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Samenvatting

Inleiding

Computertomografie (CT) is een techniek die computerberekeningen gebruikt om

een beeld te vormen van de binnenkant van een object of een persoon, door pro-

jecties van dat object of die persoon te combineren. Het woord tomografie is

afkomstig van het Griekse tomos, wat “snede” of “schijf” betekent. De basis voor

computertomografie werd in 1917 gelegd door Johann Radon, een Oostenrijkse

wiskundige.

Computertomografie heeft zeer diverse toepassingen, waarvan de meest be-

kende zeker medische beeldvorming is (de CT-scanner), waar X-stralen gebruikt

worden voor het maken van de projecties. De eerste praktische toepassing van CT

was echter in de astronomie, door Ronald Bracewell in 1956. Hij gebruikte CT

om de resolutie van radio-astronomische waarnemingen te verbeteren. De prak-

tische toepassingen in deze thesis zijn afkomstig uit elektronentomografie, waarbij

de opnames gemaakt worden met een elektronenmicroscoop, en in preklinisch on-

derzoek, waarbij de opnames gemaakt worden met een µCT-scanner.

Er zijn twee belangrijke technieken voor de reconstructie van de beelden, na-

melijk de analytische en de algebräısche methodes. In medische scanners wordt

zeer veel gebruik gemaakt van gefilterde terugprojectie, een analytische methode.

Deze thesis bouwt voort op de algebräısche methodes, waarbij het probleem gesteld

wordt als een stelsel van lineaire vergelijkingen Wx = p, waarbij x het onbekende

beeld is, p de projectiedata, en W de systeemmatrix die het verband tussen beide

beschrijft.

In praktische CT is het niet altijd mogelijk om de projectiebeelden te maken

die nodig zijn voor een accurate reconstructie (het aantal, onder welke hoeken,

etc.). Hiervoor zijn diverse oorzaken, waarvan een belangrijke het beperken van

de stralingsdosis is. Een evident voorbeeld hiervan zijn X-stralen, die schadelijk

kunnen zijn voor de mens. Maar ook levenloze objecten kunnen beschadigd wor-

den door straling. Om dat te vermijden, moet dikwijls de dosis verlaagd worden,

waardoor de signaal-ruisverhouding afneemt en de reconstructie moeilijker wordt.

Sommige beperkingen zijn eigen aan de beeldvormingsmodaliteit zelf. Bij elektro-

nentomografie, bijvoorbeeld, worden de opnames veelal manueel gemaakt, waar-

door het opnemen van zelfs een beperkt aantal projecties al erg arbeidsintensief

kan zijn. Naast de beperkingen van de microscoop zelf, is er ook het gegeven dat

microscopiemonsters meestal vlak zijn, waardoor hun schijnbare dikte toeneemt

wanneer ze bekeken worden onder een grote hoek. Hierdoor kunnen er geen op-

names gemaakt worden over de volle 180◦. Het resultaat van dit soort beperkingen

is dat het reconstructiealgoritme moet werken met beperkte data, waardoor het on-
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Samenvatting

mogelijk kan worden om accurate reconstructies te maken.

Een oplossing voor het probleem van de beperkte data is het inbrengen van

voorkennis in het reconstructiealgoritme. In deze thesis worden twee veronder-

stellingen gebruikt. De eerste is dat het gescande object opgebouwd is uit ho-

mogene gebieden. De tweede is dat de grijswaarden van deze gebieden bekend

zijn. Beide veronderstelling samen leiden tot discrete tomografie (DT). Enkel de

eerste veronderstelling leidt tot algoritmes die werken met minimalisatie van de

totale variatie (TVMin). De praktische algoritmes die we hiervoor gebruiken in

deze thesis zijn DART voor DT, en NESTA en FISTA voor TVMin. Het gebruik

van deze algoritmes resulteert in een grote verbetering van de kwaliteit van de

reconstructies.

Een probleem met het inbrengen van voorkennis is echter dat deze niet altijd

geldt voor het gehele object. De genoemde methodes kunnen dan falen. In deze

thesis onderzoeken we de mogelijkheid om de voorkennis enkel op een gedeelte van

het object toe te passen. Dit kan op twee manieren, ofwel door het ontwikkelen

van een specifiek algoritme voor elke specifieke situatie, ofwel door het ontwikkelen

van een algemeen toepasbare techniek om lokale versies te maken van bestaande

algoritmes. Beide benaderingen worden onderzocht.

PDART

De Partieel Discrete Algebräısche Reconstructietechniek (“Partially Discrete Alge-

braic Reconstruction Technique”, PDART, hoofdstuk 2) werd ontwikkeld voor een

specifieke toepassing: de reconstructie en segmentatie van homogene deeltjes met

een hoge dichtheid in een (mogelijk) niet-homogene omgeving.

Het PDART-algoritme alterneert SIRT-iteraties met segmentatiestappen. SIRT

is een algebräısche reconstructietechniek die in deze thesis meermaals gebruikt

wordt. Tijdens elke segmentatiestap worden alle pixels met een waarde boven een

zekere drempel τ verondersteld deel uit te maken van een homogeen deeltje met

hoge dichtheid. De grijswaarde ρ van de deeltjes wordt ook verondersteld gekend

te zijn. Na elke segmentatiestap worden de pixels waarvan de waarde de drempel

overschrijdt vastgezet op de gekende grijswaarde. Dit vastzetten is de cruciale stap

waardoor het algoritme resulteert in een accuratere reconstructie. Aangezien het

reconstructieprobleem bij de algebräısche methodes gesteld wordt als een stelsel

van lineaire vergelijkingen, komt het vastzetten van pixels erop neer dat onbeken-

den geschrapt worden uit het stelsel, terwijl het aantal vergelijkingen gelijk blijft,

wat betekent dat alle beschikbare data nog steeds gebruikt wordt. Het gevolg

is dat de onbepaaldheid van het stelsel afneemt, zodat het dichte én het andere

materiaal beter gereconstrueerd wordt.

In de experimenten wordt PDART eerst toegepast op een aantal fantoombeel-
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Samenvatting

den, om het algoritme te karakteriseren. Daarna wordt het toegepast op twee

datasets uit elektronentomografie (in hoofdstuk 2), en een dataset uit preklinisch

onderzoek (in hoofdstuk 3). De resultaten geven aan dat het algoritme resulteert

in accuratere reconstructies dan SIRT.

Gereconstrueerde residuele fout

De gereconstrueerde residuele fout (“reconstructed residual error”, hoofdstuk 3)

is de reconstructie van het verschil tussen de opgenomen data en de voorwaartse

projectie van een gesegmenteerd tomogram. De Moore-Penrose pseudoinverse van

de systeemmatrix W wordt gebruikt als wiskundig model voor een algemeen re-

constructiealgoritme, om aan te tonen dat de gereconstrueerde residuele fout een

goede benadering is van de echte fout in het gesegmenteerde tomogram. De werk-

ing van het algoritme is gebaseerd op het feit dat de segmentatie de artefacten van

de originele reconstructie onderdrukt. Er worden door de segmentatie weliswaar

nieuwe artefacten toegevoegd, maar deze hebben andere eigenschappen. Hierdoor

is het mogelijk om opnieuw gebruik te maken van de projectiedata om een beeld

te vormen van de fouten in de gesegmenteerde reconstructie.

De techniek heeft verschillende toepassingen. Ze kan de grijswaardeschatting

van een gesegmenteerd tomogram verbeteren. Voor reconstructiemethodes die

voorkennis van de grijswaarden gebruiken tijdens de reconstructie, kan ook de

segmentatie zelf verbeterd worden. Tenslotte kan de gereconstrueerde residuele

fout ook gebruikt worden om te bepalen welke de meest accurate van verschillende

gesegmenteerde reconstructies is.

In de experimenten wordt het algoritme eerst toegepast op een aantal fan-

toombeelden, om het te karakteriseren. Daarna wordt het toegepast op een dataset

uit preklinisch onderzoek. De resultaten geven aan dat de gereconstrueerde residu-

ele fout in staat is om de fouten in een gesegmenteerde reconstructie te analyseren

en te verbeteren.

Lokale homogeniteit bij reconstructie

Voor de tweede mogelijkheid om voorkennis enkel toe te passen waar ze geldig is,

na PDART als voorbeeld van een algoritme dat ontwikkeld werd voor een spe-

cifieke situatie, maken we gebruik van de gereconstrueerde residuele fout. Voor

objecten die gedeeltelijk homogeen zijn, hebben we een methode ontwikkeld om

reconstructiealgoritmes aan te passen zodat hun prior enkel in de homogene ge-

bieden toegepast wordt (hoofdstuk 4).

