.3. THE MATHEMATICS OF TRANSMISSION CT

monochromatic beams (e.g. synchrotrons and electron microscopes), polychro-

matic beams are by far more common. For such beams, Eqn. 1.3 must be adjusted

accordingly:

I =

∫
I0(E)e−

∫
µ(ξ,E)dξdE.

�� ��1.5

In Eqn. 1.5, µ(ξ, E) denotes the attenuation factor at point ξ of a beam with the

energy E.

1.3 The mathematics of transmission CT

Once the attenuation values are measured, an image representing the original

object can be constructed. To do so, several methods, called reconstruction al-

gorithms, are available. Most reconstruction algorithms can be divided into two

classes.

� In analytical reconstruction techniques various analytical properties of

the Radon transform are used to reconstruct the original object function.

These methods are computationally efficient and are therefore commonly

used. They are described in Section 1.3.2.

� Algebraic reconstruction techniques consider the reconstruction prob-

lem as the solving of a system of linear equations. They are very powerful

but also very computationally demanding. Recently, the rapid increase of

available computational power has made algebraic methods feasible. They

are portrayed in Section 1.3.3.

In Section 1.3.1, a mathematical model for the projection operation is discussed.

1.3.1 The projection model

Consider the object function domain, an orthogonal two-dimensional Cartesian

coordinate system (x, y) in which a 2D object function f(x, y) is defined (Fig. 1.6).

The values of this function represent the attenuation coefficients µ of the scanned

object at the corresponding position.

A single projection of a two-dimension function under the projection direc-

tion θ, is a one-dimensional function3. Define this function as pθ(t), the detector

function. Consider the projection domain, the coordinate system (θ, t), in which

the detector functions of f(x, y) are stored for θ ∈ [0, 2π) and t ∈ R.

3Likewise, for three-dimensional object functions, a single projection image is a two-
dimensional function.

9
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x

y

f(x,y)
θ

pθ(t)

t

θ

t

projection
           or
               Radon transform
            

backprojection

forward projection

object function domain

projection domain

reconstruction domain

Figure 1.6: Overview of the different domains, and their relation to each other, in which CT
data can be visualized.

1.3.1.1 The projection geometry

The exact formula that transforms a function in the object function domain to

a function in the projection domain depends on the projection geometry, i.e. the

positioning and trajectory of the X-ray source and detector in the object function

domain. Here, some commonly used projection geometries are introduced. In case

of a two-dimensional object function or a three-dimensional object function that

is scanned slice-by-slice:

10



1.3. THE MATHEMATICS OF TRANSMISSION CT

� Parallel beam projection (Fig. 1.3a). In each projection direction θ, all

projection rays (the rays between the source and a point on the detector

function) are parallel to each other. To measure the detector function, the

source has to translate on a line perpendicular to the rays. Thereafter, the

source and detector rotate around f(0, 0), the centre of rotation.

� Fan beam projection (Fig. 1.3b). For each projection direction θ, the

source is at a fixed position and the projection values are measured on a

one-dimensional detector array. The source and detector plate then rotate

around the centre of rotation, measuring the detector function at each step.

Note that a parallel beam projection geometry is effectively a special case of

a fan beam geometry: one where the source is at an infinite distance from the

center of rotation. Also note that by interpolation it is possible to convert

data from a fan beam projection geometry into data from a parallel beam

projection geometry and vice versa. This process is called rebinning and is

usually performed to apply a reconstruction technique that is suited for only

one particular projection geometry.

If the object function, f(x, y, z), is three-dimensional, other geometries are possi-

ble:

� Circular cone beam projection (Fig. 1.3c). A projection image is mea-

sured on a two-dimensional detector array. The source and detector then

follow a circular trajectory around the object in the plane z = 0. This ge-

ometry can be considered as a three-dimensional extension of the previously

described fan beam projection geometry.

� Helical cone beam projection (Fig. 1.3d). This geometry can be con-

sidered as a cone beam geometry in which the rotation is not fixed on the

z = 0 plane, but instead constantly shifts upwards, i.e. a helical trajectory

is followed4.

All mentioned geometries are — or have been — used in medical CT scanners.

However, as will be explained in Section 1.5, the CT reconstruction approach is

widely applicable in applications that make use of an entirely different projection

geometry (e.g tomosynthesis, astrotomography, . . . ). For the sake of simplicity,

only the two-dimensional parallel beam geometry is considered in the remainder

of this section.

4For practical reasons the source and detector have to remain on the same gantry. A smoothly
translating patient is therefore required.
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1.3.1.2 The Radon transform

For each angle θ ∈ [0, π) 5 and each detector offset t ∈ R, the parallel beam

projection of the function f(x, y) can be defined by the line integrals of f(x, y)

along the paths L(θ, t) = {(x, y) ∈ R× R : x cos θ + y sin θ = t}:

(Rf)(θ, t) = pθ(t) =

∫
L(θ,t)

f(x, y)ds.
�� ��1.6

In Eqn. 1.6, R is the transformation operator that maps the object function f(x, y)

onto the complete set of detector functions pθ(t). It is commonly referred to as

the Radon transform. The function (Rf)(θ, t) is also known as the sinogram6 of

f(x, y).

1.3.1.3 Discretized Radon transform

It is important to note a few key differences between the Radon transform and

practically measured attenuated projection data. For one, it is not possible to take

an infinite number of projection angles θ. Also, detector elements have a certain

width, ∆t, and are limited in number. Define p = (pi) ∈ Rm, the vector containing

all log-corrected projection data, by:

pi =

∫ ∆t
2

−∆t
2

pθi(ti + t′)dt′,
�� ��1.7

where θi and ti are the direction angle and detector offset that correspond to de-

tector value pi. Let m denote the total number of projection directions multiplied

by the number of detectors cells in each projection.

The reconstructed image is commonly represented on a grid and its pixels or

voxels have a certain width and height. Consider v = (vj) ∈ Rn, a discretized

object function represented on such a grid. Let n denote the total number of

pixels on this grid. A projection of v onto the detector pi can then be considered

as the summation of all pixels, weighted by their contribution to the path of this

ray, i.e.:

pi =
n∑
j=1

wijvj .
�� ��1.8

In Eqn. 1.8, wij represents the contribution of pixel j to the detector cell i. The

5For a parallel beam projection geometry, pθ(t) = pθ±π(−t). Therefore, it is not necessary to
have projection data for each angle in [0, 2π).

6If f(x, y) is a translated Dirac delta function, the projection data represents a sine wave along
the θ-axis. As the Radon transform is a linear operation, the projection function can therefore
be regarded as a weighted summation of sine waves, hence the term “sinogram”.
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Figure 1.7: Three different approaches for algebraic projection of a certain volume.

projection of v for each detector pixel can then be written in matrix notation:

p = Wv.
�� ��1.9

The matrix W = (wij) ∈ Rm×n is called the projection operator or projection ma-

trix and maps a function in the object or reconstruction domain onto the projection

domain. It can be computed or approximated in a variety of ways. Fig. 1.7a shows

a strip-kernel projector model where wij is defined by the size of the intersecting

area of the projected strip i and the pixel j. This model resembles the actual X-ray

physics, but is not computationally efficient. In Fig. 1.7b, a line-kernel projector

model is shown in which wij is defined by the length of a single detector line i

through the pixel j [10]. The reconstruction v can also be defined as a set of radial

basis functions such as the modified Kaiser-Bessel window [11]. As the projection

of a radial basis function is equal in each direction, wij can be computed very

efficiently. In Fig. 1.7c, Joseph’s projection method is shown [12]. The volume

is sampled at each line through the reconstruction volume and interpolation is

used to obtain the correct values. This often leads to improved accuracy without

sacrificing computational efficiency.

1.3.2 Analytical reconstruction methods

Analytical reconstruction techniques employ analytical properties of the Radon

transform to reconstruct the original object function. These methods are compu-

tationally efficient and therefore widely utilized in practical applications. Their
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Figure 1.8: Schematic overview of the Fourier slice theorem.

downside is that they are not very flexible. For example, it is complicated to add

prior knowledge to the reconstruction process and complicated imaging models

cannot be applied. Also, an analytical reconstruction technique can be derived

only for a single projection geometry. Other geometries require new derivations.

The filtered backprojection (FBP) algorithm, a popular reconstruction tech-

nique for parallel beam projection geometry, is derived in Section 1.3.2.2. It is

based on the Fourier slice theorem, which is established in Section 1.3.2.1.

1.3.2.1 Fourier slice theorem

The Fourier slice theorem states that the one-dimensional Fourier transform of a

detector function pθ(t), is equal to the slice through the origin at rotation θ of the

two-dimensional Fourier space of the object function (Fig. 1.8) [13].

The 2D Fourier transform of f(x, y) is given by:

F (η, ζ) = F {f(x, y)} =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2π(ηx+ζy)dxdy.
�� ��1.10

Furthermore, the 1D Fourier transform of pθ(t) is given by:

Pθ(ω) = F {pθ(t)} =

∫ ∞
−∞

pθ(t)e
−i2πωtdt.

�� ��1.11
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Figure 1.9: (a) Sampling of the Fourier domain with a limited number of projection angles
and a non-infinitesimal detector width. Note that the sampling frequency is lower in the high
frequency range.(b) Resampling of the Fourier domain.

Substituting Eqn. 1.6 into Eqn. 1.11 results in:

Pθ(ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2πω(x cos θ+y sin θ)dxdy.
�� ��1.12

Therefore, given Eqn. 1.10, it can be concluded that:

Pθ(ω) = F (ω cos θ, ω sin θ),
�� ��1.13

proving the Fourier slice theorem.

If projection data is available for each θ ∈ [0, π) and if the detectors have

an infinitesimal width, the Fourier domain of the object function can be fully

generated by Fourier transforming each projection. A 2D inverse Fourier transform

then yields the original object function:

frec(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (η, ζ)ei2π(ηx+ζy)dηdζ.
�� ��1.14

In practice, the number of projection directions is limited and the detector cells

have a non-infinitesimal width. Consequently, it is not possible to sample the entire

Fourier domain. Additionally, the sample points do not lie on a rectangular grid

(Fig. 1.9a). This obstructs the use of the inverse fast Fourier transform (IFFT)
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without an additional interpolation step to resample the data points into a rect-

angular grid (Fig. 1.9b). This interpolation generally introduces high frequency

reconstruction artefacts due to the fact that the higher frequencies are sampled

less frequently. For a practical implementation a different, yet related, approach

is required: FBP.

1.3.2.2 Filtered backprojection (FBP)

To derive the FBP algorithm, the inverse Fourier transform (Eqn. 1.14) is first

expressed in polar coordinates:

η = ω cos θ,

ζ = ω sin θ,

dηdζ = ωdωdθ.

Eqn. 1.14 then becomes:

frec(x, y) =

∫ 2π

0

∫ ∞
0

F (ω, θ)ei2πω(x cos θ+y sin θ)ωdωdθ.
�� ��1.15

Using the property F (ω, θ + π) = F (−ω, θ), the above expression can be written

as:

frec(x, y) =

∫ π

0

[∫ ∞
−∞

F (ω, θ)|ω|ei2πω(x cos θ+y sin θ)dω

]
dθ.

�� ��1.16

As the Fourier slice theorem states (Eqn. 1.13), F (ω, θ) can be substituted by the

Fourier transform of its corresponding projection, Pθ(ω):

frec(x, y) =

∫ π

0

qθ(x cos θ + y sin θ)dθ,
�� ��1.17

with

qθ(t) =

∫ ∞
−∞

Pθ(ω)|ω|ei2πωtdω = F−1 {Pθ(ω)|ω|} .
�� ��1.18

Eqn. 1.17 and Eqn. 1.18 clearly show the two steps of the algorithm, also present

in its name:

1. Each detector function pθ(t) is filtered by multiplying its Fourier transform

with |ω|. This high-pass filter compensates for the varying sampling density

of the Fourier domain (Fig. 1.9).

2. The filtered projection data is then backprojected — or “smeared out” —

onto the reconstruction grid along the lines t = x cos θ + y sin θ.
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(a) BP, 1 angle (b) BP, 2 angles (c) BP, 4 angles (d) BP, 180 angles

(e) FBP, 1 angle (f) FBP, 2 angles (g) FBP, 4 angles (h) FBP, 180 angles

Figure 1.10: Comparison between unfiltered backprojection (BP) and filtered backprojection
(FBP) of a homogeneous spheric object. Reconstructions are shown for an increasing number
of projection angles. The “smearing out” of the detector functions is clearly visible, as is the
sharpness of the FBP reconstruction in comparison to the unfiltered BP.

For practical use, Eqn. 1.17 and Eqn. 1.18 must first be discretized, which does

not cause a fundamental change to the algorithm.

In Fig. 1.10, reconstructions of a homogeneous spheric object can be observed

with and without the filtering step. Clearly, the sharpness of the reconstruction is

acutely higher when the filter is used.

1.3.2.3 Other analytical reconstruction methods

FBP is only applicable in case of a parallel beam projection geometry. For other

geometries, a different derivation is required. For the fan beam geometry, such a

derivation is given in [13].

To exactly reconstruct the object function, the Radon space, (Rf)(θ, t), must

be completely known. For three-dimensional geometries, the 3D Radon space

cannot be filled in a circular trajectory (i.e. with a cone beam geometry). A

popular reconstruction method for circular cone beam data has been proposed by

Feldkamp-Davis-Kress (FDK) [14]. It is an approximation technique that generally

results in adequate reconstructions for small cone angles, i.e. for slices close to the

central slice z = 0. For helical cone beam, the 3D Radon space can be entirely
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filled, so exact reconstruction techniques are possible, e.g. Kudo’s algorithm [15]

or the Katsevich algorithm [16].

1.3.3 Algebraic reconstruction methods

In algebraic reconstruction methods, the reconstruction problem is considered as

the solving of the system of linear equations

Wv = p,
�� ��1.19

where W , v and p are defined as in Section 1.3.1.3. Eqn. 1.19 is typically a

very large system and cannot be solved directly by inverting W . Various iterative

strategies, such as the Simultaneous Iterative Reconstruction Technique (SIRT)

[17], are available.

1.3.3.1 Simultaneous Iterative Reconstruction Technique (SIRT)

Put v(0), an initial reconstruction image (typically a black image, i.e. v(0) = 0).

Put k = 0, the iteration number. Each iteration of SIRT consists of 3 steps.

1. Compute the forward projection of the current reconstruction image:

p(k) = Wv(k).
�� ��1.20

2. Compute the current projection difference, or residual sinogram:

r(k) = p− p(k).
�� ��1.21

3. Update the reconstruction image v(k) by adding a weighted backprojection

of the residual sinogram:

v(k+1) = v(k) +CW TRr(k).
�� ��1.22

In Eqn. 1.22, R ∈ Rm×m is a diagonal matrix of the inverse row sums of W ,

i.e. rii = 1/
∑
j wij . Likewise, C ∈ Rn×n is a diagonal matrix of the inverse

column sums of W , i.e. cjj = 1/
∑
i wij . Increase k by 1 and return to step

1 until a convergence criterion has been met.

The full update for each iteration of SIRT is:

v
(k+1)
j = v

(k)
j +

1∑n
i=1 wij

m∑
i=1

wij

(
pi −

∑n
h=1 wihv

(k)
h

)
∑n
h=1 wih

.
�� ��1.23
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(a) after 1 iteration (b) after 50 iter. (c) after 500 iter.
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Figure 1.11: SIRT reconstruction of a simulated 512×512 FORBILD abdomen phan-
tom (available from: http://www.imp.uni-erlangen.de/phantoms/head/head.html) from 180
equiangular projections. (a-c) Intermediate reconstructions after 1, 50 and 500 iterations.
(d) The projection difference as a function of the iteration number for both the SIRT and
the CGLS method.

In [17], it is proven that SIRT is a linear operation, and that v(k) converges to the

weighted least squares solution vrec:

vrec = argminv∈Rn ||Wv − p||2R,
�� ��1.24

where ||Wv−p||2R = (Wv−p)TR(Wv−p). If multiple solutions exist — which

is likely to occur if m � n — SIRT converges to the solution that is the closest

to the initial image. In Fig. 1.11a-c, SIRT reconstructions of a phantom image are

shown with an increasing number of iterations.

In comparison to the analytical reconstruction methods, SIRT is much more

flexible. For example, a positivity constraint can be easily enforced by setting the

negative values of v(k) to 0 after the backprojection in step 3. Also, SIRT can

be readily applied for any other projection geometry, provided that its projection

matrix is known or can be computed.

A key problem with iterative reconstruction techniques is their computational

requirements. This is mostly due to the constant forward- and backprojection

operations. Furthermore, as W is typically too large to store in memory7, its

values must be recomputed every time they are needed and discarded immediately

afterwards. Fortunately, SIRT lends itself perfectly for acceleration with parallel

computing [18]. Especially the recent increase in computational power of modern

GPU hardware has led to rapid accelerations and has made iterative algorithms

feasible for everyday use [19].

7Consider a relatively small 512 × 512 reconstruction grid and 360 projection directions with
512 detector values in each projection. The size of W is then 184320×262144. A single precision
representation of W then requires 180 gigabytes of memory. Even with a sparse representation,
several gigabytes would be required.
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1.3.3.2 Other iterative reconstruction methods

Here, a selection of other commonly used iterative reconstruction methods is given.

� In SIRT, each iteration contains the forward- and backprojection along each

detector value. In contrast, each iteration of the Algebraic Reconstruction

Technique (ART) only uses a single detector value to update the reconstruc-

tion. The update formula is then:

v
(k+1)
j = v

(k)
j +

pi −
∑n
h=1 wihv

(k)
h∑n

h=1 w
2
ih

wij ,
�� ��1.25

where i is the index of the detector that is used in iteration k. ART reaches

a solution more quickly than SIRT, but does not have stable convergence if

Eqn. 1.19 is inconsistent (e.g. due to noise).

� In the Simultaneous Algebraic Reconstruction Technique (SART), each iter-

ation updates all detector values that belong to a single projection direction.

It combines the increased reconstruction stability of SIRT with the increased

convergence speed of Algebraic Reconstruction Technique (ART). Its update

formula is:

v
(k+1)
j = v

(k)
j +

∑
pi∈Pθ

(
pi−

∑n
h=1 wihv

(k)
h∑n

h=1 wih

)
wij∑

pi∈Pθ wij
,

�� ��1.26

where Pθ denotes the set of all detector values pi that belong to the projec-

tion direction θ. The order in which the projection directions are chosen is

essential for optimal reconstruction quality. In Chapter 3 of [20], a weighted

distance scheme is proposed to maximally increase the convergence speed

and accuracy. If more than one projection direction is used in each iteration,

the algorithm is called ordered subsets SIRT (OS-SIRT) [21].

� ART, SART and SIRT are additive iterative algorithms as each update step

adds an update term to the current reconstruction image. In Multiplicative

Algebraic Reconstruction Technique (MART), however, the current recon-

struction image is multiplied by the update step:

v
(k+1)
j = v

(k)
j

pi∑n
h=1 wihv

(k)
h

.
�� ��1.27

Provided that v
(0)
j > 0, MART has a built-in non-negative constraint. More-

over, if v
(0)
j < 0, that pixel value can never be updated to a positive value.
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� The Conjugate Gradient Least Squares (CGLS) method utilizes a different

reconstruction approach. It applies the iterative Conjugate Gradient (CG)

method to solve the least squares normalization of Eqn. 1.19 [22]:

W TWvrec = W Tp.
�� ��1.28

With r(0) = p, z(0) = W Tp and v(0) = z(0), the update step of CGLS is

the following:

r(k+1) = r(k) − ||z(k)||2
||Wv(k)||2

Wv(k)
�� ��1.29

z(k+1) = W Tr(k+1)
�� ��1.30

v(k+1) = z(k+1) +
v(k)

||z(k)||2

�� ��1.31

CGLS converges to a solution much faster than SIRT (Fig. 1.11d).

1.4 Typical CT workflow

In this section, an overview is given of a typical workflow in CT imaging (Fig. 1.12).

It starts with data acquisition (Section 1.4.1), continues to data preprocessing (Sec-

tion 1.4.2), to image reconstruction (Section 1.4.3), to segmentation (Section 1.4.4),

and finally to analysis (Section 1.4.5). Common problems and pitfalls are outlined

for each step.

1.4.1 Data acquisition

Initially, a sample is placed into the field of view (FOV)8 of the scanner and in-

tensity projection images (Eqn. 1.3) are acquired for a set of projection angles.

Ideally, each measured image is an exact projection of the scanned object under

the exact geometrical parameters. In that case, the projection data is said to be

consistent. In [23, 24] consistency conditions are given for parallel beam projec-

tion data. Unfortunately, there are a variety of reasons that can make different

projection images inconsistent with each other.

� Noise. The total number of photons at the source of a certain X-ray beam,

I0, is Poisson distributed. Consequently, high signal-to-noise ratios (SNR)

can only be obtained if I0 — and thus also the radiation dose — is sufficiently

8The FOV is the area of the reconstruction domain that is projected onto the detector in
every projection direction.
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acquisition data 
preprocessing reconstruction segmentation analysis

Figure 1.12: Typical CT workflow.

high. Fig. 1.13 shows FBP reconstructions of a phantom image from 360

equiangular parallel beam projections with simulated Poisson noise. It is

clear that the contrast of the reconstructions decreases as also I0 decreases.

� Detector quality. Not all detector cells have the same sensitivity, an effect

likely to increase as detector plates wear out. Fig. 1.14a shows a sinogram

where each detector has a random sensitivity error. This results in visible

ring artefacts in the reconstructed image (Fig. 1.14b).

To counter this problem, the projection data I can be normalized by also

measuring a dark field image, D (an image acquired when the X-ray source

is turned off), and a bright field image B (an image acquired when the X-ray

source is turned on but without the sample):

Inorm =
I −D
B −D

.
�� ��1.32

� Scattering. As described in Section 1.2.2, when an X-ray photon traverses

an object, there is a chance of it being scattered, i.e. of it continuing —

with a lower energy — on a refracted path. It is commonly assumed that

such a refracted photon will not reach the detector. However, as is sketched

in Fig. 1.15a, scattered photons might still be measured. The assumption

that each detector cell only measures non-attenuated X-ray photons is thus

violated. Instead, each measured value is a combination of primary photons

and scattered photons. Note that the contribution of scattered rays is not

proportional to the contribution of primary rays (Fig. 1.15b). The SNR of

the measured signal then effectively decreases if high attenuating objects are

on the path of the primary ray.

� Photon starvation. As an X-ray beam traverses an object, the total num-

ber of photons in that beam decreases. If the object contains a very dense

material, such as a metal, and if the energy of the X-ray beam is not suffi-

ciently high, the entire X-ray beam might be attenuated. Information about

the attenuation before and after the dense materials is then lost, result-

ing in streaking artefacts or metal artefacts [25]. This can be observed in

Fig. 1.16a, where an FBP reconstruction is shown of a plexiglass hardware
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(a) no noise (b) a bit noisy, I0=250000 (c) highly noisy, I0=50000

Figure 1.13: Three FBP reconstructions of a simulated 512×512 FORBILD abdomen phan-
tom from 360 equiangular projection angles with different levels of Poisson noise applied to
the projection data. The contrast visibly decreases as more noise was present.

(a) sinogram (b) FBP reconstruction

Figure 1.14: (a) A simulated sinogram of a 512×512 FORBILD abdomen phantom from
360 equiangular projection angles where each detector has a random, Gaussian distributed,
error in its sensitivity. (b) On the FBP reconstruction, ring artefacts are clearly visible.

primary rays

scattered rays

(a) scattering scheme

primary rays

scattered rays

(b) scattered projection

Figure 1.15: Photon scattering can lead to inconsistent projection data.
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(a) metal artefacts (b) misaligned projection data (c) aligned projection data

Figure 1.16: (a) FBP reconstruction of the barbapapa phantom, scanned in a SkyScan
1172 µCT system with 320 projection directions. Metal streaking artefacts are clearly visible.
(b) FBP reconstruction from misaligned projection data of a salt cube with various copper
particles. Banana-shaped misalignment artefacts are clearly visible. (c) FBP reconstruction
of the same dataset where this misalignment was corrected for.

phantom containing very dense steel rods, scanned in a SkyScan 1172 µCT

system.

� Misalignment. Projection data is also inconsistent if the geometric param-

eters of a certain projection (i.e. the position of the source and detector-array

with respect to the origin (0, 0)) are not what is assumed. This can occur

if the gantry on which the source and detector are mounted is not stable

during its rotation. In Fig. 1.16b, an FBP reconstruction is shown of a salt

cube with various copper particles, scanned at the European Synchrotron

Radiation Facility (ESRF) in Grenoble, France. In the projection data, the

centre of rotation was off by the width of several detector cells, resulting

in banana-shaped misalignment artefacts. Fig. 1.16c shows the FBP recon-

struction with correctly aligned projection data.

� Motion. It is assumed that the scanned sample does not move or change

shape during the entire acquisition phase. For certain applications, such

as cardiac imaging, this is however not possible. To minimize this effect,

modern medical CT scanners have a very high rotation speed.

1.4.2 Data preprocessing

After the projection data is acquired, a preprocessing step is applied to prepare the

data for use in a reconstruction algorithm. This step includes the computation of

the logarithmic transform that turns intensity values of the projection images into
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α β

Iα

Iβ
II = αIα + βIβ

intensity

one detector

(a) PVE on projection data (b) PVE on reconstruction grid

Figure 1.17: (a) The partial volume effect (PVE) on the projection data. Detector cells
have a certain width. The total measured intensity in the detector is a weighted summation
of contributions. This linearity does not hold for the log-corrected values, resulting in recon-
struction artefacts. (b) The partial volume effect (PVE) on the reconstruction grid. Pixels
have a certain width and height and objects are not aligned with the pixel edges. The value
of many pixels will thus not represent the attenuation coefficient of any of the materials of
the object.

log-corrected attenuation values (Eqn. 1.4). Other common operations include

rebinning (converting the data to another projection geometry), and correcting

the data for one or more inconsistencies that were introduced during the previous

phase (e.g. attempting to correct projection misalignments). The preprocessed

data often contains the following problems.

� Any data inconsistency of the acquired projection images that was not

corrected for.

� A partial volume effect (PVE) on the projection data. Each detector

cell has a certain width and object edges are typically not aligned with an

edge of a detector. Consider the case presented in Fig. 1.17a. In one part

of length α of the detector the intensity, Iα, is low as the photon beam has

passed through the object. In the other part of length β the intensity, Iβ , is

high. The total measured intensity, I, is then a weighted summation of both

contributions, i.e. I = αIα + βIβ . However, due to the logarithmic nature

of Eqn. 1.4, this linearity does not hold for the log-corrected values:

ln(αIα + βIβ) 6= ln(αIα) + ln(βIβ).
�� ��1.33

This means that the log-corrected values do not exactly correspond to the

line integrals, leading to streaking artefacts in the reconstructed images.
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(a) beam hardening spectra (not to scale)

(b) FBP reconstruction

(c) segmentation

Figure 1.18: (a) Schematic overview of beam hardening. As an X-ray beam traverses an
object, its energy spectrum constantly changes. Given that low energy photons are absorbed
more strongly than high energy photons, this results in an effective “hardening” of the X-ray
beam. (b) An FBP reconstruction of the barbapapa phantom, scanned in a SkyScan 1172
µCT system with 600 projection angles (data at the courtesy of Gert Van Gompel[26]). The
cupping and streaking artefacts are clearly visible. (c) Segmentation of the FBP reconstruc-
tion.

� Beam hardening. For polychromatic X-ray sources, the measured inten-

sity value does not exclusively depend on the ray length through the object

but also on the energy spectrum of the X-ray beam (Eqn. 1.5). Seeing that

low energy photons are commonly absorbed more strongly than high energy

photons, the shape of the energy spectrum will change (“harden”) as the

beam passes through an object (Fig. 1.18a). This eradicates the linear rela-

tionship between the ray length and the attenuation, resulting in inconsistent

log-corrected projection data that will culminate into cupping and streaking

reconstruction artefacts, as can be recognized in Fig. 1.18b.

In the literature, an assortment of beam hardening reduction strategies have

been proposed. For example, a hardware filter that narrows the energy spec-

trum can be placed after the X-ray source. While this reduces the effect
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of beam hardening, it also significantly reduces the SNR of the projection

data. Attempts have been made to linearize the projection data — effec-

tively turning polychromatic data into monochromatic data — by exploiting

prior knowledge about the object materials and energy spectra [27], or by us-

ing advanced iterative methods to solve linearization cost functions [28, 29].

Also, the polychromatic model can be included in statistical reconstruction

algorithms, such as maximum likelihood (ML) [30].

1.4.3 Reconstruction

In the next phase the reconstruction is performed. Section 1.3 introduced several

of such algorithms. Often, the reconstructed images contain pixels whose values do

not correspond to the attenuation factors of the original object. They are referred

to as reconstruction errors or reconstruction artefacts and can arise due to a variety

of reasons.

� Any data inconsistency of the preprocessed data that was not corrected

for. Fig. 1.14b shows an FBP reconstruction polluted with ring artefacts

after the projection data was not normalized. Fig. 1.16a shows how photon

starvation has lead to metal artefacts, Fig. 1.16b shows misalignment arte-

facts and Fig. 1.18b shows cupping and streaking artefacts that arise when

beam hardening is neglected.

