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Abstract

Many image processing methods applied to magnetic resonance (MR) images

directly or indirectly rely on prior knowledge of the statistical data distri-

bution that characterizes the MR data. Also, data distributions are key in

many parameter estimation problems and strongly relate to the accuracy and

precision with which parameters can be estimated. This review paper pro-

vides an overview of the various distributions that occur when dealing with

MR data, considering both single coil and multiple coil acquisition systems.

The paper also summarizes how knowledge of the MR data distributions can

be used to construct optimal parameter estimators and answers the question

as to what precision may be achieved ultimately from a particular MR image.
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1. Introduction

Magnetic Resonance Imaging (MRI) is the diagnostic tool of choice in

biomedicine. It is able to produce high-quality three-dimensional images

containing an abundance of physiological, anatomical and functional infor-

mation. A voxel’s grey level within an MR image represents the amplitude of

the radio frequency signal coming from the hydrogen nuclei (protons) within

that voxel. To draw reliable diagnostic conclusions from MR images, visual

inspection alone is often insufficient. Quantitative data analysis is required

to extract the information needed. Such an analysis can almost without ex-

ception be formulated as a parameter estimation problem. The parameters of

interest can simply be the values of the true MR signal underlying the noise

corrupted data points [1–3], but also proton densities (in the construction of

proton density maps [4, 5]), relaxation time constants (in the construction of

T1, T2 and T �
2 maps [4–11]) or diffusion parameters (in Diffusion MRI) [12–

14]. Different estimators can be constructed to estimate one and the same

parameter, but it is well known that the best estimators (in terms of accuracy

and precision) are constructed by properly taking the statistical distribution

of the data into account. Hence, knowledge of the MRI data distribution is

of vital importance.

This review paper gives an overview of the various distributions that occur

when dealing with MR data, considering both single coil and multiple coil

systems. The paper also summarizes how knowledge of these distributions

can be used to construct optimal estimators and to answer the question as

to what precision may be achieved ultimately from a particular MR image.

The organization of the paper is as follows. Section 2 briefly reviews MR
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signal detection and introduces a statistical model of the complex valued raw

MR data acquired in the so-called k-space (i.e, the spatial frequency domain).

Section 3 then describes the statistical distribution of the reconstructed im-

ages in the spatial domain, assuming the data have been acquired using a

single-coil system. Complex images as well as magnitude and phase images,

which can be constructed from the complex images straightforwardly, are

considered. Since image acquisition with multiple coils is becoming more

and more common nowadays, section 4 describes the distribution of complex

and magnitude images acquired with multiple coil-systems. Section 5 reviews

the theory that explains how knowledge of the distribution of the MR im-

ages can be used to i) derive a lower bound on the variance of any unbiased

estimator of parameters from these images (the so-called Cramér-Rao Lower

Bound), and (ii) to construct the maximum likelihood (ML) estimator, which

attains this lower bound at least asymptotically. In section 6, this theory is

applied to i) derive the CRLB for unbiased estimation of the underlying

true signal amplitude from (single coil and multiple-coil) magnitude images

and, (ii) derive the ML estimator for this estimation problem. In section 7,

conclusions are drawn.

Notation: Throughout this paper, vectors will be underlined and matri-

ces will be expressed in capital letters. Furthermore, random variables (RVs)

will be expressed in bold face. The operators Er�s and V arp�q denote the

expectation and variance of a random variable, respectively. The real part

of a complex valued variable z is denoted as zR and the imaginary part as

zI . The complex conjugate of X is denoted as X� and the transpose and

complex conjugate transpose of X are denoted as XT and XH , respectively.
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Furthermore, we use fxpxq to denote the probability density function (PDF)

of the random variable x. The conditional PDF of the RV x conditioned on

the RV y is denoted as fx|ypx|yq. The modified Bessel function of the first

kind of order ν is denoted as Iνp�q. The symbol ı denotes
?�1.

2. Signal detection and modeling

This section briefly reviews the mathematics behind signal detection in

MRI and describes the concepts of signal demodulation and quadrature de-

tection. The section is to a large extent based on [15–19]. For a more

comprehensive description, the reader is referred to those references. The

final purpose of the section is to introduce a statistical model of the detected

MR signal.

2.1. Modeling the noise free signal

In MRI, an object is placed in a strong static, external, homogeneous

magnetic field B0 that polarizes the protons in the object, yielding a net

magnetic moment oriented parallel to B0. Let’s assume that B0 points in

the z-direction. Next, a radio frequency pulse is applied that generates an-

other, oscillating magnetic field B1 perpendicular to B0. This so-called exci-

tation field tips away the net magnetic moment from the z-axis, producing

a magnetization component transverse to the static field. This transverse

magnetization component precesses at the so-called Larmor frequency

ω0 � γ|B0|,

with γ the gyromagnetic ratio. This precessing magnetization vector induces

a voltage in the receiver/detector coil (a conducting loop). Spatial informa-
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tion can be encoded in the received signal by augmenting B0 with additional,

spatially varying magnetic fields. These so-called gradient fields vary linearly

in space and are denoted as Gx, Gy and Gz. For example, when Gx is ap-

plied, the strength of the static magnetic field will vary with position in the

x-direction as |Bzpxq| � |B0| �Gxx, where the subscript z is used to denote

that the magnetic field points in the z-direction. In this way, gradient fields

can be used to to make the precession frequency vary linearly in space. MRI

signal detection is based on Faraday’s law of electromagnetic induction and

the principle of reciprocity [15]. Assuming a static inhomogeneous magnetic

field pointing in the z�direction, the (noise free) voltage signal vptq in the

receiver coil is related to the transverse magnetization distribution Mxypr, tq
of the object by the expression [15]

vptq �
»
object

ωprq|Br,xyprq||Mxypr, 0�q|e�t{T2prq

cos
�
�ωprqt� φeprq � φrprq � π

2

�
dr (1)

with r � px, y, zqT the position in the laboratory frame, t � 0� the time

instant immediately after the excitation pulse, ωprq the free precession fre-

quency, T2 a relaxation time constant, Br,xyprq the detection sensitivity of

the coil, φrprq the reception phase angle, and φeprq the initial phase shift

introduced by RF excitation. The detection sensitivity Br,xyprq is defined as

the xy vector component of the field generated at r by a unit current in the

coil. The phase contributions φrprq and φeprq take a value between 0 and 2π

depending on the direction of, respectively, Br,xyprq and Mxypr, 0�q in the

transverse plane [15]. Assuming that a frequency encoding gradient Gx was
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turned on during the signal read out (i.e., during data acquisition), we have

ωprq � ω0 �∆ωprq, (2)

with

∆ωprq � γGxx, (3)

where ∆ωprq is the spatially varying resonance frequency in the Larmor-

rotating frame, i.e., the coordinate system whose transverse plane is rotating

clockwise at an angular frequency ω0 [15]. Furthermore, if we assume that a

so-called phase encoding gradient Gy was turned on for a time interval Tpe

before the signal read out, we have to add a position dependent initial phase

contribution φpeprq to vptq:

vptq �
»
object

ωprq|Br,xyprq||Mxypr, 0�q|e�t{T2prq

cos
�
�ωprqt� φpeprq � φeprq � φrprq � π

2

�
dr, (4)

with

φpeprq � γGyyTpe. (5)

MR image reconstruction concerns the inverse problem of reconstructing

the transverse magnetization distribution Mxypr, tq from the voltage signal

vptq. If we assume that a slice selective gradient Gz has been applied in the

z�direction during the excitation period, only protons in the selected slice

(at, say, z � z0) are excited, so that Mxypx, y, z0, tq � Mxypx, y, tq [18]. The

MRI reconstruction problem then reduces to producing a spatial map in two

dimensions. Assuming that |Mxypr, 0�q|e�t{T2prq is relatively constant during
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data acquisition, Equation (4) can be simplified to

vptq �
»
object

ωprq|Br,xyprq||Mxypr, tacqq|

cos
�
�ωprqt� φpeprq � φeprq � φrprq � π

2

�
dr (6)

with tacq the time at the center of the acquisition and

Mxypr, tacqq � |Mxypr, 0�q|e�tacq{T2prqeıφeprq. (7)