Uit de gereconstrueerde residuele fout wordt een masker afgeleid door middel

van een drempel. Van de pixels met een fout die groter is dan deze drempel wordt
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verondersteld dat ze niet tot een homogeen gebied behoren, en dat het beter is

om de prior voor deze pixels niet toe te passen. De praktische toepassing hier-

van is verschillend voor elk algoritme. In deze thesis worden er lokale versies

ontwikkeld van DART en FISTA. Bij Lokale DART (“Local DART”) wordt het

algoritme aangepast om er een verzameling niet-discrete pixels aan toe te voegen.

Het resulterende algoritme levert in één stap een gelokaliseerd resultaat op. Bij

Lokale FISTA (“Local FISTA”) wordt een initiële (klassieke) FISTA-reconstructie

gebruikt om, met behulp van de gereconstrueerde residuele fout, de niet-homogene

gebieden te bepalen, waarna er een tweede reconstructie met een lokale versie van

FISTA volgt.

In de experimenten worden de algoritmes toegepast op een aantal fantoombeel-

den, om ze te karakteriseren. De resultaten geven aan dat de lokale versies van de

algoritmes betere resultaten opleveren dan niet-lokale versies en SIRT.

Conclusie

Bij objecten die gedeeltelijk uit homogene gebieden bestaan, is het mogelijk om

de homogene gebieden in kaart te brengen via de gereconstrueerde residuele fout

(hoofdstuk 3). Met zowel specifiek ontwikkelde algoritmes (PDART, hoofdstuk 2)

en het lokaal maken van bestaande algoritmes (hoofdstuk 4), is het mogelijk om

deze objecten te reconstrueren met behoud van de voorkennis in de gebieden waar

ze geldig is. Uit deze thesis blijkt dat ook lokale voorkennis de kwaliteit van

reconstructies verbetert.
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Introduction

Computed tomography (CT) is a technique that uses computation to form an

image of the inside of an object or person, by combining projections of that object

or person. The word tomography is derived from the Greek word tomos, meaning

“cut” or “slice”. The basis for computed tomography was laid in 1917 by Johann

Radon, an Austrian mathematician.

Computed tomography has a broad range of applications, the best known be-

ing medical imaging (the CT scanner), where X-rays are used for making the

projection images. The first practical application of CT was, however, in astron-

omy, by Ronald Bracewell in 1956. He used CT to improve the resolution of

radio-astronomical observations. The practical applications in this thesis are from

electron tomography, where the images are made with an electron microscope, and

from preclinical research, where the images are made with a µCT scanner.

There are two important techniques for the reconstruction of the images, name-

ly analytical and algebraic methods. Medical scanners mostly employ filtered back-

projection, an analytical method. This thesis builds on algebraic methods, where

the problem is cast as a system of linear equations Wx = p. Here, x is the un-

known image, p represents the projection data, and W the system matrix, which

describes the relation between both.

In practical CT, it is not always possible to record the projection images that

are necessary for creating an accurate reconstruction (their number, from which

angles, etc.). There are several reasons for this, an important one being limiting

the radiation dose. A straightforward example of this are X-rays, which can be

harmful for man, but lifeless objects can also be damaged by radiation. To avoid

this, the radiation dose must often be limited, which decreases the signal-to-noise

ratio and makes the reconstruction more difficult. The imaging modality itself can

also have inherent limitations. In electron tomography, e.g., the projection images

are often made manually, so that recording even a small number of projections can

be quite labor intensive. Apart from the limits of the microscope itself, there is

also the fact that the samples are mostly planar, so that their apparent thickness

increases when they are imaged under a large angle. The result of this is that

projections cannot be made over the full range of 180◦. The consequence of these

kinds of limitations is that the reconstruction algorithms only have access to limited

data, which can make it impossible to create accurate reconstructions.

A solution for the limited data problem is adding prior knowledge to the recon-

struction algorithm. In this thesis, two assumptions are employed. The first one is

that the scanned object consists of homogeneous regions. The second one is that
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the gray levels of these regions are known. Together, these assumptions lead to

discrete tomography (DT). The first assumption by itself leads to algorithms that

employ total variation minimization (TVMin). The practical algorithms that are

used in this thesis are DART for DT, and NESTA and FISTA for TVMin. Using

these algorithms results in a large improvement of the quality of the reconstruc-

tions.

A problem with applying prior knowledge is that there are cases where the prior

knowledge is not valid for the entire object. The methods that were mentioned

before can then fail. In this thesis, we investigate the possibility of only applying

the prior knowledge to part of the object. There are two ways to do this, either

developing a specific algorithm for each specific situation, or developing a general

technique for creating local versions of existing algorithms. Both approaches are

investigated.

PDART

The Partially Discrete Algebraic Reconstruction Technique (PDART, Chapter 2)

was developed for a specific application, namely the reconstruction and segmenta-

tion of homogeneous particles with a high density in a (possibly) non-homogeneous

environment.

The PDART algorithm interleaves SIRT iterations with segmentation steps.

SIRT is an algebraic reconstruction technique that is used several times in this

thesis. During each segmentation step, all pixels with a value above a certain

threshold τ are assumed to be part of a homogeneous particle with a high den-

sity. The gray level ρ of the particles is also assumed to be known. After each

segmentation step, the pixels of which the value exceeds the threshold are fixed at

the known gray level. This fixing is the crucial step through which the algorithm

achieves a more accurate reconstruction. Since the reconstruction problem is, for

algebraic methods, seen as a system of linear equations, fixing pixels amounts to

removing variables from the system, while the number of equations stays the same

(which means that all available data is still used). The consequence is that the

system becomes less underdetermined, so that the reconstruction quality of both

the dense and the other material is improved.

In the experiments, PDART is first applied to a number of phantom images,

to characterize the algorithm. It is then applied to two datasets from electron

tomography (in Chapter 2) and a dataset from preclinical research (in Chapter 3).

The results indicate that the algorithm produces more accurate reconstructions

than SIRT.
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Reconstructed Residual Error

The reconstructed residual error is the reconstruction of the difference between the

recorded data and the forward projection of a segmented tomogram. The Moore-

Penrose pseudoinverse of the system matrix W is used as a mathematical model for

a general reconstruction algorithm, to show that the reconstructed residual error is

a good approximation of the true error of the segmented tomogram. The operation

of the algorithm is based on the fact that segmentation suppresses the artifacts

of the original reconstruction. The segmentation step does add new artifacts, but

these have different properties. This makes it possible to use the projection data

again to form an image of the errors in the segmented reconstruction.

The technique has several applications. It can improve the gray level estimates

of a segmented tomogram. For reconstruction methods that apply prior knowledge

of the gray levels during the reconstruction, the segmentation itself can also be

improved. Finally, the reconstructed residual error can be used to select the most

accurate of several segmented reconstructions.

In the experiments, the algorithm is first applied to a number of phantom

images, to characterize it. It is then applied to a dataset from preclinical research.

The results indicate that the reconstructed residual error is able to find and correct

the errors in a segmented tomogram.

Local Homogeneity in Reconstruction

For the second approach for applying prior knowledge only at locations where it

is valid, after PDART as an example of an algorithm that was developed for a

specific situation, we make use of the reconstructed residual error. For objects

that are partially homogeneous, we have developed a method to adapt reconstruc-

tion algorithms so that their prior is only applied in the homogeneous regions

(Chapter 4).

A mask is determined from the reconstructed residual error by applying a

threshold. It is assumed that pixels for which the error is larger than the threshold

are not part of a homogeneous region, and that it is better not to apply the prior for

those pixels. The practical implementation for this is different for each algorithm.

In this thesis, local versions of DART and FISTA are developed. For Local DART,

the algorithm is adapted by adding a set of non-discrete pixels. The adapted

algorithm then provides a localized result in a single step. For Local FISTA, an

initial (classical) FISTA reconstruction is used to locate the non-homogeneous

regions, which is then followed by a second reconstruction that uses a local version

of FISTA.

In the experiments, these algorithms are applied to a number of phantom im-
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ages, to characterize them. The results indicate that the local versions of the

algorithms produce better results than non-local versions and SIRT.

Conclusions

For objects that consist partially of homogeneous regions, it is possible to locate the

homogeneous regions using the reconstructed residual error (Chapter 3). Both with

specifically developed algorithms (PDART, Chapter 2) and by localizing existing

algorithms (Chapter 4), it is possible to reconstruct these objects with preservation

of the prior knowledge in the regions where it is valid. This thesis shows that also

local prior knowledge increases the quality of reconstructions.
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1
Introduction

1.1 Historical Overview

Computed tomography (CT) is a technique that uses computation to reconstruct

an image of the inside of a person or an object from (many) projections. The word

tomography is derived from the Greek word tomos, meaning “cut” or “slice”, so

the straightforward meaning of the word is simply that it shows a slice through a

person or an object.