� The partial volume effect (PVE) of the reconstruction grid. The

pixels in the reconstruction grid have a finite width and height, ∆s. The

original function f(x, y) mapped onto the reconstruction grid, v = (vj) ∈ Rn,

is then:

vj =
1

∆s2

∫ −∆s
2

−∆s
2

∫ −∆s
2

−∆s
2

f(xj + x′, yj + y′)dx′dy′,
�� ��1.34

where xj and yj are the coordinates of the centre of the pixel vj . The value

vj depends on an entire area of values of the real object function. If the

object has an edge running through its area (as seen in Fig. 1.17b), or if the

object is not homogeneous inside the pixel boundaries, vj does not represent

the attenuation coefficient of any of the materials of the object. This effect

is studied in detail in Chapter 7 of this work.

Reconstruction artefacts also occur when the projection data is incomplete

and no unique solution to Eqn. 1.19 exists. Instead, various optima exist for

argminv∈R||Wv − p||2R,
�� ��1.35
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(a) phantom image (b) few-view (c) limited range (d) data truncation

Figure 1.19: Several types of incomplete projection data. (a) A 512×512 Shepp-Logan
phantom image. (b) FBP reconstruction of (a) from only 10 equiangularly spaced projections.
(c) FBP reconstruction of (a) from 360 projections in the limited range [−π

3
, π
3

]. (d) FBP
reconstruction of (a) from truncated data.

developing reconstructed images that do not correspond to the reality. Various

types of incomplete data can be noted.

� A small number of projection directions, also referred to as few-view

tomography. To reduce the scanning time or to restrict the radiation dose

without lowering the SNR of the projection images, the number of projec-

tion directions is often limited. Fig. 1.19b shows an FBP reconstruction of

the Shepp-Logan phantom (Fig. 1.19a) from only 10 equiangularly spaced

parallel beam projection directions.

� A limited angular range. Typically, all projection directions θ are equian-

gularly distributed in the [0, π) 9. However, sometimes it is technically im-

possible to create a projection image under a certain angle. This is for

example true in electron microscopes, where the sample is placed on a struc-

ture that can only rotate in an angular range such as [−π3 ,
π
3 ]. It is also true

for laminography, where projection directions parallel to the object surface

result in photon starvation and metal artefacts. Fig. 1.19b shows an FBP

reconstruction of the Shepp-Logan phantom from 360 projection directions

in the limited range [−π3 ,
π
3 ]. Missing wedge artefacts are clearly visible.

� Truncated projections. If the detector array is not sufficiently wide to

capture the entire object, the projection data is said to be truncated. This

can be due to technical constraints (i.e. objects that are too large to fit inside

the FOV) or due to an attempt to reduce the radiation dose outside the

region of interest (ROI) by blocking the X-ray beams to the outside detector

9This is only in the case of a parallel beam projection geometry. For a fan beam geometry an
even larger range is required.
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cells. This type of incomplete data obstructs accurate image reconstruction

outside the FOV. Furthermore, given that common reconstruction techniques

are non-local (i.e. it is not possible to exactly reconstruct only a subset of

the reconstruction domain), it is also not possible to accurately reconstruct

inside the FOV. This can be observed by the cupping artefact in Fig. 1.19d.

Proposed solutions to this problem include the completion of projection data

by extrapolation with a certain smoothing function [31, 32] or by combining

multiple scans with a shifted sample [33] or with a lower radiation dose on a

full detector array [34]. Approaches have also been introduced that use local

reconstruction techniques such as Differentiated Backprojection (DBP) [35].

1.4.4 Segmentation

Given the collection of possible reconstruction artefacts, the reconstructed image

may not be suitable for analysis without an extra segmentation step. An overview

of various segmentation techniques is given in Chapter 2. Important to note here

is that all common segmentation techniques are effectively post-processing steps,

i.e. they are solely based on the finished reconstructed image. However, from

this section and from Fig. 1.12, it is clear that the typical tomographic workflow

is a very sequential process and that errors propagate into each subsequent step.

This can be observed in Fig. 1.18c, where the streaking artefacts of the FBP

reconstruction have a clear effect on the accuracy of the segmentation.

Consequently, an ideal segmentation technique should not only be based on the

reconstructed image, but should also use information of the previous steps in the

workflow, i.e. the projection data [36]. This observation is in fact the major thesis

of this work. In Part I, segmentation techniques are proposed that use projection

data to improve the segmentation quality, the so called tomographic segmentation

techniques. In Part II, segmentation and reconstruction are combined into a single

step, referred to as discrete tomography.

1.4.5 Analysis

At the final step in the workflow, the data is ready for analysis. This step is fully

dependent on the application, which is discussed in the next section.

1.5 Tomography on all scales, application overview

While CT is frequently referred to as a “medical imaging technique”, its appli-

cability is by no means limited to that field. Indeed, many are the applications

that have prospered by utilizing tomographic principles. In this section, a short
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Figure 1.20: Overview of different tomographic applications at a variety of scales.

overview is given. It will become clear that tomography need not be restricted to

imaging modalities of a single scale or resolution (Fig. 1.20).

1.5.1 Materials science

Modern electron microscopes (Fig. 1.21a) can be used to visualize nano structures

up to atomic resolution [37]. They do not make use of an X-ray beam — the

wavelength of an X-ray beam is simply too long for such a resolution — but in-

stead utilize a beam of electrons to create a bright-field projection image of the

scanned sample. By tilting the plane on which this sample is placed, different

projection images can be recorded and electron tomography can be applied, re-

sulting in a 3D reconstruction. This is called transmission electron microscopy

(TEM). Next to TEM, electron microscopes can also be used to measure other

information. With high-angle annular dark field scanning TEM (HAADF STEM),

the contrast scales with the atomic number of the material. With energy-filtered

TEM (EFTEM), energy loss information is measured to map the composition of

the sample [38]. These images can also be used in combination with tomographic

reconstruction algorithms, leading to a variety of interesting applications: the

study of biological structures such as viruses; metallurgy, the search for durable

and strong super-alloys that requires a highly optimized structure at a nano scale;

electronics, improving the performance of ultra small semiconductors; etc. Given

that the electron gun is in a fixed position and the sample is placed on a supporting

structure that is then tilted, it is usually not possible to acquire projection data for

the full angular range, leading to common missing wedge artefacts. Additionally,

due to the small samples and the often inaccurate tilting, the projection data is

often severely misaligned.

A second imaging modality that is often used in materials science is a syn-

chrotron radiation facility (Fig. 1.21b). In these facilities, charged particles are

accelerated to near the speed of light in large storage rings. This typically results

in very intense monochromatic bundles that are able to create very high resolution
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Figure 1.21: Schematic overview of image modalities that are commonly used in materials
science.

projection images and thus also very high resolution reconstructed images. Next

to classic tomography, many applications are made possible by synchrotron radi-

ation, e.g. the change in X-ray phase can be measured to increase the contrast

between two materials that have a similar attenuation value. In 3D X-ray diffrac-

tion (3DXRD), the diffraction of a certain homogeneous object is measured under

several projection angles. Tomographic principles can then be used to reconstruct

the orientation of each crystal of the object [39].

More information on electron and synchrotron tomography for use in materials

science can be found in [40].

1.5.2 Non-destructive testing

In industry, tomography is often used for non-destructive testing of objects. By

visualizing the interior of manufactured objects their required material properties,

e.g. its structural integrity, can be confirmed.

Related, tomography can also be applied for planning an industrial process.

Such an application can be found in the diamond industry. A diamond is a col-

lection of carbon atoms linked together in a very strong lattice. They form under

high pressure and high temperature and are therefore very rare and valuable. In

nature, they are found in their raw form and prior to being used as a jewel, they

have to be cut into an aesthetically pleasing form. The value of this diamond
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depends on what is know as “the four C’s”: Clarity (the absence of flaws and

inclusions), Colour (colourless diamonds are preferred as they allow the prettiest

refraction of light), Cut (its shape) and Carat (its weight, 1 carat = 200 mg).

The choice of how and where to cut the diamond — such that its eventual value

is maximal — is thus of great importance and is typically made by trained spe-

cialists. Tomography, however, provides a cheaper and more objective way to do

so. With a µCT system, a high quality virtual model of the raw diamond can be

constructed. This is then used by a clever optimization technique to automatically

locate the optimal cut diamond inside this model. As a small increase in carat can

lead to a big increase in value, the segmentation step in the tomographic workflow

is crucial. Fig. 1.22b shows a virtual model of a raw diamond stone as computed

with CT. One can also observe the optimal location for the cut diamond.

1.5.3 Biomedical

In biomedical research and in preclinical trials, small animals (mice or rats) are

used for research into various diseases or to evaluate the effects of new drugs. As

an example, consider the study of a new drug designed to counter osteoporosis,

a disease which degenerates the structural integrity of bones. With an in-vivo

µCT scanner the temporal effect of these drugs can be investigated by scanning

the femur of lab animals (Fig. 1.22c) at various stages in the trial [41]. The bone

structures of interest are the cortical bone and trabecular bone, a network of very

small structures. Accurate segmentation and determination of the morphometric

bone parameters [42] therefore requires a high spatial resolution. Also, to get the

most information, the time between two scans of the same animal should be as

low as possible. This is referred to as the longitudinal resolution. However, it is

crucial to refrain from subjecting a high radiation dose to the animal. For one,

they might succumb to radiation poisoning. But also, measuring with radiation

is effectively also interacting: it may enlarge or shrink the trabecular structures,

preventing accurate analysis.

A trade-off has to be made between the various requirements. If the spatial

resolution is high, then the animals cannot be scanned very often. If the longitudi-

nal resolution is high, scans are of a low spatial resolution and analysis is difficult.

In Chapter 7 of this work, a super-resolution approach is proposed to compute

high resolution reconstructions from low resolution, low dose projection data.

1.5.4 Medical

The most well-known application of CT is its use in medical imaging. CT allows

a view inside a patient’s body without doing invasive surgery. For decades, it has

been one of the standard diagnostic tools at the aid of physicians. It is typically
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(a) electron tomography [43] (b) diamond industry

(c) biomedical research, rat femur (d) medicine, human head

Figure 1.22: Various applications in which tomography is often used.

used to detect and follow up on tumours, calcifications, brain trauma, . . . Its use is

not restricted to head imaging (Fig. 1.22d), but also extends to lungs, pulmonary

arteries, the abdominal area, . . . Modern scanners have a high rotation speed and

also support accurate cardiac imaging. Contrast fluids, typically iodine-base, can

be applied to increase the contrast of certain internal structures, such as blood

vessels.

1.5.5 Large scale

In seismic tomography, earthquakes are measured at various stations throughout

the globe. Common reconstruction algorithms such as SIRT are used to reconstruct
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the P-waves and S-waves of the earthquakes as they have propagated through the

earth’s crust. These techniques have been used to obtain valuable insights into the

density and rigidity of the earth [44] and to measure the alignment of motorways

in tunnels [45]. The resolution of such reconstructed images is typically about a

few kilometres. Common issues in seismic tomography include limited data (due

to the low number of measuring stations), misalignment (due to the fact that

the hypocentre of the earthquake must be exactly known), and a very complex

projector model which should include scattering and surface refractions.

On an even larger scale, tomography is used in astronomy, for example for a

three-dimensional study of the corona of the sun. Given that projection images

have to be taken over a period of at least several days — only a few satellites

are available to take the pictures — the dynamics of the sun must be taken into

account during the reconstruction process. This can be modelled using techniques

such as Markov random processes [46].

This concludes the basic introduction to the world of tomography. For a

more in-depth overview of the field, the reader is referred to detailed works by

Kak&Slaney [13], Natterer [47], and Buzug [9].
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Tomographic Segmentation
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—If you don’t eat yer meat, you can’t have any pudding!
How can you have any pudding if you don’t eat yer meat?!

Roger Waters, Another Brick in the Wall, 1979. 2
Segmentation of tomographic images

using Projection Distance
Minimization
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2.1 Introduction

To extract quantitative information from a tomographic reconstruction, it is often

segmented first. Segmentation refers to the act of classifying image pixels into

a few distinct classes based on a certain characteristic, typically their grey level.

Practically speaking, it answers the question: “Which pixels of the reconstructed

image belong to which structure?”

41



CHAPTER 2. SEGMENTATION OF TOMOGRAPHIC IMAGES USING
PROJECTION DISTANCE MINIMIZATION
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Figure 2.1: (a) An FBP reconstruction of a rat femur. The scan was made in a SkyScan
1172 µCT scanner with a camera pixel size of 11.73µm. 368 projection angles were used.
(b-c) Segmentations of (a) with a low and high threshold value. (d) Histogram of (a) (e-f)
threshold values of (b) and (c) visualized on the histogram.

Consider Fig. 2.1a, an FBP reconstruction of a rat femur from 368 equiangular

cone beam projections, scanned with a SkyScan 1172 µCT scanner. The recon-

structed image has a continuous grey scale1 and while creating a segmentation

of this image may look trivial at first, a close-up view reveals several pixels —

especially those at the border of the object — that cannot be easily attributed

to either the foreground or the background. This is also visible in Fig. 2.1d, the

histogram of Fig. 2.1a. Two peaks clearly represent the pixels of the background

and of the bone, but there are also many pixels whose grey level lies in the middle.

It is especially for these pixels that an accurate segmentation technique is required.

In the literature, a multitude of segmentation algorithms have been described.

Some methods are region-based, e.g. watershed segmentation [1] and region grow-

ing [2]. In other methods, object structures are modelled with active contours

or snakes [3, 4]. Presumptively the simplest, yet most widely used technique, is

1This is technically not true as the set of possible values in reconstructed images is limited
by what can be represented by computational hardware. However, the rounding errors thereby
introduced have a negligible effect on the adequacy of the reconstruction and can therefore be
ignored.
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Figure 2.2: (a) Conventional workflow of a typical tomographic applications. (b) Workflow
with tomographic segmentation.

thresholding. However, with thresholding, the accuracy of the segmented images

is determined by the chosen threshold values [5]. In Fig. 2.1b and Fig. 2.1c, two

different threshold values have been applied to Fig. 2.1a (the threshold values are

also visualized in the histograms shown in Fig. 2.1e and Fig. 2.1f). This shows

that even a seemingly small change in threshold choice can have a large effect on

the outcome.

To select the optimal threshold, several algorithms have been proposed [6].

Histogram shape-based methods consider the shape of the histogram and use this

information to locate its peaks (the grey levels of the classes) and valleys (the

threshold values) [7, 8]. Clustering-based methods divide the histogram into several

clusters (one for each class). This can be done by numerous methods. With

Expectation Maximization (EM) the histogram is modelled with parametric basis

functions such as Gaussian Mixture Models (GMM) [9]. With k-means clustering,

each pixel is attributed to the class whose nearest mean it is closest to [10]. With

the iterative Otsu’s clustering method, the weighted sum of intra-class variances is

minimized [11]. Entropy-based methods do not make use of the histogram. Instead,

they attempt to maximize the entropy between the foreground and background

pixels [12] or to minimize the cross-entropy between the reconstruction and the

segmentation [13].

Most thresholding techniques provide satisfactory results only if the contrast

between two materials is sufficiently large. If this is not the case, the grey level

distributions of each class overlap too much. Also, small objects (e.g. microcalcifi-

cations in medical scans), are easily ignored as their contribution in the histogram

is barely noticeable.

For tomographic applications, advanced schemes are typically used that com-

bine classical segmentation methods with additional post-processing steps. As an

example, in [14], segmentation of lung tissue is proposed as a three step algorithm
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containing (1) thresholding and a sequence of morphological operations to extract

the lungs from the scan, (2) a region-growing method to detect the large airways,

and (3) a dynamic programming step to separate the left and right lung. In [15],

lung lobe segmentation is performed with an atlas-driven approach.

None of the methods here described contain an inherent measure to assess

the accuracy of the segmented image. Furthermore, they are all solely based on

the reconstructed image (Fig. 2.2a). As seen in Section 1.4, such a reconstructed

image is prone to several types of reconstruction artefacts that might obstruct ac-

curate threshold selection. In [16], a threshold selection method, called Projection

Distance Minimization (PDM), was introduced that uses the projection data to

determine the optimal threshold value. Such a method is referred to as an tomo-

graphic segmentation technique. Note that this method effectively transforms the

tomographic workflow to Fig. 2.2b.

In Section 2.2, the general concept of PDM is explained and notation is in-

troduced. In Section 2.3, two optimization approaches for PDM are discussed.

Section 2.4 extends the PDM approach to a local thresholding scheme. Section 2.5

then validates the method on several simulated and experimental datasets. The

method is compared to conventional segmentation methods such as Otsu’s method

and k-means clustering. Ultimately, Section 2.6 concludes this chapter.

2.2 Concept and notation

Consider v = (vj) ∈ Rn, a reconstructed image that approximately satisfies

Wv = p.
�� ��2.1

In Eqn. 2.1, p = (pi) ∈ Rm is the projection data and W = (wij) ∈ Rm×n is the

projection matrix that maps v onto p (as introduced in Section 1.3.1.3).

A segmentation of v can be considered as a partition of its pixels into l classes.

Each pixel vj is contained by exactly one class, denoted by sj ∈ {1, . . . , l}. The

vector s = (sj) ∈ {1, . . . , l} is referred to as the classification mask. Define ρ =

(ρ1, . . . , ρl)
T , the vector containing all grey levels of the segmented image, one for

each class. The segmentation function or classification function is then:

C(s,ρ) = (ρs1 , . . . , ρsn)T .
�� ��2.2

The Projection Distance Minimization (PDM) method, as introduced in [16],

provides an objective measure to assess the accuracy of the chosen parameters s

and ρ. As its name implies, it states that the optimal parameters are those for

which the Euclidean distance between the projection of the segmentation and the
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Figure 2.3: Schematic overview of the Projection Distance Minimization (PDM) concept.

measured projection data is minimal, i.e.:

sopt,ρopt = argmins∈Rn,ρ∈Rl ||W C(s,ρ)− p||2.
�� ��2.3

The search space of the optimization problem in Eqn. 2.3 has an extremely high

dimensionality (n+l), rendering the optimum hard to locate. Therefore, segmented

images are commonly obtained by application of a global thresholding scheme on

a certain, priorly reconstructed image v̄ ∈ Rn. Define the threshold function

Iτ (v̄) : Rn → {1, . . . , l}n as the function that assigns a value in {1, . . . , l} to each

pixel of the reconstructed image according to threshold values τ = (τ1, . . . , τl−1)T :

Iτ (v̄j) =


1 v̄j < τ1
2 τ1 ≤ v̄j < τ2
...

l τl−1 ≤ v̄j

, j = 1, . . . , n.
�� ��2.4
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Also define the segmentation function Cτ ,ρ(v) : Rn → {ρ1, . . . , ρl}n as the function

that assigns one of the grey levels in the vector ρ = (ρ1, . . . , ρl)
T to each pixel of

the reconstructed image according to the threshold function:

Cτ ,ρ(v̄) =
{
ρIτ (v̄1), . . . , ρIτ (v̄n)

}
.

�� ��2.5

The optimization problem of Eqn. 2.3 can then be translated into:

τopt,ρopt = argminτ∈Rl−1,ρ∈Rl ||W Cτ ,ρ(v)− p||2.
�� ��2.6

Evaluating Eqn. 2.6 is an optimization problem of dimension 2l − 1.

A schematic overview of PDM segmentation is shown in Fig. 2.3. At first, a

reconstruction is created using any available reconstruction method. Values for τ

and ρ are then chosen and a segmented image is created. This segmentation is

then forward projected into the projection domain and its Euclidean distance from

the original projection data is computed. An optimization strategy then updates

τ and ρ to improve the accuracy of the segmentation. This optimization can be

implemented in multiple ways, discussed in the next section. Note that there is

no restriction on the kind of projection geometry that is used as long as it can be

expressed in a projection matrix W .

2.3 Implementation

For computational efficiency, Eqn. 2.6 can be split into two smaller optimization

problems.

� Inner optimization: Given certain threshold values τ̄ , determine the optimal

grey levels, ρopt:

ρopt = argminρ||W Cτ̄ ,ρopt(v)− p||2.
�� ��2.7

This optimization problem is discussed in Section 2.3.1.

� Outer optimization: Optimize τ by solving:

τopt = argminτ ||W Cτ ,ρopt(v)− p||2.
�� ��2.8

In each function evaluation, ρopt is given by the inner optimization. This

optimization problem is discussed in Section 2.3.2, where two different im-

plementation approaches are compared.
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Figure 2.4: Each column of A contains the length of each ray through the partition i.

2.3.1 Grey level optimization

Let v = (vj) ∈ Rn be an image vector and let τ̄ be a given vector of threshold

values, for each t ∈ {1, . . . , l}, let s̄t ∈ {0, 1}n denote the classification mask of

class t:

s̄
(t)
j =

{
1 if Iτ̄ (vj) = t

0 otherwise
, j = 1, . . . , n.

�� ��2.9

Let A = (ait) ∈ Rm×l denote an m × l matrix where column t contains the

forward projection of s̄t. The value ait is thus defined by the total weight contri-

bution to ray i of all pixels that belong to partition t. This equals the length that

each ray traverses through partition t. This is visualized in Fig. 2.4.

ait =
n∑
j=1

wij s̄ti =
∑

j:s̄tj=1

wij
�� ��2.10

For any vector of grey levels ρ, the forward projection of Cτ̄ ,ρ(v) can then be

written as

W Cτ̄ ,ρ(v) =
l∑
t=1

Ws̄tρt = Aρ.
�� ��2.11

Let aj denote the jth row ofA and let cj = −2pjaj , c̄ =
∑m
j=1 cj , Qj = aja

T
j ,

Q̄ =
∑m
j=1Qj . The projection difference of the segmented image, from here on
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noted by E(τ ,ρ), then becomes:

E(τ ,ρ) = ||W Cτ̄ ,ρ(v)− p||2 = ||Aρ− p||2
�� ��2.12

=
m∑
j=1

(
aTj ρ− pi

)2 �� ��2.13

=
m∑
j=1

(
ρTQjρ− cTj ρ+ p2

i

) �� ��2.14

= ρT Q̄ρ− c̄Tρ+ |p|2.
�� ��2.15

Given that the projection difference is a quadratic polynomial in ρ which cannot

take negative values, the optimal grey levels, ρopt, can be computed by setting the

derivatives of Eqn. 2.15 with respect to ρ1, . . . , ρl to zero, obtaining the system

Eqn. 2.16 which is easy to solve, as the number of grey levels is typically very

small.

2Q̄ρopt = −c̄.
�� ��2.16

2.3.2 Optimal threshold selection

To obtain the optimal threshold values, the following function must be minimized

with respect to τ :

||W Cτ ,ρopt(v)− p||2.
�� ��2.17

Each evaluation of this function requires the computation of ρopt. Note that this

function is not differentiable to τ . In the remainder if this section, two optimization

strategies to find the minimum of Eqn. 2.17 w.r.t. τ , are investigated.

2.3.2.1 Simple approach

A simple optimization strategy to solve Eqn. 2.8 involves classical global optimiza-

tion techniques such as the Nelder-Mead simplex search [17].

In Fig. 2.5, the pseudo code of this approach is given. The largest compu-

tational burden lies with the l forward projection operations that are to be per-

formed per function evaluation. One should consider, however, that these oper-

ations are very suited for implementation on a modern graphical processing unit

(GPU), greatly increasing the applicability of this approach.

2.3.2.2 Advanced approach

An advanced optimization strategy tailored to the specific problem, was proposed

in [16]. One should observe that the projection difference equation (Eqn. 2.15) is
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�

�

�

�

funct ion E(τ̄ ,ρopt),ρopt = optimize grey level(τ̄ ,v,W ,p)
f o r t = 1 : l

s̄
(t)
j =

{
1 if Iτ̄ (vj) = t

0 otherwise
, j = 1, . . . , n.

column t of A = Ws̄(t);
end

ρopt = solution of 2Q̄ρ = −c̄ w.r.t. ρ ;
E(τ̄ ,ρopt) = ||Aρopt − p||2;

end

funct ion τopt = PDM simple(v,W ,p)
τopt = argminτ [optimize grey level(τ ,v,W ,p)]

end

Figure 2.5: Pseudo code for the simple PDM approach.

written in such a way that it can be easily updated if only a few pixels switch to a

different class. That way, an optimization technique can be introduced that finds

the optimal thresholds without the need for constant forward projection.

First, assume A, Q̄ and c̄ are computed for a certain set of threshold values

τ . Now, consider the alteration of one threshold value τt by a very small amount.

This means that only a few pixels vj switch into a different partition. Define

B ∈ {1, . . . ,m} as the set of projection rays i that pass through any switched

pixel, i.e. B contains all i’s for which wij 6= 0 and for which the classification of vj
is switched by the threshold update. The updated projection mask matrix, A′, is

then identical to A except for the rows i ∈ B. The updated vector c̄′ and matrix

Q̄′ can then be computed as follows:

c̄′ = c̄+
∑
i∈B

(c′i − ci),
�� ��2.18

Q̄′ = Q̄+
∑
i∈B

(Q′i −Qi).
�� ��2.19

Given that the projection of a single pixel is typically non-zero in only a few

detectors, these update steps can be exploited to create an efficient optimization

technique. Suppose τ0 is an initial estimate of the threshold values. The matrices

A, c̄ and Q̄ are then fully constructed, requiring one full forward projection for

each class. Also, ρopt is determined using Eqn. 2.16 and the projection difference is

computed using Eqn. 2.15. Next, a small update step is applied to any threshold.
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�

�

�

�

funct ion τopt = PDM advanced(v,p, τ0)

τ = τ0 ;

s̄(1) = v < τ , s̄(2) = v ≥ τ ;

A1 = Ws̄(1) , A2 = Ws̄(2) ;

f o r i = 1 :m, ci = −2piai , Qi = aia
T
i , end

c̄ =
∑m
i=1 ci , Q̄ =

∑m
i=1Qi ;

stepsize = initial step size ;
whi le stepsize ≥ min step size

ρopt = solution of 2Q̄ρ = −c̄ w.r.t. ρ ;

E = c̄Tρopt + ρToptQ̄ρopt + p2 ;

i f E < Eopt ;
τopt = τ ;
Eopt = E ;
τ = τ + stepsize ;

e l s e
stepsize = stepsize/2 ;
τ = τ − stepsize ;

end

f o r j = 1 :n

i f v < τ , s̄′(1) = 1 , s̄′(2) = 0 ;

e lse , s̄′(1) = 0 , s̄′(2) = 1 , end
end

B =
{
i : ∃j : s̄

′(1)
j 6= s̄

(1)
j and wij 6= 0

}
;

c̄′ = c̄+
∑
i∈B(c′i − ci) ;

Q̄′ = Q̄+
∑
i∈B(Q′i −Qi) ;

s̄(1) = s̄′(1) , s̄(2) = s̄′(2) ;
c̄′ = c̄′ , Q̄ = Q̄′ ;

end
end

Figure 2.6: Simplified pseudo code for the advanced PDM approach. For brevity, l = 2
and it is assumed that τ0 is an underestimation, i.e. τ0 ≤ τopt. The method can be easily
extended for l > 2 and fitted with a more robust optimization strategy.
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A, c̄ and Q̄ are then updated (Eqn. 2.19), requiring a forward projection of only a

few pixels. The new ρopt and projection difference are recomputed very efficiently.

These steps are repeated until the projection difference does not improve. Fig. 2.6

shows simplified pseudo code for such an optimization strategy in the case where

l = 2.

2.4 PDM with local thresholding

Τ1 Τ2 Τ3

Τ9

Τ4 Τ5

τ1 τ2

τ8

τ3

τ9

Figure 2.7: Local threshold field. Here l = 2 and r = 32.

In the previous section, a global thresholding scheme was used to find the

partition mask with the minimal projection difference. However, the achievable

accuracy of this method is limited by the accuracy of the reconstruction. If the

reconstructed image displays variations in the intensity of certain image features,

global thresholding can never lead to accurate segmentation. For example, small

trabecular structures of bone tend to be represented less bright than large struc-

tures, even if they consist of the same material. To counter this problem, a scheme

can be applied where different thresholds are used for different regions in the image,

so-called local thresholding or adaptive thresholding.

Local threshold values can be selected based on different criteria. Many ap-

proaches compare the grey level of a certain pixel to those of its neighbours to

determine the local threshold for that pixel [18, 19]. In [20] a small window is

slided over the image, computing a different clustering segmentation method for

each pixel. In [21], the decision is based on local entropy information.

As with the global thresholding techniques discussed in Section 2.1, these local

thresholding methods do not take tomographic information into account. Addi-

tionally, adaptive techniques may perform even worse as they are sensitive to local
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variations due to several possible image artefacts. In [22], the previously discussed

PDM optimization method was extended to a local thresholding scheme.

Let T = (Tj) ∈ Rr×(l−1) denote the coarse local threshold field, the threshold

values for certain points on the reconstruction grid. Define τlocal ∈ Rn×(l−1) as the

fine local threshold field, the threshold values for each point on the reconstruction

grid. The values of τlocal are defined by bilinear interpolation of T (Fig. 2.7). The

value r defines the number of local threshold values that are to be estimated. Gen-

erally, the higher r, the higher the quality of the resulting segmentations, but the

more difficult the optimization problem becomes. If r = 1, there is no difference

between global and local thresholding. If r = n, each pixel is considered sepa-

rately and segmentation effectively becomes a, hard to solve, discrete tomography

problem. This is investigated further in Chapter 4.