In practice, ∆ωprq ! ω0 and vptq is a high frequency bandpass signal

centered about the frequency �ω0. The high-frequency nature of vptq may

cause unnecessary problems for electronic circuits in later processing stages

[15]. In practice, these problems are circumvented by exploiting the following

property of the bandpass signal vptq. It can be shown that the bandpass

signal vptq can be represented as [19]

vptq � < rṽptq exppıω0tqs , (8)

where <rzs denotes the real part of the complex number z and ṽptq is the

so-called complex envelope of vptq, which can be written as

ṽptq � ṽRptq � ıṽIptq, (9)

with

ṽRptq �
»
object

ωprq|Br,xyprq||Mxypr, tacqq|

cos
�
�∆ωprqt� φpeprq � φeprq � φrprq � π

2

�
dr, (10)

and

ṽIptq �
»
object

ωprq|Br,xyprq||Mxypr, tacqq|

sin
�
�∆ωprqt� φpeprq � φeprq � φrprq � π

2

�
dr. (11)
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The signal ṽRptq is called the in-phase component and ṽIptq is called the

quadrature component of vptq. Note that it follows from (8) and (9) that the

original bandpass signal vptq can be written in terms of ṽRptq and ṽIptq as:

vptq � ṽRptq cospω0tq � ṽIptq sinpω0tq. (12)

Since in practice ∆ωprq ! ω0, Eqs. (10) and (11) can be simplified to

ṽRptq � ω0

»
object

|Br,xyprq||Mxypr, tacqq|

cos
�
�∆ωprqt� φpeprq � φeprq � φrprq � π

2

�
dr, (13)

and

ṽIptq � ω0

»
object

|Br,xyprq||Mxypr, tacqq|

sin
�
�∆ωprqt� φpeprq � φeprq � φrprq � π

2

�
dr, (14)

and the complex envelope can be written as

ṽptq � ω0

»
object

|Br,xyprq||Mxypr, tacqq|e�ır∆ωprqt�φpeprq�φeprq�φrprq�
π
2 sdr. (15)

Note that both ṽRptq and ṽIptq are low-pass signals. In practice, the signals

ṽRptq and ṽIptq can be obtained from the original signal vptq by multiply-

ing vptq by a reference sinusoidal signal and then low-passing filtering to

remove the high-frequency component. This method is known as the signal-

demodulation method, or the phase sensitive detection (PSD) method [15].

Using 2 cospω0tq and �2 sinpω0tq as reference signals, signal-demodulation

yields ṽRptq and ṽIptq, respectively. This detection scheme is known as

quadrature detection. Quadrature detection thus produces two data streams

with a 90 degrees phase difference. When put in complex form, with ṽRptq
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being treated as the real part and ṽIptq as the imaginary part, these data

streams together constitute the complex envelope ṽptq of vptq. Note that,

given ω0, all information content of vptq is preserved in the complex envelope

ṽptq.
To get more insight in the relation between vptq and its quadrature and

in-phase components, consider the signal

v�ptq � ṽptq exppıω0tq, (16)

which is known as the analytic signal (or pre-envelope) of vptq and can be

written as

v�ptq � vptq � ıv̌ptq, (17)

with v̌ptq the Hilbert transform of vptq [16], which will be denoted as v̌ptq �
H rvptqs. In other words, v̌ptq is the response of a dynamic system with

impulse response function

hptq � 1

πt
(18)

and corresponding frequency response function

Hpıωq � �ı sgnpωq, (19)

with sgnpωq the sign of ω. The filter (19), which is known as a quadratic

filter [16], has a constant amplitude |Hpıωq| � 1 (all pass), and its phase

equals �π{2 for ω ¡ 0 and π{2 for ω   0. The effect of forming the complex

signal v�ptq is to remove the redundant negative frequency components of the

Fourier transform. Indeed, it follows from above that the Fourier transform

V̌ pωq of v̌ptq is given by

V̌ pωq � �ı sgnpωqV pωq, (20)
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with V pωq the Fourier transform of vptq and, as follows from (17) and (20),

V�pωq � V pωq � sgnpωqV pωq. (21)

Furthermore, the Fourier transform of the complex envelope ṽptq is given by

Ṽ pωq � V�pω � ω0q. (22)

Using the Hilbert transform pairs H rcospωtqs � sinpωtq and H rsinpωtqs �
� cospωtq, and Bedrossian’s theorem [20] it can be shown that:

ṽRptq � vptq cospω0tq � v̌ptq sinpω0tq, (23)

ṽIptq � v̌ptq cospω0tq � vptq sinpω0tq. (24)

Finally, if we assume that the receiver coil has a homogeneous reception

field, which may, for example, be a valid assumption in a single coil based on

a birdcage volume resonator [15], the signal expression (15) can be further

simplified to

ṽptq �
»
object

Mxypr, tacqqe�ıp∆ωprqt�φpeprqqdr, (25)

where the complex notation

Mxypr, tacqq � |Mxypr, tacqq|eıφeprq, (26)

has been used and a scaling constant � ω0e
ıπ{2 has been omitted [15]. Sub-

stituting (3) and (5) in (25) then yields

ṽpkq �
»
object

Mxypr, tacqqe�ı2πk�rdr, (27)

where the mapping relation between pt, Gyq and k � pkx, kyqT is given by

kx � 1

2π
γGxt, (28)

ky � 1

2π
γGyTpe. (29)
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Hence, the signal ṽpkq in the so-called k-space is the 2D spatial Fourier trans-

form of Mxypr, tacqq, which is the quantity of interest to be reconstructed (i.e.,

the image). Note that if φeprq is small or (ideally) zero, the imaginary com-

ponent of Mxypr, tacqq can be neglected making the image to be reconstructed

real valued. In practice, however, the realness constraint is often violated be-

cause object motion and magnetic field inhomogeneities introduce a nonzero

phase to the image function [15]. Obviously, a straightforward reconstruction

of the image is obtained by inverse Fourier transforming the data, but before

we come to that, we will first consider the effect of noise. It should be noted

that the assumption of a homogeneous reception field is generally invalid for

single coil acquisitions that use so-called surface coils [21]. In that case, the

detection sensitivity has to be taken into account and (15) can no longer be

simplified to (25).

2.2. Modeling the noise

So far, we have considered noiseless signals. In practice, however, the

signal vptq will be disturbed by noise, which is mainly caused by thermal

motion (Brownian motion) of electrons within the body’s conducting tissue

and the receiving coil(s) [22]. This thermal noise, which was investigated

experimentally by Johnson [23] and theoretically by Nyquist [24], is often

referred to as Johnson noise. It can be modeled as additive zero mean white

Gaussian noise with variance (or, power) [25][26]

σ2
w � 2kbT pRcoil �Rbodyq, (30)

where kb denotes Boltzmann’s constant, T the absolute temperature and Rcoil

and Rbody the effective resistance of the coil and the body, respectively.
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Hence, the raw MR signal can be modeled as:

vptq � vptq � nwptq, (31)

with nwptq a stationary zero mean Gaussian white noise process with variance

σ2
w. Note that the signal vptq is bandlimited to frequencies ω such that

||ω|�ω0| ¤ maxr ∆ωprq. The noise, however, has a spectrum that exists over

the entire frequency range and can be separated into two components: (i)

the out-of-band noise component noptq and (ii) the in-band noise component

nptq [17]:

nwptq � noptq � nptq. (32)

The in-band noise component nptq can be obtained by filtering the raw data

by an (ideal) bandpass filter with a passband that corresponds with the

bandpass signal vptq. Note that this filter leaves the bandpass signal vptq
unaffected. Furthermore, note that nptq is obtained from a Gaussian process

through a linear operation. Hence, the process nptq is also a Gaussian pro-

cess. It is commonly known as a bandpass “white” Gaussian noise process,

having a power spectral density function that is symmetrical about ω0 . It

can be shown that n0ptq is independent of both vptq and nptq and can be dis-

carded without any loss of information [17]. In what follows, we will assume

that bandpass filtering has been applied to eliminate the out of band noise

component.

Now, it can be shown that the band pass white Gaussian noise process

nptq can be written in the form [16]

nptq � ñRptq cospω0tq � ñIptq sinpω0tq, (33)
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with ñRptq and ñIptq zero mean lowpass stationary Gaussian processes de-

scribed by

ñRptq � nptq cospω0tq � ňptq sinpω0tq, (34)

ñIptq � ňptq cospω0tq � nptq sinpω0tq (35)

with ňptq the Hilbert transform of nptq, where the Hilbert transform x̌ptq of

a stochastic process xptq is given by the output of the system (19) with input

xptq, that is [16]

x̌ptq � 1

πt
� xptq � 1

π

» 8

�8

xpτq
t� τ

dτ. (36)

with � the convolution operator. Note the analogy of (34) and (35) with (23)

and (24). It can easily be shown that since nptq is a stationary process, the

process ňptq is also stationary [16]. Furthermore, it can be been shown that

the following relations hold [16]:

Rňnp0q � 0, (37)

Rnpτq � RñRpτq cospω0τq, (38)

RñRpτq � RñI pτq � Rnpτq cospω0τq �Rňnpτq sinpω0τq, (39)

RñRñI pτq � �RñI ñRpτq � 0, @τ (40)

with Rňnpτq the cross-correlation function between the processes ňptq and

nptq, Rnpτq the autocorrelation function of the process nptq, RñRpτq the

autocorrelation function of the process ñRptq, RñI pτq the autocorrelation

function of the process ñIptq, and RñRñI pτq the cross-correlation function of

the processes ñRptq and ñIptq. It follows from (37) that, for a given t, the

zero mean Gaussian random variables nptq and ňptq are orthogonal (and thus
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uncorrelated) and it follows from (39) and (40) that the zero mean processes

ñRptq and ñIptq have equal autocorrelation functions and are orthogonal.