CT is practiced today in diverse application fields such as medicine, preclinical

research, materials science, astronomy, etc. This thesis focuses on transmission

CT, where penetrating rays are produced and sent through the person or object

that is scanned. This results in projection images, which are then used as input to

create the CT images from. In medical practice, which is by far the best known field

of application, these penetrating rays are most commonly X-rays, as discovered by

Wilhelm Röntgen (1845–1923) in 1895, and for which he later received the Nobel

Prize in Physics in 1901.

The mathematical basis of CT was laid by Johann Radon (1887–1956), an

Austrian Mathematician. In 1917, he published a seminal paper [1] in which

the tomographic reconstruction problem was, from a mathematical point of view,

solved. The importance of this paper as the mathematical basis for tomography

was realized only much later. This was probably due to it being presented as a

purely mathematical subject, for which no practical applications were identified at

the time. The paper being in German possibly also hindered a wide distribution

of the results. Since the 1980s, two independent English translations are available,

one as a journal article [2], and one in the book by Deans [3].

The first practical application of tomography was, maybe somewhat unexpect-

edly, in astronomy, by Ronald Bracewell in 1956 [4]. He used CT to improve the

resolution of radio-astronomical observations.

We mention the first three-dimensional results from electron microscopy in
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this historical overview, since results for several electron tomography datasets are

described in Chapter 2. Three important papers were published in 1968. In the

first one [5], a biological macromolecule is reconstructed from a single projection

image containing many copies of the molecule in different orientations, a technique

that later became known as single particle analysis. In the second and third

paper [6, 7], multiple projections are taken, alleviating the need for the object to

be symmetrical.

The breakthrough for medical applications arrived through the work of Alan

Cormack (1924–1998) and Sir Godfrey Hounsfield (1919–2004), who jointly re-

ceived the Nobel Prize in Physiology or Medicine for this in 1979. Cormack pro-

posed X-ray scanning for medical applications in 1963 [8]. The first practical CT

scanner was built at EMI [9, 10]. It is often claimed that revenues from the sales

of The Beatles records in the 1960s helped funding the development of the first

CT scanner at EMI [11], although this has recently been disputed [12].

A more extensive overview of the history of tomography than is presented in

this Introduction is available in the excellent books by Deans [3] and Buzug [13].

1.2 Workflow of Tomography

In this Section, we present a brief overview of the workflow of tomographic imaging.

The three major steps are data acquisition, reconstruction, and segmentation.

1.2.1 Data Acquisition

The input of the tomographic reconstruction methods (see Section 1.2.2) are pro-

jection images. In order to create an image of the inside of an object through

transmission CT, penetrating radiation is needed. Moreover, part of that radi-

ation must be absorbed or scattered on its path through the object, in order to

be able to provide information about it. Different types of radiation have been

used for tomography, such as X-rays, electrons, neutrons, etc. Since this thesis

features CT reconstructions from both electron and X-ray tomography, the data

acquisition process for these imaging modes is briefly discussed below.

In electron tomography, the projection images are created with an electron mi-

croscope. More specifically, the examples that appear in this thesis were acquired

with a scanning transmission electron microscope (STEM). The penetrating radi-

ation in an electron microscope is a beam of electrons, created using an electron

gun. This beam is then focused by electrostatic and electromagnetic lenses and

sent through the sample to image it. Electron microscopes maintain an internal

vacuum, which often necessitates extra work to prepare the samples for imaging,

since the electron beam would otherwise be scattered by air molecules. After pass-
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ing through the sample, the remaining electrons hit a detector, resulting in an

image.

In medical and µCT scanners, the penetrating radiation consists of X-rays,

which are generated by an X-ray tube. The examples that appear in this thesis

were acquired with a µCT scanner. The X-ray tube produces a cone beam of

X-rays, which is then sent through the sample to image it. Maintaining a vacuum

is not required, since X-ray photons are not affected much by air molecules. After

passing through the sample, the remaining X-ray photons hit a detector, resulting

in an image.

1.2.2 Reconstruction

The mathematical basis for tomography was discovered by the Austrian math-

ematician Johann Radon. In 1917, he published the seminal paper “Über die

Bestimmung von Funktionen durch ihre Intergralwerte längs gewisser Mannig-

faltigkeiten” [1] (“On the Determination of Functions from Their Integral Values

along Certain Manifolds”, English translations are available in [2] and [3]). Given

a function on the plane f : R2 → R with bounded support, Radon showed that it

is possible to reconstruct that function from a complete set of line integrals formed

by projecting that function in all possible directions.

Hence, to enable tomographic reconstruction in practice, a large number of

projection images must be acquired from different directions. This is illustrated,

for a single slice, in Fig. 1.1. If projections are taken in equiangular steps, the

projection of a single point in the object is supported on the graph of a sine wave.

For this reason, the graphical representation of a full set of projections (in two

dimensions) is called a sinogram. From the phantom image from Fig. 1.1a, which

contains a number of elliptical particles that are embedded in a disk, a sinogram

was created using 360 equiangular projections spaced 0.5◦ apart (Fig. 1.1b).

(a) Phantom (b) Sinogram (c) SIRT reconstruction

Figure 1.1: (a) Phantom image. (b) Sinogram from 360 projections. (c) SIRT reconstruction.
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In practice, there are two main approaches for computing a tomographic re-

construction. The first is the one of the analytical methods, which are a direct

approximation of Radon’s solution. Examples of this are Filtered Backprojection

(FBP) [13] and the method of Feldkamp, Davis, and Kress (FDK) [14]. The second

approach is the algebraic (or iterative) one. Here, the reconstruction problem is

cast as a system of linear equations,

Wx = p, (1.1)

where p ∈ Rm contains the projection data and x ∈ Rn corresponds to the un-

known image (both represented by a one-dimensional vector). The m× n matrix

W is a linear operator that determines the projection geometry. Examples of such

iterative algorithms are ART [15], SART [16], and SIRT [17]. SIRT, implemented

as defined in [18], is used extensively throughout this thesis. A SIRT reconstruction

of the phantom from Fig. 1.1a is shown in Fig. 1.1c.

Analytical methods such as FBP have the advantage that they are fast, but the

disadvantage that they need a complete dataset to work correctly. The algebraic

methods are much more computationally demanding, but they have the advantage

that they are more flexible with regard to the geometry of the scanner and the

possibility to exploit extra information that might be available, e.g., about the

scanned object. This thesis builds on the algebraic reconstruction methods.

1.2.3 Segmentation

Segmentation is often the final step in the workflow of tomographic imaging. It

amounts to the classification of image pixels into distinct classes, based on similar-

ity with respect to some characteristic. Image segmentation is a well established

field, and a range of methods has been developed, such as global or local thresh-

olding, region growing, and clustering [19, 20]. Otsu’s method [21] is one specific

classical technique that is used in several of the experiments in this thesis. It uses

the histogram of an image to compute optimal thresholds to segment that image

into different classes.

For the purpose of this thesis, the segmentation classes are assumed to be

directly related to the (modality specific) “density” of the parts of the scanned

object.

1.3 Limited Data in Tomography

In ideal circumstances, the desirable quality of the reconstruction would determine

which projections were made (their number, from which angles, etc.). However, in

practical CT, this is not always possible. This gives rise to limited data problems.
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There are several causes for having only limited data available, three of which

are illustrated in Fig. 1.2. An important one is limiting the radiation dose. For

example, X-rays can be harmful in medical and preclinical applications, and the

X-ray dose should be as small as possible. However, the dose can also be a problem

for inanimate objects, if those are affected by the radiation during the scan. A

particular example of this is beam damage in electron tomography, where, espe-

cially for biological samples, the need to avoid radiation damage can strictly limit

the acceptable dose. Lowering the radiation dose increases the noise level, since

the signal-to-noise ratio (SNR) increases with the square root of the number of de-

tected particles (which can be electrons, X-ray photons, etc.). The increased noise

degrades the projections (Fig. 1.2a), which subsequently influences the resulting

reconstruction (Fig. 1.2d).

(a) Noise applied (b) 20 projections (c) Missing wedge

(d) SIRT reconstruction (e) SIRT reconstruction (f) SIRT reconstruction

Figure 1.2: Sinograms (top row) and SIRT reconstructions (bottom row) for several limited
data datasets. (a), (d) Noise was applied to the sinogram. (b), (e) The sinogram has only
20 projections. (c), (f) The sinogram has a missing wedge of data.