The values Tj are initialized with the optimal threshold values found using a

global PDM approach. A single point on the coarse threshold field is then selected

for further optimization. This selection can be done at random or guided by

the current segmentation. Ideally, a point close to where the segmentation errors

occur is chosen. This information can be gathered by computing a reconstruction

from the current projection difference ||Ws − p||2. Areas where segmentation

errors occur typically have higher values in this reconstructed image. Once a

point is chosen, its threshold values are optimized using one of the two PDM

approaches described in the previous section. This process is repeated until no

further improvements can be made. A that point, the grid size of the coarse

threshold field can optionally be increased to improve the result even further.

2.5 Experiments

To validate the PDM method, this section describes a series of experiments that

was performed on simulated (Section 2.5.1) as well as experimental µCT data

(Section 2.5.2). PDM was compared to two classic threshold selection techniques:

Otsu’s method [11] and k-means clustering [10].

2.5.1 Simulation studies

Three 512×512 simulated phantom images (Fig. 2.8) with grey levels in the range

[0, 255] were considered. To assess the quality of the threshold selection, the relative

number of misclassified pixels (rNMP) of the segmented images was calculated.

This is the total number of pixels that are classified in a different partition than

in the original phantom image, divided by the total number of non-zero pixels in

the phantom image.

In a first experiment, CGLS reconstructions were created of Fig. 2.8a and
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Figure 2.8: Three simulated 512×512 phantom images.
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Figure 2.9: The rNMP as a function of the threshold value, τ . The optimal threshold values
according to the different threshold selection techniques are also plotted.

Fig. 2.8b from 30 equiangular parallel beam projections. On the simulated pro-

jection data of Fig. 2.8b, Poisson noise was applied with incident beam intensity

I0 = 50000. Segmented images were created for a range of threshold levels τ and

the corresponding rNMP was computed for each. PDM, Otsu and k-means were

also applied on the reconstructed images. As visible in Fig. 2.9, in both cases the

threshold selected by the PDM technique was clearly the best approximation of

the optimal threshold (the one for which rNMP value was minimal).

In a second experiment, the computation time of the two implementation ap-

proaches described in Section 2.3.2 was investigated. To that extent, a CGLS

reconstruction of Fig. 2.8b was computed from 90 equiangular parallel beam pro-

jections. PDM with a simplex-search optimization strategy (Section 2.3.2.1) was

performed with a CPU and a GPU (NVIDIA CUDA) implementation. For PDM
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Figure 2.10: Comparison of the two different approaches for global PDM on a reconstructed
image of Fig. 2.8b. The simple approach was often faster and its accuracy was less dependent
on the initial threshold choice.

with the advanced optimization strategy (Section 2.3.2.2) only a CPU based im-

plementation was used as this approach is not suited for GPU acceleration. Given

that only small updates can be taken in the advanced method, its computation

time is dependent on the initial choice for τ . Each approach was therefore evalu-

ated for a range of initial values.

In Fig. 2.10a, the running time of each implementation is plotted as a func-

tion of the initial threshold. For the advanced method, the initial threshold value

indeed had a large influence on the overall running time. As it required more

forward projections than the advanced approach, the CPU implementation of the

simple approach was generally much slower that the advanced method. Surpris-

ingly however, when accelerated with GPU hardware, the simple approach proved

to be faster than the advanced approach.

In Fig. 2.10b, the corresponding rNMP is visualized. It can be seen that with

the advanced method also the accuracy depended on the initial choice. While

the simple method did not always result in the lowest rNMP, it was much more

consistent. In the experiments described in the remainder of this section, the

simple approach was therefore used.

Next, the accuracy gain that can be achieved using local thresholding instead

of global thresholding was investigated. Parallel beam projection data with 15

projection angles was generated of Fig. 2.8a. Then, a global PDM segmentation

was created of a CGLS reconstruction (Fig. 2.11a). This result was subsequently

further refined using local PDM optimization with r = 642 and r = 162 (Fig. 2.11b

and Fig. 2.11c). In Fig. 2.11d, the rNMP is plotted for each step of the local opti-

mization process. As expected, with local thresholding it was possible to achieve

segmented images that were more accurate than the segmented image with the
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Figure 2.11: Comparison of global PDM and local PDM on Fig. 2.8a. (a,b) Misclassified
pixels after global and local PDM segmentation respectively. (c) The fine local threshold field
after local PDM converged. (d) The rNMP as a function of the iteration. (e) The rNMP as
a function of the grid size r.

optimal global threshold. However, the eventual result greatly depended on the

size of the local thresholding grid. In Fig. 2.11e, the rNMP of global and local

PDM is plotted as a function of the gridsize. For these simulated images, r = 162

generally resulted in the most accurate segmentation. All remaining experiments

were therefore ran with this value.

In a final set of simulation experiments, the performance of the segmentation

techniques was measured with respect to the number of projection directions. As

before, Poisson noise was applied to the projection data (I0 = 50000) and CGLS

reconstructions were computed. From Fig. 2.12a-c, one can note that from all

global thresholding techniques, the PDM method provided the best approximation

of the optimal threshold. This effect was the most profound if the number of
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Figure 2.12: (a-c) The rNMP for all methods as a function of the number of projection
directions. (d-f) The rNMP for all methods as a function of the number of counts per
detector pixel. Lower counts imply more Poisson noise on the projection data.
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projection angles was low. If the local thresholding scheme was applied, results

were obtained that were more accurate than with the optimal global threshold.

The performance was also evaluated with respect to the noise level, expressed by

I0. 15 equiangular projection angles were used, effectively simulating low dose

scans. In Fig. 2.12d-f, it can be observed that even with noisy projection data,

segmented images created using the PDM approach provided the best results.

2.5.2 Experimental studies

(a) projection

(b) reconstruction (c) segmentation
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0

0.01

0.02

0.03

angle count

rN
M

P

optimal
global PDM
Otsu
k−means

(d) accuracy

Figure 2.13: Experimental data experiment. (a) Projection image of a rat femur, scanned
in a SkyScan 1172 µCT scanner. The central slice is highlighted. (b) SIRT reconstruction of
the central slice of (a) from 368 projections. (c) Otsu segmentation of (b). Used as ground
truth. (d) The rNMP as a function of the number of projections.

The segmentation methods discussed in this chapter were also applied on ex-

perimental µCT data. Fig. 2.13a shows a single projection image of a rat femur,

acquired with a SkyScan 1172 µCT scanner with a camera pixel size of 11.73µm

and a cone beam projection geometry. In total, 368 of such images were recorded

equiangularly. This data was corrected for ring- and beam hardening artefacts us-

ing the SkyScan NRecon software. Fig. 2.13b shows a reconstruction of the central

slice created using 500 SIRT iterations. This reconstruction was then segmented

using Otsu’s commonly used clustering method. This segmentation, shown in

Fig. 2.13c, was then taken as the ground truth. The number of projection angles

was then reduced, reconstructed images were created and segmented images were
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computed and validated with respect to the ground truth. The results shown in

Fig. 2.13d demonstrate the same effects as found in the simulation experiments.

PDM segmentation provided the best approximation of the optimal global seg-

mentation. This effect was the most profound when the number of projection

directions was very low.

2.6 Conclusions

Prior to image analysis, a segmented image must first be created. This is com-

monly obtained by simply thresholding the reconstructed image. However, for

accurate segmentation it is crucial to find adequate threshold values. A multitude

of solutions to this problem have been proposed in the literature. Whereas these

techniques attempt to find thresholds that are conform with the image and its his-

togram, they do not search for thresholds that conform to the measured projection

data.

In this chapter, the Projection Distance Minimization (PDM) algorithm, in-

troduced in [16, 22], was discussed and investigated. The algorithm involves the

forward projection of a segmented image that is defined by its segmentation pa-

rameters: the threshold values and the grey levels for each class. Its Euclidean

distance from the measured projection data is then used to assess the quality of

the segmentation parameters. As PDM uses the available projection data to guide

the threshold selection, it is called an tomographic segmentation technique.

Applying a global threshold to an image can only create sufficiently accurate

segmentation if the underlying reconstructed image is an accurate representation

of the actual object. This is often not a valid assumption to make as multiple

reconstruction artefacts might be present. To counter this, other segmentation

schemes should be applied. Here, the use of the PDM metric on a local thresholding

technique was investigated.

Experiments on simulated and µCT data have shown that using PDM optimiza-

tion of the global threshold values results in threshold values that are a very good

approximation of the optimal global threshold. This is also true if the number of

projection directions is low or the projection data is noisy. In those circumstances,

PDM segmentation outperforms classical threshold selection techniques such as

Otsu and k-means.
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—Weather forecast for tonight: Dark. Continued dark
overnight, with widely scattered light by morning.

George Carlin, 1978 3
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CHAPTER 3. OPTIMAL THRESHOLD SELECTION FOR
SEGMENTATION OF DENSE, HOMOGENEOUS OBJECTS

3.1 Introduction

This chapter deals with the segmentation of dense objects in tomographic images.

It is assumed that the objects to be segmented have a constant density that is

higher than that of the surrounding materials. In medical imaging, dense object

segmentation is required in many applications. It can be used to suppress streak

or beam hardening artefacts caused by metal implants [1, 2, 3]. Object identifica-

tion and motion estimation (e.g. for co-registration) also often require detection

of implanted markers on a device or guide wire [4, 5]. Furthermore, accurate local-

ization of individual cochlear implant electrodes within the inner ear is important

to model the electrical field of the cochlea [4, 6]. Also the extraction of the tra-

becular bone features (such as the cortical thickness or the cortical area) from the

surrounding marrow spaces involves segmentation of the dense bone with respect

to the background [7, 8].

Without noise or artefacts in the reconstructed image, segmentation of dense

homogeneous objects would be trivial. However, in practice, accurate separation

of such objects from the surroundings within a tomographic reconstruction is a

non-trivial task for several reasons (in Section 1.4, a more in-depth overview is

given).

� Few-view tomography. In many cases, the number of available projec-

tions is not sufficient to guarantee a unique reconstruction. Therefore, the

computed reconstruction most likely does not correspond entirely to the un-

derlying, unknown object.

� Experimental projection data is inevitably polluted by noise and other

data inconsistencies, leading to inaccuracies in the reconstruction.

� Approximations in the reconstruction algorithm. Common recon-

struction algorithms typically do not compute an exact inverse of the Radon

transform, resulting in discrepancies between the reconstruction and the orig-

inal object.

As a consequence, dense objects do not always show up as clear peaks in the

histogram of a tomographic reconstruction.

For dense object segmentation, a common approach is to set a global threshold

somewhere between the grey level of the pixels belonging to the object and those

of the maximum value of the other pixels, which is referred to as the background

in the remainder of this chapter. Typically, this threshold is selected based on

the histogram of the reconstructed image [9]. If only a few materials are present

and each of these correspond to a distinct grey level peak in the histogram, it is

possible to accurately determine appropriate thresholds, for example by analysing
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Figure 3.1: (a,b) SIRT reconstructions of Fig. 3.4a and Fig. 3.4d. (c) Histogram of (a). The
peak representing the dense object partly overlaps that of the background. (d) Histogram of
(b). Here, the contribution of the dense particles is not visible.

the concavity points on the convex hull of the histogram [10] or by modelling

the histogram as a mixture of a series of Gaussian distributions [11]. The most

popular global threshold selection method is the clustering method of Otsu [12]. It

minimizes the weighted sum of intra-class variances of the different segmentation

partitions.

A key issue with histogram-based methods in the context of segmenting a

homogeneous object in a continuous grey level image, however, is that there are

no guaranteed histogram peaks representing the continuous background. In that

case, histogram-based methods are particularly inadequate if the object of interest

is only slightly more dense than the surrounding materials. This is visible in

Fig. 3.1.

Different approaches to segmentation of dense objects also exist, e.g. region-

based algorithms such as region growing [13] and watershed segmentation [14].

These methods, however, are also solely based on the reconstructed image and are

therefore very susceptible to reconstruction artefacts.

Ideally, reconstruction algorithms for tomography should be “invertible”, so

that computed projections of the reconstructed image would equal the measured

projection data. For FBP (Section 1.3.2.2), the most common reconstruction algo-

rithm used in practice, this assumption does not hold, mainly due to various inter-

polation steps involved in the algorithm. Iterative algebraic methods (e.g. SIRT,

63



CHAPTER 3. OPTIMAL THRESHOLD SELECTION FOR
SEGMENTATION OF DENSE, HOMOGENEOUS OBJECTS

Section 1.3.3.1) only satisfy the invertibility assumption for the case of noiseless

projection data and an infinite number of iterations. As the reconstructed image

does not correspond accurately with the measured projections, using the projec-

tion data for the segmentation can potentially result in a segmentation that is

more faithful to the original measurements.

In Chapter 2, a method called Projection Distance Minimization (PDM) was

discussed. PDM exploits available projection data to optimally select the threshold

values. This approach assumes that the scanned object contains a small number

of different densities, each corresponding to a constant grey level in the recon-

struction. By segmenting the reconstructed image, this property is restored in

the reconstructed image. To measure the quality of this segmentation, projec-

tions of the segmentation are computed and compared to the measured projection

data. An optimal segmentation results in maximal correspondence between the

simulated projections and the measured dataset. However, this approach requires

that the scanned object contains only a few different densities, and does not allow

for segmentation of objects with a constant grey level in a continuously varying

surrounding.

In this chapter, a new global threshold selection method for dense object seg-

mentation is introduced. The Segmentation Inconsistency Minimization (SICM)

method employs similar concepts as the PDM methods, but also allows parts of

the image to vary freely. For each candidate segmentation, the projections of the

segmented object are subtracted from the measured projection data, after which

the remaining part of the image is reconstructed and checked for consistency with

the residual projections. The threshold for which minimal inconsistency is ob-

tained is selected for the segmentation. The only assumptions that are made, is

that the density of the object is constant and that it is higher than all remaining

densities in the scanned object.

The chapter is structured as follows. In Section 3.2, the tomographic notation

is introduced. Section 3.3 describes the SICM threshold selection algorithm in

detail. Experimental results are presented in Section 3.4. Section 3.5 concludes

the chapter.

3.2 Concept and notation

3.2.1 SIRT

Consider p = (pi) ∈ Rm the vector of projection data and W = (wij) ∈ Rm×n the

projection operator. As described in Section 1.3.3.1, the iterative SIRT algorithm

finds a solution to:

Wv = p,
�� ��3.1
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by solving:

ṽ = argminv∈Rn ||Wv − p||2R,
�� ��3.2

where ṽ ∈ Rn is the reconstructed image and R ∈ Rm×m is a diagonal matrix

of the inverse row sums of W , i.e. rii = 1/
∑
j wij . The norm || · ||R is defined by

||Wv − p||2R = (Wv − p)TR(Wv − p).

For the case ṽ(0) = 0, the SIRT algorithm is a linear algorithm in the sense

that a reconstructed image ṽ ∈ Rn is formed by applying a linear transformation

to the input vector p ∈ Rm of projection data. Let S : Rm → Rn denote the linear

operator that corresponds with a certain, fixed number of iterations of the SIRT

algorithm, starting with ṽ(0) = 0:

ṽ = Sp.
�� ��3.3

The SIRT algorithm can also be performed on a subset A ⊂ {1, . . . , n} of the

image pixels by removing the columns of W that are not in A. In this way, a

reconstruction in the set of all reconstruction images that are zero outside of A,

can be computed for which the projection difference is minimal. Consider the case

where A = {1, . . . , n} \ {j}. The reconstruction equation then becomes:


...

...
...

...

wi,1 . . . wi,j−1 wi,j+1 . . . wi,n
...

...
...

...





v1

...

vj−1

vj+1

...

vn


=

 p1

...

pm

 .
�� ��3.4

Let SA : Rm → Rn denote the linear operator that corresponds with a certain

number of iterations of the SIRT algorithm, restricted to a set of pixels A ⊂
{1, . . . , n}, starting with v̄(0) = 0:

ṽ = SAp.
�� ��3.5

3.2.2 Sinogram inconsistency

Not all vectors p ∈ Rm are valid sinograms. The set of all valid continuous sino-

grams has been characterized by Ludwig and Helgason in [15, 16]. They describe

a set of conditions that must be satisfied by all sinograms, known as consistency

conditions. In a discretized setting, where projection data is available only for a

limited set of angles, a measured sinogram is called consistent if there exists a so-

lution to Eqn. 3.1, i.e. p ∈ span{wa : 0 < a ≤ n}. In practice, a sinogram is rarely
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consistent due to noise, discretization, partial volume effects, etc. Therefore, also

the inconsistency of a sinogram p is introduced:

minv∈Rn ||Wv − p||,
�� ��3.6

with ||·|| a vector norm defined by the reconstruction algorithm. In other words, the

inconsistency of p is the distance between p and the nearest consistent sinogram.

An important role in the proposed algorithm is played by sets of sinograms

that correspond to images where certain pixels are known to be zero. A sinogram

p is called A-consistent if p ∈ span{wa : a ∈ A}. Thus, for each A-consistent

sinogram p there exists a reconstructed image ṽ with Wṽ = p and ṽj = 0 for

each i /∈ A. Line in Eqn. 3.6, the distance between p and the nearest A-consistent

vector is called the A-inconsistency of p. Note that when A = {1, . . . , n}, the

concepts of inconsistency and A-inconsistency are equivalent.

In practice, it is not possible to compute the A-inconsistency directly. To

approximate the A-inconsistency of a vector p with respect to the norm || · ||2R, one

can compute a SIRT reconstruction restricted to A from p with a fixed number of

iterations, compute the forward projection of this reconstruction and compare it

to the vector p of measured projections. Define the A-pseudo-inconsistency of p

by:

ICA(p) = ||WSAp− p||2R.
�� ��3.7

3.3 Computational approach

In this section, a computational approach to the dense object segmentation prob-

lem is described. Section 3.3.1 introduces the Segmentation Inconsistency (SIC)

measure which can be used to assess the quality of a thresholded segmentation

of the dense objects in the reconstructed image. This metric is explained first by

arguing that if a threshold is chosen too low, the segmentation inconsistency is

high, and then by experimentally showing that if the threshold is chosen too high,

the measured segmentation inconsistency also increases. Note that this is possible

only if the grey level of the dense object is known a priori. In Section 3.3.2, an au-

tomatic grey level estimation method is discussed. Subsequently, the Segmentation

Inconsistency Minimization (SICM) algorithm is presented in Section 3.3.3.

3.3.1 Segmentation inconsistency

Although measured sinograms are typically polluted by noise and other errors,

here it is assumed, for the sake of clarity, that a “perfect” sinogram p has been

measured of an unknown image v, i.e. Wv = p. All that is known of v is that

it contains one or more dense objects with a constant, maximal grey level ρ ∈ R
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and thus satisfies the prerequisites of the suggested algorithm. Let ṽ be an image

such that Wṽ = p is approximately satisfied. This image may have been obtained

with any reconstruction algorithm (e.g. FBP or SIRT).

Put B = {b : vb = ρ}, the set of pixels belonging to the dense object, i.e.

the set of pixels to be found by the algorithm. One seeks to approximate B by

applying a threshold operation to v. Let τ̃ be a candidate threshold. Define

B̃ = {b : ṽb ≥ τ̃}, the estimated set of pixels of the homogenous, dense object.

Define Ã = {a : ṽa < τ̃}, complementary to B̃, the estimated set of pixels of the

background. Let s̃ = (s̃j) ∈ Rn denote the dense object segmentation based on

the estimated segmentation B̃:

s̃j =

{
0, if j ∈ Ã
ρ, if j ∈ B̃

, j = 1, . . . , n.
�� ��3.8

Based on τ̃ , p can be divided into two parts: a part that belongs to the dense

object: Ws̃, and a part that belongs to the background of image v. The second

part is called the residual sinogram of the region Ã and is given by:

pÃ := p−Ws̃.
�� ��3.9

The Segmentation Inconsistency of any segmented image s̃ with only two grey

levels (0 for background pixels and ρ for foreground pixels), is defined as:

SIC(s̃) = ICÃ(pÃ) := ||WSÃpÃ − pÃ||
2
R.

�� ��3.10

In the following, it is argued and demonstrated that SIC (s̃) is a useful measure

for determining the quality of a segmentation s̃.

� Suppose that the reconstructed set B̃ is an overestimation of B, i.e. B ⊂ B̃.

This typically occurs if τ̃ is chosen too low. Put ẽ := s̃− vB̃ , a vector that

contains the exact overestimation of the dense object. This vector is non-

zero only for pixels in B̃ \B, and is strictly positive in this region because

∀j ∈ B̃\B : vj < ρ. The residual sinogram can then also be computed as

follows:

pÃ := WvÃ −Wẽ.
�� ��3.11

As the set of Ã-consistent sinograms is a linear subspace of the set of all

sinograms, pÃ is Ã-consistent if and only if Wẽ is Ã-consistent, i.e. there

exists an image x̃ ∈ Rn such that Wx̃ = Wẽ and xj = 0 for all j /∈ Ã.

For any image v̄ ∈ Rn and any set Ā ⊂ {1, . . . , n}, let v̄Ā be an image that

is equal to v̄ for all pixels j ∈ Ā and 0 for all pixels j /∈ Ā.

If both the number of projections and the region B̃ \B are small, it may
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occur that such an image x̃ exists, resulting in two different segmentations

for which the residual sinogram is consistent. However, as the number of

projections increases and the difference between B̃ and B becomes larger,

it becomes highly unlikely that the residual sinogram is still consistent. In

fact, the Ã-inconsistency typically increases as B̃ is made larger. This is

demonstrated in Section 3.4.
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Figure 3.2: The relation between the number of fixed pixels and the SIC after 10 iterations,
for a Shepp-Logan phantom of size 256×256 and 100 equiangular parallel beam projections.

� Now suppose that the reconstructed set B̃ is an underestimation of B, i.e.

B̃ ⊂ B. This typically occurs if τ̃ is chosen too high. In that case, the residual

sinogram pÃ will be Ã-consistent. Here the experimental convergence prop-

erties of the SIRT algorithm can be used effectively. As the segmented dense

object becomes smaller (i.e. the threshold τ̃ is increased), the background

Ã becomes larger, resulting in slower convergence for the iterative SIRT al-

gorithm that is applied to those pixels. If the reconstruction is terminated

after a fixed number of iterations, the computed SIC(s̃) will therefore gen-

erally increase along with the threshold τ̃ . Fig. 3.2 shows an experimental

confirmation of this algorithm property. For a Shepp-Logan phantom image

of 256×256 pixels using 100 projections, an increasingly large random subset

of pixels was kept fixed at their true values, while computing the SIC(s̃)

for the remaining pixels. A strictly decreasing relation between the size of Ã

and the computed segmentation inconsistency can be observed.

� As a result of reconstruction errors and artefacts, there may be a threshold

interval where neither B ⊂ B̃ nor B̃ ⊂ B. In that case, there is an increase of

segmentation inconsistency due to the false positive pixels, the effect proven

in the first item of this list. However, the effect explained in the second

item of this list will be somewhat cancelled out due to a mixture of false

negatives and false positives, where the size of the segmented region is about
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the same as the original dense object. Experimental results in Section 3.4

suggest that the segmentation inconsistency measure can still be used as an

effective measure for the segmentation quality within this range as well.

In summary, to determine the optimal dense segmentation threshold, two prop-

erties of the pseudo-inconsistency measure are exploited. If the size of the dense

object is overestimated, the residual sinogram is typically Ã-inconsistent, which is

detected by the pseudo-inconsistency measure. If, on the other hand, the dense

object is underestimated, the residual sinogram is always Ã-consistent, yet con-

vergence properties of the SIRT algorithm favours a larger segmented region. It

can therefore be expected that the SIC is minimal when B̃ and B are equal.

3.3.2 Grey level estimation

The SIC concept of the previous subsection is based on the assumption that the

grey level ρ of the dense object is known. In practice, this assumption is generally

not valid. In this section, the SIC concept is extended by including the estimation

of ρ.

Define t̃ = (t̃j) ∈ Rn, the binary image corresponding to the segmentation B̃:

t̃j =

{
0, if j ∈ Ã
1, if j ∈ B̃

.
�� ��3.12

Note that, Ws̃ = ρWt̃. Let ρ̃ be a candidate grey level used to compute the

residual sinogram. Assume that B̃ ⊂ B. The residual sinogram is then given by

pÃ = p− ρ̃Wt̃ = p− ρWt̃− (ρ̃− ρ)Wt̃ = WvÃ − (ρ̃− ρ)Wt̃.
�� ��3.13

In Eqn. 3.13, WvÃ is Ã-consistent by definition. Therefore, for the residual sino-

gram to be Ã-consistent, Wt̃ must be Ã-consistent. That is, there must exist an

image x̃ ∈ Rn such that Wx̃ = Wt̃ and xj = 0 for all j ∈ B̃. Again, if the number

of projections and the region B̃ are both small, it may occur that such an image

x̃ exists, resulting in two different grey levels for which the residual sinogram is

consistent. However, as the number of projections is increased and the region B̃

becomes larger, it becomes highly unlikely that the residual sinogram is consistent.

This means that if B̃ ⊂ B, the SIC concept defined in the previous subsection can

also be used to estimate the grey level ρ, by computing the SIC over all grey levels

ρ̃, and choosing the grey level for which it is minimal. If B̃ * B, characterizing

the SIC as above becomes more complex. Still, also in this case, the SIC measure

can be employed for threshold selection with unknown ρ, as demonstrated in the

experimental results of Section 3.4.
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The grey level ρ for which the SIC is minimal can be computed efficiently by

exploiting the linearity of the SIRT algorithm:

SIC(ρ̃t̃) = ||WSÃ(p− ρ̃Wt̃)− (p− ρ̃Wt̃)||2R.
= ||(WSÃp− p)− ρ̃(WSÃWt̃−Wt̃)||2R
= (Wt̃−WSÃWt̃)R(Wt̃−WSÃWt̃)T ρ̃2

+(WSÃp− p)R(WSÃp− p)T

+2(Wt̃−WSÃWt̃)R(WSÃp− p)T ρ̃.
�� ��3.14

The optimal value ρ̃opt is found where the first derivative of Eqn. 3.14 van-

ishes. As SIC (ρ̃t̃) is by definition non-negative, the minimum of this quadratic

polynomial in ρ̃ can be found where the derivative is zero:

ρ̃opt =
(Wt̃−WSÃWt̃)T (p−WSÃp)

(Wt̃−WSÃWt̃)T (Wt̃−WSÃWt̃)
.

�� ��3.15

In Fig. 3.3, a pseudo code description of a single SIC evaluation is given.�

�

�

�

Input: reconstructed image ṽ = Sp such that Wṽ ≈ p

Ã = {a : ṽa < τ̃} ;
f o r j = 1 : n

i f j ∈ Ã
t̃j = 0 ;

e l s e

t̃j = 1 ;
end

end

pt̃ = Wt̃ ;
pÃ = p− pt̃ ;
q = WSÃp , r = WSÃpt̃ ;

ρ̃ =
(pt̃−r)(p−q)T

(pt̃−r)(pt̃−r)T
; ;

p′
Ã

= pÃ − ρ̃r ;

s̃ = ρ̃t̃ ;
SIC(s̃) = ||pÃ − p′Ã||

2
R ;

Figure 3.3: Pseudo code for the computation of a single SIC measure.
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3.3.3 The SICM algorithm

The Segmentation Inconsistency Minimization (SICM) algorithm combines grey

level estimation with segmentation inconsistency computation. It uses the segmen-

tation inconsistency found after a fixed number of SIRT iterations as a quantitative

measure for the quality of the selected threshold. To find the threshold τopt (the

one where SIC (s̃) is minimal), the Nelder-Mead simplex search method [17], an

unconstrained derivative-free optimization method, is used.

Fig. 3.5 shows a flowchart of the calculation of the segmentation inconsistency

for a certain threshold τ̃ . It should be noted that for each threshold evaluation

three SIRT reconstructions are required. Two for the calculation of ρ̃: SÃWt̃

and SÃp, and one for the calculation of SIC (s): SÃpÃ. However, because pÃ =

p− ρ̃Wt̃, one can easily compute SÃpÃ by subtracting ρ̃SÃWt̃ from SÃp, thereby

reducing the number of SIRT reconstructions per threshold evaluation to two.

3.4 Experiments

3.4.1 Simulation studies

(a) (b) (c) (d)

Figure 3.4: Simulated phantom images of size 512×512. (a) Femur of a rat in a surrounding
of various densities (b) Slice of human head with differently shaped objects (c) Slice of human
head with a few small dental fillings (d) Foam object with metal marker particles that are
often used for image registration.

Simulation experiments were performed based on four simulated phantom im-

ages of size 512×512 (Fig. 3.4). All phantom images contain at least one area

with a constant, maximal grey level and a background with a continuous set of

lower grey levels. Fig. 3.4a represents a slice of a rat femur in a gradient-filled sur-

rounding object. The femur contains large as well as small trabecular structures.