In analogy with (9) and (17), we can define the complex processes

ñptq � ñRptq � ıñIptq, (41)

and

n�ptq � nptq � ıňptq � ñptq exppıω0tq, (42)

representing the complex envelope and the analytic signal associated with

nptq. Note that the last equality in (42) follows from Eqs. (34-35).

2.3. Modeling the noise disturbed MR signal

Let’s now combine the results obtained in the subsections 2.1 and 2.2 and

define

v�ptq � ṽptq exppıω0tq, (43)

with

ṽptq � ṽptq � ñptq, (44)

where ṽptq and ñptq are the previously defined complex envelopes of the signal

vptq and the noise process nptq, respectively. The signal ṽptq thus represents

the complex envelope of the noise disturbed signal vptq�nptq. It follows from

above that ṽptq can be described as

ṽptq � ṽRptq � ıṽIptq, (45)

with

ṽRptq � ṽRptq � ñRptq, (46)
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the noise disturbed in-phase component and

ṽIptq � ṽIptq � ñIptq, (47)

the noise disturbed quadrature component. It can be shown that the sig-

nals ṽRptq and ṽIptq can be obtained by applying the signal demodulation

method described in subsection 2.1, the noise contributions to the in-phase

and quadrature detection channel being equal to ñRptq and ñIptq, respec-

tively.

In summary, the noise disturbed MR data obtained by quadrature detec-

tion using a single receiver coil can be described in complex form as:

ṽptq � ṽRptq � ñRptq � ırṽIptq � ñIptqs. (48)

where ṽRptq and ṽIptq are the in-phase (or, real) and quadrature (or, imag-

inary) components of the noiseless signal and ñRptq and ñIptq are two zero

mean Gaussian, orthogonal processes that describe the in-phase and quadra-

ture component of the noise, respectively.

2.4. Sampling

In MRI practice, the signal (48) will be sampled, and sampling may affect

the correlation properties of the noise. Recall that the noise process nptq
is assumed to be the result of band-pass filtering a continuous time white

Gaussian noise process nwptq over a band centered around ω0, where the

width W of the band corresponds with the passband of the bandpass signal

vptq. Furthermore, recall that the power spectral density function (and thus

variance) of nwptq was equal to σ2
w. Then, the autocorrelation function of
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the bandpass ”white” noise process nptq is given by [19]

Rnpτq � 2σ2
w

sinpW
2
τq

πτ
cospω0τq. (49)

By comparison with (38) we have

RñRpτq � RñI pτq � 2σ2
w

sinpW
2
τq

πτ
. (50)

If we sample the complex envelope ñptq � ñRptq� ıñIptq at the Nyquist rate

of ωs � 2π
∆t
� W , we have:

RñRpl∆tq � RñI pl∆tq �
σ2
wW

π

sinpπlq
πl

� σ2
wW

π
δrls, (51)

with l P Z and δr�s the Kronecker delta function. Furthermore, as derived

earlier,

RñRñI pτq � �RñI ñRpτq � 0. (52)

Hence,

RñRrls � RñI rls �
σ2
wW

π
δrls, (53)

and

RñRñI rls � �RñI ñRrls � 0, (54)

where RñRrls � RñRpl∆tq, RñI rls � RñI pl∆tq, RñRñI rls � RñRñI pl∆tq and

RñI ñRrls � RñI ñRpl∆tq. Hence, the discrete random process obtained by

sampling ñptq at the Nyquist rate is complex white Gaussian noise [19].

It’s worthwhile mentioning that, assuming frequency encoding along the

x-direction, it follows from (3) that the bandwidth W is directly related to

the field of view in the x-direction:

W � 2 max
r
|∆ωprq| � 2γmax

x
|Gxx| � γ|Gx|FOVx, (55)

with FOVx the field of view in the x-direction.
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2.5. Modeling k-space data

It follows from (25) and (28-29) that, for a given value of Gy, sampling

the signal ṽptq at sample intervals ∆t corresponds with sampling the k-space

along a line of constant ky at sample intervals ∆kx � 1
2π
γGx∆t. Assum-

ing a rectilinear sampling scheme, ṽpt, Gyq is sampled line by line, and the

two-dimensional sampling problem can be treated along each dimension sep-

arately. Using the mapping relations (28) and (29), it can be shown that the

largest sampling intervals permissible by the Nyquist criterion are

∆t � 2π

γ|Gx|FOVx (56)

and

∆Gy � 2π

γTpeFOVy
, (57)

with FOVy the field of view in the y-direction [15].

Finally, let zpkq denote the signal ṽpt, Gyq that has been mapped to the

k-space (i.e., spatial frequency space), using the mapping relations (28) and

(29):

zpkq � ṽpkq � ṽRpkq � ñRpkq � ırṽIpkq � ñIpkqs. (58)

Furthermore, assume that the k-space has been Nyquist sampled in the sam-

ple points k1, . . . kN and define the complex random vector

z �

�����
zpk1q

...

zpkNq

���� (59)
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and the complex deterministic vector

s �

�����
spk1q

...

spkNq

����, (60)

with spkiq � sRpkiq�ısIpkiq, for i � 1, . . . , N . It follows from the analysis de-

scribed in subsection 2.4 that the real and imaginary parts zRpkiq and zIpkiq
of the complex random variables zpkiq are independent, Gaussian distributed

with equal variance σ2
K � σ2

wW
π

, which implies that

covpzRpkiq, zIpkjqq � 0, @i, j (61)

and

covpzRpkiq, zRpkjqq � covpzIpkiq, zIpkjqq � σ2
Kδri� js. (62)

Using basic theory on complex Gaussian distributions (see Appendix A),

it then follows that the joint probability density function of the complex

random variable z is given by:

fzpzq � 1

πN detpΣzq exp
 �pz � sqHΣ�1

z pz � sq( , (63)

with Σz � 2σ2
KIN , where IN is the identity matrix of order N . This is usually

denoted by

z � CN ps, 2σ2
KINq. (64)

This PDF is called the joint circularly complex normal distribution, also

known as the complex multivariate normal (or Gaussian) PDF [19, 27].

Expression (64) is the main result of this section and forms the starting

point of section 3, in which we will analyze how the data distribution changes

when z is further processed for the purpose of image reconstruction.
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3. MRI data distributions of single coil images

From the complex data in the k-space (i.e., the spatial frequency domain)

a so-called reconstructed MR image in the spatial domain can be obtained by

taking the inverse two-dimensional (2D) Discrete Fourier Transform (DFT).

From the complex valued reconstructed image thus obtained, magnitude and

phase images can be created straightforwardly. As illustrated in section 2,

the pixel values of the magnitude image are directly related to the strength

of the transverse component of the net transverse magnetization in the vol-

ume elements, voxels, in the selected tissue slice. The phase image is often

discarded since it may exhibit incidental phase variations due to RF angle

inhomogeneity, filter responses, system delay, noncentred sampling windows,

a time-varying behavior due to radio-frequency angle inhomogeneity, system

delay, field inhomogeneities, chemical shift, etc. [28–30]. Magnitude images

are immune to these effects. Nevertheless, phase images may contain valuable

information. For example, phase images are used to measure flow [31–35] or

susceptibility [36–40].

In this section, we will describe the distribution of reconstructed complex,

magnitude and phase images acquired with a single-coil acquisition system.

The distribution of images acquired with multiple coils systems will be de-

scribed in section 4.