The imaging modality itself may also have inherent limitations. We take again

the example of electron tomography. In that modality, the data is recorded one

projection at a time, often with manual adjustment of the settings of the mi-

croscope between each projection. This makes creating an electron tomography

dataset a very labor-intensive process. A somewhat extreme example of this is

shown in Fig. 1.2b. With only 20 projections (spaced 9◦ apart) instead of 360, it

is clear that this sinogram contains much less information. The effect on the SIRT
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reconstruction is quite strong (Fig. 1.2e).

A second limitation of electron tomography is that the sample often cannot

be tilted over the full 180◦ range, both because of physical limitations of the

microscope and because most samples are flat, which means that their apparent

thickness increases greatly at high angles of inclination. Not taking projections

over the full 180◦ leads to a missing wedge of data. This is illustrated in Fig. 1.2c,

which shows a sinogram with a missing wedge of 40◦, while still consisting of

equiangular projections spaced 0.5◦ apart. The only difference with Fig. 1.1b is

that 80 projections are missing from Fig. 1.2c (40 lines at the top and 40 lines at the

bottom). The effect on the SIRT reconstruction is again quite strong (Fig. 1.2f),

even though the amount of data in the sinogram is not much smaller than in

Fig. 1.1b.

From these examples, it is clear that having only limited data available can

make it very difficult to create accurate reconstructions. This is particularly ap-

parent from Figs. 1.2e and 1.2f. In the next Section, we describe two important

approaches for solving the limited data problem, and several practical algorithms

that implement them.

1.4 Current Approach to the Limited Data Problem

Current approaches to the limited data problem often involve including extra in-

formation about the scanned object in the reconstruction algorithm. Exploiting

this prior knowledge can greatly enhance the reconstruction quality.

As an illustration of the concept of applying prior knowledge, we first look

at the examples from Fig. 1.2 again. For the phantom that is reconstructed in

Fig. 1.2, there are two obvious priors that can be applied. The object in the

phantom image (Fig. 1.1a) clearly consists of homogeneous materials, both for the

particles and for the disk. The black background of the image, which represents

air or vacuum, is also homogeneous. Assuming that the gray levels of these three

materials are known, leads to Discrete Tomography (DT), which is introduced in

Section 1.4.1. If only the homogeneity is used as prior knowledge, then Total

Variation Minimization (TVMin) is an appropriate technique. TVMin does not

directly assume that the object consists of homogeneous regions, but it is very well

suited to reconstruct those kinds of objects. TVMin is introduced in Section 1.4.2.

1.4.1 Discrete Tomography

There are two kinds of discrete tomography. In the first kind, two constraints of

discreteness are combined. It is assumed that the scanned object has only a few

different densities, and that it is on a grid. Assuming that the object is on a grid
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is often not realistic, but it is applicable in practice, e.g., in atomic resolution

tomography [22]. In the second kind of discrete tomography, the scanned object is

still assumed to consist of only a few different densities, but it is no longer assumed

to be on a grid. This allows reconstructing more general objects. It is this second

kind of discrete tomography that is relevant for this thesis. A thorough review of

the field of discrete tomography is available in the books by Herman and Kuba

(Eds.) [23, 24].

In practice, the Discrete Algebraic Reconstruction Technique (DART) [25] is an

efficient algorithm that has been used in fields such as electron tomography [26–

29] and X-ray crystallography [30]. It is also being studied for use in the online

scanning of food [31]. DART is introduced briefly in Chapter 4, and a detailed

description of the algorithm is available in [25]. Fig. 1.3 shows DART recon-

structions of the three sinograms from Fig. 1.2. It is clear that all three DART

reconstructions are more accurate than the corresponding SIRT reconstructions

from Fig. 1.2, showing that DART is able to exploit the available prior knowledge.

(a) Noise applied (b) 20 projections (c) Missing wedge

Figure 1.3: DART reconstructions of the sinograms from Fig. 1.2. (a) Noise was applied to
the sinogram. (b) The sinogram has only 20 projections. (c) The sinogram has a missing
wedge of data.

1.4.2 Total Variation Minimization

Total Variation Minimization (TVMin) was introduced in [32] as a noise removal

algorithm. For TVMin, it is assumed that, out of all possible images that conform

to the available data, images with a low total variation (TV) are preferable. The

principle of TVMin is readily applicable to tomography.

In practice, both NESTA [33] and the Fast Iterative Shrinkage Thresholding

Algorithm (FISTA) [34, 35] are relevant for this thesis. FISTA is introduced in

some detail in Chapter 4. We refer to the mentioned articles for a detailed de-

scription of NESTA [33] and FISTA [34, 35]. As an aside, we note that NESTA

is not an acronym, but short for Nesterov’s algorithm. The authors of [33] named
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it after Nesterov to acknowledge his work [36]. These algorithms have been used

for tomography in practice, in fields such as electrical resistance tomography [37]

and preclinical imaging [38]. Fig. 1.4 shows FISTA reconstructions of the three

sinograms from Fig. 1.2. As for DART, it is clear that all three FISTA recon-

structions are more accurate than the corresponding SIRT reconstructions from

Fig. 1.2, showing that FISTA is also able to exploit the available prior knowledge.

(a) Noise applied (b) 20 projections (c) Missing wedge

Figure 1.4: FISTA reconstructions of the sinograms from Fig. 1.2. (a) Noise was applied to
the sinogram. (b) The sinogram has only 20 projections. (c) The sinogram has a missing
wedge of data.

1.4.3 Limitations of the Current Approach

In Sections 1.4.1 and 1.4.2, we have shown examples of how DT and TVMin can

greatly improve the quality of reconstructions from limited data. However, this

is with the assumption that the applied prior knowledge is correct, and that it is

correct for the whole object. In practice, this is not always the case.

This is illustrated in Fig. 1.5. The previous phantom (Fig. 1.1a) was adapted

to have non-homogeneous supporting material (Fig. 1.5a). Algorithms from DT,

such as DART, are unable to reconstruct non-homogeneous objects, since each

pixel of the tomogram will be forcibly set to one of the “known” gray levels. The

example for DART in Fig. 1.5b shows this clearly. Algorithms from TVMin are

capable of reconstructing non-homogeneous objects if the spatial variation of the

object is compatible with the TV prior, and if sufficient data is available. A FISTA

reconstruction from 360 projections is quite accurate (Fig. 1.5c).

For the limited data case, for which DT and TVMin are most useful, the re-

sults for DART deteriorate further (Fig. 1.5d), while those for FISTA also become

inaccurate (Figs. 1.5e and 1.5f). For DART, the white ellipses, which are still

present in the reconstruction from 360 projections (Fig. 1.5b), are hardly recog-

nizable in the reconstruction from 20 projections (Fig. 1.5d), due to the greatly

decreased amount of data. For FISTA, both the reconstruction from the noisy
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(a) Phantom (b) DART reconstruction (c) FISTA reconstruction

(d) DART, 20 projections (e) FISTA, noise applied (f) FISTA, 20 projections

Figure 1.5: (a) Phantom image. (b) DART reconstruction from 360 projections. (c) FISTA
reconstruction from 360 projections. (d) DART reconstruction from 20 projections. (e) FISTA
reconstruction from 360 projections, with noise applied to the sinogram. (f) FISTA recon-
struction from 20 projections.

sinogram (Fig. 1.5e) and that from 20 projections (Fig. 1.5f) show different forms

of the so-called staircasing effect, where the image becomes “cartoon-like” because

piecewise constant images have a low TV. FISTA has an important parameter

that provides a trade-off between fidelity to the projection data and low TV for

the reconstruction. When only limited data is available, or when noise is present,

this parameter has to be tuned towards preferring low TV to result in a reasonable

reconstruction. The consequence is then that the image may become cartoon-like.

In summary, the major limitation of algorithms that exploit prior knowledge

is that they may become ineffective if that knowledge is not valid throughout

the scanned object, precluding the use of the prior knowledge. An additional

problem is that it will not necessarily be obvious that the resulting reconstructions

are incorrect. If DT or TVMin is applied to the reconstruction of objects that

are expected to be homogeneous, any resulting smooth reconstruction might be

deemed acceptable. In the next Section, we introduce the novel approach that this

thesis proposes to solve these problems.
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1.5 Novel Approach—Local Prior Knowledge

In this thesis, we present local prior knowledge as a way of limiting the application

of the available prior knowledge to the parts of the scanned object for which it is

valid.