Fig. 3.4b represents a slice of a human head filled with 3 differently shaped large

objects representing implants. Fig. 3.4c represents a different slice of a human
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Figure 3.5: Schematic overview of the Segmentation Inconsistency Minimization (SICM)
algorithm. In the shown example, the threshold τ̃ is chosen too low. It can be observed that
the residual sinogram pÃ is quite different from WSÃpÃ, indicating a large segmentation
inconsistency.

head. It has a few very small dense objects (dental implants). Finally, Fig. 3.4d

represents a slice of a foam-like structure with a large amount of small metal par-

ticles. Each phantom image thus presents a different application and indeed a

different segmentation problem (small objects versus large objects, many objects

versus only a few, different type of background, . . . ).

First, the SIC and the relative number of misclassified pixels (rNMP) were

evaluated as a function of the threshold value. The rNMP is defined as the total

number of misclassified pixels divided by the total number of pixels belonging to

the dense objects. To be a useful measure for threshold selection, the minimum

of the SIC should correspond well with the minimum of the rNMP. For all phan-

toms of Fig. 3.4, parallel beam sinograms were simulated using 180 equally spaced

projection angles in [0, π). Grey level reconstructions were computed using 300

iterations of the SIRT algorithm described in [18]. Then, for a range of global

threshold values, segmentations were created and the rNMP and SIC values were

computed. For the SIRT reconstructions of the SIC measurements, 300 iterations

were used. Also computed were the rNMP with the Otsu’s clustering method [12],

k-means clustering [19] and Expectation Maximization (EM) [20] segmentation
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Figure 3.6: (a,b) SIC -scores as a function of the threshold values (c,d) rNMP as a function
of the threshold values.

threshold value rNMP

phantom optimal SICM optimal SICM Otsu k-means EM

Fig. 3.4a 190.38 195.22 0.041 0.046 0.069 0.069 0.072
Fig. 3.4b 172.31 171.80 0.010 0.012 0.016 0.018 0.174
Fig. 3.4c 208.72 205.30 0.102 0.123 0.898 0.112 0.107
Fig. 3.4d 164.80 167.40 0.076 0.076 0.988 0.091 0.224

Figure 3.7: Numerical results for the first simulation experiment.
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Figure 3.8: The rNMP as a function of the contrast between the background and the dense
object in the original image phantom.

methods. All these methods require that the user specifies the number of seg-

mentation partitions. This additional prior knowledge is not always available and

depends on the scanned object. In these experiments, the number of partitions

was different for each phantom image and was chosen such that the segmentation

methods from the literature, in general, generated the lowest rNMP. 6 partitions

were used for phantom image Fig. 3.4a; 4 for Fig. 3.4b; 8 for Fig. 3.4c and 7 for

Fig. 3.4d.

Fig. 3.6 shows the SIC -score and rNMP graphs for phantom images Fig. 3.4b

and Fig. 3.4d. It can be observed that the distances from the minima of the SIC -

curves to the minima of the rNMP-curves (the squares and circles in Fig. 3.6,

respectively) were very small. In Fig. 3.7, the results are shown numerically. The

thresholds suggested by the SICM method were accurate approximations of the

optimal thresholds, i.e. the thresholds for which the rNMP is minimal (found with

an exhaustive search of the search space)1. Furthermore, the accuracy of the SICM

segmentation was close to the optimal scenario. For phantoms Fig. 3.4a,b,d, the

1When using any global threshold technique, a lower number is not possible.
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Figure 3.9: The rNMP as a function of the number of projection angles.

other segmentation methods resulted in a substantially higher rNMP. For Fig. 3.4c

the results of SICM were comparable to the best performing alternatives.

In the following three series of experiments the effect of various tomographic

conditions on the segmentation performance of the SICM algorithm is investigated.

The resulting rNMP was compared with that of the optimal threshold and those

of the other previously used segmentation methods.

� Firstly, the contrast between the maximal density of the background and the

density of the continuous dense object was varied. This contrast is defined

as ρ
maxj∈Avj

. As this contrast decreases, the grey level distribution of the

dense object in the tomographic reconstruction overlaps more and more with

that of the background. One can therefore expect that the accuracy of the

segmentations will also decrease.

Fig. 3.8 shows the rNMP as a function of the phantom contrast for the opti-

mal global threshold, the SICM thresholding method and the other clustering

algorithms. In general, the SICM curve accurately approximated the curve

of the optimal threshold, whereas the other methods were much less stable

and often did not provide a decent estimation.
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Figure 3.10: The rNMP as a function of the incident beam intensity, I0.

� Secondly, the number of projection angles was reduced. In practice,

such a reduction decreases both scan time and radiation dose. However,

it is expected that for a low angle count the results are unreliable as the

system will become more and more underdetermined. The results, shown in

Fig. 3.9, indeed confirm that the rNMP increased drastically as the number

of projection angles was decreased beyond a certain minimum number — a

number that is specific for each phantom. However, the SICM method still

lead to significantly more accurate segmentations than other methods.

� Finally, low radiation dose scans were simulated by applying Poisson noise

with a varying source intensity to the sinograms. The intensity of the

noise is related to the incident beam intensity, I0. The results visible in

Fig. 3.10 indicate that the presence of noise on the projection images had

little effect on the ability of the SICM algorithm to estimate accurate global

threshold values.

It should be noted that in all reported experiments, both on simulated and

on experimental data, 300 iterations were computed for each SIRT reconstruction

that is part of the SIC computations. This number is based on empirical findings.
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Figure 3.11: SIRT reconstruction of a cochlear implant in surrounding tissue.

(a) Otsu
360 angles
ground truth

(b) Otsu
72 angles
rNMP=0.4452

(c) SICM
360 angles
rNMP=0.0750

(d) SICM
72 angles
rNMP=0.2074

Figure 3.12: Dense object segmentations for the cochlear implant experiment.

If the number of iterations is too low, the pseudo-inconsistency (computed by a

fixed number of SIRT iterations) does not match well with the true inconsistency.

On the other hand, if the number of iterations is too high, one can no longer make

use of the SIRT reconstruction technique to determine if B̃ ⊂ B.

3.4.2 Experimental studies

The proposed algorithm was also applied on experimental µCT data. Fig. 3.11

shows a reconstructed image of a cochlear implant in surrounding tissue, acquired

with a SkyScan 1076 µCT scanner using 360 projection angles at a detector res-

olution of 12µm. The standard SkyScan NRecon software package was used to

correct for ring- and beam hardening artefacts.

The goal is to accurately locate the small cochlear implant. However, validat-

ing the quality of these segmentations is difficult. Notice that in Fig. 3.12 the
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(a) FBP
900 angles

(b) manual
900 angles

(c) SICM
450 angles

(d) k-means
450 angles

Figure 3.13: Reconstructions of the experimental mandible dataset.
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Figure 3.14: The rNMP as a function of the angle count for the mandible experiment.

segmentations provided by Otsu’s method and SICM with 360 projection angles

are very similar, indicating that for this high number of angles the segmenta-

tion result does not depend strongly on the particular segmentation method. The

Otsu’s segmentation with 360 projection angles was therefore considered as the

ground truth image to which the SICM and Otsu’s segmentation were compared

with using only 72 projection angles. In Fig. 3.12, it is clear that if the number of

projection angles was lowered, the SICM segmentations were much more accurate

than common Otsu segmentations.

Fig. 3.13a shows an FBP reconstruction of a slice through a human mandible.

This image was recorded using a SkyScan 1173 µCT scanner using 900 projection
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angles at a detector resolution of 50 µm. Important in this application is the

accurate segmentation of the cortical and trabecular bone. The SICM algorithm

and the other standard methods from the literature were again applied, compar-

ing the rNMP with respect to a manually segmented image, shown in Fig. 3.13b.

The experiments were repeated using a decreasing number of projection angles,

simulating low dose scans. Fig. 3.13 clearly shows that the SICM method out-

performed the other methods. Fig. 3.13c and Fig. 3.13d respectively show the

SICM and k-means segmentation using 450 projection angles. The SICM segmen-

tation is an accurate approximation of the manual segmentation and indeed of the

reconstructed FBP image as almost every detail of the trabeculae was present.

3.5 Conclusions

Accurate image segmentation is a difficult problem, in particular if one needs to

segment objects that are very detailed or very small with respect to the image

resolution. This is especially true in tomography if the image on which the seg-

mentation is based is polluted by reconstruction errors or artefacts. Segmentation

errors generally occur at the edges of the object where a hard edge is usually

blurred in the reconstruction image. Popular methods, such as global clustering

methods (Otsu, k-means, EM) or local neighbourhood methods (region growing,

watershed segmentation) all have different strategies to define where exactly the

object edges are located, making it difficult to measure the accuracy of these seg-

mentations in practice. Fortunately, tomography inherently provides a way to

counter this problem as projection data is available that can be used to improve

or optimize standard segmentation techniques.

In this chapter, a novel method for finding a global threshold to accurately

locate dense objects in a continuous surrounding in a tomographic reconstruction

has been presented. Contrary to existing methods, the Segmentation Inconsistency

Minimization (SICM) method is not only based on the reconstructed image, but

also on the available projection data. For an optimal segmentation, the residual

sinogram (i.e. the sinogram of the part of the image that does not belong to the

dense object) is consistent. The inconsistency can be measured by applying a linear

iterative reconstruction technique (such as SIRT) to the pixels not belonging to

the dense object, and by comparing the forward projection of this reconstruction

to the residual sinogram.

Experiments were performed on both simulated and experimental data. From

them, it can be concluded that the SICM algorithm generally finds a good approx-

imation of the optimal global threshold. In a large majority of the experiments

performed, the SICM method outperformed other thresholding methods.

One downside of the proposed method is its computational cost. Whereas
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methods that work only on the reconstruction image are typically very fast, the

SICM method has an optimization routine where each function evaluation requires

two SIRT reconstructions. For a full optimization of a 512×512 image with 180

projection angles, on a system with a modern 3 GHz Intel CPU, the typical com-

putation time for a single SIC evaluation was 10 minutes, and 221 minutes for a

full optimization. To drastically lower the computation time, one can resort to

GPU programming using the CUDA programming language. The experiments of

Section 3.4 were all performed on an NVIDIA GeForce GTX 480 GPU, on which

the average computation time for a single SIC evaluation was 13 seconds, and for

a full optimization up to 4.5 minutes.
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—There is a theory which states that if ever anyone discovers
exactly what the Universe is for and why it is here, it will
instantly disappear and be replaced by something even more
bizarre and inexplicable. There is another theory which states
that this has already happened.

Douglas Adams, The Restaurant at the End of the
Universe, 1980. 4
The Discrete Algebraic

Reconstruction Technique (DART)
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CHAPTER 4. THE DISCRETE ALGEBRAIC RECONSTRUCTION
TECHNIQUE (DART)

4.1 Introduction

If the amount of available projection data is limited (e.g. with few-view tomog-

raphy, a limited angular range or data truncation) the reconstruction problem is

ill-posed and conventional algebraic reconstruction methods tend to find solutions

that do not correspond to the measured object. It then makes sense to exploit

prior knowledge about this object. Such prior knowledge can come in many forms.

� If only a limited number of pixels do not represent air, the image is said to

be sparse with respect to the pixel basis. Research in the field of compressed

sensing has shown that sparse images can be reconstructed from a small

number of measurements, provided that the measurements satisfy certain

randomization properties [1, 2, 3].

� Structures often have a homogeneous density and are very large with respect

to the pixel size. In that case the gradient image is very sparse. Reconstruc-

tion is then referred to as a total variation minimization problem [4].

� Noise statistics can be taken into account with Expectation Maximization

(EM) algorithms.

� If a scanned object contains known components such as screws or implants,

their shapes can be modelled into the reconstruction process using likelihood-

based methods [5, 6].

� Attenuation values are by definition always positive.

� Scanned objects — or parts of it — are usually piecewise constant and ho-

mogeneous.

� The exact attenuation factor of the materials present in the object — and

thus also the exact grey level in the reconstructed image — can be known in

advance.

In this chapter, an algorithm is considered that exploits the last two items of

this list. Consider an object that consists of a single homogeneous material. Its

reconstructed image should then ideally contain only two grey levels: one for the

background and one for the object. Conventionally, this constraint is enforced

posteriori to the reconstruction process (Fig. 4.1a). In Part I, segmentation tech-

niques were discussed that searched for the global threshold values such that the

resulting segmented image adhered the most to the measured data (Fig. 4.1b).

While it was shown that this approach indeed resulted in more accurate images

than by using conventional segmentation techniques, reconstruction artefacts (e.g.

due to limited data) still defined a lower bound on the achievable accuracy.
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acquisition data 
preprocessing reconstruction segmentation analysis

(a) conventional

acquisition data 
preprocessing reconstruction segmentation analysis

(b) tomographic segmentation

acquisition data 
preprocessing

discrete
reconstruction analysis

(c) discrete tomography

Figure 4.1: (a) Conventional workflow of a typical tomographic application. (b) Workflow
with tomographic segmentation. (c) Workflow with discrete tomography.

In Section 2.4, a local thresholding scheme was discussed in which threshold val-

ues could differ in various regions of the reconstruction grid. It was also observed

that, while this method indeed increased the achievable accuracy, it vastly in-

creased the size of the search space and made the optimization problem much more

difficult to solve. The use of additional prior knowledge is thus recommended. Note

that, if each pixel in the reconstruction domain has its own threshold value, this

local thresholding scheme does, in theory, not require an accurate reconstructed

image. The reconstructed image can even be a black image. A threshold can then

be set to a negative value for a pixel belonging to the foreground and to a positive

value for a pixel belonging to the background. This method is then no longer just

a segmentation technique, but in effect also a reconstruction technique (Fig. 4.1c).

Such a solution is called discrete tomography. Discrete tomography concerns the

accurate reconstruction of discrete-valued functions from multiple projections1.

Originally, discrete tomography was considered a combinatorial problem in

which binary matrices were to be determined by its row and column sums [7].

Recent advances have resulted in a number of discrete tomography techniques

ready for use in practical applications [8]. In [9], a smoothness prior and a primal-

dual subgradient algorithm are applied to provably converge to a spatially coherent

binary solution that fits the projection data. In [10], a multilevel approach is

proposed where Gibbs priors are used to model the distribution of the segmented

1It should be noted that the literature supports conflicting definitions of the term “discrete
tomography”. For example, it has also been used for the reconstruction of binary objects on a
discrete domain.
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reconstructions.

In [11], an iterative discrete tomography algorithm was introduced. The Dis-

crete Algebraic Reconstruction Technique (DART) alternates between regular al-

gebraic reconstruction iterations and a discretization step in which it is assumed

that the grey levels corresponding with each material are known. This approach is

not limited to binary images, but also works with objects that contain several grey

levels2. Although DART is a heuristic algorithm without guaranteed convergence

properties, it has demonstrated the ability to compute highly accurate reconstruc-

tions from limited data in a range of applications, such as electron tomography

[12, 13] and to reconstruct grain maps from X-ray diffraction data [14].

The chapter is structured as follows. In Section 4.2, the concept and mathe-

matical formulation of DART is given. Section 4.3 then presents an experimental

validation of DART on a variety of simulated and experimental datasets. In Sec-

tion 4.4, the projection difference is proposed as a simple cost function that can

be used by an optimization technique to automatically estimate the optimal pa-

rameters. Finally, Section 4.5 concludes this chapter.

4.2 Discrete Algebraic Reconstruction Technique

Here, DART is explained in detail. Section 4.2.1 introduces the required notation,

Section 4.2.2 discusses the general concept of DART, and Section 4.2.3 presents

the mathematical foundation of the algorithm.

4.2.1 Notation

As in the previous chapters, define p = (pi) ∈ Rm, the measured projection data,

v = (vj) ∈ Rn, the object function, andW = (wij) ∈ Rm×n, the projection matrix

such that:

Wv = p.
�� ��4.1

Let S(t) : Rm → Rn denote the linear operator that corresponds with t iterations of

a non-specified algebraic reconstruction technique (e.g. SIRT or CGLS), starting

with v̄(0) = 0:

v̄ = S(t)p̄.
�� ��4.2

An algebraic reconstruction algorithm can also be performed on a certain subset

A ⊂ {1, . . . , n} of the reconstruction grid by removing the columns of W that are

not in A. Consider the case where A = {1, . . . , n} \ {j}, with j ∈ {1, . . . , n}.
2There is no real upper limit on the number of materials that can be used in a DART recon-

struction. However, the more grey levels are present, the lower the achievable accuracy will be.
Depending on the complexity of the scanned structures, up to 4 or 5 grey levels are feasible.
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Eqn. 4.1 then becomes:


...

...
...

...

wi,1 . . . wi,j−1 wi,j+1 . . . wi,n
...

...
...

...





v1

...

vj−1

vj+1

...

vn


=

 p1

...

pm

 .
�� ��4.3

Let S(t)
A : Rm → Rn denote the linear operator that corresponds with t iterations

of a non-specified algebraic reconstruction technique, restricted to a set of pixels

A ⊂ {1, . . . , n}, starting with v̄(0) = 0:

v̄ = S(t)
A p̄.

�� ��4.4

A global thresholding scheme on a certain image v̄ ∈ Rn is defined as follows.

Let l denote the number of distinct grey levels in the thresholded image. Define the

segmentation function Cτ ,ρ(v̄) : Rn → {ρ1, . . . , ρl}n as the function that assigns a

value in the vector of grey levels ρ = (ρ1, . . . , ρl)
T to each pixel of the reconstructed

image, according to threshold values τ = (τ1, . . . , τl−1)T :

Cτ ,ρ(v̄j) =


ρ1 v̄j < τ1
ρ2 τ1 ≤ v̄j < τ2
...

ρl τl−1 ≤ v̄j

, j = 1, . . . , n.
�� ��4.5

4.2.2 Concept

Consider the case presented in Fig. 4.2, where a binary 512× 512 phantom image

(Fig. 4.2a) is reconstructed from only 5 parallel beam projections. The reconstruc-

tion problem is then very ill-posed and multiple solutions are consistent with the

projection data. In that case, the SIRT reconstruction (Fig. 4.2b) converges to the

solution that is closest to the initial image [15]. A segmentation of the reconstruc-

tion is shown in Fig. 4.2c. One should note that, while this segmentation is by no

means accurate, the original phantom shape is somewhat approximated. Indeed,

as is visible in Fig. 4.2d, all misclassified pixels are near the object border.

This observation lies at the core of the DART algorithm. Combined with prior

knowledge of the grey levels, the reconstruction problem can then be significantly

reduced in size. From a certain estimation (Fig. 4.3a) the boundary pixels are

determined (Fig. 4.3b). The contribution of the non-boundary pixels — those
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(a) phantom (b) SIRT (c) S-SIRT (d) difference

Figure 4.2: (a) A binary 512×512 phantom image. (b) Classical SIRT reconstruction from
5 equiangular parallel beam projection directions. (c) Segmentation of (b). (d) Difference
between (a) and (c). Misclassified pixels mostly occur near the edges of the object.

(a) iteration 1
rNMP=0.128

(b) boundary (c) reconstruction (d) iteration 2
rNMP=0.120

(e) iteration 5
rNMP=0.117

(f) iteration 10
rNMP=0.087

(g) iteration 25
rNMP=0.013

(h) iteration 50
rNMP=0.0001

Figure 4.3: DART reconstructions of Fig. 4.2a from 5 equiangular parallel beam projections.

which are assumed to have the correct grey level — is then subtracted from the

original projection data. This residual sinogram is reconstructed in the boundary

pixels only (Fig. 4.3c), a reconstruction problem that is less ill-posed as before: the

number of unknown values has been significantly reduced whereas the number of

projection values has remained the same. The new reconstruction is subsequently

segmented and used to update the boundary pixels of the original segmentation
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Figure 4.4: Schematic overview of the Discrete Algebraic Reconstruction Technique (DART)
method.

(Fig. 4.3d). This process is then iteratively repeated (Fig. 4.3e-h). In Fig. 4.4,

DART is schematically visualized and in Fig. 4.5, pseudo code is provided.

4.2.3 In-depth view

Initially, an approximate reconstruction image, v(0), is computed using any alge-

braic reconstruction technique with a certain number of iterations, t0:

v(0) = S(t0)p.
�� ��4.6
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Subsequently, DART follows an iterative scheme with the following steps. Put

k = 0 the iteration number of DART.

1. The current reconstructed image, v(k), is segmented to obtain an image that

contains only grey levels from the vector ρ = (ρ1, . . . , ρl)
T . A simple global

thresholding scheme with threshold values τ = (τ1, . . . , τl−1)T is used. Let

s(k) = (s
(k)
j ) ∈ {ρ1, . . . , ρl}n denote that segmented image:

s(k) = Cτ ,ρ(v(k)).
�� ��4.7

More advanced segmentation methods, such as the PDM method of Chap-

ter 2, may lead to improved accuracy. This is covered in Chapter 6.

2. The set, U (k) ⊂ {1, . . . , n}, of update pixels is determined. This set contains

pixels that are likely to be misclassified in the current segmented image. The

pixels in the complementary set, F (k) = {1, . . . , n} \U (k), of fixed pixels are

those that will be removed from the reconstruction equation. U (k) contains

two types of pixels.

� As demonstrated in Fig. 4.2d, most errors occur near the edges of the

object. All boundary pixels of the current segmented image are there-

fore added to U (k). A pixel is considered to be a boundary pixel if its

value is different from at least one of its neighbours:

U (k) =
{
j : ∃ h ∈ N(j) such that s

(k)
j 6= s

(k)
h

}
.

�� ��4.8

In Eqn. 4.8, N(j) ⊂ {1, . . . , n} denotes a certain neighbourhood win-

dow of pixel j. Various neighbourhood definitions can be used, e.g.

8-connectivity for 2D images. In [16], a variation of DART, called

Adaptive DART (ADART), was introduced. In ADART, the required

number of pixels from h ∈ N(j) for which s
(k)
j 6= s

(k)
h is increased each

time a certain convergence criterion is met.

� Each non-boundary pixel is added to U (k) with a certain probability

0 ≤ r ≤ 1. This increases the accuracy of DART reconstruction in case

of noisy projection data.

3. To restrict the set of unknowns in Eqn. 4.1 to those in the set of update pixels,

the forward projection of the fixed pixels must first be subtracted from the

measured projection data. Let f (k) ∈ Rn denote the current segmented
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�

�

�

�

v = S(t0)p ;
whi le stop criterion is not met

s = Cτ ,ρ(v) ;
U = {} ;
f o r j = 1 :n

i f ∃h ∈ N(j) : sj 6= sh or rand ( ) < r
fj = 0 ;
U = U ∪ j ;

e l s e
fj = sj ;

end
end
r = p−Wf ;

v′ = f + S(t)
U r ;

f o r j = 1 : n
vj = (1−b)v′j + (b/n̄)

∑
h∈N(j) v

′
j ;

end
end

Figure 4.5: Pseudo code for the Discrete Algebraic Reconstruction Technique (DART).

image in which all update pixels are set to zero, i.e.:

f
(k)
j =

{
s

(k)
j j /∈ U (k)

0 j ∈ U (k)
.

�� ��4.9

The residual sinogram, r(k) ∈ Rm, is then given by:

r(k) = p−Wf (k).
�� ��4.10

4. The current reconstructed image is updated by the reconstruction of the

residual sinogram, restricted to the set of update pixels:

v(k+1) = f (k) + S(t)

U(k)r
(k).

�� ��4.11

In Eqn. 4.11, t denotes the number of iterations that are performed to re-

construct the residual sinogram. If certain pixels are misclassified in step

1, the residual sinogram is inconsistent. In that case, there does not exist
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an exact solution to Eqn. 4.11, leading to erroneous values in the updated

reconstruction. To counter this, a smoothing filter of intensity b ∈ [0, 1] is

applied to v(k+1) as a means of regularization:

v
(k+1)
j := (1− b)v(k+1)

j +
b

n̄

∑
h∈N(j)

v
(k+1)
h .

�� ��4.12

In Eqn. 4.12, N(j) ⊂ {1, . . . , n} denotes the neighbours of pixels j. The size

of N is denoted by n̄.

5. Increase k by 1 and return to step 1 until some termination criterion is

reached.

4.3 Experiments

In this section, a range of experiments is described that was carried out to evaluate

DART. In Section 4.3.1, results are presented on simulated projection data. In

Section 4.3.2, experimental datasets were used.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Simulated phantom images that were used to validate DART.
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4.3.1 Simulation studies

In the simulation studies, eight phantom images were considered.

(a) Fig. 4.6a: A 512× 512 binary phantom image of a concave blob-like object.

(b) Fig. 4.6b: A 512×512 phantom image representing an electron tomography ex-

periment of a bamboo-like carbon nanotube that was formed around a Copper

catalyst particle. This data is based on the experiments reported in [12].

(c) Fig. 4.6c: A 512× 512 binary phantom image of several complex shapes.

(d) Fig. 4.6d: A phantom containing a few different shapes and three grey levels.

This is an analytical phantom, i.e. its projection data was generated on 512

detector cells with the well-known projection formulas of squares and ellipsoids.

(e) Fig. 4.6e: A 512× 512 binary phantom image of a slice through a rat femur.

(f) Fig. 4.6f: A 512× 512 phantom image of a slice through a rat femur. A third

grey level, representing the surrounding tissue, was added. This value was

exactly half that of the bone grey level.

(g) Fig. 4.6g: A three-dimensional 512× 512× 100 phantom image of a rat femur.

This dataset was based on an actual ex-vivo µCT scan. It contained a third

grey level, representing paper that was used to hold the bone in place. This

value was one fourth of the bone grey level.

(h) Fig. 4.6h: A phantom representing a polyurethane foam. The thickness of the

cell edges varied from 2 to 5 times the detector width. Projection data (for

512 detector cells) was created analytically. That way, a partial volume effect

is simulated into the projection data.

Reconstructions were computed with FBP, SIRT (500 iterations) and DART

(200 iterations). The FBP and SIRT reconstructions were subsequently segmented

using Otsu’s clustering method [17]. These segmented images are hereafter referred

to as S-FBP and S-SIRT. For DART, the parameters were set to the following

values: r = 0.1, b = 0.1, t = 10, t0 = 500, S=SIRT. The grey levels ρ were set to

the levels measured in the phantom images and the threshold values τ were chosen

in the middle of each pair of consecutive grey levels.

To assess the quality of the segmented images, the relative Number of Misclas-

sified Pixels (rNMP) was calculated. This is the ratio of the number of pixels that

is classified into an incorrect partition to the total number of non-zero pixels in

the phantom images. For the analytical phantom images Fig. 4.6d and Fig. 4.6h,

the rNMP was approximated by resizing the 512 × 512 reconstructed images to

8192 × 8192 and comparing them to high resolution rasterized versions of the

phantom images.
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(a) FBP (b) S-FBP
rNMP=0.470

(c) SIRT (d) S-SIRT
rNMP=0.074

(e) DART
rNMP=0.0008

(f) FBP (g) S-FBP
rNMP=0.437

(h) SIRT (i) S-SIRT
rNMP=0.123

(j) DART
rNMP=0.054

(k) FBP (l) S-FBP
rNMP=0.760

(m) SIRT (n) S-SIRT
rNMP=0.276

(o) DART
rNMP=0.016

Figure 4.7: (a-e) Reconstructions of Fig. 4.6a from 6 projection angles. (f-j) Reconstructions
of Fig. 4.6d from 20 projection angles. (k-o) Reconstructions of Fig. 4.6f from 12 projection
angles.

4.3.1.1 Few-view tomography

In a first set of experiments, reconstructions were made of all of phantom images in

Fig. 4.6 from a varying number of equiangular projection angles. Fig. 4.7 shows a

selection of reconstructed and segmented images of three different phantom images

with a low number of projection angles. Clearly, DART provided segmented images

that were of a far higher quality than those of the conventional techniques.

This can also be seen in Fig. 4.8, where the rNMP is plotted for all phantom

images as a function of the number of projection angles. If there were many projec-

tion directions, the difference between the reconstruction techniques was negligible.

However, as the number of projection angles was reduced, S-SIRT generally started

outperforming S-FBP and DART generally started outperforming S-SIRT. It can
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(d) Fig. 4.6d
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(e) Fig. 4.6e
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(f) Fig. 4.6f
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(h) Fig. 4.6h

Figure 4.8: The rNMP of reconstructions of Fig. 4.6 is plotted as a function of the number
of projection directions.
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be observed that, for S-SIRT and S-FBP, the accuracy decreased gradually as the

number of projections was reduced. The DART reconstructions, however, tended

to remain more or less equally accurate up to a certain point where the projection

data was so limited that even the exploitation of prior knowledge no longer sufficed

to obtain high quality approximations. After that point, reconstruction errors in-

creased rapidly. It should be noted that the location of this point depends on the

“complexity” of the dataset. Large piecewise constant shapes such as in Fig. 4.6a

required substantially fewer directions than more complex structures, such as the

trabecular structures in the bone phantoms.

For phantom images Fig. 4.6g and Fig. 4.6h, the quality of the reconstructions

(even for DART) became rapidly insufficient for accurate analysis. This is due to

the fact that the structures in these phantoms were very small with respect to the

detector and pixel size. The set of pixels to update, U (k), was then too large to

sufficiently reduce the reconstruction problem in size. To overcome this problem,

a super-resolution approach is investigated in Chapter 7.