3.1. Statistical distribution of single-coil complex images

As was derived in section 2, the complex data acquired in k-space, often

referred to as the raw data, can (pixel-wise) be described as

zpkq � spkq � npkq, (65)
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with spkq the complex noise free data and npkq additive noise that can be

modeled as a zero mean circular complex Gaussian random variable (see

Appendix A), whose PDF is given by

fnpkqpnpkqq � 1

2πσ2
K

exp
��|npkq|2{p2σ2

Kq
�
. (66)

This is usually denoted as

npkq � CN p0, 2σ2
Kq, (67)

which implies that the real and imaginary components nRpkq and nIpkq
of npkq are independent identically distributed (i.i.d.) zero-mean Gaussian

random variables with variance σ2
K (see Appendix A). That is,

nRpkq � N p0, σ2
Kq, (68)

nIpkq � N p0, σ2
Kq, (69)

and covpnRpkq,nIpkqq � 0. Moreover, it follows from (66) that the RV npkq
has the same distribution as the RV eıθnpkq, @θ P R. The RV npkq is therefore

called circularly-symmetric [41].

Furthermore, as explained in section 2, the noise process npkq can be

assumed to be stationary so that σ2
K does not depend on k. Moreover, as

was shown in section 2, if we assume that the k-space was sampled at the

Nyquist rate, the complex Gaussian distributed sample points in the k�space

are uncorrelated (and therefore independent).

Next, a complex image in the spatial domain (or, image space) is obtained

by taking the inverse DFT of the complex data in the k�space. Due to the

linearity and orthogonality of the Fourier transform, the complex data points

20



in the image space are also independent Gaussian distributed, as is illustrated

in Appendix B. Hence, the complex image in the spatial domain can (pixel-

wise) be modeled as

zprq � sprq � nprq, (70)

with

sprq � sRprq � ısIprq, (71)

the noise free signal and

nprq � nRprq � ınIprq (72)

the additive noise contribution, and nprq � CN p0, 2σ2q, with σ2 � 1
N
σ2
K ,

where N is the number of points used to compute the inverse DFT (see

Appendix B). This implies that

nRprq � N p0, σ2q, (73)

nIprq � N p0, σ2q, (74)

and

covpnRprq,nIprqq � 0. (75)

The probability density function (PDF) of the complex Gaussian RV zprq is

then given by

fzprqpzprqq � 1

2πσ2
exp

�
�|zprq � sprq|2

2σ2



, (76)

which is usually denoted as zprq � CN psprq, 2σ2q.
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3.2. Statistical distribution of single-coil magnitude images

A magnitude image is obtained by taking (pixel by pixel) the root sum

of squares (SoS) of the real and imaginary part of the complex image zprq:

mprq �
b
z2
Rprq � z2

I prq �
a
|zprq|2. (77)

For notational convenience, we will suppose that all the equations are pixel-

wise and write z and m instead of zprq and mprq. It can be shown that the

random variable m is Rician distributed. Its PDF fmpmq is given by [42]

fmpmq � m

σ2
e�

a2�m2

2σ2 I0

�ma
σ2

	
εpmq, (78)

where I0p�q is the 0th order modified Bessel function of the first kind and

a2 � s2
R � s2

I , with sR and sI the real and imaginary part of s � Erzs. The

unit step Heaviside function εp.q is used to indicate that the expression for

the PDF of m is valid for non-negative values of m only.

The shape of the PDF (78) depends on the Signal to Noise Ratio (SNR),

which we will define as a{σ. In the special case a � 0 (no signal, SNR=0),

the Rician PDF turns into a Rayleigh PDF given by [43, 44]

fmpmq � m

σ2
e�

m2

2σ2 εpmq. (79)

For increasing values of the SNR, that is, for SNR Ñ 8, the asymptotic

expansion of I0pxq when x is large is [45]

I0pxq � ex?
2πx

�
1� 1

8x
� 1.9

2!.p8xq2 �
1.9.25

2!.p8xq3 � � � �
�

(80)

Then, for sufficiently large x, I0pxq � ex?
2πx

and the Rician distribution (78)

can be approximated as follows:

fmpmq �
c

m

2πσ2a
exp

�
�pm� aq2

2σ2



, (81)

22



or even further by a Gaussian distribution with corresponding PDF

fmpmq � 1

σ
?

2π
exp

�
�pm� aq2

2σ2



. (82)

The moments (or raw moments) of the Rician distribution can be expressed

analytically as [46]

Ermrs � �
2σ2

�r{2
Γ
�

1� r

2

	
1F1

�
�r

2
; 1;� a2

2σ2

�
, (83)

where Γp�q represents the Gamma function and 1F1p�; �; �q denotes the conflu-

ent hypergeometric function of the first kind. The first four moments of the

Rice PDF are given by [47]

E rms � σ

c
π

2
e�

a2

4σ2

��
1� a2

2σ2



I0

�
a2

4σ2



� a2

2σ2
I1

�
a2

4σ2


�
, (84)

E
�
m2

� � a2 � 2σ2, (85)

E
�
m3

� � σ3

c
π

2
e�

a2

4σ2

��
3� 3

a2

σ2
� a4

2σ4



I0

�
a2

4σ2



�
�

2
a2

σ2
� a4

2σ4



I1

�
a2

4σ2


�
, (86)

E
�
m4

� � a4 � 8σ2a2 � 8σ4, (87)

with I1p�q denoting the 1st order modified Bessel function of the first kind.

Note that the even moments are simple polynomials. The expressions for the

odd moments are more complex and have been derived using the fact that

the confluent hypergeometric function can be expressed in terms of modified

Bessel functions [45]. The variance of the Rician distributed RV m is given
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by

V arpmq � Erm2s � Erms2

� a2 � 2σ2

�πσ
2

2
e�

a2

2σ2

��
1� a2

2σ2



I0

�
a2

4σ2



� a2

2σ2
I1

�
a2

4σ2


�2

.

(88)

Since the Rayleigh PDF is a special case of the Rice PDF (with a � 0),

expressions for its moments can be directly derived from the expressions

above, yielding [48]

E rmrs � p2σ2qr{2Γ
�

1� r

2

	
, (89)

or explicitly for the first four moments:

Erms �
c
π

2
σ, (90)

Erm2s � 2σ2, (91)

Erm3s � 3

c
π

2
σ3, (92)

Erm4s � 8σ4, (93)

and the variance (88) simplifies to

V arpmq � σ2
�

2� π

2

	
. (94)

At high SNR, on the other hand, the Rician PDF tends to a Gaussian PDF

and (88) will reduce to the simple expression

V arpmq � σ2. (95)
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3.3. Statistical distribution of single-coil phase images

Recall from subsection 3.1 that the PDF of the complex Gaussian RV z

with mean s and variance 2σ2 is given by

fzpzq � 1

2πσ2
exp

�
�|z � s|2

2σ2



, (96)

which is usually denoted as z � CN ps, 2σ2q. If we write z in polar coor-

dinates, we get z � meıθ, where the real valued RVs m and θ denote the

magnitude and phase of z, respectively. Similarly, the complex mean s can

also be written in polar coordinates: s � aeıφ. The joint PDF of m and θ is

obtained by rewriting (96) as

fm,θpm, θq � 1

2πσ2
exp

�
�|me

ıθ � aeıφ|2
2σ2



. (97)

As discussed above, the magnitude m is Rician distributed. Its PDF is given

by (78). The conditional distribution of the phase θ, given the magnitude,

follows a so-called Tikhonov distribution [49] [50]:

fθ|mpθ|mq � exp rλ cospθ � φqs
2πI0pλq , (98)

with λ � ma
σ2 . It is obtained by dividing (97) by (78). The marginal PDF of

the phase θ is obtained by integrating (97) over m yielding [51–53]

fθpθq � 1

2π
exp

�
�1

2

�a
σ

	2
�
� �

1� κ
?
π exppκ2qp1� erfpκqq� , (99)

with erfp�q the error function

erfpxq � 2?
π

» x

0

e�t
2

dt, (100)

and

κ � 1?
2

a

σ
cospθ � φq. (101)
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Note that, unlike zR and zI , the RVs m and θ are generally not independent.