In general, there appear to be two major ways to approach this problem. The

first one is to develop a specific new algorithm for each situation. This allows

exploiting exactly the available prior knowledge. With this approach, we have

developed the PDART algorithm to reconstruct and segment dense homogeneous

particles embedded in (possibly) non-homogeneous material.

The second approach is to localize existing algorithms, i.e., to adapt them to

only apply their prior knowledge where this is appropriate. This approach needs a

way of detecting where the prior knowledge is valid, for which we have developed

the reconstructed residual error. We then describe a general way in which recon-

struction algorithms can be localized, and apply this in practice by creating local

variants of DART and FISTA.

The reconstructed residual error itself is also a major result of our work. The

method visualizes and improves the quality of a segmented tomogram. We present

the algorithm and several applications, in addition to the mentioned localized

algorithms.

1.6 Outline of this Thesis

Chapter 1 contains a general introduction.

Chapter 2 presents the Partially Discrete Algebraic Reconstruction Technique

(PDART), an algorithm that was developed for the specific task of recon-

structing and segmenting dense homogeneous particles that are embedded in

(possibly) non-homogeneous material. The algorithm is applied to two ex-

perimental datasets from electron tomography and, in Chapter 3, to a µCT

dataset.

Chapter 3 introduces the reconstructed residual error, an algorithm that can

visualize and improve the quality of a segmented tomogram. Three applica-

tions are presented. First, it is used to improve gray level estimates. Second,

for reconstruction algorithms that assume a priori knowledge of the gray lev-

els, it is used to improve the segmentation itself. Finally, the reconstructed

residual error is used to select the most accurate of several segmentations,

for experimental µCT data.
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Chapter 4 presents another major application of the reconstructed residual er-

ror. It uses the algorithm to develop a general method for creating localized

variants of existing reconstruction algorithms, which only apply their prior

knowledge where this is appropriate. This general principle is then applied

to DART and FISTA.

Chapter 5 draws general conclusions.
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2
PDART

This chapter has been published as

T. Roelandts, K. J. Batenburg, E. Biermans, C. Kübel, S. Bals, and J. Sijbers,

“Accurate segmentation of dense nanoparticles by partially discrete electron to-

mography,” Ultramicroscopy, vol. 114, pp. 96–105, 2012.

Abstract—Accurate segmentation of nanoparticles within various matrix ma-

terials is a difficult problem in electron tomography. Due to artifacts related to

image series acquisition and reconstruction, global thresholding of reconstructions

computed by established algorithms, such as weighted backprojection or SIRT,

may result in unreliable and subjective segmentations. In this paper, we introduce

the Partially Discrete Algebraic Reconstruction Technique (PDART) for comput-

ing accurate segmentations of dense nanoparticles of constant composition. The

particles are segmented directly by the reconstruction algorithm, while the sur-

rounding regions are reconstructed using continuously varying gray levels. As no

properties are assumed for the other compositions of the sample, the technique can

be applied to any sample where dense nanoparticles must be segmented, regardless

of the surrounding compositions. For both experimental and simulated data, it is

shown that PDART yields significantly more accurate segmentations than those

obtained by optimal global thresholding of the SIRT reconstruction.

2.1 Introduction

Electron tomography deals with the reconstruction of a three-dimensional (3D)

representation of a microscopy sample from a tilt series of two-dimensional (2D)

images. This technique has been applied successfully in materials science since the

late 1980s [1]. Several imaging modes have been used for acquiring the projection
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images, in particular bright-field TEM [2, 3], annular dark field TEM [4], high-

angle annular dark-field scanning TEM (HAADF STEM) [5–9], and energy-filtered

TEM (EFTEM) [10–13].

Quantitative interpretation of the reconstructed 3D volume is often hampered

by the presence of artifacts: structured distortions that do not correspond with the

actual sample. In particular, limits on the number of projection images imposed

by sample contamination or beam damage give rise to such artifacts. Furthermore,

the limited spacing for specimen holders in between the pole pieces of the objective

lens often restricts the range of tilt angles to about ± 70◦, leading to a missing

wedge in the collected data. As a consequence, features perpendicular to the

electron beam are better resolved than features parallel to the beam, resulting in

anisotropic resolution and distortions of the structure.

For many imaging tasks in materials science, the goal is to obtain an accu-

rate segmentation of particular structures (i.e., particles, pores, tubules, etc.). Of

particular importance is the problem of segmenting nanoparticles within various

matrix materials [5–7, 14]. Due to artifacts related to image acquisition and re-

construction, segmenting these structures from gray level volumes computed by

established algorithms, such as weighted backprojection (WBP) or SIRT [15], may

result in unreliable and subjective segmentations. In practice, reconstructions are

often segmented using a global threshold. Since the threshold is estimated visu-

ally, this approach is highly subjective. Moreover, it does not account for the effect

that the intensity of the features in the reconstruction strongly depends on their

size [16]. Fully manual segmentation may avoid this effect, but remains a time

consuming and subjective approach.

Recently, discrete tomography algorithms have demonstrated the ability to

overcome some of these limitations by exploiting prior knowledge. Discrete to-

mography is based on the assumption that the sample consists of only a few dif-

ferent compositions. Two rather different variants of discrete tomography have

been applied to electron tomography. The first variant was recently applied to

the reconstruction of crystalline nanoparticles at atomic resolution [17, 18]. For

this variant, it is assumed that the crystal contains only a few atomic species, and

that the atoms lie on a regular grid. Together, these assumptions allow to create

a reconstruction from as few as two or three projections. For the second variant,

which can be applied at lower resolutions, it is only assumed that the sample con-

sists of a few different compositions, each corresponding to a particular gray level

in the reconstructed image. The discrete tomography algorithms that appear in

this paper are of the second variant.

Major advantages of discrete tomography algorithms are that they require fewer

projection images compared to alternative methods such as SIRT, and that missing

wedge artifacts are strongly reduced [19]. Moreover, as the final result of the
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reconstruction process is a segmented image, a separate segmentation step is no

longer required. The Discrete Algebraic Reconstruction Technique (DART) for

discrete tomography has been successfully applied to a broad range of materials

samples [20–23]. The main restriction for using discrete tomography is evidently

that the entire sample must satisfy the discreteness requirement. If the sample

contains a mixture of compositions, the results of discrete tomography cannot be

relied upon, as the key assumptions are violated.

In this paper, we introduce the Partially Discrete Algebraic Reconstruction

Technique (PDART) for computing accurate segmentations of dense nanoparticles

of constant composition, regardless of the compositions in the remaining part of

the sample. Embedded nanoparticles such as catalyst particles are often dense

structures compared to their surroundings (e.g., porous materials), resulting in a

high gray level in the reconstructed image. PDART is based on the assumption

that the densest composition occurs in homogeneous regions that have a constant

gray level. These dense regions are segmented discretely, while the surrounding

regions are reconstructed using continuously varying gray levels. If the assumption

of a homogeneous densest composition holds, the imaging mode that is used to

record the tilt series—HAADF STEM for both samples in this paper—is not a

restriction on the applicability of PDART, as long as the selected imaging mode

is compatible with tomography. PDART imposes no restrictions on the nature of

the sample (except that the densest composition must be homogeneous), which

means that the application of the algorithm is not restricted to any specific type

of samples.

This paper is structured as follows. In Section 2.2, the problem of segmenting

dense particles is introduced, and the PDART algorithm is defined. Section 2.2

also introduces the figure of merit that is used for quantitative evaluation of the

results. It concludes by describing how the parameters of the algorithm can be

optimized automatically. In Section 2.3, the capabilities of PDART are assessed

using two different experimental datasets and a number of simulation experiments.

The results are discussed in Section 2.4 and conclusions are drawn in Section 2.5.

2.2 Algorithm

Before describing the PDART algorithm, we start by giving an example of its ap-

plicability. Fig. 2.1 illustrates the problem of nanoparticle segmentation. Fig. 2.1a

shows a phantom (i.e., a simulated image), representing a microscopy sample that

contains nanoparticles of only a few pixels each, embedded in a cylinder of varying

composition. From this phantom, a synthetic dataset was created by calculat-

ing 28 evenly spaced projections in the range of ±70◦. Fig. 2.1 also shows WBP

(Fig. 2.1b), SIRT (Fig. 2.1c), DART (Fig. 2.1d), and PDART (Fig. 2.1e) recon-
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structions of this dataset.

(a) Phantom (b) WBP (c) SIRT

(d) DART (e) PDART

Figure 2.1: A simulation phantom and several reconstructions. The phantom represents
a cylindrical sample that contains nanoparticles of only a few pixels each, embedded in a
material of varying composition.