4.3.1.2 Limited angular range

In a second set of experiments, projection data was generated with an increasingly

limited angular range. This type of incomplete data often occurs in electron to-

mography (Section 1.5.1). In Fig. 4.9a-e, reconstructions are shown of Fig. 4.6b

from 180 parallel beam projection angles with a full angular range ([0◦, 180◦]).

Fig. 4.9f-j show reconstructions of the same image from an angular range lim-

ited to [25◦, 155◦]. With the conventional reconstruction techniques, the missing

angular range resulted in clearly visible missing wedge artefacts. Only DART

managed to obtain high quality reconstructions. Similar results can be observed

in Fig. 4.9k-n, where for Fig. 4.6a,b,c,e, the rNMP is plotted as a function of the

angular range.

4.3.1.3 Projection truncation

Incomplete projection data problems also occur when the scanned object is too

large to fit in the field of view (FOV) of the scanner. The projection data is then

said to be truncated. An example is given in Fig. 4.10a and Fig. 4.10b, where

projection data of phantom image Fig. 4.6a is visualized with a sufficiently large

detector array (512 pixels wide) and an insufficiently large detector array (192

pixels wide).

In [18], it is argued that also in these cases DART can provide an accurate so-

lution. Fig. 4.10d-g shows reconstructed images for the projection data pictured in

Fig. 4.10b. The field of view can be identified by the blue ring. Unlike the conven-

tional techniques, DART clearly resulted in very accurate reconstructed images,
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(a) FBP (b) S-FBP
rNMP=0.0006

(c) SIRT (d) S-SIRT
rNMP=0.0030

(e) DART
rNMP=0.0002

(f) FBP (g) S-FBP
rNMP=12.581

(h) SIRT (i) S-SIRT
rNMP=0.6436

(j) DART
rNMP=0.0021
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Figure 4.9: (a-e) Reconstructions of Fig. 4.6b from 180 projections in a full (180◦) angular
range. (f-j) Reconstructions of Fig. 4.6b from 180 equiangular projections in a 130◦ angular
range. (k-n) For reconstructions of four phantom images, the rNMP is plotted as a function
of the angular range (in degrees).
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Figure 4.10: (a) Simulated projection data of Fig. 4.6a with 180 non-truncated equiangular
projections. (b) Simulated projection data of phantom image Fig. 4.6a with 180 truncated
equiangular projections. (c-g) Reconstructions of Fig. 4.6a from the projection data shown
in (b). The FOV is depicted by the blue ring. (h-k) For reconstructions of four phantom
images, the rNMP is plotted as a function of the total detector size.
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Figure 4.11: (a-e) Reconstructions of Fig. 4.6c from 45 equiangular projections with
I0=100000. (f-j) Reconstructions of Fig. 4.6c from 45 equiangular projections with
I0=10000. (k-n) For reconstructions of four phantom images, the rNMP is plotted as a
function of the incident beam intensity, I0.
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even for a high level of truncation. These findings are confirmed in Fig. 4.10h-k,

where for reconstructions of Fig. 4.6a,c,e,f, the rNMP is plotted as a function of

the detector array size.

4.3.1.4 Noisy projection data

For the final set of simulation experiments, Poisson noise was applied and the in-

cident beam intensity, I0, was lowered. In Fig. 4.11a-e, reconstructions are shown

of phantom image Fig. 4.6c from 45 equiangular, high SNR (I0 = 100000) projec-

tion images. Fig. 4.11f-j show reconstructions of the same image from the same

projection directions, but with a low SNR (I0 = 10000). The presence of Pois-

son noise had a clear negative effect on the quality of the DART reconstructions.

However, the accuracy of the DART reconstructions was still superior to that of

the other methods. In Fig. 4.10k-n, the rNMP is plotted as a function of I0 for

reconstructions of Fig. 4.6a (with 20 projections), Fig. 4.6c (with 45 projections),

Fig. 4.6d (with 45 projections) and Fig. 4.6f (with 90 projections).

4.3.2 Experimental studies

DART was also applied on three experimental datasets.

(a) A raw diamond stone (Fig. 4.12a). This scan was performed at Diamcad, a

Belgian diamond processing company that uses computed tomography to per-

form a detailed study of raw stones. Diamonds are an ideal case for discrete

tomography as they consist of only one material and they have a fairly simple

shape. The stone in question was scanned in a Scanco Medical µCT 40 with

a circular cone beam geometry with a 1024× 56 pixel detector. 250 equiangu-

lar projections were recorded in the interval [0, π). Using the manufacturer’s

software, the data was linearized and rebinned to a parallel beam projection

geometry. Here, only a single slice of the projection data is considered (de-

picted by the full pink line in Fig. 4.12a).

(b) An aluminium foam (Fig. 4.12b), recorded with a SkyScan 1172 µCT scanner

with 481 equiangular cone beam projections. The detector resolution was

9.7µm. Prior to reconstruction, the data was corrected for ring artefacts and

beam hardening with the SkyScan NRecon software package. Only the central

slice was considered. Thus, the projection data had a fan beam projection

geometry.

(c) A rat femur (Fig. 4.12c), recorded with a SkyScan 1172 µCT scanner with

368 equiangular cone beam projections. The detector resolution was 4.5µm.

The SkyScan NRecon software package was again used to preprocess the data.

102



4.3. EXPERIMENTS

(a) raw diamond (b) aluminium foam (c) rat femur

Figure 4.12: Projection images of three different experimental datasets. The slices that are
considered are highlighted with a full pink line. For dataset (a), a truncated slice is highlighted
with a striped yellow line.

(a) Fig. 4.12a (b) Fig. 4.12b (c) Fig. 4.12c

Figure 4.13: Manually created segmented image of the pink slices depicted in Fig. 4.12.
These images are used as ground truth for validation.
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Figure 4.14: (a) The rNMP of the DART reconstructions of dataset Fig. 4.12b as a function
of the chosen grey level, for two different angle counts. (b,c) DART reconstructions of the
same dataset (with 49 projection angles) with two different choices for ρ.
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(a) FBP (b) S-FBP
rNMP=0.2382

(c) SIRT (d) S-SIRT
rNMP=0.0065

(e) DART
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(f) FDK (g) S-FDK
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(h) SIRT (i) S-SIRT
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(k) FDK (l) S-FDK
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(m) SIRT (n) S-SIRT
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(o) DART
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Figure 4.15: (a-e) Reconstructions of Fig. 4.12a with 10 projection angles. (f-j) Recon-
structions of Fig. 4.12b with only 49 projection angles. (k-o) Reconstructions of Fig. 4.12c
with only 62 projection angles.

Also here, only the central slice was considered. Note that the sample was

held in place with paper. This means that a third grey level had to be added

in DART and in the segmentation algorithms.

For validation, ground truth images were created by manually segmenting SIRT

reconstructions (Fig. 4.12d-f).

In DART, it is assumed that the grey levels are prior knowledge. While this as-

sumption was easy to satisfy for the simulation experiments, grey level estimation

for experimental datasets is non-trivial. Furthermore, the quality of the recon-

struction greatly depends on the accuracy of the estimation. To demonstrate this,

DART reconstructions of Fig. 4.12b were created with a range of different grey

level choices. This was done once considering all 481 projection angles and once
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Figure 4.16: For all experimental datasets of Fig. 4.12, the rNMP as a function of the
number of projection angles.

considering only 49 angles. In Fig. 4.14a, the corresponding rNMP is plotted as

a function of the grey level. Wrongly estimating the grey level had a significant

impact on the reconstruction quality. One can also observe this in Fig. 4.14b and

Fig. 4.14c, where reconstructions are shown for grey levels that were too low and

too high, respectively. If the grey level was too low, the reconstructed objects were

too thick, if the grey level was too high, holes appeared inside the homogeneous

structures. For the remainder of all experiments described in this section, the grey

levels were manually chosen on a trial-and-error base. In Section 4.4, Chapter 5

and Chapter 6, methods are proposed to automate these estimations.

The number of projection angles in each sinogram was gradually reduced and

reconstructions were created with FBP, SIRT and DART. Otsu’s method was

applied to obtain segmented images. Note, however, that the projection data

of Fig. 4.12b and Fig. 4.12c had a fan beam projection geometry. This means

that conventional FBP could not be used. Instead, the Feldkamp-Davis-Kress

(FDK) method was applied. Its segmentation is referred to by S-FDK. In Fig. 4.15

reconstructions are shown for all datasets with a significantly reduced angle count

(10 projections instead of 250 for Fig. 4.12a, 49 instead of 481 for Fig. 4.12b and
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(a) FBP reconstruction (b) DART reconstruction

(c) FBP (d) S-FBP (e) SIRT (f) S-SIRT (g) DART

Figure 4.17: (a) FBP reconstruction of the truncated slice of Fig. 4.12a. The FOV is
highlighted by the striped blue line. The areas in which the diamond stone transcended the
FOV are marked by the yellow circles. (b) DART reconstruction of the same object. (c-g)
Zoomed in reconstructed images with various reconstruction methods. Clearly, only DART
provided an accurate estimation of the diamond border outside the FOV.

62 instead of 368 for Fig. 4.12c). In Fig. 4.16, the rNMP for all experiments is

plotted as a function of the angle count. The results are consistent with those

of the simulation study in Section 4.3.1.1: DART outperformed the conventional

reconstruction techniques, substantially so for a very low angle count.

In the projection image Fig. 4.12a, it can be noted that, at the striped line,

the data was truncated. The diamond stone was simply too large to fit into the

FOV of the scanner. In Fig. 4.17a an FBP reconstruction is shown. The two

areas in which the diamond stone transcended the FOV are clearly marked. FBP,

SIRT and DART were applied on the truncated slice (Fig. 4.17c-g). Clearly, only

DART succeeded in accurately estimating the boundary of the object outside the

FOV. While numerical validation is impossible (a ground truth image could not be

created), the DART reconstruction corresponded very well with the actual stone.
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4.4 Automatic parameter optimization

This section has been published as:
Wim van Aarle, Karel Crombecq, Ivo Couckuyt, K. Joost Batenburg, Jan Sijbers,
“Efficient parameter estimation for discrete tomography using adaptive modelling”,
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine,
pp.229–232, July 2011.

From the algorithm description in Fig. 4.2c, it is clear that there are various

parameters to DART that influence the accurate of the reconstructed images.

Notably the grey levels ρ must be known exactly, but also the threshold values τ

must be accurately estimated. Additionally, the percentage of additional random

pixels, r, and the intensity of the blurring filter, b, also affect the outcome of the

DART algorithm.

As DART is an algorithm that typically requires a long time to compute, the

estimation of the algorithm parameters by trial-and-error can be a very daunting

task. Fortunately, iterative tomography inherently provides an easy and objective

method to automatically evaluate each reconstruction. The Euclidean distance

between a forward projection of the reconstructed image and the measured pro-

jection data can be used to score the corresponding algorithm parameters. The

following cost function can therefore be introduced:

Φ(ρ, τ , b, r) = ||Wv
(k)
(ρ,τ ,b,r) − p||2.

�� ��4.13

In Eqn. 4.13, v
(k)
(ρ,τ ,b,r) is defined by the reconstructed DART image after k itera-

tions created with the parameter values ρ, τ , b and r.

Eqn. 4.13 is non-differentiable and the search space is likely to contain multiple

local optima. Furthermore, due to the computational cost of DART, the number

of function evaluations required for minimizing the cost function should be as low

as possible. Popular optimization routines, such as Nelder-Mead simplex search

[19], are able to solve complex optimization problems, but typically do so by using

a large number of function evaluations. To deal with these issues, recent advances

in the field of adaptive surrogate modelling can be used. A concise introduction to

this field is given in Section 4.4.1. In Section 4.4.2, various optimization strategies

are applied to optimize the cost function Eqn. 4.13.

4.4.1 Adaptive surrogate modelling

Adaptive modelling is a technique in which a surrogate or approximation model

of the original, expensive cost function is built by evaluating this function in a

number of points, and training a mathematical model on this data. This model is
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Figure 4.18: Flowchart of an adaptive modelling routine.

then iteratively refined by selecting additional points in interesting locations, and

rebuilding the model with this new data [20]. The algorithm that selects these

additional points is called the sampling strategy. The resulting approximation

model can then be used as a drop-in replacement for the original cost function

that can be evaluated much faster. A schematic overview of the adaptive modelling

process is given in Fig. 4.18.

A popular choice for the mathematical model is Kriging [21]. In addition

to predicting the behaviour of the cost function on the entire domain, it also

provides a measure of uncertainty, indicating where in the domain the model is the

most uncertain about its predictions. This information can be used to determine

where additional points should be located. A sampling algorithm that exploits

this property is the Efficient Global Optimization (EGO) algorithm [22]. The

EGO method combines the prediction and prediction variance (uncertainty) of

the Kriging model to search for the optimum and refining the surrogate model in

unexplored locations.

The main advantage of using approximation models is that it can reduce the

number of function evaluations required to find the optimum. Instead of searching

for the optimum by evaluating the cost function directly, the Kriging approxima-

tion model is thoroughly explored, and new points are only selected when it is

deemed absolutely necessary, thus saving a lot of expensive function evaluations.

4.4.2 Simulation studies

To compare various optimization strategies to optimize the cost-function Eqn. 4.13,

simulated parallel beam projection images were computed of Fig. 4.19a (with 10

equiangular projections), Fig. 4.19b and Fig. 4.19c (both with 60 equiangular
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(a) (b) (c)

Figure 4.19: Simulated phantom images that were used to demonstrate various optimization
strategies for automatic parameter estimation.

projections). To reduce the high dimensionality of the search space, only a few

algorithm parameters were optimized at a time.

Firstly, the proposed cost function was compared to the rNMP space. In

Fig. 4.20, this is shown for Φ(ρ1, ρ2) on phantom image Fig. 4.19a and for Φ(r, ρ2)

on phantom image Fig. 4.19b. Even though these spaces were not an exact match,

their minima (white dots) were close together.

Secondly, the following optimization strategies were compared.

� The Nelder-Mead simplex optimization as described in [19] and as imple-

mented in fminsearch of the MATLAB global optimization toolbox.

� A pattern search optimization method [23] implemented in patternsearch

of the MATLAB global optimization toolbox.

� An adaptive optimization method as discussed in Section 4.4.1. The SUMO

(SUrrogate MOdeling) Toolbox, a free MATLAB toolbox designed for adap-

tive surrogate modelling and sampling, was used [20].

These optimization techniques were run for on a variety of parameter combinations

until a certain target for the cost function was reached. For the simplex and

pattern search optimization, the number of evaluations depends greatly on the

initial parameter choice. These experiments were therefore performed 20 times

using randomly selected initial parameters. Also, the number of optimization

attempts where the target value was never reached due to stranding in a local

optima were counted.

Fig. 4.21 shows, for each experiment, the number of function evaluations that

was required to reach the accuracy target. Overall, the adaptive modelling op-

timization required fewer function evaluations when compared to the simplex

method, which in turn required substantially fewer function evaluations than a
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Figure 4.20: Comparison of cost function Φ to the rNMP space. The minima are marked by
white dots.

pattern search method. Pattern search was more robust than a simplex search

with respect to local optima. During this set of experiments the adaptive method

never ran into a local optimum.

The rNMP of the DART reconstructions with the optimized parameters is

shown in Fig. 4.22. For the simplex and pattern search optimization, the param-

eters of the median run, in terms of function evaluations, were used. Given that

Eqn. 4.13 was optimized until a sufficiently low value of the cost function has been

reached, the rNMP was comparably low for each of the optimization routine.

4.5 Conclusions

The Discrete Algebraic Reconstruction Technique (DART) can be used if the

scanned object is known to consist of only a few different homogeneous mate-

rials, each corresponding to a priorly known grey level. While DART is a heuristic

algorithm and its convergence has not been proven, it has been thoroughly vali-
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simplex pattern search

Fig. 4.19a min max med failed min max med failed adaptive

b, ρ2 8 28 17 0 15 74 52 2 13
r, ρ2 8 23 16 0 27 91 46 0 18
ρ1, ρ2 30 49 38 3 32 99 43 6 16
ρ1, τ, ρ2 46 120 75 7 80 129 147 0 56

Fig. 4.19b min max med failed min max med failed

b, ρ2 1 17 10 0 1 49 24 0 10
r, ρ2 5 22 11 6 5 78 42 0 10
ρ1, ρ2 1 39 32 1 19 89 58 1 11
ρ1, τ, ρ2 31 59 49 8 63 113 96 0 20

Fig. 4.19c min max med failed min max med failed

b, ρ2, ρ3 10 36 28 5 37 138 104 2 23
r, ρ2, ρ3 14 49 29 3 25 239 128 1 14
ρ1, ρ2, ρ3 15 84 50 4 99 240 147 0 30
τ1, ρ2, τ2, ρ3 37 50 43 6 97 253 153 0 39
τ1, τ2 3 16 7 0 1 40 17 0 11

Figure 4.21: For the three optimization methods, the number of function evaluations required
to reach a certain accuracy.

Fig. 4.19a simplex pattern search adaptive

b, ρ2 0% 0% 0%
r, ρ2 0% 0% 0%
ρ1, ρ2 0% 0% 0%
ρ1, τ, ρ2 0.01% 0.02% 0%

Fig. 4.19b simplex pattern search adaptive

b, ρ2 0.36% 0.46% 0.20%
r, ρ2 0.39% 0.33% 0.32%
ρ1, ρ2 0.49% 0.47% 0.56%
ρ1, τ, ρ2 0.47% 0.55% 0.56%

Fig. 4.19c simplex pattern search adaptive

b, ρ2, ρ3 0.58% 0.59% 0.77%
r, ρ2, ρ3 0.84% 0.61% 0.70%
ρ1, ρ2, ρ3 0.75% 0.71% 0.68%
τ1, ρ2, τ2, ρ3 0.89% 0.96% 0.74%
τ1, τ2 1.04% 0.71% 0.89%

Figure 4.22: The rNMP of the reconstructions with the estimated parameter values.
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dated with simulation experiments and has been applied on various experimental

datasets.

A key problem of DART is its assumption that the set of grey levels in the

unknown reconstructed image is known a priori. In practice, obtaining such knowl-

edge is non-trivial.

In Section 4.4, the Euclidean distance from the forward projection of the recon-

struction to the measured data was proposed as a cost function to score parameter

values. By minimizing this function, optimal grey levels and algorithm parameters

can be automatically approximated. However, given the computational require-

ments of DART, such an optimization can take a long time, even with an advanced

optimization strategy such as adaptive modelling optimization.

In the ensuing two chapters, two computationally efficient techniques are pro-

posed that estimate optimal values for the grey levels without the need to perform

multiple costly DART reconstructions. In Chapter 5, a semi-automatic method

is proposed that estimates the optimal grey levels prior to the DART reconstruc-

tion. It requires the user to select a region of the reconstruction grid in which he is

sure the object is homogeneous. In Chapter 6, the Projection Distance Minimiza-

tion method (Chapter 2) is used to automatically estimate the grey levels and the

optimal threshold values during the reconstruction.
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CHAPTER 5. A SEMI-AUTOMATIC ALGORITHM FOR GREY LEVEL
ESTIMATION IN TOMOGRAPHY

5.1 Introduction

A common assumption in discrete tomography reconstruction algorithms, is that

the set of grey levels in the unknown original image is known before the reconstruc-

tion. In this chapter, the grey level estimation problem is considered. In practical

applications, this estimation is often very difficult. Even when the materials and

their densities are known in advance, calibration is required to translate the ma-

terial properties into a reconstructed grey level. The actual grey levels depend

on these parameters, and they may vary among different scanner devices. Also,

imaging properties of the scanning system may change over time. For example,

the X-ray source of a CT scanner heats up while scanning, which might change its

operational characteristics. While this may have a negligible effect on the resulting

grey levels during a single scan, grey levels in scans acquired at different times may

show significant differences.

In many applications of discrete tomography, the number and orientation of

the projections that can be acquired is restricted by experimental limitations. In

materials science, for example, discrete tomography is used to reconstruct three-

dimensional nano-structures from a series of projection images acquired by an

electron microscope [1]. Due to the structure of the sample holder, projections can

only be obtained for a limited range of angles, resulting in severe reconstruction

artefacts for conventional algorithms.

When several similar objects are scanned as a single batch, it is sometimes

possible to obtain a high quality reconstruction of one of these objects, based on

a large number of projections. This reconstruction can then be used to estimate

the set of grey levels for the remaining objects, which can then be reconstructed

from few projections. Even when only a limited series of projections is available,

one can still compute a reconstruction by classical, non-discrete reconstruction

algorithms. The resulting image will be degraded by artefacts, yet it may still

be possible for an expert user to delineate certain areas that are likely to have a

constant composition in the original object.

In this chapter, a simpler version of the grey level estimation problem is pro-

posed. The user first selects an image region that can be expected to correspond

to a homogeneous region in the original object, based on an initial reconstructed

image, obtained by a classical, non-discrete reconstruction algorithm. In certain

cases, knowledge of such a constant region allows for reliable estimation of the grey

level corresponding to the selected region.

The outline of this chapter is as follows. In Section 5.2, the problem of grey

level estimation is introduced, along with formal notation. In Section 5.3, a semi-

automatic approach is presented for estimating the grey levels when for each grey

level a subset of corresponding pixels is given. Experimental results for a range
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of simulation experiments are described in Section 5.4. Section 5.5 discusses the

possibilities for obtaining more accurate estimates, compared to the approach of

this chapter. Section 5.6 concludes the chapter.

5.2 Concept and notation

5.2.1 Estimating grey levels

The reconstruction problem in discrete tomography concerns the recovery of an

object function f(x, y) : R× R→ R from its Radon transform Rf , where the set

of unique values in f is denoted by ρ = {ρ1, . . . , ρl}. The grey level estimation

problem is stated as follows.

Problem 1. Given Rf , estimate the values ρ1, . . . , ρl.

The grey level estimation problem does not have a unique solution in general.

When only a small number of projections is available and f contains many grey

levels, it is straightforward to find examples where the grey levels cannot be de-

termined uniquely. To deal with this non-uniqueness problem, additional prior

knowledge must be incorporated in the grey level estimation problem. Suppose

that for each grey level ρt ∈ ρ, a region At ⊂ R × R is given on which f(x, y)

is known to have a constant grey level. This prior knowledge can be obtained

by computing an initial grey level reconstruction using a standard tomography

algorithm, and letting an expert user select regions in this reconstruction that are

likely to be constant in the original scanned object. In some cases, this additional

constraint will be sufficient to determine the grey levels for the selected regions

uniquely from the projection data.

5.2.2 Switching components

Unfortunately, even specifying an entire region where the image is known to be con-

stant is not sufficient to guarantee that the grey levels can be estimated accurately.

In [2], a procedure is introduced to generate so-called switching components, non-

zero images that have a zero projection in a given set of projection angles. Fig. 5.1

shows switching components in the horizontal, vertical, and diagonal direction.

For each new direction, a negated copy of the switching component is added and

translated in the given direction. A similar construction can be be applied for any

finite set of projection directions, leading to the following proposition regarding

the non-uniqueness of a result.

Proposition 1. Let Θ = {θ1, . . . , θd} be a given set of projection angles. Let

ρ = {ρ1, . . . , ρl}, A ⊂ R×R and ρ ∈ ρ. Let f(x, y) = ρ for all (x, y) ∈ A. Then for

each grey level ρ̃ ∈ R, there is an image f̃ such that f̃(x, y) = ρ̃ for all (x, y) ∈ A
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Figure 5.1: Example of a switching component for three directions, which is constant and
non-zero on each of the black and white regions.

and Rf(t, θi) = Rf̃(t, θi) for i = 1, . . . , l, t ∈ R. Moreover, there is such an image

f̃ that has at most 3k grey levels.

Proof (sketch) By the construction depicted in Fig. 5.1, an image can be created

that has a constant value of 1 on A, has constant zero projections in all given

directions and only contains grey levels from {−1, 0, 1}. Let ρ̄ = ρ̃− ρ. By adding

a multiple of ρ̄ times the switching component to f , an image f̃ that conforms

to the proposition can be created. This image will have at most 3k grey levels,

included in the set {ρ1− ρ̄, ρ1, ρ1 + ρ̄, ρ2− ρ̄, ρ2, ρ2 + ρ̄, . . . , ρl− ρ̄, ρl, ρl + ρ̄}. Note

that some of these grey levels may be negative, even if the image f has only

non-negative grey levels.

5.2.3 Discretization

Experimental tomography data consists of a vector of measured line integrals,

obtained at a finite set of detector positions. Denote the total number of measured

detector values, for all angles, by m. Denote the measured projection data by

p = (pi) ∈ Rm. The images f(x, y) can be discretized and represented on a grid.

Let n be the number of pixels in the image. It is assumed that the image is

zero outside the rectangle covered by this grid. Let v = (vj) ∈ Rn denote the

discretized image of the object, where all pixel values are stored as consecutive

elements of a vector. The Radon transform for a finite set of angles is modelled as

a linear operator W , called the projection operator, that maps the image v to the

projection data p:

Wv = p.
�� ��5.1
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In Eqn. 5.1, W represents an m×n matrix W = (wij). The vector p is called the

forward projection or sinogram of v. With this notation the key problem that is

investigated in this chapter can be defined.

Problem 2. Let v ∈ Rn be an unknown image and let ρ ∈ R be an unknown

grey level. Suppose that p = Wv is given, and that a set A ⊂ {1, . . . , n} is given

such that vj = ρ for all j ∈ A. Find ρ.

5.2.4 Grey level penalty function

Let A ⊂ {1, . . . , n} and ρ ∈ R, as in Problem 2. Reorder the pixels {1, . . . , n} and

the corresponding columns of W , such that:

W =
(
WAWB

)
,

�� ��5.2

where WA contains the columns of W corresponding to the pixels in A, and WB

contains the columns corresponding to B, the complement of A. As all elements

of A must have an unknown, but constant grey level ρ, it follows that:

Wv =
(
WAWB

)( ρ̄
vB

)
= p,

�� ��5.3

where ρ̄ denotes a constant vector for which all entries are equal to ρ. Furthermore,

vB refers to the vector containing all vj for which j ∈ B. This leads to:

WBvB = p−WAρ̄,
�� ��5.4

which provides a necessary condition for a grey level estimate to be correct:

Eqn. 5.4 must have a solution. Although this condition is not always sufficient

to estimate ρ, it will often be sufficient if the size of A is a relatively large fraction

of n and the number of projections is not too low.

Even if ρ is determined uniquely, it may not be possible to solve Eqn. 5.4

exactly, e.g. due to noise and discretization errors. Given A, one can measure

the inconsistency of a grey level ρ with respect to the projection data p using the

following grey level penalty function:

P (ρ) = minvB ||p−WAρ̄−WBvB ||,
�� ��5.5

where || · || denotes a certain norm, to be defined below.

Note that for each grey level ρ̃, there may be multiple vectors vB for which the

minimum penalty is attained. This does not have to be a problem for grey level

estimation, as long as the grey level for which the penalty is minimal is uniquely

determined by the projection data. According to Proposition 1, it may occur that
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the grey level cannot be determined uniquely, in which case one should seek to

find at least one of the grey levels for which the penalty is minimal.

A range of iterative methods are available for evaluating Eqn. 5.5. In this

chapter the SIRT algorithm is applied. As discussed in Section 1.3.3.1, the SIRT

algorithm converges to a solution of Eqn. 5.5 where the norm to be minimized is

a weighted sum of squares [3].

To minimize the grey level penalty function Eqn. 5.5, it must typically be

evaluated in several points, resulting in a series of SIRT reconstructions, corre-

sponding to different grey level estimates. Depending on the particular type of

tomography problem (e.g. X-ray transmission tomography, electron tomography),

an additional constraint may be incorporated in some cases, restricting the admis-

sible grey levels to non-negative values. However, solving Eqn. 5.5 for non-negative

vB requires significantly more computation effort compared to the unconstrained

variant. As an alternative, a heuristic adaptation of the SIRT algorithm can be

used, where non-negative entries of vB are set to 0 after each iteration. This ap-

proach was already suggested in [4], and in many cases results in more accurate

reconstructions than the unconstrained version. This constrained version of SIRT

is denoted by SIRT-P.

5.3 Discrete Grey Level Selection algorithm

In this section, the Discrete Grey Level Selection approach (DGLS) is introduced

for estimating grey levels from projection data. Fig. 5.2 shows a schematic overview

of the steps involved in estimating one or more grey levels.

The first part of the procedure requires user interaction. Based on an initial

reconstruction, obtained by a conventional, non-discrete, reconstruction algorithm,

the user selects a region, hereafter referred to as the user-selected part (USP).

This USP is expected to belong to a single grey level in the ground truth image,

i.e. it should be constant. The user, who typically has substantial implicit prior

knowledge of the particular object under investigation, is responsible for selecting

a proper region. In this phase, a significant amount of implicit prior knowledge

can be input by the user. For example, if the object is known to contain no holes,

it will be safe to select a USP that is clearly within the interior of the object. It

can be difficult to select a proper region if the number of projections is small. The

selected region should not be too small, but should certainly not contain any pixels

that correspond to a different grey level. If the original image contains several grey

levels, a region must be selected for each grey level that needs to be estimated. The

regions At, along with the projection data, now form the input of the estimation

algorithm.