However, when a � 0, (98) and (99) reduce to a uniform PDF fθ|mpθ|mq �
fθpθq � 1

2π
and m and θ are independent. For high SNR on the other hand,

(99) tends to the Gaussian PDF [53]

fθpθq � 1?
2π

a

σ
exp

�
�a

2pθ � φq2
2σ2

�
. (102)

3.4. Simplifications at high SNR

Note that in polar coordinates, the complex images can (pixel-wise) be

described as

zprq � mprqeıθprq � aprqeıφprq � |nprq|eıψprq (103)

with

|nprq| �
b
n2
Rprq � n2

Iprq, (104)

the Rayleigh distributed magnitude of the noise and

ψprq � tan�1

�
nIprq
nRprq



, (105)

the uniformly distributed phase of the noise. The random variables |nprq|
and ψprq are independent and their statistical properties do not depend on

r. From now on, the dependence of z,m, a, φ,n and ψ on r is assumed but

dropped from the notation. Expression (103) can be rewritten as

z � eıφ
�
a� |n|eıpψ�φq� � eıφ pa� |n| cospψ � φq � ı|n| sinpψ � φqq , (106)

with |n| cospψ�φq the noise component that is collinear (i.e., in phase) with

the signal and |n| sinpψ � φq the noise component that is out of phase with

the signal. It follows from (106) that

m � |z| � |a� |n| cospψ � φq � ı|n| sinpψ � φq| . (107)
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Starting from (103) and assuming that ψ is distributed uniformly, indepen-

dent of the value of |n|, Hayes and Roemer [54] analyzed the variance ofm at

high SNR by replacing squares and square roots by power series expansions

to second order in |n|
a

, resulting in

V arpmq u Er|n|2s
2

. (108)

Hayes and Roemer [54] found that the approximation (108) is equivalent to

ignoring the noise that is out of phase with the signal, that is, by ignor-

ing the imaginary part of the last term in (106). Indeed it can be shown

straightforwardly that

V ar pa� |n| cospψ � φqq � Er|n|2s
2

. (109)

Hence, one may conclude that in the high SNR case (i.e., SNR ¥ 10), only

the noise in-phase with the signal will contribute to the magnitude image,

whereas the contribution of the out-of phase noise can be neglected [54, 55].

Assuming n � CN p0, 2σ2q, |n| is Rayleigh distributed and (108) reduces

to

V arpmq u 2σ2

2
� σ2. (110)

Note that this observation is in agreement with the earlier mentioned result

that for high SNR the distribution of m tends to N pa, σ2q. Furthermore,

remark that if the signal aeıφ to be reconstructed (i.e., the image) is known

to be real-valued and positive (i.e., φ � 0), expression (107) reduces to

m � |z| � |a� |n| cospψq � ı|n| sinpψq| , (111)

which can be rewritten as

m � |z| � |a� nR � ınI | (112)
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In this case, the out of phase noise component corresponds with the imaginary

part of the noise. It now follows from the analysis above, that for high SNR

and φ � 0, one may reasonably assume that one is dealing solely with the

real part of the noise as is often practiced [55]. Note that this assumption

will no longer be valid at low(er) SNR. Furthermore, the realness assumption

is often violated because object motion and magnetic field inhomogeneities

introduce a nonzero phase φ to the images.

4. Statistical distribution of multiple-coil images

So far, we have assumed that the images are acquired with a single receiver

coil. However, image acquisition with multiple coils is becoming more and

more common nowadays. Therefore, this section considers the distribution

of MR images acquired by multiple-coil systems.

Before we continue, it should be mentioned that parallel MRI (pMRI)

methods are outside the scope of this paper. pMRI allows reducing the ac-

quisition time by sub-sampling the k-space, at the expense of aliasing and

other artifacts in the image space. As a consequence, SoS can no longer

be used as reconstruction method. Reconstruction methods such as sensi-

tivity encoding (SENSE) and GeneRalized Autocalibrated Partially Parallel

Acquisition (GRAPPA) have been introduced to suppress or correct these

artifacts. For a review of pMRI methods , the reader is referred to [56]. Fur-

thermore, for an analysis of the noise in GRAPPA and SENSE reconstructed

images, see [57] and [58], respectively. Generally, the distribution of images

acquired by pMRI methods is still a subject of current research.
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4.1. Statistical distribution of multiple-coil complex images

When images are acquired with multiple (say L) receiver coils, the k-

space is effectively sampled L times, resulting in L sets of complex raw data.

Taking the inverse DFT of each of these data sets results in L complex

images in the image space. We have seen above, that the pixels of each of

these complex images can be modeled as circularly complex Gaussian random

variables (i.e., as complex random variables whose real and imaginary parts

are independent, Gaussian distributed with equal variance):

zlprq � CN pslprq, 2σ2
l q, l � 1, . . . , L (113)

with slprq the expected value and 2σ2
l the variance of the pixels of the complex

image acquired with the lth coil. Note that the variance of the real and

imaginary part of zlprq is given by σ2
l . Define (for each r) the complex

random vector

zprq �

�����
z1prq

...

zLprq

����, (114)

and the complex deterministic vector

sprq �

�����
s1prq

...

sLprq

����. (115)

In what follows, we will write z and s instead of zprq and sprq to simplify

the notation. Next, let zR denote the real part and zI the imaginary part of
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z and define

ΣR � covpzR, zRq, (116)

ΣI � covpzI , zIq, (117)

ΣIR � ΣT
RI � covpzR, zIq, (118)

and

w �
�� z

z�

�. (119)

Then it can be shown that the PDF of z is given by (see Appendix A) [59]

1

πL
a

detpΣwq
exp

"
�1

2
pw � ErwsqHΣ�1

w pw � Erwsq
*

(120)

where the elements of w correspond with those of w and Σw � covpw,wq.
Next, suppose that we can assume that the correlation structure of the

real parts of the noise at the different coils is equal to the correlation structure

of the imaginary parts, that is,

ΣR � ΣI . (121)

Furthermore, let’s suppose that we can assume that

ΣIR � �ΣT
IR. (122)

If condition (121) and condition (122) are both satisfied, (120) simplifies to

a so-called joint circularly complex normal distribution [59], also known as

the complex multivariate Gaussian PDF [19] (see Appendix A):

fzpzq � 1

πL detpΣzq exp
 �pz � sqHΣ�1

z pz � sq( , (123)
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where the elements of the vector z correspond with those of z and Σz �
covpz, zq � 2ΣR. This is usually denoted as z � CN ps, 2ΣRq.

Note that condition (122) implies that ΣIR has a zero main diagonal.

This means that the real and imaginary part of each component zk of z

are uncorrelated, which is a valid assumption, as was derived in section 2.

Furthermore, a sufficient, but not necessary, condition for (122) to be satisfied

is

ΣIR � O, (124)

with O the L � L null matrix. In that case, the real real part of zk and the

imaginary part of zl are uncorrelated not only for k � l, but also for k � l.

This seems to be a reasonable assumption that is often (implicitly) practiced

[57, 60].

Moreover, if we not only assume that conditions (121) and (122) are

satisfied, but additionally assume that there is no correlation between the

coils and that the variance of the noise at each coil is the same, then ΣR and

ΣI will be diagonal matrices with identical eigenvalues:

ΣR � ΣI � σ2IL, (125)

where IL is the identity matrix of order L. In this case,

Σz � 2σ2IL (126)

and (123) further simplifies to

fzpzq � 1

πL detpΣzq exp

"
� 1

2σ2
pz � sqHpz � sq

*
� 1

p2πσ2qL e
� 1

2σ2
|z�s|22 ,

(127)
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with |z � s|2 �
b°L

l�1 |zl � sl|2 the `2-norm of the complex vector z � s.

That is, z � CN ps, 2σ2ILq. Note that (127) reduces to (76) if L � 1.

4.2. Statistical distribution of multiple-coil magnitude images

When images are acquired with multiple receiver coils and the k-space is

fully sampled, a composite magnitude image can be obtained by pixelwise

taking the root of the sum of squares (SoS) [61]:

mL �
gffe Ļ

l�1

�
z2
Rl
� z2

Il

�
, (128)

with L the number of coils and zRl and zIl the real and imaginary component

of the complex image obtained from the raw data acquired by the lth coil.

Note that we again suppose that all the equations are pixelwise and write

mL instead of mLprq. If the variance of the noise at each coil is the same

and there are no correlations, the PDF of mL is given by [62, 63]

fmL
pmq � mL

σ2aL�1
e�

m2
�a2

2σ2 IL�1

�ma
σ2

	
εpmq, (129)

where a2 � sHs � °L
l�1

�
s2
Rl
� s2

Il

� � °L
l�1 |sl|2, with sRl and sIl the means

of the real and imaginary components of the complex image pixel values ob-

tained from raw data acquired with the lth coil. The PDF (129) is known

as the generalized Rice distribution and is directly related to the so-called

non-central chi (nc-χ) distribution. Indeed, it can be shown that the scaled

random variable m1
L � mL

σ
, being the root sum of squares of a set of 2L

independent Gaussian random variables with unit variance, has a nc-χ dis-

tribution, with 2L degrees of freedom and non-centrality parameter

λ �
gffe Ļ

l�1

��sRl
σ

	2

�
�sIl
σ

	2


� a

σ
. (130)
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Its PDF is given by

fm1

L
pmq � mLe�

m2
�
a2

σ2
2�

a
σ

�L�1
IL�1

�ma
σ

	
εpmq. (131)

It follows from (129) and (131), that fmL
pmq � 1

σ
fm1

L
pm
σ
q. This relation can

also be derived directly using basic theory on random variable transformation

[64]. In fact, both (129) and (131) are often referred to as nc-χ distributions.