The gray level reconstructions computed by WBP and SIRT have limited visual

quality, as a result of the small number of projection angles and their limited angu-

lar range. When thresholding these images to determine the size and shape of the

particles, it is not clear how the threshold should be chosen in an optimal way. The

DART reconstruction shown in Fig. 2.1d is already segmented, yet the segmenta-

tion is not accurate at all when compared to the original phantom. The varying

composition of the disk surrounding the nanoparticles violates the key discreteness

assumption imposed by the DART algorithm. The PDART reconstruction, shown

in Fig 2.1e, seems much more accurate than the other reconstructions.

2.2.1 Algorithm Description

The PDART algorithm has been designed to allow for accurate particle segmen-

tation in cases where neither continuous methods nor fully discrete tomography

leads to good results. The algorithm is based on the assumption that the particles

have a constant composition, and that this composition represents the highest gray
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Perform a SIRT iteration; keep the
pixels in F fixed at gray level ρ

Add all pixels with gray level ≥ τ to F
and set their gray level to ρ

Input: projection data, threshold τ,
gray level ρ, empty set F

Termination
condition
reached?

Output: current reconstruction

Yes

No

Figure 2.2: Flowchart of the PDART algorithm.

level in the reconstructed volume. PDART combines an iterative reconstruction

algorithm, such as SIRT, with intermediate segmentation steps. Once pixels have

been identified as “particle”, they are directly segmented (i.e., their value is set to

the constant gray level for the particles) and kept fixed at this value in subsequent

SIRT iterations. We note that, throughout this paper, we use the additive variant

of SIRT, as described in [24].

Fig. 2.2 shows a flowchart of the PDART algorithm. Besides having the pro-

jection data as input, the algorithm has two parameters: a threshold τ and a gray

level ρ > τ , which corresponds to the gray level of the particles. Optimal values for

both parameters can be determined automatically, as is outlined in Section 2.2.3.

Initially, the set F of fixed pixels is empty. In an iterative loop, the algorithm

starts by performing one or more SIRT iterations on the entire image volume.

Whenever one or more pixels are assigned a higher gray level than the threshold

τ , it is decided that these pixels belong to a particle. Such pixels are added to

F : their gray level is set to ρ and is kept fixed at this value during all subsequent

SIRT iterations. In this way, the set F gradually expands as pixels are added,

until some termination condition is satisfied. Typically, one aims for terminating

the algorithm when no new pixels have been added to F for a sufficiently large

number of iterations.
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In its original form, the SIRT algorithm computes a weighted least square

solution of the system Wx = p, where x denotes the unknown image, p denotes

the projection data, and W denotes the projection operator. As pixels are added

to F within the PDART algorithm, the number of unknowns in this system is

reduced while the number of equations remains the same, thereby improving the

reconstruction for pixels that do not (yet) belong to F .

As an illustration, Fig. 2.3 shows several intermediate steps of the PDART

algorithm, using the phantom from Fig. 2.1a. In this particular example, the first

pixels cross the threshold τ at the eighth iteration (Fig. 2.3b). At this point, the

result is still exactly the same as for SIRT, since no pixels have been fixed yet.

The pixels that crossed the threshold are then added to the set F of fixed pixels

(Fig. 2.3c) and fixed for the remainder of the reconstruction process (Fig. 2.3d).

During the following iterations, the process of discovering and fixing more and

more particle pixels continues until all of them are found at, in this example,

iteration 57 (Fig. 2.3e). No new pixels are found during the following iterations,

although the reconstruction quality of the background keeps improving somewhat.

The result after 150 iterations is shown in Fig. 2.3f.

2.2.2 Figure of Merit

After computing a reconstruction, the projections of the reconstructed image can

be computed, and subsequently compared with the measured projections. The dif-

ference between the computed projections and the measured dataset is calculated

by taking the sum of squares of the differences for all projection pixels, resulting

in a number that indicates how well the reconstruction adheres to the measured

projection data. Mathematically, this is known as the projection distance, defined

as dpr(x) = ‖Wx− p‖2. It is this projection distance that we use as a figure

of merit. For phantoms, we can also calculate the phantom distance, which is

defined as dph(x) = ‖x− h‖2, where h denotes the phantom image. The phan-

tom distance directly measures the difference between the reconstruction and the

phantom.

2.2.3 Parameter Optimization

In the flowchart of Fig. 2.2, the threshold τ and the gray level ρ are assumed to

be known in advance. Their values may be set manually. A good value for ρ can

be determined by calculating the average value within one or more particles in

a SIRT reconstruction. For τ , a value that is somewhat higher than the highest

gray level in the background material generally leads to accurate reconstructions.

However, although this manual procedure may lead to satisfactory results, it is

also subjective.
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(a) Phantom (b) PDART,
iteration 8; before

application of threshold

(c) PDART, iteration 8;
pixels added to F

(d) PDART,
iteration 8; after

application of threshold

(e) PDART,
iteration 57

(f) PDART,
iteration 150

Figure 2.3: Illustration of several stages of the PDART algorithm.

A more objective way to determine optimal values for τ and ρ is to search

for those values that result in a reconstruction that corresponds maximally to the

measured tilt series. After computing the PDART reconstruction for particular

values (τ, ρ), the projection distance can be computed, resulting in a number that

indicates the quality of a particular pair (τ, ρ). By optimizing the reconstruction

quality over the space of possible values for τ and ρ, their optimal values can

be determined. In the case studies that follow, this optimization was performed

by applying an unconstrained nonlinear optimization, using the derivation-free

Nelder-Mead simplex algorithm [25]. This procedure needs in the order of 100

reconstructions to reach a precision of three significant digits for the threshold and

gray level.

33



CHAPTER 2. PDART

2.3 Experiments and Results

In this section, we report on a series of experiments that were performed to assess

the capabilities of the PDART algorithm. The experiments were conducted based

on phantom objects, as well as experimental electron tomography datasets of two

different samples.

The phantom study in Section 2.3.1 illustrates the basic differences between

PDART and DART, and establishes that PDART can be an alternative for DART

in cases where that algorithm is not applicable.

In Sections 2.3.2 and 2.3.3, PDART is applied to two different experimental

datasets, to further investigate the properties of the algorithm. The reconstruc-

tions from the experimental datasets also show that PDART is applicable in prac-

tice.

The first experimental sample is a heterogeneous catalyst, consisting of metal

nanoparticles on a mesoporous silica support, acquired using an angular range of

−70◦ to +72◦. The second sample consists of Pb nano inclusions in a crystalline

Si matrix, acquired using an On-Axis Rotation Tomography Holder, allowing for

image acquisition over the full angular range.

To validate the reconstruction results for both datasets, simulation phantoms

that resemble the experimental sample were designed. For these phantoms, re-

constructions with known ground truth were computed, thereby allowing a direct

comparison with the original object.

Throughout this section, the results for PDART are compared with SIRT and,

for the phantom study, with DART. Since both PDART and DART result in

reconstructions that are already segmented, the results from those algorithms are

compared with segmented SIRT reconstructions. The segmentation was performed

by taking a pair (τ, ρ), and setting all pixels with a value that exceeds τ to ρ. The

optimal pair (τ, ρ) was determined by minimizing the projection distance, using

the optimization procedure from Section 2.2.3.

2.3.1 Phantom Study

For the phantom study, two phantoms containing dense elliptical particles were

designed. For the first phantom (Fig. 2.4a), the particles are embedded in a ho-

mogeneous material; for the second one (Fig. 2.4h), in a continuously varying

material. The gray value of the homogeneous background from Fig. 2.4a is the

mean of the gray values of the background from Fig. 2.4h. The dimensions of both

phantoms are 512× 512 pixels.

From the discrete phantom (Fig. 2.4a), a synthetic dataset using 90 projec-

tions at evenly spaced 2◦ intervals was created. The resulting reconstructions are

shown in the top row of Fig. 2.4. Visually, the results for DART (Fig. 2.4c) and
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(a) Discrete phantom (b) SIRT, 90 proj. (c) DART, 90 proj. (d) PDART, 90 proj.

(e) SIRT, 36 proj. (f) DART, 36 proj. (g) PDART, 36 proj.

(h) Partially discrete
phantom

(i) SIRT, 90 proj. (j) DART, 90 proj. (k) PDART, 90 proj.