After selecting the USP of a single grey level, an optimization algorithm is used

120



5.3. DISCRETE GREY LEVEL SELECTION ALGORITHM

sinogram

reconstruction

reconstruction USP

sinogram USP

residual
sinogram

new residual
sinogram

-

p

v

WA

p -WA

vB

WBvB

A

P(  )

on Aρ

ρ

ρ

ρ

ρ

W

W SIRT

choose

B B

SIRT

-

-

Figure 5.2: Schematic overview of the Discrete Grey Level Selection (DGLS) procedure.

to minimize the grey level penalty function (Eqn. 5.5). To evaluate the penalty

function for a given grey level ρ, the sinogram WAρ̄ of the USP is first subtracted

from the complete sinogram p, forming the right-hand side of Eqn. 5.4.

Subsequently, inconsistency of the remaining part of the image with respect to

the remaining projection data is determined by evaluating the penalty function

(using SIRT or SIRT-P). Based on the value of the penalty function, the grey level

estimate is updated iteratively, until the penalty function is minimized. Evaluating

the grey level penalty function can be computationally expensive. To find the

minimum of this function using a small number of evaluations, Brent’s method

is used, as described in Chapter 5 of [5]. This optimization strategy can be used

for both the SIRT and SIRT-P variants of DGLS and it can be easily extended

to incorporate other reconstruction algorithms. Note that for the SIRT-variant of

DGLS, the minimization problem to be solved corresponds to Eqn. 5.5 and is in

fact a quadratic problem in the unknown grey level ρ and the unknown image vB .

In this case, solving for both ρ and vB in a combined optimization algorithm, can
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yield the same results in much less computation time.

The proposed algorithm estimates a single grey level at a time. If there are

multiple grey levels, the USPs for each grey level are selected based on the same

initial reconstruction, and the grey level estimations are performed independently

for each grey level. A combined approach, that maintains a constant USP for each

grey level simultaneously, could also be used. However, this would lead to errors

in all estimated grey levels if just one of the USPs is not properly selected. For

the experiments in this chapter, focus is put on independent estimation, as it is

likely to be more robust in practice.

5.4 Experiments

(a) (b) (c)

(d) (e) 100 images

Figure 5.3: Phantom images used for the simulation experiments.

5.4.1 Grey level estimation

Simulation experiments have been performed on multiple 256 × 256 simulated

phantoms. Some were binary images (Fig. 5.3a,b,e), one image had 3 grey levels

(Fig. 5.3c), and one and 7 distinct grey levels (Fig. 5.3d). Fig. 5.3e actually repre-

sents a family of 100 similar phantom images that were automatically generated.

Each contained between 3 and 12 ellipses, randomly generated with radii between
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10 and 50. For 20% of these ellipses, the value of the corresponding pixels were

set to zero, allowing for the creation of gaps inside ellipses.

To avoid the subjectiveness of an actual user in the experimental results, the

USPs for the experiments were automatically generated, using knowledge of the

phantom. For each grey level, the USP for that grey level was computed by

iteratively applying a binary erosion operation on the phantom region for that

grey level, until a certain fraction of the pixels was left. The USP that resulted

from this erosion operation was typically similar to a USP selection made by an

actual user based on an initial grey level reconstruction.

Using these USPs, the grey levels were estimated with four methods: DGLS

with SIRT, DGLS with SIRT-P, the median value (MED) of the USP pixels in

a SIRT reconstruction, and the median value of the USP pixels in a SIRT-P re-

construction. The grey level of the background was assumed to be zero and was

therefore not estimated. For numerical validation, the absolute difference with

respect to the true grey level was computed for each estimation. In case mul-

tiple grey levels had to be estimated (such as for phantom image Fig. 5.3c and

Fig. 5.3d), the absolute differences were summed. For the family of phantom im-

ages in Fig. 5.3e, the average absolute differences and their confidence intervals

were computed. The following series of experiments were run.

� The number of projections from which the image was reconstructed was

varied from 180 down to 15. The projections were equiangularly selected in

the interval [0◦, 180◦). For each grey level, the USP contained 25% of the

pixels for that grey level. Fig. 5.4a and Fig. 5.4b show reconstructions of

phantom image Fig. 5.3c for 180 down to 15 projection angles, respectively.

The results, plotted in Fig. 5.7, show that DGLS for both SIRT and SIRT-P

generally yielded much more accurate estimations than the MED estimations.

Only when there were very few projection angles, a significant error was

visible. This is likely related to the non-uniqueness issues of Proposition 1.

In all subsequent experiments, only 30 projection angles were used as it can

be observed that the addition of more projection angles did not significantly

improve the estimation accuracy.

� The angular range of the projections was varied from 180◦ down to 100◦.

Fig. 5.4c shows that reducing the angular range had a degrading effect on

reconstructions. Fig. 5.8 shows that for both SIRT and SIRT-P, the corre-

sponding DGLS variants yielded far more accurate estimates than the re-

spective MED results.

� The noise level of the projections was varied. In this experiment, Poisson

noise was applied to the projection data, for a varying source intensity. The
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(a) 180 angles, 180◦ range (b) 15 angles, 180◦ range (c) 30 angles, 100◦ range

Figure 5.4: SIRT reconstructions of Fig. 5.3c from projection data with a varying angle count
and angular range.

(a) I0=50000 (b) I0=5000

Figure 5.5: SIRT reconstructions of Fig. 5.3b from projection data with varying levels of
applied Poisson noise.

(a) Fig. 5.3a, USP size = 20%(b) Fig. 5.3c, USP size = 20%

Figure 5.6: The USP as selected for the presented experiments.
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(a) Fig. 5.3a
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(b) Fig. 5.3b
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(c) Fig. 5.3c
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(d) Fig. 5.3d
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(e) Fig. 5.3e

Figure 5.7: The relative grey level estimation error as a function of the angle count.

incident beam intensity, I0, refers to the measured detector count when there

is no object blocking the path from source to detector. The higher this count,

the higher the SNR. The effect of Poisson noise on a reconstruction is visible

in Fig. 5.5a and Fig. 5.5b. Fig. 5.9 shows that for the investigated noise

range, the noise level did not have a major impact on the estimation error.

� The size of the USP, as a percentage of the total region for each grey

level, was varied by iteratively applying an erosion filter as discussed above.
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(a) Fig. 5.3a
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(b) Fig. 5.3b
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(c) Fig. 5.3c
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(d) Fig. 5.3d
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(e) Fig. 5.3e

Figure 5.8: The relative grey level estimation error as a function of the projection angle
range in degrees.

Fig. 5.10 shows the user-selected part for phantom image Fig. 5.3a and

Fig. 5.3c, 20% the size of the original phantom. Fig. 5.10 shows that ac-

curate grey level estimation was possible even if the USP is relatively small,

down to 10% of the object size.

Overall, the results suggest that the DGLS method is robust with respect to

the number of projection angles, the angular range, the level of noise and the
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(a) Fig. 5.3a
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(b) Fig. 5.3b
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(c) Fig. 5.3c
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(d) Fig. 5.3d
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Figure 5.9: The relative grey level estimation error as a function of I0.

size of the user-selected part. Moreover, DGLS typically yielded a significantly

more accurate estimate compared to computing the median value of the USP. The

results also demonstrated that more accurate estimation can be achieved by using

the heuristic SIRT-P method as a scoring function instead of SIRT.

In all experiments described above, the USP for each grey level was selected

as a proper subset of the actual regions in the phantom image. In practice, these

regions must be selected by the user, based on an initial non-discrete reconstruction
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(b) Fig. 5.3b
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Figure 5.10: The relative grey level estimation error as a function of the size of the user-
selected part.

that may be inaccurate and difficult to interpret. If the user selects a region that

partially corresponds to a different grey level, the DGLS approach may fail. To

investigate this, the following experiment was performed. For phantom image

Fig. 5.3a, the USP was selected as a circle of varying radius, centred in a fixed

point (see Fig. 5.11a and Fig. 5.11b). The DGLS methods, based on SIRT and

on SIRT-P, were then applied based on 30 simulated parallel beam projections.

Fig. 5.11c shows the estimated grey level as a function of the radius of the circular
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(a) radius = 20 pixels (b) radius = 90 pixels
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Figure 5.11: (a,b) Circular USP on phantom image Fig. 5.3a. Green pixels in the USP are
part of the object, red pixels are not. (c) The accuracy of the DGLS method as a function
of the circle radius. Also the corresponding number of incorrectly selected pixels is plotted.

region. It can be observed that the grey level estimate became highly unreliable

when a part of the USP extended beyond the actual grey level region. Therefore,

it can be concluded that proper selection of the USP is crucial to obtaining reliable

grey level estimation.

5.4.2 DGLS + DART

The key motivation for the presented grey level estimation algorithm is that it al-

lows for subsequent application of discrete tomography reconstruction algorithms

such as the Discrete Algebraic Reconstruction Technique (DART) (Chapter 4).

Here, the effect of the DGLS estimation on the DART reconstruction is inves-

tigated. Experiments were performed for phantom image Fig. 5.3b, based on 30
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(a) MED (SIRT)
rNMP=0.068

(b) MED (SIRT-P)
rNMP=0.082

(c) DGLS (SIRT)
rNMP=0.00075

(d) DGLS (SIRT-P)
rNMP=0.00025

Figure 5.12: DART reconstructions of phantom image Fig. 5.3b with various grey level
estimation methods. Yellow pixels are correctly classified, red pixels are erroneously classified
to the foreground, green pixels are erroneously classified to the background.

parallel beam projections. After estimating the grey levels with both the MED and

DGLS approach, DART reconstructions were performed. Fig. 5.12 shows the mis-

classified pixels in the DART reconstruction for the various estimation approaches.

The overlap between the phantom image and the reconstruction is coloured yellow.

The differences are indicated in red (false positive) and green (false negative). The

number of misclassified pixels relative to the number of non-background pixels is

denoted by rNMP in the figure captions.

Experiments were also performed on a simulated electron tomography experi-

ment using a phantom based on an experimental dataset of a bamboo-like carbon

nanotube that was formed around a Copper catalyst particle, similar to the ex-

periments reported in [1]. Fig. 5.13a represents a cross-section of the catalyst

nanoparticle that contains both Copper (Cu, white) and Copper-Oxide (CuO,

grey), as well as several voids. Projection data was simulated for an angular range

of [−77,◦ ,+77,◦ ]. Experimental instability in the alignment of the projections was

simulated by shifting each projection by a random distance in the interval [−1,+1].

Poisson noise was incorporated in the projection simulation. Fig. 5.13b shows the

resulting SIRT reconstruction. To mimic a real experiment, the USP was selected

manually (Fig. 5.13c). Fig. 5.13d shows the reconstruction image of Fig. 5.13b

segmented with the well-known Otsu’s segmentation method [6]. Fig. 5.13e-i show

the segmented DART reconstructions based on perfect prior knowledge of the grey

levels (Fig. 5.13e), MED (SIRT) (Fig. 5.13f), MED (SIRT-P) (Fig. 5.13g), DGLS

(SIRT) (Fig. 5.13h) and DGLS (SIRT-P) (Fig. 5.13i).

In Fig. 5.14, the rNMP of the different reconstructions is shown alongside the

amount of CuO and Cu present in these reconstructions (relative to the phantom

image). The DGLS approach resulted in the most accurate segmentation of the

object, even slightly better than with the correct grey levels.
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(a) phantom (b) SIRT (c) USP (d) Otsu’s
rNMP=0.1572

(e) correct values
rNMP=0.0338

(f) MED(SIRT)
rNMP=0.0498

(g) MED(SIRT-P)
rNMP=0.0437

(h) DGLS(SIRT)
rNMP=0.0329

(i) DGLS(SIRT-P)
rNMP=0.0324

Figure 5.13: DART reconstructions with various grey level estimation techniques.

method rNMP CuO Cu

phantom image 0 100.00% 100.00%
SIRT + Otsu’s 0.1572 98.85% 167.22%
correct values + DART 0.0338 100.16% 98.57%
MED(SIRT) + DART 0.0498 99.53% 134.68%
MED(SIRT-P) + DART 0.0437 100.08% 123.04%
DGLS(SIRT) + DART 0.0329 100.34% 97.86%
DGLS(SIRT-P) + DART 0.0324 100.08% 98.82%

Figure 5.14: The rNMP and the amount of the Copper-Oxide (CuO) and Copper (Cu) in
the different segmented reconstructions.

5.5 Discussion

Although the experimental results in Section 5.4 have demonstrated that accurate

grey level estimation can be achieved by the DGLS approach in a range of scenarios,

the grey level estimation problem does not guarantee a unique solution in general.

The experimental results show that even for a moderately large number of 15

projections, additional constraints may be necessary to obtain an accurate estimate

of the grey levels using our proposed approach. To improve the accuracy of the
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resulting estimate, various techniques could be employed.

� Incorporating additional constraints in the grey level penalty. The

projection distance, as computed using SIRT, does not incorporate non-

negativity constraints. Adding a non-negativity constraint to the recon-

struction algorithm seems to result in improved accuracy of the grey level

estimate, but does not yield the non-negative least square solution, which

would be preferable. A scoring function that incorporates both minimiza-

tion of the projection distance and non-negativity constraints (based on the

non-negative least squares problem) could result in more accurate scoring,

at the expense of an increase of the running times.

� Simultaneous estimation of several grey levels. In the approach pre-

sented in this chapter, each of the grey levels is estimated independently.

Simultaneous estimation of all grey levels, where the grey level in all user-

selected parts is required to be constant, would provide more constraints for

the estimation problem. However, this would also make the approach less

robust, as an error in the choice of one USP will lead to errors in all estimated

grey levels.

Restricting the reconstruction outside the user-selected part to non-negative

values still does not capture the full set of available constraints. To incorporate

the fact that the entire image should contain only a small, discrete set of grey

levels, it seems necessary to incorporate the grey level estimation step within a

reconstruction algorithm for discrete tomography. Such an approach is presented

in Chapter 6.

As demonstrated in Section 5.4.1, proper selection of the USP is crucial to the

accuracy of the resulting DGLS estimate, which could be a problem in cases where

selecting a proper USP is challenging.

5.6 Conclusions

Grey level estimation is a necessary step before applying discrete tomography

algorithms, as these algorithms typically assume the set of admissible grey levels

to be known a priori. In this chapter, the DGLS approach was presented for

estimating grey levels, where the user first selects regions that are likely to be

homogeneous in the original image, and the grey levels are subsequently estimated

based on this selection.

The proposed algorithm, which minimizes a penalty function while varying the

grey level of the user-selected part, was shown to yield more accurate grey level

estimates compared to direct estimation based on a continuous reconstruction. In
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particular, the grey level penalty variant that incorporates a positivity constraint

on the reconstruction yields accurate estimates even from a small number of pro-

jection images, or a small angular range.
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6.1 Introduction

A key problem when applying DART to experimental datasets is its assumption

that the set of grey levels in the unknown reconstructed image is known a priori.

While this is easy to satisfy in simulation experiments, obtaining such knowledge

in practice is non-trivial.
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(a) ρ = 235
τ = 75
rNMP=0.024

(b) ρ = 235
τ = 125
rNMP=0.011

(c) ρ = 255
τ = 125
rNMP=0

(d) ρ = 275
τ = 125
rNMP=0.045

(e) ρ = 275
τ = 175
rNMP=0.078

Figure 6.1: Parts of DART reconstructions of Fig. 6.5a for different values of ρ and τ (with
30 equiangular projections). For each (ρ,τ) combination, the relative Number of Misclassified
Pixels (rNMP) is given. The rNMP is defined by the number of erroneously classified pixels
divided by the amount of non-zero pixels in the phantom image.

The knowledge of the reconstruction’s grey levels is of crucial importance to

obtain high quality DART reconstructions. In Fig. 6.1, DART reconstructions are

shown of the binary phantom image Fig. 6.5a. Each reconstruction was performed

adopting a different grey level for the foreground, ρ. Clearly, a sufficiently accurate

reconstruction can be achieved only with a correct estimation of ρ. Note that

the estimation of the threshold value, τ , used in the segmentation phase of each

DART iteration, also influences the reconstruction accuracy. The combination

of grey levels and threshold values are hereafter referred to as the segmentation

parameters of DART.

To estimate the grey levels of an image composed of only a few grey levels,

the semi-automatic Discrete Grey Level Selection (DGLS) method was introduced

in Chapter 5. For each grey level, the user selects an area in the reconstruction

volume that is assumed to be homogeneous. These user-selected parts are set to

a candidate grey level, after which their forward projection is subtracted from the

measured projection data. The optimal grey levels are those for which this residual

sinogram is the least inconsistent. However, using DGLS, the optimal threshold

values cannot be estimated and still have to be set manually. Furthermore, it is

not always possible to manually select a homogeneous region. For example, in

bone or foam-like objects, there are no sufficiently large homogeneous areas.

In Section 4.4, the projection difference was proposed as a cost function to

optimize the segmentation parameters of DART. Optimization strategies, such as

the Nelder-Mead simplex search [1] or the more advanced adaptive surrogate mod-

elling optimization [2], can then be employed to obtain accurate values (Fig. 6.2c).

Given that such an estimation approach requires a full DART reconstruction for

each function evaluation in the optimization process, this approach is very com-

putationally inefficient.
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user DART

(a) user expertise

DGLS

user 

DART

(b) DGLS + DART

optimization

DART

(c) optimization of
DART

DART

PDM

(d) PDM-DART

Figure 6.2: Schematic overview of various methods to estimate the segmentation parameters
of DART. (a) User expertise is used to set the correct parameters. (b) The DGLS method
is used prior to DART to semi-automatically estimate the correct grey levels. (c) An op-
timization strategy is used to automatically minimize the projection difference between the
DART reconstructed images and the measured projection data. (d) The PDM segmentation
strategy is used within each DART iteration to automatically estimate the optimal grey levels
and threshold values.

In this chapter, the DART method is extended with an advanced segmentation

algorithm. In the original DART description [3], intermediate reconstructions

are segmented using a global thresholding approach with fixed, a priori specified,

segmentation parameters. Here, the more flexible segmentation method called

Projection Distance Minimization (PDM), as described in Chapter 2, is applied in

each iteration of DART. This method is hereafter referred to as PDM-DART. In

PDM-DART, the threshold values and grey levels are automatically optimized such

that the Euclidean distance between the projection of the intermediate segmented

image and the measured projection data is minimal. By applying PDM-DART,

results are obtained that are comparable to those obtained by conventional DART,

without prior knowledge about the segmentation parameters. This eliminates the

need for labour intensive user interaction.

This chapter is structured as follows. In Section 6.2 a detailed description

of PDM-DART is given. In the subsequent Section 6.3, the proposed method is

experimentally validated on simulated as well as experimental data. These results

are discussed in Section 6.4. Finally, in Section 6.5, conclusions are drawn.

6.2 PDM-DART

In this section, the DART method is extended with an automatic parameter esti-

mation method. The same notation is used as in Chapter 4.

In the first step of each DART iteration (Section 4.2.3), a segmented image

is computed from the current reconstruction v(k) ∈ Rn by application a global

thresholding scheme with fixed, priorly specified, grey levels ρ = (ρ1, . . . , ρl)
T and
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Figure 6.3: Schematic overview of the Projection Distance Minimization Discrete Algebraic
Reconstruction Technique (PDM-DART).

threshold values τ = (τ1, . . . , τl−1)T :

s
(k)
j = Cτ ,ρ(v

(k)
j ) =


ρ1 v

(k)
j < τ1

ρ2 τ1 ≤ v(k)
j < τ2

...

ρl τl−1 ≤ v(k)
j

, j = 1, . . . , n.
�� ��6.1
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�

�

�

�

v = S(t0)p ;
τ = initial threshold estimate ;
whi le stop criterion is not met

[τ ,ρ ] = estimate tau rho(v, τ ) ;
s = Cτ ,ρ(v) ;
U = {} ;
f o r j = 1 :n

i f (∃h ∈ N(j) : sj 6= sh) || rand ( ) < r
fj = 0 ;
U = U ∪ j ;

e l s e
fj = sj ;

end
end
r = p−Wf ;

v = f + S(t)
U r ;

v = v ∗ Gaussian smoothing filter ;
end

funct ion [τopt,ρopt ] = estimate tau rho(v, τinit)
[τopt,ρopt ] = simplex search of @compute distance

with τinit as initial estimate ;
end

funct ion [ distance,ρopt ] = compute distance(τ )
compute A ;
compute Q̄andc̄ ;
ρopt = solution of 2Q̄ρ = −c̄ w.r.t ρ ;
distance = ||W Cτ ,ρopt(v)− p||2 ;

end

Figure 6.4: Pseudo code for the Projection Distance Minimization Discrete Algebraic Recon-
struction Technique (PDM-DART).

If the chosen values for the segmentation parameters are not correct, Wf (k) rep-

resents an incorrect forward projection of all free pixels, leading to an incorrect

residual sinogram, r(k).

Here, it is proposed to apply the PDM method, as discussed in Chapter 2, to

automatically estimate the segmentation parameters within each DART iteration:

τ (k),ρ(k) = argminτ ,ρ||Ws(k) − p||2.
�� ��6.2
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(a) binary
grid-based

(b) binary
grid-based

(c) three grey levels
grid-based

(d) three grey levels
analytical

Figure 6.5: Simulated phantoms that are used to validate PDM-DART.

This method is called Projection Distance Minimization DART (PDM-DART).

PDM-DART is schematically visualized in Fig. 6.3. In Fig. 6.4, simplified pseudo

code is listed.

For low values of k, intermediate reconstructions, v(k), are typically very inac-

curate. The application of PDM is then likely to result in inaccurate segmentation

parameters. However, as the experimental results in Section 6.3 demonstrate,

even in that case the next intermediate reconstruction, v(k+1), is very likely to

improve. This then makes the subsequently optimized segmentation parameters

more accurate, ultimately converging to high quality parameter estimations and

reconstructed images.

Note that classical threshold selection techniques, such as Otsu’s clustering

methods [4] or k-means clustering [5], are not suited for use within DART. Incorrect

grey levels of an intermediate segmentation will negatively affect the selection of

new segmentation parameters in the subsequent iteration. In PDM, however, the

optimal grey levels are based on the measured projection data, not exclusively on

the values obtained in the reconstructions.

The segmentation parameter estimation process does present an increased com-

putational cost to each iteration of the DART algorithm. To reduce this cost, one

can opt to perform this optimization only once every few iterations. The optimized

segmentation parameters are then stored and reused until the next optimization

takes place.

6.3 Experiments

In this section, a series of experiments are described that were carried out to eval-

uate PDM-DART. Both simulation data and experimental µCT data are included.

Four simulated phantom images were considered (Fig. 6.5). Whereas Fig. 6.5a
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and Fig. 6.5b are binary images, Fig. 6.5c and Fig. 6.5d contain three grey levels.

Fig. 6.5a-c were defined on a 512 × 512 grid while Fig. 6.5d, and its projection

data, were analytically defined. All reconstructions were performed on a 512×512

grid. Only parallel beam projection geometries with equiangular projection angles

have been considered. However, the proposed method can easily be applied on

other projection geometries as well.

To validate the accuracy of the segmented images, the relative Number of Mis-

classified Pixels (rNMP) was computed. This is the total number of erroneously

classified pixels with respect to the phantom, divided by the total number of non-

zero pixels in the phantom image.

All experiments were performed on a 2.4GHz Intel system, using a single core

and 8GB of memory. All tomographic operations, such as DART, SIRT and the

forward projection, were accelerated with NVIDIA CUDA and were run on an

NVIDIA GeForce GTX285.

6.3.1 Comparison of different estimation methods

In a first set of experiments, projection data was simulated of all phantom images

depicted in Fig. 6.5. The number of projection directions was varied and a number

of different segmentation parameter estimation methods were applied. That way,

for each method, the number of projection angles that is required to compute high

quality reconstructions can be compared.

� Exhaustive parameter search. The parameters resulting in the most

accurate reconstructions were found by performing an exhaustive search.

This method can only be applied for simulation experiments, as knowledge

of the ground truth is required.

� Manual selection (Fig. 6.2a). The grey levels were measured in the phan-

tom images. The threshold values were set in the middle of each pair of

consecutive grey levels.

� DGLS (Fig. 6.2b). The user-selected regions were manually chosen based

on an initial SIRT reconstruction. The threshold values were again set in the

middle of each pair of consecutive grey levels. A positivity constraint was

included in the DGLS optimization process, as described in [6], as this was

observed to result in more accurate estimations.

� Optimization (Fig. 6.2c). The Nelder-Mead simplex search optimization

strategy was performed on Eqn. 6.2 to estimate all grey levels and threshold

values.
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(a) 3 angles (b) 4 angles (c) 5 angles (d) 6 angles

Figure 6.6: PDM-DART reconstructions of Fig. 6.5a from an increasing number of projection
directions.

angles search manual DGLS simplex PDM-DART

3 0.0947 0.1280 0.2068 0.1208 0.2117
4 0.0575 0.0798 0.1019 0.0911 0.1057
5 0.0007 0.0009 0.0022 0.0014 0.0008
6 0.0006 0.0009 0.0017 0.0009 0.0008
7 0.0004 0.0004 0.0009 0.0012 0.0004
8 0.0003 0.0004 0.0004 0.0003 0.0003
9 0.0002 0.0002 0.0003 0.0003 0.0002

10 0.0001 0.0001 0.0001 0.0001 0.0001

Figure 6.7: The reconstruction accuracy (rNMP) for the phantom in Fig. 6.5a, for a variety
of different segmentation parameter estimation methods.

phantom rNMP goal search manual DGLS simplex PDM-DART

Fig. 6.5a 0.001 5 5 5 5 5
Fig. 6.5b 0.050 38 39 44 40 43
Fig. 6.5c 0.010 28 33 36 32 33
Fig. 6.5d 0.100 16 21 34 17 16

Figure 6.8: For each image of Fig. 6.5, the lowest number of projection directions with which
it is possible to reach a certain rNMP goal.

� PDM-DART (Fig. 6.2d). The PDM-DART algorithm was used to estimate

all grey levels and threshold values in each iteration of DART.

In Fig. 6.6a-d, PDM-DART reconstructions of Fig. 6.5a are shown from an

increasing number of projection directions. The rNMP of these reconstructions is

listed in Fig. 6.7 for all previously mentioned estimation methods. Both manual

estimation and PDM-DART provided the best approximation of the optimal values
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discovered by the exhaustive parameter search. Simplex search was slightly less

accurate. This is likely due to various local optima in the search space. The DGLS

approach was also slightly less accurate, especially for very low angle counts.

It can be clearly noted that, for the phantom image in Fig. 6.5a, there exists

a certain lower bound to the number of projection angles that is required to cre-

ate highly accurate reconstructions (5 in this example). For all phantom images

and estimation methods, it was determined how many projection directions were

needed in order to reach a certain level of accuracy (in rNMP). These results are

shown in Fig. 6.8. Overall, PDM-DART did not require substantially more pro-

jection directions to reach a certain accuracy than with the optimal segmentation

parameters. The same experiments were also performed with ADART [7] instead

of DART, achieving similar results.

6.3.2 PDM-DART convergence
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Figure 6.9: To study how PDM-DART performs when initial reconstructions do not allow
for accurate tomographic segmentation, the algorithm was run with different values for t0,
the number of SIRT iterations to create v(0). (a) The estimated grey level of the foreground
of phantom image Fig. 6.5b as a function of the iteration number. (b) The corresponding
accuracy in terms of rNMP.

It may be expected that, if the parameter estimation in PDM-DART is very

inaccurate in one iteration, it can still be improved in subsequent iterations.

To investigate the dependence of inaccurate parameter estimation in one itera-

tion on the eventual result, projection data of each phantom image was generated

for 30 projections to which Poisson noise was applied. The intensity of this noise

is defined by the incident beam intensity, I0, i.e. the photon count in the incident

X-ray beam. Here, I0 was 50000. PDM-DART reconstructions were performed

using different values for t0, the number of SIRT iterations that were performed

to compute v(0). For low values of t0, the intermediate reconstructions in the
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first few iterations are typically severely inaccurate, leading to highly inaccurate

segmentation parameters.

In Fig. 6.9a, the estimated grey level of the foreground of phantom image

Fig. 6.5b is visualized as a function of the iteration number. The correct grey

level is also visualized. It can be seen that, even if the estimated grey level was

initially inaccurate, after a few iterations the correct grey level was still adequately

approximated. The accuracy of the corresponding reconstructed images is plotted

in Fig. 6.9b. Even for very low values of t0, the accuracy of the images was

comparable to those computed with a manual approach. However, for low values

of t0, PDM-DART did require more computationally demanding iterations.

6.3.3 Possible speedup of PDM-DART
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Figure 6.10: (a) The chosen grey level of the foreground of Fig. 6.5b as a function of the
iteration number. (b) The corresponding accuracy in terms of rNMP. (c) The total running
time of the algorithm as a function of the running time.

In Section 6.2, it was suggested that the additional computational load of

PDM-DART over regular DART can be limited by performing the parameter op-

timization only once per block of iterations. This was experimentally validated on
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all phantom images, for a parallel beam projection geometry with 30 projection

angles and incident beam intensity I0 = 50000.