In the remainder of this paper, we will follow this convention and refer to

(129) as a nc-χ distribution as well.

When a Ñ 0, the PDF of mL turns into a generalized Rayleigh PDF

[31, 62]:

fmL
pmq � 2m2L�1

pσ?2q2LΓpLq exp

�
�m2

2σ2



εpmq, (132)

which can be rewritten as [65]

fmL
pmq � 1

ΓpLqσ2

� m

2σ2

	L�1

mL exp

�
�m2

2σ2



εpmq. (133)

The moments of the generalized Rice PDF can be expressed analytically

as [66]:

E rmr
Ls � p2σ2qr{2 Γ rp2L� rq{2s

ΓpLq 1F1

�
�r

2
, L; 3� a2

2σ2



. (134)

or, equivalently [67],

E rmr
Ls � p2σ2qr{2e�m2

�a2

2σ2
Γ rp2L� rq{2s

ΓpLq 1F1

�
2L� r

2
, L;

a2

2σ2



, (135)

using the transformation 1F1 pa, b, zq � ez1F1 pb� a, b,�zq [45]. The mean of

mL is given by [31]

ErmLs �
?

2σ
ΓpL� 1

2
q

ΓpLq 1F1

�
�1

2
, L;� a2

2σ2



. (136)
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Again, the even moments turn out to be simple polynomials:

E
�
m2

L

� � 2Lσ2 � a2, (137)

E
�
m4

L

� � 4L2σ4 � 4Lσ4 � 4a2Lσ2 � 4a2σ2 � a4. (138)

For a � 0, we obtain the moments of the generalized Rayleigh PDF:

E rmr
Ls � p2σ2qr{2 Γ rp2L� rq{2s

ΓpLq , (139)

which, using some general properties of the Gamma function Γp�q, yields for

the mean value and variance [65]

ErmLs � 1 � 3 � 5 � � � p2L� 1q
2L�1pL� 1q!

c
π

2
σ, (140)

and

varpmLq � Erm2
Ls � ErmLs2 �

�
2L�

�
1 � 3 � 5 � � � p2L� 1q

2L�1pL� 1q!

2

�
π

2
σ2.

(141)

Furthermore, it can be shown that the PDF of the random variable

qL � m2
L �

Ļ

l�1

�
z2
Rl
� z2

Il

�
(142)

is given by [31]

fqLpqq �
1

2σ2
e�

a2�q

2σ2

� q
a2

	L�1
2
IL�1

�?
qa

σ2



εpqq. (143)

The PDF (143) is directly related to the so-called non-central chi-square

PDF. Indeed, it can be shown that the random variable q1
L � qL

σ2 , being

the sum of squares of a set of 2L independent Gaussian random variables

with unit variance, has a non-central chi-square (nc-χ2) distribution, with
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2L degrees of freedom and non-centrality parameter a2

σ2 . Its PDF is given by

[68]

fq1Lpqq �
1

2
e�

a2

σ2
�q

2

�
qσ2

a2


L�1
2

IL�1

�?
q
a

σ

	
εpqq. (144)

It follows from (143) and (144), that fqLpqq � 1
σ2fq1Lp qσ2 q. This relation can

also be derived directly using basic theory on random variable transformation

[64]. In fact, since (143) is often also referred to as a nc-χ2 distribution

[69][57][60]), we will from now on refer to both (143) and (144) as nc-χ2

distributions. The variance of m2
L follows directly from Eqs. (137) and

(138):

varpm2
Lq � Erm4s � pErm2sq2 � 4a2σ2 � 4Lσ4. (145)

It is worthwhile mentioning that the generalized Rice distribution also

applies to MR data acquired in Phase Contrast Magnetic Resonance (PCMR)

imaging, which is a technique that is widely used to detect flow [31, 32, 70].

Recall that to arrive at the generalized Rice distribution (129) and the

nc � χ2 distribution (143), we had to assume that there are no correlations

between the coils and the variance of the noise at each coil is the same. In

mathematical terms, these assumptions imply that the conditions (124) and

(125) should be satisfied1. However, in phased array (multiple-coil) systems

noise correlations may exist [54, 61, 71]. Furthermore, the noise variance

may differ from coil to coil. Generally, the noise correlation matrix could be

determined experimentally from a reasonably large set of samples reflecting

mere noise [60, 72]. Taking noise correlations into account, Aja-Fernandez

1Strictly speaking, condition (124) can be replaced by the less restrictive condition

(122).
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et al. [57, 60] considered the case in which ΣR � ΣI is allowed to have

non-zero off-diagonal elements, where the off-diagonal elements represent the

correlations between each pair of coils. Holding on assumption (124), this

yields z � CN pErzs,Σzq, with Σz � 2ΣR. In this more general case, the PDF

of m2
L cannot be derived, but the mean and variance are given by [19, 57]

E
�
m2

L

� � a2 � 2trpΣRq, (146)

V ar
�
m2

L

� � 4sHΣRs� 4||ΣR||2F � 4sHΣRs� 4trpΣ2
Rq, (147)

with || � ||F the Frobenius norm and trp�q the trace operator. Note that the

mean (146) remains unaffected by noise correlation.

Aja-Fernandez et al. [60] show that although the data in this case is not

strictly nc� χ2 distributed, in practical cases this distribution is still a very

accurate approximation if so-called effective parameters are considered. By

using the method of moments, the so-called effective number of coils Leff

and the effective noise variance σ2
eff can be derived [60]:

Leff � a2trpΣRq � ptrpΣRqq2
sHΣRs� ||ΣR||2F

, (148)

σ2
eff � trpΣRq

Leff
. (149)

Generally, noise correlations will reduce the number of degrees of freedom of

the nc�χ2 distribution and increase the effective variance of the noise. Note

that Leff and σ2
eff depend on the signal and hence on the position within

the image. As a result, the statistics of the noise will be spatially variant,

and the noise becomes non-stationary [73].
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5. Parameter estimation

Now that we have analyzed the statistical distribution(s) of MR images,

we will next show how knowledge of this distribution can be used to estimate

parameters from these images with optimal accuracy and precision. Further-

more, we will address the question as to what precision may be achieved

ultimately from a particular MR image.

Suppose that one wants to estimate a parameter vector θ � pθ1, θ2, . . . , θKqT

from a set of N data points (i.e., observations) w1, . . . ,wN that have a joint

PDF

fw1,w2,��� ,wN pw1, w2, � � � , wN ; θq, (150)

which depends on θ. The observations may represent pixel values of an

MR complex, magnitude or phase image, whereas the parameters θ may, for

example, represent the underlying true amplitude and phase values [2, 46], or

proton densities and relaxation times [5]. In subsection 5.1, it will be shown

how the parameterized PDF (150) can be used to compute the so-called

Cramér-Rao lower bound (CRLB), which is a lower bound on the variance

of any unbiased estimator of the parameters. Then, in subsection 5.2, it will

be shown how from the same PDF the maximum likelihood (ML) estimator,

having favorable statistical properties, may be derived.

5.1. The Cramér-Rao lower bound

Obviously, different estimators can be used to estimate θ. To assess and

compare their performances, quality measures such as accuracy and precision

can be used. The accuracy of an estimator is expressed in terms of its bias,

which is defined as the deviation of the expected value of the estimator from
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the true value of the parameter:

bppθq � Erpθs � θ. (151)

The bias represents the systematic error. If the bias of an an estimator is

zero, the estimator is called unbiased. The precision of an estimator is defined

by its variance, or, in the more general case of vector valued parameters, by

its covariance matrix:

covp pθq � E
��pθ � E

�pθ�	�pθ � E
�pθ�	T� . (152)

The diagonal elements of covp pθq represent the variances of the elements ofpθ, whereas the non-diagonal elements represent the covariances between the

elements of the estimator. Note, that precision is a measure of the non-

systematic error. It concerns the spread of the estimates if the experiment is

repeated under the same conditions. Generally, different estimators will have

different precisions. However, it can be shown that under general regularity

conditions the covariance matrix of any unbiased estimator pθ satisfies [74]

cov
�pθ	 ¥ F�1, (153)

with

F � �E
�B2 ln fw1,w2,��� ,wN pw1,w2, � � � ,wN ; θq

BθBθT
�

(154)

the so-called called Fisher information matrix. Inequality (153) expresses

that the difference between the left-hand and right-hand member is positive

semi-definite. A property of a positive semi-definite matrix is that its diag-

onal elements cannot be negative. This means that the diagonal elements

of cov
�pθ	, that is, the variances of the elements of pθ, are larger than or

38



equal to the corresponding diagonal elements of F�1. Hence, F�1 represents

a lower bound to the variances of all unbiased pθ. The matrix F�1 is called

the Cramér-Rao Lower Bound (CRLB).