Figure 2.4: A discrete and a partially discrete phantom and several reconstructions. The
first two rows show the discrete phantom and reconstructions, using 90 and 36 projections
for the first and second row, respectively. The third row shows the partially discrete phantom
and reconstructions, using 90 projections.
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PDART (Fig. 2.4d) seem to be of comparable quality. In the SIRT reconstruction

(Fig. 2.4b) the size of the particles seems to be underestimated, and reconstruction

artifacts are visible in the background material. Table 2.1 (rows 1–4) shows the

numerical results for this experiment. In Table 2.1, the values for τ and ρ that

yield the minimum projection distance dpr are shown, together with the phan-

tom distance dph for the same pair (τ, ρ). The numerical results from Table 2.1

(rows 1–4) confirm the visual assessment, but indicate that DART adheres bet-

ter to the projection data than PDART for this fully discrete dataset (the value

for dpr is lower), even though this is not clear from the visual appearance of the

reconstruction. This is confirmed by the phantom distance dph.

Phantom Algorithm τ ρ dpr dph

Discrete, N/A 1 0 0

90 proj. SIRT 0.772 0.928 641 32.0

DART 0.710 1.00 130 8.54

PDART 0.368 0.99 161 9.79

Discrete, SIRT 0.843 0.977 334 38.6

36 proj. DART 0.608 1.00 42.4 5.55

PDART 0.368 1.00 103 15.8

Partially N/A 1 0 0

discrete, SIRT 0.766 0.926 654 31.9

90 proj. DART 0.516 0.964 702 54.9

PDART 0.494 1.00 266 23.0

Table 2.1: Optimal values for thresholds and gray levels, and the corresponding projection
and phantom distances.

From the same discrete phantom of Fig. 2.4a, a second synthetic dataset using

36 projections at evenly spaced 5◦ intervals was created. The resulting reconstruc-

tions are shown in the middle row of Fig. 2.4. The DART reconstruction (Fig. 2.4f)

is virtually identical to that from Fig. 2.4c, even though the number of projections

was reduced from 90 to 36. The quality of the PDART reconstruction (Fig. 2.4g)

has decreased somewhat, mainly in the background material. This effect is more

obvious for SIRT (Fig. 2.4e), as is the underestimation of the particle sizes for that

algorithm. The numerical results in Table 2.1 (rows 5–7) confirm this, and show

that the difference between DART and PDART has increased, both for dpr and

for dph. The results for both synthetic datasets based on the discrete phantom

suggest that, for a fully discrete sample, DART should be the algorithm of choice.

From the partially discrete phantom (Fig. 2.4h), a third synthetic dataset using
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90 projections at evenly spaced 2◦ intervals was created. The resulting reconstruc-

tions are shown in the last row of Fig. 2.4. For this third dataset, the results

are markedly different. It is clear that the quality of the DART reconstruction

(Fig. 2.4j) is quite bad. The reason that DART fails is that the model that is

imposed by DART, namely that the sample is fully discrete, does not apply. The

model that PDART (Fig. 2.4k) assumes is correct: the dense particles are discrete,

and they are embedded in a continuously varying material. The visual results are

confirmed by the numerical results in Table 2.1 (rows 8–11). Both dpr and dph are

now higher for DART than for SIRT (Fig. 2.4i), while the values for PDART are

still lower, as for the preceding experiments. This implies that PDART should be

the algorithm of choice for a partially discrete sample that contains homogeneous

dense particles.

2.3.2 Sample I: Heterogeneous Catalyst

The sample is a heterogeneous catalyst, consisting of metal nanoparticles on a

mesoporous silica support (called Catalyst hereafter) [16].

An HAADF STEM tilt series was acquired using an FEI Tecnai F20 ST micro-

scope operated at an acceleration voltage of 200 kV. The sample was mounted on

a Fischione Model 2020 Advanced Tomography Holder. The series was recorded

using 2◦ tilt angle increments over a range of −70◦ to +72◦. Fig. 2.5 shows a

single projection image from the tilt series. The size of the projection images is

1280×1280 pixels. To increase the SNR, the projection images were downsampled

by a factor of 2 in both dimensions.

In principle, the Catalyst dataset appears to be suitable for a fully discrete

DART reconstruction, as it has just two compositions. However, as Fig. 2.6 shows,

it was not possible to reconstruct the supporting particle as a uniform structure

using DART. The fine porous structure of the supporting particle results in heavy

partial volume effects, such that the particle cannot be properly represented by a

constant gray level. As a result of the mismatch within the support, the segmenta-

tion of the catalyst particles also degrades. If one would only assume discreteness

of the catalyst particles, the support would be reconstructed using continuous gray

levels, thereby mitigating this problem. We therefore expect that PDART will be

more suitable.

The dataset was reconstructed in 3D using both SIRT and PDART. Optimal

parameters τ and ρ were determined from the projection data, using the procedure

outlined in Section 2.2.3. Both algorithms were run for 100 iterations. For experi-

mental samples, the effect of noise has to be taken into account when determining

the optimal number of iterations. This is due to the well known effect that for

iterative algorithms, such as SIRT, the influence of noise in the projection data

starts dominating the reconstruction after a certain number of iterations (known as
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Figure 2.5: HAADF STEM projection image from the tilt series of the Catalyst sample.

Figure 2.6: DART reconstruction of a slice of the Catalyst dataset in the xz-plane. The
brightness of the support material was increased for clarity.

semi-convergence). This effect carries over to PDART, since it uses SIRT. Fig. 2.7

shows that the number of iterations is less important for PDART than it is for

SIRT. For PDART at 50 iterations (Fig. 2.7b), there is still a hint of the typical

blur that surrounds the particles in the PDART reconstruction during the early

stages of reconstruction (also see Fig. 2.3d for an extreme example of this effect).

At 100 iterations (Fig. 2.7d), this effect has greatly diminished. The difference
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with the reconstruction at 150 iterations is small, although the effect of the noise

starts to become apparent.

(a) SIRT, 50 iterations (b) PDART, 50 iterations

(c) SIRT, 100 iterations (d) PDART, 100 iterations

(e) SIRT, 150 iterations (f) PDART, 150 iterations

Figure 2.7: Detail of the reconstruction of the Catalyst dataset at different numbers of
iterations. The brightness of the support material was increased for clarity.

Fig. 2.8 shows isosurface renderings of the catalyst particles in the resulting

reconstructions. From Fig. 2.8, it can be observed that the thresholded SIRT

reconstruction is lacking many of the small particles. Fig. 2.9 shows a set of 2D

slices through the reconstructed volume, both for a large catalyst particle (top

row), and for a small one (bottom row). The same thresholds were used as for the

isosurface renderings from Fig. 2.8. From the middle column of Fig. 2.9, it can be

clearly observed that the threshold for SIRT, which appears suitable for the large

particle, is not at all suitable for segmenting the small particle. As a consequence,

no single threshold can be found for which the entire volume is segmented with

reasonable accuracy. On the other hand, the PDART reconstructions for both

particles, which were also computed using a single pair (τ, ρ), do not suffer from

this problem.

To validate the results for the experimental dataset, a detailed simulation of a

mesoporous support particle with catalyst particles on its surface was performed in

cooperation with the Fraunhofer ITWM, Germany. The dimensions of the phan-

tom are 548×548×325 pixels. From the phantom, a synthetic dataset was created,
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(a) SIRT (b) PDART

Figure 2.8: Isosurface rendering of the SIRT and PDART reconstructions of the Catalyst
sample. The PDART reconstruction is shown behind the SIRT reconstruction for comparison.

(a) SIRT, large (b) Segmented
SIRT, large

(c) PDART, large

(d) SIRT, small (e) Segmented
SIRT, small

(f) PDART, small

Figure 2.9: Three orthogonal slices through a large catalyst particle (top row) and a small
particle (bottom row) in the reconstruction of the Catalyst sample. The same threshold was
used for the large and small particle.

consisting of 72 projections at evenly spaced 2◦ intervals, producing the same 38◦

missing wedge as in the original tilt series of the Catalyst dataset. Poisson noise

was applied to the simulated projection images. This setup resembles the condi-

tions under which the experimental dataset was recorded. The SIRT and PDART

algorithms were both run for 100 iterations. The segmented volumes for the phan-

tom image and for both algorithms are shown in Fig. 2.10. In accordance with the

40



2.3. EXPERIMENTS AND RESULTS

reconstructions from experimental data, the segmentation computed by PDART

contains particles of all sizes, whereas from the segmented SIRT reconstruction a

number of small particles is missing.

(a) Phantom (b) SIRT

(c) PDART

Figure 2.10: Isosurface rendering of the Catalyst phantom and reconstructions for SIRT and
PDART. The phantom is shown behind the SIRT and PDART reconstructions for comparison.