In Fig. 6.10a and Fig. 6.10b, it can be seen that for Fig. 6.5b, even if the

optimization was performed only once every ten iterations, accurate parameter

estimation and reconstruction were still obtained. While the convergence speed

towards these results was slower and more iterations were thus demanded to reach

a certain level of accuracy, the overall runtime was still substantially decreased.

This can be seen in Fig. 6.10c.

6.3.4 Limited angles and noisy data

Next, the effect of limited angles (Fig. 6.11a,c) and noise on the projection data

(Fig. 6.11a,b) was studied by performing experiments on all phantom images of

Fig. 6.5. The same parameter estimation methods were performed as in Sec-

tion 6.3.1, with the exception of the exhaustive parameter search. To reduce

computation time for phantom images Fig. 6.5c and Fig. 6.5d, only the grey levels

were estimated in the simplex search approach. Threshold values were then always

put in the middle of two grey levels. For all PDM-DART experiments, parameter

estimation was performed only once every 10 iterations.

In Fig. 6.12, the rNMP values of the different parameter estimation schemes are

plotted as a function of the number of projection angles used for the reconstruction.

In these experiments, the incident beam intensity I0 was set to 50000. Even in the

presence of noise, the PDM-DART algorithm did not require substantially more

projection directions than the manual approach with optimal grey levels. DGLS,

however, generally required more projection directions to provide accurate grey

level estimations. This was especially true for objects for which it was not possible

to select large homogeneous parts in an initial reconstruction, an example of which

is shown in Fig. 6.11d.

In Fig. 6.13, the rNMP values are plotted as a function of the beam intensity,

using 45 projection angles. The achievable accuracy clearly decreased as the noise

level increased. If the level of the noise was very high, the simplex search method

was often not able to find the global optimum.

In Fig. 6.14, the runtimes of the various estimation methods are plotted for

each phantom image of Fig. 6.5 (with I0 = 50000 and 45 projection angles). Given

that these runtimes are dependent on the implementation, they only offer a rough

overview of the computational efficiency. The fastest reconstructions occurred

when the grey levels and threshold values were manually supplied and no further

estimation was required. The addition of the DGLS method as an extra pre-

processing step slightly increased the reconstruction time. Note, however, that

these timings do not take into account the extra time that it took to select the

homogeneous part. The PDM-DART scheme required more computation time
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(a) 180 angles
I0 = 50000

(b) 180 angles
I0 = 5000

(c) 20 angles
I0 = 50000

(d) 20 angles
I0 = 5000

Figure 6.11: Close-up of SIRT reconstructions of Fig. 6.5b from 180 and 20 equiangular
parallel beam projection and I0 = 50000 and I0 = 5000. Note how, based on these images, it
becomes more difficult to select a homogeneous region as the number of projections decreases.
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Figure 6.12: The rNMP values for reconstructed images of each phantom image of Fig. 6.5
as a function of the number of projection angles, for four different parameter estimation
methods. The projection data was generated for a parallel beam projection geometry and
Poisson noise with intensity I0 = 50000 was applied.
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Figure 6.13: The rNMP values for reconstructed images of each phantom image of Fig. 6.5 as
a function of the intensity of the applied Poisson noise, for four different parameter estimation
methods. The projection data was generated for a parallel beam projection geometry with 45
equiangular projection angles.
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Figure 6.14: The running time of each estimation method for each of the phantom images
of Fig. 6.5 with simulated parallel beam projection data with 45 angles and I0 = 50000.
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than DGLS, especially for high-dimensional optimization problems (e.g. Fig. 6.5c

and Fig. 6.5d). However, the runtime was reduced by excluding the estimation of

the segmentation parameters. The simplex search scheme required by far the most

computation time.

6.3.5 Experimental data

The proposed method was also applied on experimental µCT data. Fig. 6.15a

shows an FBP reconstruction of a slice through an aluminium foam, which was

recorded with a SkyScan 1172 µCT scanner with 481 equiangular projection angles

in the interval [0, π). The detector resolution was 9.7µm. Prior to reconstruction,

the data was corrected for ring artefacts and beam hardening with the standard

SkyScan NRecon software package.

In Fig. 6.15b, the segmentation of Fig. 6.15a, performed with Otsu’s clustering

method [4], is shown. This image was used as the ground truth. Next, the number

of projection angles in the sinogram was gradually reduced and reconstructions

were performed with five different techniques: (1) S-SIRT (a SIRT reconstruction

segmented using Otsu’s method); (2) a manual approach in which the median value

of a user-selected part was used to estimate the grey levels; (3) the DGLS approach;

(4) the simplex search method; and (5) PDM-DART. Fig. 6.15c and Fig. 6.15d

show the S-SIRT and PDM-DART reconstructions from only 50 projection images

respectively. In Fig. 6.15e, all computed rNMP values are plotted as a function of

the angle count. In Fig. 6.15f, runtimes are shown. Note that only for a very small

number of projections, the slow simplex search method slightly outperforms the

PDM-DART approach, which in turn slightly outperforms the DGLS approach.

6.4 Discussion

In the previous section, a series of experiments was described in which the novel

PDM-DART approach was compared to other parameter estimation techniques.

Each strategy has advantages as well as drawbacks.

� In simulation experiments, manual estimation (Fig. 6.2a) generally pro-

vides the highest quality reconstructed images with the least amount of time.

However, this method is often not feasible in practical applications as various

reconstruction artefacts can prevent accurate estimation.

� The DGLS technique (Fig. 6.2b) can generate accurate grey level estima-

tions prior to the DART reconstruction and does not present a significant

computational overhead. However, it cannot be used to optimally select the

threshold values and it can only be applied if the user-based selection of
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Figure 6.15: Results of the experimental µCT dataset of an aluminium foam. (a) FBP
reconstruction with 481 projection angles. (b) The segmentation of (a) is used as the ground
truth image. (c,d) Part of PDM-DART reconstructions with 481 and 50 projection angles.
The ground truth image is displayed in red and the reconstructions in green. Where both
images overlap, i.e. where the segmentation is correct, the corresponding pixel is yellow. (e)
The rNMP w.r.t to (b) of various estimation methods, in function of the number of projection
directions.

homogeneous areas is easy. It also tends to be inaccurate if the number of

projection angles is very low. It is only semi-automatic.

� Optimization with the commonly used Nelder-Mead simplex search strat-

egy (Fig. 6.2c) can approximate all optimal segmentation parameters. The

search space for this problem may contain many local optima. However,

experiments have shown that very accurate estimations can still be made.

Furthermore, the method is fully automatic and can also be used to optimize

other algorithm parameters such as the number of additional random pixels

in U (k) in step 2 of each DART iteration or the intensity of the smooth-

ing filter in step 4 of each DART iteration. Estimation with this method is

computationally intensive.
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� The fully automatic PDM-DART (Fig. 6.2d) generally results in accurate

reconstructions even in cases where the DGLS method typically fails. While

its computational overhead is substantially lower than the simplex estimation

scheme, it is drastically larger than DGLS or manual estimation, especially

for high dimensional estimation problems, i.e. if there are many unique grey

levels present in the image. This dimensionality can be reduced by removing

the grey level of the background, which should always be 0, or by excluding

the estimation of the threshold values, fixing them at the middle of two grey

levels. With a minimal loss of accuracy, a large speedup can also be achieved

if the estimation of segmentation parameters is performed only once per

block of DART iterations.

6.5 Conclusions

In this chapter, a novel method for estimating the segmentation parameters within

DART was proposed. PDM-DART combines discrete reconstruction with estima-

tion of segmentation parameters. In contrast to the original DART algorithm,

where these parameters remain fixed throughout the entire reconstruction pro-

cess, PDM-DART adaptively selects the optimal segmentation parameters within

each DART iteration.

Experiments have been performed on a range of different simulation images as

well as on experiment µCT data. They have confirmed that with the PDM-DART

approach, high quality reconstructions can be made even for a low number of

projection angles. Furthermore, it was demonstrated that the use of PDM-DART

does not require more projection directions than other estimation methods. This

paves the way for fully automatic DT in a range of application areas in medicine,

industry and science, where discrete tomography has thus far remained a highly

labour intensive procedure.

References

[1] J. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of

the nelder-mead simplex method in low dimensions,” SIAM Journal of Optimization,

vol. 9, no. 1, pp. 112–147, 1998.

[2] D. Gorissen, K. Crombecq, I. Couckuyt, T. Dhaene, and P. Demeester, “A surrogate

modeling and adaptive sampling toolbox for computer based design,” Journal of

Machine Learning Research, vol. 11, pp. 2051–2055, 2010.

[3] K. J. Batenburg and J. Sijbers, “DART: A practical reconstruction algorithm for dis-

150



REFERENCES

crete tomography,” IEEE Transactions on Image Processing, vol. 20, no. 9, pp. 2542–

2553, 2011.

[4] N. Otsu, “A threshold selection method from gray level histograms,” IEEE Transac-

tions on Systems, Man, and Cybernetics, vol. 9, pp. 62–66, March 1979.

[5] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.

Wu, “An efficient k-means clustering algorithm: analysis and implementation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 881–892, July

2002.

[6] K. J. Batenburg, W. van Aarle, and J. Sijbers, “A semi-automatic algorithm for

grey level estimation in tomography,” Pattern Recognition Letters, vol. 32, no. 9,

pp. 1395–1405, 2011.

[7] F. J. Maestre-Deusto, G. Scavello, J. Pizarro, and P. L. Galindo, “Adart: An adaptive

algebraic reconstruction algorithm for discrete tomography,” IEEE Transactions on

Image Processing, vol. 20, no. 8, pp. 2146–2152, 2011.

151





—I was standing in the park the other day, wondering why a
Frisbee appears larger the closer it gets. Then it hit me.

Stewart Francis, Live at the Apollo, 2010 7
Super-resolution for computed
tomography based on discrete

tomography

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2.1 Partial volume effect . . . . . . . . . . . . . . . . . . . 156

7.2.2 Algebraic tomography . . . . . . . . . . . . . . . . . . . 157

7.3 Super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.1 Sinogram upsampling . . . . . . . . . . . . . . . . . . . 158

7.3.2 Detector supersampling . . . . . . . . . . . . . . . . . . 159

7.3.3 Limited data problem . . . . . . . . . . . . . . . . . . . 160

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . 161

7.4.2 Experimental studies . . . . . . . . . . . . . . . . . . . 167

7.5 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . 168

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

At the time of writing, this chapter is being prepared for publication:
Wim van Aarle, K. Joost Batenburg, Gert Van Gompel, Elke Van de Casteele, Jan
Sijbers, “Super-resolution for computed tomography based on discrete tomography”,
Journal of X-Ray Science and Technology, in preparation, 2012.

153



CHAPTER 7. SUPER-RESOLUTION FOR COMPUTED TOMOGRAPHY
BASED ON DISCRETE TOMOGRAPHY

(a) reconstruction (b) segmentation

Figure 7.1: (a) Reconstruction of a polyurethane foam, scanned in a SkyScan 1172 µCT
scanner at a pixel resolution of 17µm. (b) Otsu’s segmentation of the reconstruction. Many
cell walls remain undetected in the segmentation while other structures are overestimated.

7.1 Introduction

In X-ray computed tomography, images are typically reconstructed on a voxel

grid. Given that each voxel is represented by a constant grey level, it is typically

assumed that the material within such a voxel is homogeneous. It is clear, how-

ever, that a voxel representation cannot properly represent structures that have

a varying density within a voxel. Thus, each voxel in the images could contain

more than one material or tissue type. This phenomenon is referred to as the

partial volume effect (PVE). PVEs cause object boundaries to be smeared out

across the boundary voxels. Also, if a feature of the scanned object is small rel-

ative to the nominal voxel size, PVEs reduce the contrast between the structure

of interest and its background signal. Consequently, it is difficult to achieve the

intrinsic resolution of the detector. Fig. 7.1a shows an FBP reconstruction of a

polyurethane foam for which the widths of the edges of the pores are comparable

to the detector size. A globally thresholded segmentation of Fig. 7.1a, created

with the commonly used clustering method of Otsu, is shown in Fig. 7.1b. Clearly,

many thin structures remain undetected, whereas the thickness for some larger

structures is overestimated.

To reduce PVEs — and hence to obtain sufficient contrast — a high resolution

scan can be acquired. This, however, requires a high radiation dose and a long

scanning time [1]. In Fig. 7.2, an FBP reconstruction with a spatial resolution of

35µm is shown of a rat femur along with an FBP reconstruction with a spatial
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(a) 35µm reconstruction, low dose (b) 9µm reconstruction, high dose

Figure 7.2: FBP reconstructions of the epiphyseal plate of a rat femur taken at two different
resolutions in a SkyScan 1172 µCT scanner. The high dose reconstruction (b) is clearly much
easier to segment. Note that as both slices were taken from different scans, the object was
slightly displaced between the acquisition of both datasets. Even though image registration
was performed, there is still a residual difference.

resolution of 9µm of the same femur. It is clear that the contrast in Fig. 7.2b is

significantly better than that in Fig. 7.2a. Fig. 7.2b is therefore much better suited

for accurate segmentation and estimation of the morphometric bone parameters

[2].

The conventional approach to reduce PVEs without increasing the X-ray dose

is to upsample the reconstruction voxel grid, allowing for a more accurate repre-

sentation and potentially improving the overall visualization of small structures.

This upsampling is also known as super-resolution [3]. Conventional reconstruc-

tion upsampling typically results in a limited data reconstruction problem: the

number of equations (measured projection data) remains the same while the num-

ber of unknowns (reconstruction voxels) increases significantly. This problem can

be overcome by combining the information from multiple low resolution CT im-

ages into a high resolution CT image [4, 5, 6], but this would again result in an

increased scan time and radiation dose.

In this chapter, a super-resolution approach for CT is proposed that effectively

solves the limited data problem by incorporating some form of prior knowledge

about the unknown object. In CT, such prior knowledge comes in many forms,

e.g. sparsity of the reconstructed image [7] or its gradient [8, 9]. Here, the novel

super-resolution scheme is based on the Discrete Algebraic Reconstruction Tech-

nique (DART), as presented in Chapter 4. It it shown that by upsampling the

155



CHAPTER 7. SUPER-RESOLUTION FOR COMPUTED TOMOGRAPHY
BASED ON DISCRETE TOMOGRAPHY

reconstruction grid and incorporating available prior knowledge to compensate

for the lack of high resolution projection data, the proposed approach effectively

increases the spatial resolution of the tomographic reconstructions [10, 11].

This chapter is organized as follows. Section 7.2 introduces a model for the

PVE. The new super-resolution approach is subsequently introduced in Section 7.3.

In Section 7.4, experiments are described that were performed to evaluate the

reconstruction accuracy for the proposed super-resolution approach. Results are

presented for both simulated data and experimental µCT data. Finally, Section 7.5

concludes this chapter.

7.2 Notation

In this section, relevant tomographic notation is introduced and a tomographic

model for the PVE is described. For simplification, a monochromatic X-ray beam

will be assumed. Note, however, that this does not preclude application of the

method to polychromatic X-ray imaging since preprocessing methods can be ap-

plied to compute monochromatic from polychromatic projections [12, 13, 14, 15].

For clarity, all concepts will be presented on a two-dimensional parallel beam

projection geometry, but the proposed methods can be easily generalized to any

acquisition geometry.

7.2.1 Partial volume effect

Let f(x, y) ∈ R × R represent the two-dimensional object function of a certain

object. A parallel beam projection geometry defines the tomographic projection

of f as the line integrals of f along the lines lθ,t = {(x, y) ∈ R×R : x cos θ+y sin θ =

t}, where θ ∈ [0, π) represents the angle between the line and the y-axis and where

t ∈ R represents the coordinate along the projection axis. For a finite set of lines

lθ,t, the X-ray beam intensity at the detectors, I(θ, t), is measured by:

I(θ, t) = I0e
−

∫
lθ,t

f(x,y)ds
,

�� ��7.1

with I0 the incident beam intensity. Define the attenuation projection function or

sinogram p(θ, t) as follows:

p(θ, t) = − ln

(
I(θ, t)

I0

)
=

∫
lθ,t

f(x, y)ds.
�� ��7.2

In practice, a projection is measured at a set of projection angles and at a set

of detector elements with a width ∆t. Let I = (Ii) ∈ Rm denote the measured

intensity data, with m the number of detector values multiplied by the number of
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projection angles. For i ∈ 1, . . . ,m, Ii can then be modelled as:

Ii =

∫ ∆t
2

−∆t
2

I0e
−p(θi,ti+t′)dt′,

�� ��7.3

with ti and θi the detector coordinate and projection angle of the measured de-

tector value Ii, respectively. The attenuation projection data p = (pi) ∈ Rm can

then be defined as follows:

pi = − ln

(
Ii
I0

)
.

�� ��7.4

Note that, due to the logarithmic operation in Eqn. 7.4, the contribution of a pixel

to the measured projection values does not only depend on the average value of

that pixel, but also on the distribution of the attenuation within that pixel.

Tomography deals with the reconstruction of f(x, y) based on p. This recon-

structed function is represented by an image, a grid of square pixels with a finite

width and height, ∆s. Let v = (vj) ∈ Rn denote a discretized square image of the

function f(x, y), where n denotes the number of pixels. The image value vj can

then be modelled as the total value of f , taken over the square pixel:

vj =
1

∆s2

∫ ∆s
2

−∆s
2

∫ ∆s
2

−∆s
2

f(xj + x′, yj + y′)dx′dy′,
�� ��7.5

with xj and yj the coordinates of the centre point of pixel vj .

The value of a certain pixel vj thus depends on an entire area of values of the

real object function. If the object has an edge running through the area of pixel

vj , or if the object is not homogeneous inside the pixel boundaries, the value of vj
does not represent the attenuation coefficient of any of the materials of the object,

but instead represents an average of all attenuation coefficients. This is called

the partial volume effect (PVE). Note that for object functions that consist of

piece-wise constant regions, the fraction of pixels for which PVEs occur is directly

related to the size of ∆s.

7.2.2 Algebraic tomography

Using the discretized definitions of projection data (Eqn. 7.4) and reconstructed

image (Eqn. 7.5), a computational model — approximating the mathematical pro-

jection model — can be constructed. The forward projection of the object for

a finite set of angles is modelled as a linear operator W , called the projection

operator, which maps the image v to the projection data q:

q := Wv.
�� ��7.6
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In Eqn. 7.6,W = (wij) is an m×n matrix where wij represents the contribution

of image pixel j to detector value i. The vector q is called the forward projection

of v. The reconstruction problem in CT can then be modelled as the recovery of

v from a given vector p of projection data, such that:

Wv = p.
�� ��7.7

Throughout this chapter, SIRT (Section 1.3.3.1) is used to solve Eqn. 7.7 without

any constraints on v.

If m is much smaller than n (e.g. when the number of projection directions is

very low or the data is truncated), Eqn. 7.7 is an underdetermined system of linear

equations, leading to a limited data reconstruction problem. As was demonstrated

in Chapter 4, DART is very suited for solving such problems. It exploits knowledge

about the discrete grey levels to iteratively solve Eqn. 7.7 under the constraint that

vj can only take values that are elements of a vector ρ = (ρ1, . . . , ρl)
T .

7.3 Super-resolution

To counter the PVE, the reconstruction grid can be upsampled (Fig. 7.3b). Let

a be the upsampling factor in each dimension. Each pixel of width ∆s is then

subdivided into a2 pixels of width ∆s
a . Denote the upsampled reconstruction image

by v′ ∈ Ra2n.

Note that, typically, ∆s
a is different from ∆t, the width of the detector cell. If

the projection weights wij are computed by intersection of a single ray with the

upsampled image (Fig. 7.3a), some pixels will not have a ray going through them

for each projection angle and the projection data will not be computed correctly.

Two methods are investigated to overcome this problem: sinogram upsampling

(Fig. 7.3c, Section 7.3.1) and detector supersampling (Fig. 7.3d, Section 7.3.2).

7.3.1 Sinogram upsampling

With sinogram upsampling (SU) — sometimes also referred to by sinogram stretch-

ing [16] — , the number of detector cells is artificially increased by subdividing

each detector of size ∆t into a detectors of size ∆t
a . Fig. 7.3c shows a schematic

overview of this geometry. The value of each detector point is determined by

one-dimensional linear interpolation of p. Note that this interpolation assumes a

certain smoothness in the projection data.

Let p′ ∈ Ram be the upsampled sinogram and let WSU ∈ Ram×a2n be the

corresponding projection operator. The reconstruction equation then becomes:

WSUv
′ = p′.

�� ��7.8
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Ás

Át

(a) basic geometry

Ás
a

Át

(b) upsampled grid

Ás
a

Át
a

(c) sinogram upsampling (SU)

Ás
a

Át

(d) detector supersampling (DS)

Figure 7.3: (a) Basic projection geometry. Each detector cell corresponds to a single ray. (b)
Upsampled reconstruction grid. Certain pixels are not hit by a ray. (c) Sinogram upsampling,
each detector is subdivided into multiple detectors with interpolated values. (d) Detector
supersampling, each detector corresponds to multiple rays. The contribution of each ray is
summed.

7.3.2 Detector supersampling

With detector supersampling (DS), the sinogram p remains unaltered. However,

the number of virtual rays targeting each detector cell is increased by a factor

a, each ∆t
a apart. Fig. 7.3d shows a schematic overview of this geometry. The

reconstruction equation is:

WDSv
′ = p,

�� ��7.9

where each row in the projection operator WDS ∈ Rm×a2n is the summation of

the a corresponding rows of WSU .
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7.4: (a) An object that cannot be correctly represented on a pixel grid (b-d) The
respresentation of (a) on reconstruction grids with various pixel sizes. The red lines denote
the pixel borders. (e-g) Highlighted in yellow are the pixels of the reconstruction grids of
(b-d) that would be updated during the a DART iteration.

7.3.3 Limited data problem

In Eqn. 7.8 and Eqn. 7.9, the number of unknowns has been increased by a factor

a2 while the number of equations has been increased by a factor a (Eqn. 7.8) and

remained unaltered (Eqn. 7.9), respectively. Solving the reconstruction equation

is then a limited data problem. As was noted in Chapter 4, prior knowledge about

the scanned objects can be used to solve Eqn. 7.8 and Eqn. 7.9 by using DART.

By design, DART is especially suited for structures that are large with respect

to ∆s. If the object to be reconstructed consists of many small structures, such

as foams or trabecular bone, the PVE breaks the assumption of DART that the

object can be represented with a constant grey level. This is visualized in Fig. 7.4.

Fig. 7.4b-d shows the PVE on the structure visible in Fig. 7.4a with three different

pixel sizes. Furthermore, for a large ∆s, the number of pixels that is updated in

the subsequent DART iteration (referred to as the set A) is still large, limiting

the possible improvements of that DART iteration. In Fig. 7.4e-g, the boundary

pixels of the object are shown. In Fig. 7.4g, the pixels in A even cover the entire

structure, this might lead to it not being segmented in step 3 of DART.

Note that there is a non-linear relationship between the measured projection

data I and the actual attenuation projection data p (Eqn. 7.3 and Eqn. 7.4). As

DART uses a linear projection model, the proposed super-resolution approaches

do not accurately model the PVE. In the next section, however, it will be ex-
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perimentally demonstrated that even with this limited model, super-resolution on

piecewise homogeneous objects with known attenuation coefficients can indeed be

achieved, leading to significant improvements in reconstruction accuracy.

7.4 Experiments

In this section, the proposed super-resolution method is demonstrated and its

effectiveness is evaluated on various simulated images (Section 7.4.1) and on ex-

perimental datasets (Section 7.4.2).

7.4.1 Simulation studies

Experiments were performed on five simulation phantoms (Fig. 7.5a and Fig. 7.6).

Some phantoms were generated analytically (Fig. 7.5a and Fig. 7.6c), while other

phantoms were generated based on high resolution rasterized images.

7.4.1.1 Analytical rings phantom

In the first experiment, the efficacy of a discrete super-resolution technique was

examined as a function of the size of a structure with respect to ∆t. To this end, a

simulated analytical binary phantom containing 11 rings with a varying width, ∆q,

was created. A rasterized rendering of this phantom is depicted in Fig. 7.5a. As a

measure of the magnitude of the PVE, the notion of relative projection resolution,

Rp, is introduced. It is defined as the ratio of the object width, i.e the thickness

of the ring, to the detector width:

Rp =
∆q

∆t
.

�� ��7.10

For the phantom in Fig. 7.5a, the Rp of the outer three rings was 10, 5 and 3.

The Rp of the fourth ring was 1 and could thus be used to measure if the intrinsic

detector resolution was achieved. The seven most inner rings had an Rp of 1
2 to 1

8 .

Projection data was analytically generated (using Eqn. 7.4) for a parallel beam

geometry with 60 equiangular projection angles and 256 detector pixels. Recon-

structions were computed for both S-SIRT (a SIRT reconstruction segmented with

Otsu’s method) and DART and with both the sinogram upsampling approach and

the detector supersampling approach, with increasing levels of super-resolution: a

= 1, 2, 4 and 10.

As indicated by the appearance of the rings in the center in Fig. 7.5b-d, it is

clear that by increasing a (combined with DS and DART), the spatial resolution

drastically improved. This effect was less pronounced if sinogram upsampling was
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(a) Rasterized
ground truth

(b) DS, a = 1
DART

(c) DS, a = 2
DART

(d) DS, a = 4
DART

(e) SU, a = 10
S-SIRT

(f) SU, a = 10
DART

(g) DS, a = 10
S-SIRT

(h) DS, a = 10
DART
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Figure 7.5: Experimental results from a simulated analytical phantom containing 11 rings of
varying width. (a) High resolution rendering of the phantom image, used as ground truth im-
age. (b-d) The inner rings become more visible as a increases. (e-h) Reconstructions of each
proposed super-resolution approach, with (DART) and without (S-SIRT) prior knowledge.
(i-l) The rNMP as a function of the widths of each ring, Rp.
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used (Fig. 7.5f). Furthermore, the thin rings could not be seen at all if no prior

knowledge was included in the reconstruction (Fig. 7.5e and Fig. 7.5g). These

results can also be observed in Fig. 7.5i-l, where for each a the relative Number

of Misclassified Pixels (rNMP) of each ring is plotted. The rNMP measures the

total number of pixels that are classified in a wrong partition (false negatives as

well as false positives) with respect to the total number of pixels of that object.

For analytical phantom images, this rNMP value was approximated by comparing

the reconstruction to a very high resolution rasterization of the phantom image.

For this experiment, the rNMP was computed for each ring separately. The false

negatives of each ring could be easily counted, but counting false positive pixels

was more difficult as it was not clear to which ring such pixel belonged. In the

results shown in Fig. 7.5, each false positive pixel was accounted to the ring that

it was closest to.

7.4.1.2 Other simulated phantom images

Experiments were also performed on the simulated datasets presented in Fig. 7.6.

Fig. 7.6a,b,d show three 1024× 1024 pixel phantoms based on actual reconstruc-

tions of rat femurs and where ∆s = ∆t
4 . Fig. 7.6c represents a set of 20 randomly

generated, analytically defined polyurethane foam phantom images. The width of

each cell wall was chosen randomly in the interval [∆t
2 ,

5∆t
2 ].

For each dataset, projection data was generated on a parallel beam projec-

tion geometry with 180 equiangular projection angles and 256 detector cells with

∆t = 1. For the pixel based phantoms (Fig. 7.6a,b,d), the PVE was induced by

simulating high resolution projection data (with 1024 detector cells with ∆t = 1
4 )

in the intensity domain (i.e. I, Eqn. 7.3). The detector bins were then summed

4 by 4 after which the resulting data was converted to the attenuation domain

(i.e. to p, Eqn. 7.4). For the analytical phantoms (Fig. 7.6c), projection data was

computed analytically, inherently modelling the PVE. For every dataset, Poisson

noise was applied; the intensity of which is defined by the incident beam intensity,

I0. In these experiments, I0 = 20000.

To quantify the segmentation accuracy, the rNMP was computed. As the

experiments were performed at varying pixel or voxel sizes, the reconstructions

were first rescaled to the size of the original, high resolution ground truth images.

For the analytical phantoms, high resolution rasterizations were used as the ground

truth. For phantoms Fig. 7.6b and Fig. 7.6d the rNMP was computed with respect

to the most dense partition, i.e. the bone structures.

Several reconstruction methods were evaluated: S-SIRT (visualized for phan-

tom Fig. 7.6a in Fig. 7.8a,c,e) versus DART (Fig. 7.8b,d,f); a = 1 versus a > 1;

and sinogram upsampling (Fig. 7.8c,d) versus detector supersampling (Fig. 7.8e,f).

In Fig. 7.7 the rNMP for all phantoms is shown.
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(a) (b) (c) 20 images (d) 3D

Figure 7.6: Simulated phantom images. Projection data of (a), (b) and (d) was generated
from high resolution pixel images, based on actual reconstructions of rat femurs. The set
of phantoms (c) were analytically defined and their projection data were also calculated
analytically.

a > 1

a = 1 SU DS

phantom S-SIRT DART a S-SIRT DART S-SIRT DART

Fig. 7.6a 0.388 0.460 4 0.249 0.302 0.208 0.086
Fig. 7.6b 0.519 0.036 4 0.519 0.026 0.519 0.003
Fig. 7.6c 0.468 0.347 8 0.463 0.381 0.389 0.107
Fig. 7.6d 0.168 0.172 4 0.112 0.090 0.091 0.068

Figure 7.7: Numerical results (rNMP) for all phantom experiments of Fig. 7.6. For the set
of phantom Fig. 7.6(c), the average rNMP is given. A parallel beam geometry with 180
projection direction and I0 = 20000 was used.