5.2. Maximum Likelihood estimation

To construct the Maximum Likelihood (ML) estimator of the unknown

parameter θ from a set of available observations w1, . . . , wN , we substitute

these observations (i.e., numbers) for the corresponding independent vari-

ables in equation (150). The expression that results depends only on the

unknown parameters θ. If we now regard these parameters as variables, the

deterministic function

Lpθ;w1, w2, � � � , wNq (155)

that results is called the likelihood function. The Maximum Likelihood esti-

mate pθML of the parameter θ is now defined as the value of θ that maximizes

the likelihood function:!pθML

)
� arg max

θ
Lpθ;w1, w2, � � � , wNq (156)

or, equivalently, !pθML

)
� arg max

θ
lnLpθ;w1, w2, � � � , wNq (157)

in which lnLp�q is called the log-likelihood function. The ML estimator has a

number of favorable statistical properties [75]. First, it can be shown that this

estimator achieves the CRLB asymptotically, that is, for an infinite number

of observations. Therefore, it is asymptotically most precise (or, asymptoti-

cally efficient). Second, it can be shown that the ML estimator is consistent,
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which means that it converges to the true value of the parameter in a statis-

tically well defined way if the number of observations increases. Third, the

ML estimator is asymptotically normally distributed, with a mean equal to

the true value of the parameter and a covariance matrix equal to the CRLB.

If these asymptotic properties also apply to a finite or even small number of

observations can often only be assessed by estimating from artificial, simu-

lated observations. Finally, the ML estimator is known to have the invariance

property. That is, if pθML is the ML estimator of θ, and if gpθq is any function

of θ, then the ML estimator of α � gpθq is given by pα � gppθMLq.
Note that the observations (i.e., pixels) m1, . . . ,mN from which the pa-

rameter of interest θ is estimated (using the ML estimator) can be selected

locally or non-locally. In the first case, the parameter is estimated from pix-

els in a local neighborhood within which the parameter is assumed to be

constant (cfr., [46][66]). In the second case, the pixels for the ML estima-

tion of the true underlying parameter are selected in a non local way based

on, for example, the intensity similarity of the pixel neighborhoods. This

similarity can be measured using, for example, the Euclidean distance [76]

[77], sparseness in a transform domain [78, 79], or, as proposed recently, the

Kolmogorov-Smirnov (KS) test [80].

6. Estimation of signal and noise from magnitude images

To illustrate the practical application of the theory summarized in section

5, we will now consider, as an illustrative example, the problem of estimating

the underlying true signal amplitude from a single coil magnitude image. For

this estimation problem, the CRLB and the ML estimator are derived. For
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the case of multiple coil images, the CRLB and ML estimator can be derived

in a similar way (see, e.g., [67, 81]).

Consider a set of N independent pixel values of a magnitude image taken

from a region in which the underlying true signal amplitude a is assumed

to be constant. The joint PDF fm1,m2,��� ,mN
pm1,m2, � � � ,mNq of these pixel

values (from now on called observations) is then given by the product of the

marginal PDFs fmi
pmiq of the individual observations constituting this set:

fm1,m2,��� ,mN
pm1,m2, � � � ,mN ; a, σ2q �

N¹
i�1

fmi
pm; a, σ2q. (158)

For single-coil images, fmi
pmi; a, σ

2q is given by the Rician PDF (78). Note

that the joint PDF depends on the true signal amplitude a and the noise

standard deviation σ, as expressed in the notation used.

6.1. CRLB

The CRLB can be derived from Eqs. (153-154) and (158) and (78). If

the noise variance σ2 is known, the CRLB, is given by [9]:

CRLB � σ2

N

�
η � a2

σ2


�1

, (159)

with

η � E

�
m2

σ2

I2
1

�
am
σ2

�
I2

0

�
am
σ2

�� , (160)

The expectation value in (160) can be evaluated numerically. If the noise

variance σ2 is unknown and has to be estimated simultaneously with the

signal parameter a, the elements of the Fisher information matrix F with
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respect to the parameter vector θ � pa, σ2qT are given by [2]:

F p1, 1q � N

σ2

�
η � a2

σ2



(161)

F p1, 2q � F p2, 1q � Na

σ4

�
1� a2

σ2
� η



(162)

F p2, 2q � N

σ4

�
1� a2

σ2
pη � 1q � a4

σ4



(163)

where F pi, jq denotes the pi, jqth element of the matrix F and η is given by

(160). Finally, the CRLB for unbiased estimation of pa, σ2q is obtained by

simple inversion of the 2� 2 matrix F.

6.2. Maximum Likelihood estimator

To construct the Maximum Likelihood (ML) estimator of the unknown

parameters a and σ2 from a set of available magnitude observationsm1, . . . ,mN

we substitute these observations (i.e., numbers) for the corresponding inde-

pendent variables in Equation (158). The thus obtained Likelihood function

is then given by

Lpa, σ2;m1,m2, � � � ,mNq �
N¹
i�1

mi

σ2
e�

a2�m2
i

2σ2 I0

�ma
σ2

	
εpmq (164)

and the Maximum Likelihood estimates paML and pσML of the parameters a

and σ are found by maximizing the likelihood function with respect to a and

σ [2]: !paML, pσ2
ML

)
� arg max

a,σ2

N¹
i�1

mi

σ2
e�

a2�m2
i

2σ2 I0

�ma
σ2

	
, (165)
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or, equivalently, since the logarithm is a monotonically increasing function,!paML, pσ2
ML

)
� arg max

a,σ2
lnLpa, σ2;m1,m2, � � � ,mNq

� arg max
a,σ2

ln
N¹
i�1

mi

σ2
e�

a2�m2
i

2σ2 I0

�ma
σ2

	
� arg max

a,σ2

�
Ņ

i�1

ln
�mi

σ2

	
�

Ņ

i�1

m2
i � a2

2σ2
�

Ņ

i�1

ln I0

�amn

σ2

	�
.

(166)

Note that if the noise variance σ2 is known, (166) simplifies to

paML � arg max
a

�
Ņ

i�1

ln I0

�ami

σ2

	
� Na2

2σ2

�
. (167)

Yakovleva et al. [82] recently introduced a new technique to calculate the ML

estimates of a and σ2. This technique effectively reduces the task of solving

a system of two nonlinear equations with two unknown variables, to the task

of solving just one equation with one unknown variable. Using Yakovleva’s

technique, finding the ML estimates of both σ2 and a is therefore not more

complicated (in terms of computational cost) than finding the ML estimate

of a only (with σ2 known).

6.3. Discussion

Note that in the more general case, the underlying signal amplitude a can

be a parametric function fpθ) of an unknown parameter vector θ, where typi-

cal elements of θ are proton density ρ and relaxation time constants T1, T2, T
�
2 .

In this case, the same theory (described in Section 5) that was used to derive

the CRLB and ML estimator of the parameter a, can straightforwardly be

applied to derive the CRLB and ML estimator of θ [5].
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Furthermore, ML estimates can also be obtained from the complex valued

images. It was shown by Sijbers and den Dekker [2] that ML estimation of the

underlying true signal amplitude from complex data with equal underlying

true phase values is generally better in terms of the mean squared error

(MSE) than ML estimation from magnitude data. However, if the phase

values vary within the region from which the amplitude is estimated, ML

estimation from magnitude data is significantly better in terms of the MSE.

Finally, for a list of series expansions, recursive relations and polynomial

approximations of modified Bessel functions that have been proven useful

in the numerical calculation of ML estimates from magnitude images, the

reader is referred to Appendix C.

7. Discussion and Conclusions

In this review paper, it has been shown that the raw complex MR data

points acquired in the spatial frequency domain (i.e., the k-space) are char-

acterized by a joint circularly complex Gaussian distribution, with a diago-

nal covariance matrix. After taking the inverse DFT, we obtain a complex

image in the spatial domain (i.e., the image space). Due to the linearity

and the orthogonality of the DFT, the pixels of this so-called reconstructed

image are also jointly circularly complex Gaussian distributed with a di-

agonal covariance matrix. Taking the magnitude and phase, however, are

nonlinear operations. Therefore, magnitude and phase images are no longer

Gaussian distributed. The PDFs of magnitude and phase images have been

described in this paper. In particular, it has been shown that the pixels of

magnitude images obtained by single-coil acquisition are Rician distributed,
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whereas magnitude images acquired using a multiple-coil system (and using

the sum-of-squares reconstruction algorithm) are nc-χ distributed, under the

assumption that the noise variance at each coil is the same and there are

no inter-coil noise correlations. If this assumption is not valid, the noise in

the magnitude images becomes spatially non-stationary. In this case, it is no

longer possible to derive an exact expression for the distribution of the im-

age pixel values, although, under certain conditions, accurate approximations

may still be given.

