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THEORETICAL STUDY

Cramér-Rao bound Theorem
Let θ̂(x) = {θ̂1, θ̂2, ...., θ̂K} be any unbiased estimate of the unknown vector parameter θ = {θ1, θ2, ...., θK} and

let f(x;θ) be the probability density function of the random vector variable x = [x1, x2, ...xN ]
T , then, provided some

not too strict regularity conditions (Papoulis and Pillai, 2002),

Cov{θ̂(x)} � I−1(θ) [1]

where Cov{θ̂(x)} is the covariance matrix of θ̂(x), I(θ) is the Fisher Information associated to θ under the pdf
f(x;θ) and the symbol � means that the matrix difference Cov{θ̂(x)} − I−1(θ) is a non negative definite matrix.
Using the proposition 1 in V, this straightforwardly implies that V ar{θ̂k(x)} ≥ (I−1(θ))kk, i.e, the variance of the
estimators are bounded by the kth entry of the diagonal of the inverse of Fisher Information.

Fisher Information to composition of models
With composition of models we refer to the case when the pdf of some random vector x ∈ RN , f(x;θ), can be

written as f(x;θ) = p(x;S(θ)) =
∏N
i p(xi;Si(θ)) and p(xi;Si) is known (it has been assumed that the random

samples xi are IID). This is the case when the classic parameters of a distribution, e.g, mean and standard deviation in
the Gaussian distribution, envelope and σ in the Rician distribution, etc... depend themselves on some vector parameter
θ. In that cases, the Fisher Information,



I(θ) = E{∇θ log f(x;θ)∇θ log f(x;θ)
T } [2]

where∇θ log f(x;θ) = [∂ log f(x;θ)
∂θ1

, ∂ log f(x;θ)
∂θ2

, ..., ∂ log f(x;θ)
∂θK

]
T

can be decomposed as (Poot, 2010):

I(θ) =

N∑
i=1

N∑
j=1

∇θSi∇θSj
TE{∂ log p(xi)

∂Si

∂ log p(xj)

∂Sj
} [3]

For i 6= j, because xi is independent of xj ,

E{∂ log p(xi)

∂Si

∂ log p(xj)

∂Sj
} = E{∂ log p(xi)

∂Si
}E{∂ log p(xj)

∂Sj
} [4]

The resultant expectations are the expectations of the score of Si and Sj respectively, which under regularity conditions
are always zero (Papoulis and Pillai, 2002). Finally,

I(θ) =

N∑
i=1

∇θSi∇θSi
TE{(∂ log p(xi)

∂Si
)
2

} [5]

The N matrices ∇θSi∇θSi
T i = 1, ..., N are called structure tensor and represent the variations of the 2D-

functions Si, i = 1, ...N . An inspection of eq.([7]) reveals that the Fisher information depends on the deterministic

model, (structure tensor) and the probabilistic one : E{(∂ log p(xi)
∂Si

)
2
}. In order to produce higher values of the Fisher

information and then, decrease the Cramér Rao bound, the deterministic model has to be the more sensitive to the
parameters to be estimated as possible (Kay, 1993) (e.g, high derivatives). However, the structure tensors are weighted
by the expectation which depends on the type of probabilistic distribution. A rigorous analysis may imply to make an
spectral analysis in terms of eigenvalues and eigenvectors to the structure tensors, because it will reveal the directions
of maximum variation. Moreover, the term higher values of Fisher information is not rigorous because we are not
dealing with scalar functions. Nevertheless, this is out of scope of this work. Therefore, we will retain the intuitively
and reasonably idea that the highest the derivatives of the model are with respect to the parameters, the higher the
Fisher information matrix is .

APPLICATION TO THE TWO-PARAMETER INVERSION RECOVERY (IR) SEQUENCE

This section is focused on the application of previous results to the two parameter Inversion Recovery (IR) sequence,

Si(θ) = Si(ρ, T1) = ρ|1− 2e−
TIn
T1 |, i = 1, ..., N [6]

TheN samples are obtained when sampling the S(ρ, T1, t) at the vector inversion time TI = [TI1, T I2, ..., T IN ]
T .