For phantom Fig. 7.6b and Fig. 7.6c, the advantage of using DART and de-

tector supersampling can be seen in Fig. 7.9a-d. Small trabecular structures were

properly segmented only on an upsampled reconstruction grid. Similar results can

be seen for the foam segmentation, where it is clear that especially the thinnest

cell edges benefited the most from the proposed super-resolution approach.

Fig. 7.10 shows the improvement of detector supersampling on 3D DART re-

constructions of phantom Fig. 7.6d for two orthogonal viewing directions. It can

be seen that by applying super-resolution, the small three-dimensional trabecular

structures were segmented much more accurately, also through the X-axis.

7.4.1.3 Few-view tomography

To reduce the radiation dose, the number of projection angles can be lowered.

However, this leads even further to limited data reconstruction problems. To
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(a) a = 1
S-SIRT
rNMP=0.388

(b) a = 1
DART
rNMP=0.460

(c) SU, a = 4
S-SIRT
rNMP=0.249

(d) SU, a = 4
DART
rNMP=0.302

(e) DS, a = 4
S-SIRT
rNMP=0.208

(f) DS, a = 4
DART
rNMP=0.086

Figure 7.8: Region of the various reconstructions of Fig. 7.6a from 180 parallel beam projec-
tions with I0 = 20000. The ground truth image is displayed in red and the reconstructions in
green. Where both images overlap, i.e. where the segmentation is correct, the corresponding
pixel is yellow.

(a) a = 1, DART
rNMP = 0.036

(b) DS, a = 4, DART
rNMP = 0.003

(c) a = 1, DART
avg(rNMP) = 0.347

(d) DS, a = 8, DART
avg(rNMP) = 0.107

Figure 7.9: (a,b) The use of detector supersampling for phantom Fig. 7.6b. (c,d) The use
of detector supersampling for phantom Fig. 7.6c.

(a) a = 1, DART
rNMP = 0.172

(b) a = 4, DS, DART
rNMP = 0.068

(c) a = 1, DART (d) a = 4, DS, DART

Figure 7.10: The improvement of detector supersampling on 3D-DART reconstructions of
phantom Fig. 7.6d is clearly visible from slices through the Z-axis (a,b) and the X-axis (c,d).
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Figure 7.11: The rNMP as a function of the number of projection angles for phantoms
Fig. 7.6b and Fig. 7.6c and for a = 1 and a = 4.

demonstrate the effect of a low angle count on the proposed super-resolution,

projection data of Fig. 7.6b and Fig. 7.6c was generated with a decreasing number

of projection angles, effectively simulating scans with a reduced radiation dose.

The same downsampling strategy and I0 was used as before in Section 7.4.1.2. For

each set of projection data, DART and S-SIRT reconstructions were created with

and without the detector supersampling approach. The rNMP values are plotted

in Fig. 7.11a and Fig. 7.11b. One can conclude that, even with a drastically

lowered number of projection angles, the combination of detector supersampling

with the exploitation of prior knowledge resulted in reconstructed images that

were more accurate than conventional S-SIRT reconstructions without a super-

resolution approach and with a high number of projection angles.

7.4.1.4 Robustness of assumed principles

In DART — and thus also in the proposed super-resolution approach — it is

assumed that the object has a homogeneous density and that this density is known

in advance. A study was performed to investigate what happens if one of these

assumptions are only approximately satisfied.

To demonstrate the robustness of the algorithm with respect to deviations

from the first assumption, each pixel of phantom Fig. 7.6b was multiplied with a

normally distributed random number with mean = 1. This was done multiple times

for an increasing standard deviation. For each such image, projection data was

generated with 30 projection angles, downsampled by a factor 4 — as explained

before — and with I0 = 20000. Reconstructions were made with S-SIRT and

DART and with detector supersampling (a = 1 and a = 4). In Fig. 7.12a, the

rNMP is plotted as a function of the standard deviation of the applied noise. While

the rNMP of DART with the super-resolution approach indeed increased as the
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Figure 7.12: (a) The rNMP as a function of the standard deviation of the normally distributed
noise that was multiplied with the phantom image Fig. 7.6b prior to simulating the projection
data. (b) The rNMP as a function of the deviation on the correct grey level ρ during DART
reconstructions of Fig. 7.6c.

objects grew more and more inhomogeneous, improvements over the conventional

methods were still achieved.

For phantom Fig. 7.6a, projection data was created with 30 projection angles,

again downsampled by a factor 4 and with I0 = 20000. Multiple DART recon-

structions were created where the assumed grey level was varied between 0.8 and

1.2 times the correct grey level. Fig. 7.12b plots the rNMP values for these DART

reconstruction with detector supersampling (a = 1 and a = 4) and for S-SIRT.

It can be seen that the rNMP of the DART reconstructions indeed increased as

the assumed grey level was incorrect. However, drastic improvements over the

conventional S-SIRT method without super-resolution could be achieved even if

the chosen grey level was just an approximation of the correct grey level.

7.4.2 Experimental studies

The proposed method was also applied on experimental µCT data. Fig. 7.13a

shows an FBP reconstruction of a slice through a human mandible, which was

recorded using a SkyScan 1173 µCT scanner with 900 equiangular projection an-

gles in the interval [0, π). The detector resolution was 50µm. The data was

corrected for ring artefacts and beam hardening with the standard SkyScan NRe-

con software package. Only 100 projection angles were used in the experiments

and the projection data was downsampled by summing the detector bins 4 by 4

in the intensity domain (Eqn. 7.3), such that many of the smaller structures were

relatively small compared to the new detector sizes.

The discrete grey levels ρ were manually approximated, guided by the grey

levels present in the initial SIRT reconstruction. From the FBP reconstruction
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(a) Rp = 1, a = 1
FBP reconstruction

(b) Rp = 1, a = 1
manual segmentation

(c) Rp = 1
a = 1, S-FBP
rNMP=0.106

(d) Rp = 4
a = 1, S-SIRT
rNMP=0.175

(e) Rp = 4
a = 1, DART
rNMP=0.184

(f) Rp = 4
a = 1,DS,S-SIRT
rNMP=0.171

(g) Rp = 4
a = 4, DS,DART
rNMP=0.115

Figure 7.13: Results for an experimental µCT dataset of a slice through a human mandible.

(Fig. 7.13a), computed with the non-downsampled and full set of projection data,

a segmentation was manually created (Fig. 7.13b). This segmentation was used as

a ground truth image.. This FBP reconstruction was also segmented using Otsu’s

clustering method (Fig. 7.13c). Fig. 7.13d-g indicate that also for experimental

datasets, the addition of a super-resolution and DART was beneficial for the ac-

curacy of the segmentation. When comparing Fig. 7.13c with Fig. 7.13g, it can

be seen that with the proposed super-resolution approach, segmentations of low

resolution projection data could be obtained that were of comparable quality to

that of high resolution, high dose scans.

7.5 Discussion and conclusions

Accurate segmentation of structures that are small with respect to the reconstruc-

tion pixel size, poses a very complex and difficult problem as reconstructed images

often lack contrast due to a partial volume effect. This often means that even the
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intrinsic detector resolution cannot be achieved. High resolution reconstructions

can provide a solution, but are often not feasible due to X-ray dose limitations,

limited scanning time or hardware constraints.

To improve the detection of small structures in low resolution CT acquisitions,

the use of a super-resolution approach has been proposed in which reconstructed

images are computed on an upsampled reconstruction grid. Two geometrical meth-

ods for achieving super-resolution have been investigated: sinogram upsampling,

where the projection data is upsampled by linear interpolation, and detector su-

persampling, where multiple rays per detector element are cast through the re-

construction grid. To counter limited data problems, prior knowledge about the

object materials was exploited.

Experiments were performed on simulated as well as experimental data of ob-

jects containing small structures. Without using a super-resolution technique on

objects containing small structures, the addition of prior knowledge (DART) some-

times resulted in less accurate segmentations when compared to the conventional

S-SIRT algorithm. This effect was predicted in Section 7.3.2, where it was noted

that DART is only suited for objects that are large with respect to the pixel size.

However, if a super-resolution technique was applied, the use of prior knowledge

with the DART method clearly resulted in more accurate reconstructions than

the conventional S-SIRT approach. This effect was observed to be generally more

profound if detector supersampling was chosen over sinogram upsampling.

In conclusion, the use of the detector supersampling super-resolution technique

in which prior knowledge about the object density is exploited, can effectively in-

crease the spatial resolution of a reconstructed image. In that way, small structures

can be segmented more accurately even in cases with a low number of projection

angles, and therefore with a low radiation dose.
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—Um, can you repeat the part of the stuff
where you said all about the things?

Homer Simpson 8
Conclusions

Conventional segmentation techniques attempt to find segmented images that ad-

here to the reconstructed image and its histogram, but not necessarily to the

measured projection data. In case the reconstruction is degraded by artefacts, for

example due to a low number of projections, this is likely to lead to inaccurate

images — and therefore also to inaccurate quantitative analysis.

In this work, multiple novel segmentation algorithms have been proposed for

use in tomography. By design, these methods take the following principles into

account.

� Compared to a reconstructed image, available projection data often contains

additional information about the scanned object. This is exploited as much

as possible. Optimal segmentations are those which maximally adhere to

this projection data.

� User interaction is tedious and often error-prone. If possible, the algorithm

parameter settings are estimated automatically.

� As tomography can be used in several application fields (Section 1.5), the

proposed algorithms were developed without a specific application in mind.

� The radiation exposure can be reduced by reducing the number of projections

or by reducing the field of view. High quality reconstructions should be

provided even under these difficult circumstances.

All methods discussed in this work can be divided into two categories: tomo-

graphic segmentation and discrete tomography.

Part I: Tomographic Segmentation

In the first part of this work, tomographic segmentation methods were presented.

These algorithms are to be executed as a post-processing step to the reconstruction.
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At first, it was assumed that the scanned object contains only a few distinct

homogeneous materials. The Projection Distance Minimization (PDM) method,

discussed in Chapter 2, can then be applied. In PDM, the grey levels and opti-

mal global threshold values are automatically estimated such that the Euclidean

distance between the forward projection of the segmented image to the measured

projection data is minimal. To find these optimal values, several optimization

strategies were compared. Extensive experimental validation has shown that a

common simplex search approach provides adequately accurate results with rela-

tively little computational load.

Subsequently, the assumption that the object can only contain homogeneous

materials was weakened. If only the densest material of the scanned object is as-

sumed to be homogeneous, the Segmentation Inconsistency Minimization (SICM),

discussed in Chapter 3, can be applied to automatically approximate the optimal

global threshold value for dense object segmentation. In SICM, the optimal seg-

mentation is the one such that the residual sinogram (i.e. the sinogram of the part

of the image that does not belong to the dense object) is minimally inconsistent.

SICM also automatically estimates the grey level of the dense material.

Part II: Discrete Tomography

The second part of this work concerned discrete tomography methods that combine

reconstruction and segmentation into a single algorithm.

In Chapter 4, the Discrete Algebraic Reconstruction Technique (DART) was

discussed. It can be used if the scanned object is known to consist of a only

a few different homogeneous materials, each corresponding to a grey level that

is assumed to be known a priori. DART has been thoroughly validated with

simulation experiments and has been applied to various experimental datasets.

The assumption that the set of grey levels must be known prior to the DART

reconstruction forms a key problem when applying DART on an experimental

dataset. If these grey levels are not accurately estimated, high quality reconstruc-

tions cannot be obtained. Several schemes for automatic grey level estimating were

presented.

� In Section 4.4, the Euclidean distance between the forward projection of the

DART reconstructed image and the measured projection data was proposed

as a cost function to evaluate a chosen grey levels. A global optimization

strategy, such as simplex search or adaptive surrogate modelling, can then

be applied to find the optimal grey levels. While the typical search space

contains many local optima, experiments have shown that this approach

generally results in high quality estimations. This approach is fully automatic

and can also be used to optimize other algorithm parameters. As a downside,

one should note its extreme computational cost.
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� In Chapter 5, the Discrete Grey Level Selection (DGLS) approach was pre-

sented for semi-automatic estimation of the grey levels. In DGLS, a user

must select an image region that can be expected to correspond to a homo-

geneous region in the original object. Experiments have demonstrated that

the DGLS approximations generally results in highly accurate DART recon-

structions, without a large computational overhead. However, it cannot be

used to estimate the optimal threshold values required in DART. Further-

more, it can only be applied if the user-based selection of homogeneous areas

is easy, which in some cases (e.g. foams) is not true.

� In Chapter 6, PDM-DART was proposed. PDM-DART combines discrete

reconstruction with estimation of segmentation parameters. In contrast to

normal DART, where these parameters remain fixed throughout the entire

reconstruction process, PDM-DART adaptively selects the optimal segmen-

tation parameters within each DART iteration. That way, accurate recon-

structions can be computed even in cases where the DGLS method typi-

cally fails. While its computational overhead is substantially lower than the

global optimization estimation scheme presented in Section 4.4, it is drasti-

cally larger than DGLS or manual estimation, especially for high dimensional

estimation problems (i.e. if there are many unique grey levels present in the

image). It should be noted that PDM-DART is fully automatic.

Another key problem in both conventional as well as discrete tomography is

the accurate reconstruction of structures that are small with respect to the re-

construction pixel size. The partial volume effect then reduces the contrast of

the reconstructed images. High resolution projection acquisition can provide a

solution, but is often not feasible due to X-ray dose limitations, limited scanning

time or hardware constraints. The conventional approach to reduce PVEs without

increasing the X-ray dose is to upsample the reconstruction voxel grid, allowing

for a more accurate representation and potentially improving the overall visual-

ization of small structures. This upsampling is also known as super-resolution and

typically results in a limited data reconstruction problem: the number of equa-

tions (measured projection data) remains the same while the number of unknowns

(reconstruction voxels) increases significantly.

In Chapter 7, a novel super-resolution approach is proposed that improves the

detection of small structures in low resolution CT acquisitions. By incorporating

available prior knowledge (DART) to compensate for the lack of high resolution

projection data, the proposed approach effectively increases the spatial resolution

of the tomographic reconstructions.

Overall, the advances made in this work, pave the way for fully automatic dis-

crete tomography in a wide range of applications, (e.g. materials science, biomed-
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ical research, industrial tomography, . . . ), which was thus far a highly labour

intensive procedure.
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—I am completely operational, and all my
circuits are functioning perfectly.

HAL 9000, 2001 A
The ASTRA-toolbox
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A.1 Motivation

The All Scale Tomographic Reconstruction Antwerp (ASTRA) toolbox is a high

performance framework that incorporates many common CT algorithms while

supporting easy modification and extension, allowing fast prototyping and the

accommodation of specific application requirements.

Tomographic reconstruction problems across various application fields share

many common features and can often be solved using similar methods. In spite of

this, new research is typically focussed solely on a single problem and on a single

application, depending largely on the background of the researcher. The philos-

ophy of the ASTRA research group, however, is that new techniques should not

only benefit the application it was designed for, but that it should also be tested

on other applications that have demonstrated the same problem or weakness. The

ASTRA framework greatly facilitates the porting of tomographic techniques. Fur-

thermore, it has the added benefit that various techniques can be easily compared

to each other and that a technique to solve a specific problem can be rigorously

tested in combination with techniques that solve other problems. The major design

goals of the toolbox are the following.
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Figure A.1: Logo of the All Scale Tomographic Reconstruction Antwerp (ASTRA) toolbox.

Modular, flexible and extensible. Since there is no one-size-fits-all solution for to-

mography, the toolbox has been designed to be fully modular and extensible

using standard object oriented design. In Fig. A.3, a schematic overview

is shown of the different components in the ASTRA toolbox. For each

component, multiple implementations can exist, all with the same overall

goal, but with a different approach that optionally takes application specifics

into account. In the ASTRA framework, various algorithms, geometries or

data-structures can be plugged in, compared or replaced by a custom imple-

mentation. In this way, a common platform is provided to easily test and

benchmark different tomographic methods. Furthermore, each item can be

considered as a building block, supporting the construction of complicated

tomographic algorithms without tedious implementation work. This allows

for easy prototyping of new algorithms or new application fields.

High performance. Computation time is an important issue in CT. The frame-

work was therefore written and optimized in the C++ programming lan-

guage. Additionally, given the fact that many tomographic algorithm are

highly parallelizable, some methods are also implemented in the NVIDIA

CUDA programming language. That way, the vast amounts of cheap com-

putation power of modern day graphical processing units (GPU’s) can be

harvested (see the box on Page 179).

Easy to use. While an optimized C++ implementation guarantees efficiency, it is

not an easy-to-use language when it comes to data visualization or fast pro-
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(a) FASTRA: 8 GPU cores (b) FASTRA 2: 13 GPU cores

Figure A.2: Two very cheap, yet extremely powerful desktop supercomputers.

Intermezzo: the FASTRA’s

In 2007, when scientific computing on GPU’s was still in its infancy, a power-
ful desktop supercomputer was developed at the Vision Lab research group at
the University of Antwerp. This computer, named the FASTRA (Fig. A.2a),
was built with regular consumer hardware at a total cost of 4000EUR. The
system contained 4 dual core gaming GPU’s, resulting in a total computa-
tion power of roughly 3 terraflops. Given that tomography is highly suited
for parallel computing, this system proved invaluable for the development of
advanced tomographic algorithms, which were otherwise not feasible due to
their computation cost.
In 2010, a successor was built (Fig. A.2b). This time, a total of 13 GPU cores
were placed into a single desktop system, totalling 12 terraflops for less than
6000EUR. Under full load, this system consumes a relatively low 1200 Watt.
As a comparison, typical supercomputers consume more than 100000 Watt
and cost millions of euros.
At their release, both systems became a viral hit on the internet. More infor-
mation about the FASTRA projects can be found at http://fastra2.ua.ac.be.

totyping. Therefore, an intuitive MATLAB wrapping layer was developed

around the entire framework. That way, all C++ objects can be created,

configured, applied and destroyed from within the MATLAB environment.

Extensive documentation and examples are provided, two of which are pre-

sented in Section A.3.

Platform independence. The software has been designed to work on both Win-

dows and Linux machines.
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Figure A.3: A schematic overview of the different modules in the ASTRA-toolbox.

A.2 Features

In this section, a short overview of the most important features of the ASTRA-

toolbox is presented.

Data structures Projection or reconstruction data is stored into two- or three-

dimensional data structures. This data can be read from and written to file

using specialized file I/O routines. Each data object is linked to a certain

geometry. Projection geometries that are currently available are: parallel

beam, fan beam, circular cone beam and cone beam with a trajectory spec-

ified by the user.

Projectors Central to the toolbox workflow are projector objects. These objects

provide implementations to compute or approximate the values of the pro-

jector matrices (W in Eqn. 1.19). They create a link between the projection

geometry and the geometry of the reconstruction grid. Currently imple-

mented: projection with a strip-based kernel (Fig. 1.7a), projection with a

line-based kernel (Fig. 1.7b), Joseph’s method (Fig. 1.7c), and projection

using any sparse matrix provided by the user.

It should be noted that projector objects are only available for CPU-based

implementations. For the CUDA accelerated algorithms, the projection code

is integrated in the actual algorithm code, sacrificing some flexibility for a

significant speedup.

Algorithms Algorithm classes provide implementations for various tomographic

operations. They are applied on projection and/or reconstruction data and
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typically make use of a projector object. Currently, the following algorithms

are implemented:

� On CPU and GPU: Simple forward projection, simple backprojection,

filtered backprojection (FBP), SIRT, CGLS.

� On CPU only: ART, SART.

� On GPU only: Feldkamp-Davis-Kress (FDK), Expectation Maximiza-

tion (EM).

In the future, many other algorithms will be added.

Matlab interface For better usability, bindings to the MATLAB scripting lan-

guage are available. With the supplied MEX-files, all functionality of the

C++ classes can be accessed from the MATLAB command line. Internally,

the XML language is used to transfer configuration data to and from the

C++ objects.

A.3 Examples

In this section, two examples are provided of how the toolbox can be operated

from MATLAB. In Section A.3.1, a SIRT reconstruction is created of a phantom

image. In Section A.3.2, the advanced prototyping capabilities of the toolbox are

demonstrated with a simplified DART implementation.

A.3.1 Simple reconstruction

In this example, projection data is simulated of a 512 × 512 image that is stored

in “blob.png”. This data is then used to create a SIRT reconstruction.

1. Im = imread(’blob.png’);

A 512×512 image is loaded and stored into a 2D matrix.

2. proj geom = astra create proj geom(’parallel’, 1, 512, linspace(0,pi,180));

The geometry of the projection data is specified as a parallel beam geometry

with 512 detector cells of width 1.0. There are 180 projection angles, spaced

equiangularly in [0, π].

3. vol geom = astra create vol geom(512,512);

The geometry of the reconstruction data is defined as a simple 512×512 grid.
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4. proj id = astra create projector(’line’, proj geom, vol geom);

A line-kernel based projector object is created and stored in the memory.

An identifier to this object is returned. This can subsequently be used as a

handle to the object.

5. sinogram id = astra create sino(Im, proj id);

A sinogram is created of the 2D phantom image. Only an identifier of this

data is returned. That way, the data is only stored in memory once.

6. reconstruction id = astra mex data2d(’create’, ’-vol’, vol geom, 0);

A new data object is created. This object will store the reconstructed image.

It is initialized as a black image (it contains only zeros).

7.

cfg = astra struct(’SIRT’);
cfg.ProjectorId = proj id;
cfg.ProjectionDataId = sinogram id;
cfg.ReconstructionDataId = reconstruction id;
cfg.option.UseMinConstraint = ’yes’;

A MATLAB structure is created that contains all configuration settings for

the reconstruction algorithm. Here, SIRT (CPU-based) will be used. The

projector and data objects are specified and a positivity constraint is enabled

that will force all values of the reconstructed image to remain positive.

8. alg id = astra mex algorithm(’create’, cfg);

The algorithm object is created and initialized. As with the projector and

data objects, an identifier is returned.

9. astra mex algorithm(’iterate’, alg id, 100);

100 iterations of the algorithm are performed.

10. reconstruction = astra mex data2d(’get’, reconstruction id);

The data contained in the reconstruction data object is fetched and placed

into the MATLAB workspace.

11.

astra mex data2d(’delete’,sinogram id, reconstruction id);
astra mex algorithm(’delete’,alg id);
astra mex projector(’delete’,proj id);

All objects are deleted from the memory.
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A.3.2 Algorithm prototyping

With a few simple building blocks, complicated algorithms can be constructed. To

demonstrate, a simplified implementation of the DART algorithm (Chapter 4) is

presented.

1.

function reconstruction = create reconstruction ...
(proj id, sinogram id, vol geom, mask id, iterations)

reconstruction id = astra mex data2d(’create’, ’-vol’, vol geom, 0);
cfg = astra struct(’SIRT’);
cfg.ProjectorId = proj id;
cfg.ProjectionDataId = sinogram id;
cfg.ReconstructionDataId = reconstruction id;
cfg.option.ReconstructionMaskId = mask id;
alg id = astra mex algorithm(’create’, cfg);
astra mex algorithm(’iterate’, alg id, 100);
reconstruction = astra mex data2d(’get’, reconstruction id);
astra mex algorithm(’delete’,alg id);
astra mex data2d(’delete’, reconstruction id);

end

First, a function is defined that creates a SIRT reconstruction, restricted

on a certain set of pixels, from an object containing projection data. The

ReconstructionMaskId option ensures that the reconstruction is only applied

on the pixels that have a value larger than zero in the data object to which

mask id points.

2.

Im = imread(’blob.png’);
proj geom = astra create proj geom(’parallel’, 1, 512, linspace(0,pi,180));
vol geom = astra create vol geom(512,512);
proj id = astra create projector(’line’, proj geom, vol geom);
[sinogram id, sinogram] = astra create sino(Im, proj id);

As in the first example, projection data is simulated of a 512 × 512 binary

phantom image. Note that in the last line, the sinogram data is also returned

as a 2D matrix.

3.

mask id = astra mex data2d(’create’, ’-vol’, vol geom, 1);
reconstruction = create reconstruction( ...

proj id, sinogram id, vol geom, mask id, 100);

An initial reconstruction is created using 100 iterations. The reconstruction

mask contains only ones.
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4. for iteration = 1:100

Next, DART steps into an iterative scheme.

5. segmentation = (reconstruction > 128) * 255;

The current reconstruction is segmented by application of a threshold. Each

value in the segmentation is assigned the grey level corresponding to the

prior knowledge. Here, the grey levels are 0 and 255 and the threshold value

is 128. Note that, for brevity, only binary images can be reconstructed with

this implementation.

6.
mask = . . .
segmentation fixed = segmentation .* ~mask;

A new mask image is created. This image defines which pixels will be updated

in the next iteration. Each boundary pixel is assigned to 1, all other pixels

are assigned to 0. The actual implementation can be done in numerous ways

and is left for the reader. Subsequently, the segmentation is multiplied with

the inverse of the mask image.

7.

[sino fixed id, sino fixed] = astra create sino(segmentation fixed, proj id);
astra mex data2d(’delete’, sino fixed id);
astra mex data2d(’store’, sinogram id, sinogram - sino fixed);

A forward projection of the fixed pixels is then created. Subsequently, the

residual sinogram is computed and stored.

8.
reconstruction = update reconstruction( . . .

proj id, sinogram id, vol geom, mask id, 10);
reconstruction = reconstruction + segmentation fixed;

10 SIRT iterations are applied on the residual sinogram. To this reconstruc-

tion, the segmentation containing only the fixed pixels are added.

9. end

End of the iterative scheme.

From these examples, it is clear that the MATLAB layer around the ASTRA-

toolbox provides an easy and intuitive approach to tomography. Given that chang-

ing any parameter (e.g. geometry parameter, projector type, reconstruction algo-

rithm, algorithm options, . . . ) is a mere triviality, the toolbox is highly useful for

experimenting.
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—Look at me, I’m a train on a track
I’m a train, I’m a train, I’m a chucka train, yeah
Look at me, got a load on my back
I’m a train, I’m a train, I’m a chucka train, yeah.

Albert Hammond, I’m a train, 1973. B
List of common abbreviations and

symbols

Contents
Common abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 185

Common symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Common abbreviations

ART Algebraic Reconstruction Technique.

ASTRA All Scale Tomographic Reconstruction Antwerp.

CGLS Conjugate Gradient Least Squares.

CT Computed Tomography.

DART Discrete Algebraic Reconstruction Technique.

DGLS Discrete Grey Level Selection.

FBP Filtered Backprojection.

FDK Feldkamp-Davis-Kress.

FOV Field of View.

GPU Graphical Processing Unit.
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Common abbreviations

PDM Projection Distance Minimization.

PDM-DART Projection Distance Minimization DART.

PVE Partial Volume Effect.

rNMP relative Number of Misclassified Pixels.

ROI Region of Interest.

S-FBP Segmented Filtered Backprojection.

S-FDK Segmented Feldkamp-Davis-Kress.

S-SIRT Segmented Simultaneous Iterative Reconstruction Technique.

SART Simulteneous Algebraic Reconstruction Technique.

SICM Segmentation Inconsistency Minimization.

SIRT Simultaneous Iterative Reconstruction Technique.

SNR Signal-to-Noise Ratio.

Common symbols

a ∈ N Upsampling factor for super-resolution.

i ∈ {1, . . . ,m} Indexing variable for data in the projection do-

main.

j ∈ {1, . . . , n} Indexing variable for data in the reconstruction

domain.

k ∈ N Iteration number.

l ∈ N Number of distinct grey levels.

m ∈ N Number of detector cells multiplied by the num-

ber of projection angles.

n ∈ N Number of pixels in the reconstruction grid.

p = (pi) ∈ Rm Vector representing projection data.

s = (sj) ∈ Rn Vector representing segmented image.

t ∈ R Detector offset.

v = (vj) ∈ Rn Vector representing reconstructed image.

W = (wij) ∈ Rm×n The projector matrix that maps a function in the

object or reconstruction domain onto the projec-

tion domain.
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C(v) : Rn → {ρ1, ..., ρl}n Segmentation function.

I(v) : Rn → {1, ..., l}n Threshold function.

R : R× R→ R Radon transform.

S : Rm → Rn Linear operator that corresponds to a certain

number of iterations of a linear algebraic recon-

struction technique.

SA : Rm → Rn Linear operator that corresponds to a certain

number of iterations of a linear algebraic recon-

struction technique, restricted to the pixels in set

A ⊂ {1, . . . , n}.
ρ = (ρ1, . . . , ρl)

T Vector containing all distinct grey levels.

τ = (τ1, . . . , τl−1)T Vector containing all threshold levels.

∆s ∈ R+ The length and width of a pixel. In this work

only square pixels are considered.

∆t ∈ R+ The width of a detector cell.
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—And if you listen very hard, the tune will come to you at last.
When all are one and one is all. To be a rock and not to roll.

Jimmy Page and Robert Plant, Stairway to Heaven, 1971. C
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