Furthermore, it has been summarized how knowledge of the distribution

of MR images can be used to (i) derive the precision that may be achieved

ultimately when estimating parameters from a particular MR image and (ii)

to construct the maximum likelihood (ML) estimator, which achieves this

precision at least asymptotically.

Finally, we note that data distributions in MR images that were generated

using nonlinear reconstruction techniques may be very different from those of

conventional Fourier based reconstruction [83–86]. Nonlinear reconstruction

techniques have been shown to be successful in reconstructing high-resolution

images from subsampled data. Such techniques are becoming increasingly

popular, as the demand for shorter scan times without significantly affecting

image quality increases. It has been noted [87] that although the convergence

and other deterministic properties of nonlinear reconstruction methods are

well established, little is known about how noise in the source data influences

noise in the final reconstructed image. In [87], the noise distribution from

nonlinear reconstructed MR images was determined in an experimental way.

Depending on the level of subsampling, the noise distribution was observed to
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vary from a Rayleigh distribution to a log-normal distribution with increasing

level of subsampling. For future research, it would be highly valuable to fully

characterize the MR data distribution from solid theoretical derivations.

Appendix A. The complex multivariate Gaussian distribution

The following analysis is to a large extent based on [59]. Let zR and zI

be the real vectors

zR � pzR1
. . . zRLqT (A.1)

and

zI � pzI1 . . . zILqT (A.2)

with jointly Gaussian distributed random variables and define

t �
�� zR

zI

� (A.3)

and

z � pz1 . . . zLqT , (A.4)

with zl � zRl � ızIl . Next, define

w �
�� z

z�

�. (A.5)

The covariance matrix of the complex vector z is defined by its pm,nqth
element

covpzm, znq � Erpzm � Erzmsqpz�n � Erz�nsqs. (A.6)

Therefore,

covpz, zq � Erpz� Erzsqpz� ErzsqHs. (A.7)
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Similarly,

covpw,wq �
�� covpz, zq covpz, z�q

covpz�, zq covpz�, z�q

�, (A.8)

with covpz�, zq � covpz, z�qH , where covpz, z�q is known as the pseudo-

covariance matrix of z [88]. Furthermore, it can be shown that covpz, zq
and covpz, z�q can be expressed in terms of the covariance matrices of zR

and zI :

covpz, z�q � ΣR � ΣI � ıpΣIR � ΣRIq, (A.9)

covpz, zq � ΣR � ΣI � ıpΣIR � ΣRIq. (A.10)

with

ΣR � covpzR, zRq, (A.11)

ΣI � covpzI , zIq, (A.12)

and

ΣIR � ΣT
RI � covpzI , zRq. (A.13)

Since the elements of t are jointly Gaussian distributed, it can be shown that

the PDF of z is given by [59]:

1

πL
a

detpΣwq
exp

"
�1

2
pw � ErwsqHΣ�1

w pw � Erwsq
*

(A.14)

with Σw � covpw,wq. This is usually denoted as z � CN pErzs,Σz, Cq, with

Σz � covpz, zq the covariance matrix of z and C � covpz, z�q the pseudo-

covariance matrix of z.

Next, consider the special case that

Erpzm � Erzmsqpzn � Erznsqs � Erpzm � Erzmsq�pzn � Erznsq�s � 0, (A.15)
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that is, covpz, z�q and covpz�, zq are L�L null matrices. Then, the complex

random variables z are called circularly complex and

Σw �
�� Σz O

O Σ�
z

�, (A.16)

where O is the L � L null matrix. Substituting (A.16) in (A.14) yields the

so-called joint circularly complex normal distribution [59], also known as the

complex multivariate normal (or Gaussian) PDF [19, 27]:

fzpzq � 1

πL detpΣzq exp
 �pz � ErzsqHΣ�1

z pz � Erzsq( . (A.17)

This is usually denoted as z � CN pErzs,Σzq. Note that complex random

variables for which condition (A.15) holds (i.e., with a vanishing pseudo-

covariance matrix) are often called proper [88]. Furthermore, note that it

follows from (A.9) and (A.10) that condition (A.15) is satisfied if and only

if ΣR � ΣI and ΣIR � �ΣRIp� �ΣT
IRq, where the skew-symmetry of ΣIR

implies that ΣIR has a zero main diagonal, which means that the real and

imaginary part of each component zk of z are uncorrelated. Note that con-

dition (A.15) also implies that for zero mean z we have Erzkzls � 0. The

vanishing of covpz, z�q and covpz�, zq does not, however, imply that the real

part of zk and the imaginary part of zl are uncorrelated for k � l [88]. Fi-

nally, note that if condition (A.15) is satisfied, the covariance matrix Σz can

be written as

Σz � 2ΣR � 2ıΣIR. (A.18)

Appendix B. Covariance of two-dimensional DFT

Suppose that the 2D data set in the k-space consists of M �M complex

data points. These data points can be described by a M �M matrix Z,
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but the data can also be described by a vector of N � M2 elements that is

obtained by stacking the columns of Z. Let’s define this vector by

zpkq �

�����
zpk1q

...

zpkNq

����, (B.1)

with

Erzpkqs �

�����
spk1q

...

spkNq

����. (B.2)

Similarly, the 2D data in the image space obtained by applying the 2D inverse

discrete Fourier transform is described by the N � 1 vector

zprq �

�����
zpr1q

...

zprNq

����. (B.3)

Now, it can be shown that

zprq � 1

N
XHzpkq, (B.4)

where X is an N �N matrix given by

X � Ab A, (B.5)

where b denotes the Kronecker product and

A �

�����������

α0 α0 α0 � � � α0

α0 α1 α2 � � � αM�1

α0 α2 α4 � � � αM�1

...
...

. . .
...

α0 αpM�1q � � � αpM�1q2

����������
, (B.6)
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with α � e�i2π{M . Note that (B.4) is a linear operation. This implies that if

zpkq is Gaussian distributed, its inverse DFT zprq will also be Gaussian dis-

tributed. Furthermore, it can be shown straightforwardly that the covariance

matrix of zprq is given by

Cov pzprq, zprqq � Erpzprq�Erzprqsqpzprq�ErzprqsqHs � 1

N2
XHΣzX, (B.7)

with

Σz � covpzpkq, zpkqq. (B.8)

Note that if Σz � 2σ2
KIN , with IN the N �N diagonal matrix, expression

(B.7) simplifies to

Cov pzprq, zprqq � 2σ2
K

N2
XHX � 2σ2

K

N
IN , (B.9)

since XHX � NIN . Finally, if

zpkq � CN ps, 2σ2
KINq, (B.10)

then

zprq � CN p 1

N
XHs, 2

σ2
K

N
INq. (B.11)

Appendix C. Modified Bessel functions of the first kind of integer

order

The series expansion of the nth order modified Bessel function of the first

kind is given by

Inpxq �
�x

2

	n 8̧

m�0

px{2q2m
m!Γpm� n� 1q . (C.1)
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Furthermore, the following recursive relationships hold:

In�1pxq � �
�

2n

x



Inpxq � In�1pxq (C.2)

In�1pxq � In�1pxq � 2I 1npxq, (C.3)

with I 1npxq � d
dx
Inpxq. Moreover,

I�npxq � Inpxq. (C.4)

In the region x ! n, Inpxq becomes, asymptotically, a simple power of its

argument [89]

Inpxq � 1

n!

�x
2

	n
, n ¥ 0, (C.5)

whereas in the region x " n, Inpxq is well approximated by [89]

Inpxq � 1?
2πx

exppxq. (C.6)

For |x| ¤ 3.75, the following polynomial approximations hold [45]

x
1
2 e�xI0pxq � 0.39894228� 0.0.1328592t�1 � 0.00225319t�2

�0.00157565t�3 � 0.00916281t�4 � 0.02057706t�5

�0.02635537t�6 � 0.01647633t�7

�0.00392377t�8 � ε1, (C.7)

and

x
1
2 e�xI1pxq � 0.39894228� 0.03988024t�1

�0.00362018t�2 � 0.00163801t�3

�0.01031555t�4 � 0.02282967t�5

�0.02895312t�6 � 0.01787654t�7

�0.00420059t�8 � ε2, (C.8)
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with t � x{3.75, |ε1|   1.9� 10�7 and |ε2|   2.2� 10�7.

Practical algorithms for accurate numerical calculation of Bessel functions

using the relations described above can be found in [89].
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