Considering that the random samples xi, i = 1, ..., N follow a Rician model with magnitude Si(ρ, T1) and noise σ,
according to (Poot, 2010), the Fisher Information is:

I(θ) =

N∑
i=1

∇θSi∇θSi
T IRice(Si, σ) [7]

where

IRice(Si, σ) =

∫ ∞
0

xi
σ2
e−

x2i+S
2
i

2σ2 I0(
xiSi
σ2

)(
xiI1(xiSiσ2 )

σ2I0(xiSiσ2 )
− Si
σ2

)

2

dxi [8]

This integral does not possess an analytical closed solution so we have to resort to numerical implementations.
Introducing the substitutions s = Si

σ and x̄i = xi
σ , IRice(Si, σ) = IRiceNorm(s, σ) = 1

σ2 IRiceNorm(s, 1) (Poot, 2010).
This last expression, IRiceNorm(s, 1), has been tabulated by Dirk Poot using polynomial interpolation with an accuracy
of 2−52 approximately.
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Influence of Inversion Times
The IRice(Si, σ) term in the Fisher matrix depends on the level of noise: σ and the values of magnitude Si. More

interesting is the effect of the inversion time vector TI which determines the behavior of ∇θSi∇θSi
T , i = 1, ..., N

and therefore performs a crucial role in the goal of maximizing the Fisher information. For that point the analysis of
the variability of Si(ρ, T1) deserves a deep study. In this work, we will focus on the derivatives of the first order,

∇θSi
T = [

∂Si(ρ, T1)

∂ρ
,
∂Si(ρ, T1)

∂T1
] [9]

with
∂Si(ρ, T1)

∂ρ
= |1− 2e−

TIi
T1 | [10]

and
∂Si(ρ, T1)

∂T1
=

−
2TIiρ
T 2
1
e−

TIi
T1 if (1− 2e−

TIi
T1 ) > 0

2TIiρ
T 2
1
e−

TIi
T1 if (1− 2e−

TIi
T1 ) < 0

[11]

Fixed T1 and ρ, both derivatives are functions of the TIi, i = 1, ..., N . It is mandatory to remark that ∂Si(ρ,T1)
∂T1

does
not exist for TIi = T1 log 2.

APPLICATION TO THE TWO-PARAMETER SQUARED INVERSION RECOVERY (IR) SEQUENCE

One approach to obtain a continuous derivable probabilistic model consist of avoiding the absolute value of Si(θ),
for example, making the parameters of the model dependent on S2

i (θ). This is possible by taking the square of the
Rician samples x, i.e r = x2. According to (Moser, 2007), ri, for i = 1, ..., N , follows a Non Central Chi squared
distribution up to a constant, i.e ri = σ2yi where yi distributed as a Non Central Chi Squared Random Variable with
two degrees of freedom and centrality parameter, λ =

S2
i (θ)
σ2 , i.e

f(yi;λ) =
1

2
e−

λ+yi
2 I0(

√
λy) =

1

2
e−

S2
i (θ)

σ2
+yi

2 I0(

√
S2
i (θ)

σ2
yi) yi ≥ 0 [12]

Therefore, considering the parameters of the distribution to be S2
i (θ) and σ, the probabilistic model is derivable

everywhere, because∇θS
2
i exists. The Fisher information turns out to be,

I(θ) =

N∑
i=1

∇θS
2
i∇θS

2
i
T
INonCentralχ2(S2

i , σ) [13]

where INonCentralχ2(S2
i , σ) is the equivalent expression to eq.([8]) but applied to Non Central Chi Square Data

(derived in the appendix) and

∇θS
2
i
T

= [
∂S2

i (ρ, T1)

∂ρ
,
∂S2

i (ρ, T1)

∂T1
] [14]

with

∂S2
i (ρ, T1)

∂ρ
= 2ρ(1− 2e−

TI
T1 )

2
[15]

∂S2
i (ρ, T1)

∂T1
= −4ρ2TI

T 2
1

e−
TI
T1 (1− 2e−

TI
T1 ) [16]
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Visualizing the CRLB
The first experiment shows the CRLB as a function of T1 and ρ for σ = 0.01. Four different acquisition config-

urations are performed,i.e, different Inversion Times. The purpose of this experiment is to illustrate the effect of the
inversion time vector TI produces in the final results, both taking into account its length and the sampling points. The
higher is the number of samplings, the lower will be the CRLB. This is not surprising. What is not clear is the optimal
configuration when the number of Inversion Times are fixed. In Fig.1, the square root of CRLB (the units are in ms)
is shown for the four configurations. The values of the square root of CRLB are also shown in Fig.2 for the region
ρ ∈ [0.5, 1].
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(a) Global view (b) Bottom view

Figure 1. CRLB visualization for four different configurations of inversion times. σ = 0.01.
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Figure 2. Previous graphics restricted to ρ ∈ [0.5, 1].

In all cases, the CRLB tends to increase when ρ → 0 because the SNR becomes small. The worst configuration is
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that whose inversion times are between 200 ms and 4900 ms (blue surface). One can ask himself that for high inversion
times, the SNR is high enough to make the CRLB smaller. However and because the number of inversion times are
fixed, the sampling scheme is not dense enough to sample near to the cross by zero point, points that provide high
information. As it was expected, the best configuration is that with the higher number of inversion times (red surface).
The green and light blue surfaces represent two similar configuration (same number of inversion times) but starting
with a different initial value. It cannot be assured that one configuration is better than the other, because depending on
the region T1−ρ, light surface crosses the green one and vice versa. This can be more clearly appreciated in the Fig.3.

Figure 3. Illustrative view where the crosses between CRLB surfaces can be observed.

In the second experiment, the CRLB for four different brain tissues: white matter, grey matter, CSF and Fat, are
shown as a function of σ. This allows to understand the effect of noise in the precision of the estimates. This is
illustrated in Fig.4 where the same curves are shown in different graphics varying the axis. The purpose is to make a
zoom in the region of reasonable noise level, σ < 0.1.
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Figure 4. CRLB for white matter, grey matter, CSF and fat depending of σ.

The higher the value of T1 is, the higher is the CRLB. This do not probably represent a serious problem, because
coarser errors can be allowed for high T1 than for small T1. The higher σ is, the higher CRLB turns out to be.

APPLICATION TO THE THREE-PARAMETER SQUARED INVERSION RECOVERY (IR) SEQUENCE

APPENDIX

Diagonal entries of a semidefinite positive matrix are always non negative
Let A a non negative definite matrix, i.e vTAv ≥ 0 for any v. Then if v = [1,0]

T , Av = [a11, a21, ...., aN1]T

and hence vTAv = a11. But vTAv ≥ 0, so a11 ≥ 0. In a similar way, let vk the kth canonical vector, i.e, it contains
zeros except in the kth position, where it is 1. Therefore, Avk = [a1k, a2k, ...., aNk]T , hence vTkAvk = akk, which
again with the non negative definite property, it leads to akk ≥ 0. Therefore, the diagonal entries of a non negative
definite matrix are always non negative. Applying this result to A = Cov{θ̂(x)} − I−1(θ) the bound of the variance
is proven.

Fisher Information for Non Central Chi Squared
The expression INonCentralχ2(S2

i , σ)) takes the form of

INonCentralχ2(S2
i , σ) =

∫ ∞
0

(
∂ log f(yi;λ)

∂S2
i

)2

f(yi;λ)dyi =
1

σ4

∫ ∞
0

(
∂ log f(yi;λ)

∂λ

)2

f(yi;λ)dyi = [17]

1

σ4

∫ ∞
0

(
I1(
√
λyi)

I0(
√
λyi)

yi

2
√
λyi
− 1

2

)2
1

2
e−

λ+yi
2 I0(

√
λyi)dyi =

1

σ4
I(λ)

The integral I(λ) is approximated with the trapezoidal rule in an interval [0, y∗i ] where the truncation error (defined
as the integral in [y∗i ,∞)) can be bounded by Marcum Q function and made it negligible. In practice, y∗i = 50λ has
been used.
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