The numerical results for the reconstruction quality are summarized in Ta-

ble 2.2. The projection distance dpr for PDART is lower than for the other re-

constructions, which means that it corresponds more accurately to the projection

data. This suggests that the value for ρ that was found by PDART is also closer

to the true value than the value that was found by SIRT. For the phantom, the

numbers for dph confirm the results for dpr. Moreover, the value for ρ is indeed

closer to the correct value of 1.

2.3.3 Sample II: Pb in Si Inclusions

The second sample consists of Pb nano inclusions in a crystalline Si matrix (called

Pb–Si hereafter). A micro-pillar sample was prepared by FIB milling, using an FEI

Nova Nanolab 200 DualBeam system. The procedure to prepare these dedicated

micro-pillar samples is explained in more detail in [26].
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Sample Algorithm τ ρ dpr dph

Catalyst SIRT 1.16 1.81 10259 N/A

PDART 0.403 2.03 10018 N/A

Phantom N/A 1 0 0

SIRT 0.531 0.828 3311 210

PDART 0.164 0.977 2880 149

Table 2.2: Optimal values for thresholds and gray levels, and the corresponding projection
and phantom distances.

The sample was mounted on a Fischione Model 2050 On-Axis Rotation To-

mography Holder, which allowed to acquire a series with a tilt range of ± 90◦.

An HAADF STEM tilt series was recorded using 2◦ tilt angle increments, using

a JEOL JEM-3000F microscope operated at an acceleration voltage of 300 kV.

Fig. 2.11 shows a single projection image from the tilt series. The size of the

projection images is 512× 512 pixels.

Figure 2.11: HAADF STEM projection image from the tilt series of the Pb–Si sample,
showing the needle shaped structure of the sample.

As for the Catalyst dataset, the Pb–Si dataset appears to be suitable for a fully

discrete DART reconstruction, as it has just two compositions. However, Fig. 2.12
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demonstrates that also in this case discrete tomography failed to reconstruct the

matrix material as a uniform structure. Artifacts related to the inherent difficulty

of aligning the projections of micro-pillar samples have as a result that the Si

matrix cannot be properly represented by a constant gray level. If we assume that

only the Pb particles are discrete, we can avoid degrading the accuracy of the

reconstruction of those particles by the artifacts in the Si matrix. Hence, PDART

is again expected to be more suitable.

Figure 2.12: DART reconstruction of a slice of the Pb–Si dataset in the xz-plane. The
brightness of the Si matrix material was increased for clarity.

Using 70 iterations for both SIRT and PDART, the experimental dataset was

reconstructed in 3D. Stopping the reconstruction at 70 iterations avoided empha-

sizing the noise, while producing clearly delineated particles. As before, optimal

parameters τ and ρ were determined from the projection data, using the procedure

outlined in Section 2.2.3. Fig. 2.13 shows isosurface renderings of the Pb particles

in the resulting reconstructions. It is apparent that the segmented SIRT recon-

struction is lacking many of the small particles. This is confirmed by Fig. 2.14,

which shows three orthogonal slices through the reconstruction.

The results for this experimental sample were validated using a 3D phantom

modeled after the original Pb–Si dataset. The dimensions of the phantom are

332 × 332 × 73 pixels. From the phantom, a synthetic dataset was created, con-

sisting of 90 projections at evenly spaced 2◦ intervals. Poisson noise was applied

to the simulated projection images. This setup resembles the conditions under

which the experimental dataset was recorded. The SIRT and PDART algorithm

were both run for 70 iterations. The segmented volumes for the phantom image

and for both algorithms are shown in Fig. 2.15. As for the reconstructions from

experimental data, the smaller particles seem to be missing from the segmented

SIRT reconstruction.

The numerical results for the reconstruction quality are summarized in Ta-
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(a) SIRT (b) PDART

Figure 2.13: Isosurface rendering of the SIRT and PDART reconstructions of the Pb–Si
sample. The PDART reconstruction is shown behind the SIRT reconstruction for comparison.

(a) SIRT (b) Segmented SIRT

(c) PDART

Figure 2.14: Three orthogonal slices through the reconstructions of the Pb–Si sample for
SIRT, segmented SIRT and PDART; xz-plane (squares), xy-plane (horizontal rectangles),
yz-plane (vertical rectangles).
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(a) Phantom (b) SIRT

(c) PDART

Figure 2.15: Isosurface rendering of the Pb–Si phantom and reconstructions for SIRT and
PDART. The phantom is shown behind the SIRT and PDART reconstructions for comparison.

ble 2.3. As for the Catalyst dataset, the projection distance for PDART is lower

than for the other reconstructions, which means that it has closer correspondence

to the projection data. This again suggests that the value for ρ that was found by

PDART is closer to the true value than the value that was found by SIRT.

Sample Algorithm τ ρ dpr dph

Pb–Si SIRT 0.631 0.829 1832 N/A

PDART 0.347 0.855 1704 N/A

Phantom N/A 1 0 0

SIRT 0.653 0.925 1157 74.8

PDART 0.221 0.989 751 30.5

Table 2.3: Optimal values for thresholds and gray levels, and the corresponding projection
and phantom distances.

2.4 Discussion

The case studies in this paper show two substantially different experimental data-

sets that could not be reconstructed successfully using discrete tomography. Since

they both contain dense particles as their main composition of interest, they are

suitable for application of the PDART algorithm. The algorithm is straightforward

to implement, which makes it applicable in practice. The results from PDART

seem to improve on the segmentation of SIRT reconstructions that were created

using a threshold that was optimized to match the projection data.
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In both studies, the particles are accurately segmented, regardless of their size.

The reconstructions of the different samples and phantoms also show that the pa-

rameters of the method can be optimized in an objective manner. This makes

the algorithm an alternative to manual segmentation, since, even if a compara-

ble segmentation is created manually, there will always be subjective judgment

involved.

The results for the experimental datasets, together with the phantom study,

suggest that PDART is a useful alternative to DART, since the algorithm allows

samples for which a fully discrete reconstruction is not possible to still benefit from

the techniques of discrete tomography. The four algorithms that were applied in

this paper are shown in an algorithm selection tree in Fig. 2.16. If a full set of

projections is available, or if computing resources are limited, WBP can still be

the algorithm of choice. However, if sufficient computing resources are available,

iterative techniques have compelling advantages, like a lower sensitivity to noise.

Another important advantage is that they allow to exploit prior knowledge, which

leads to (partially) discrete algorithms. If a sample is fully discrete, DART is the

best option. If only the densest material is homogeneous, PDART retains a number

of the advantages of discrete tomography, while providing a SIRT reconstruction

of the background. If no assumptions can be made, SIRT is the most generally

applicable algorithm, which is also widely available.

Algorithm selection

WBP Iterative techniques

Full set of projections
available or limited
computing resources

Limited data available
and sufficient computing
resources

DART PDART

Sample is fully
discrete

Densest material
is homogeneous

SIRT

No assumptions

Figure 2.16: Algorithm selection tree.
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2.5 Conclusions

We have presented a novel reconstruction algorithm for partially discrete tomog-

raphy. The new method has two main benefits.

First, a partially discrete technique is useful to expand the set of samples for

which concepts of discrete tomography can be applied. The method presented in

this paper is a practical one in this regard, since it is applicable to the common

problem of dense particle segmentation. The method retains two advantages of

discrete tomography: the densest composition is automatically segmented, and it

can produce reconstructions that are more accurate than SIRT.

Second, the method automatically determines the gray level that should be

used for the densest composition in an objective manner, by locating the value that

makes the resulting reconstruction closest to the original projection images. This

property of the algorithm should make it easier to draw quantitative conclusions

from the reconstructions.
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3
Reconstructed Residual Error

This chapter has been submitted for publication as

T. Roelandts, K. J. Batenburg, and J. Sijbers, “The Reconstructed Residual Error

Visualizes and Improves the Quality of a Segmented Tomogram,” IEEE Transac-

tions on Image Processing, 2013.

Abstract—In this paper, we present the reconstructed residual error, which

visualizes and improves the quality of a segmented tomogram. The method, which

is independent of the reconstruction and segmentation algorithms, reconstructs the

difference between the recorded data and the forward projection of the segmented

tomogram. The Moore-Penrose pseudoinverse of the projection matrix is used as

a mathematical model for the reconstruction process, showing that segmentation

removes reconstruction artifacts, and that the new artifacts that are introduced by

the segmentation itself can be studied and improved by extracting new information

from the recorded data. The properties and applications of the algorithm are

verified experimentally through simulations and experimental µCT data. The

experiments show that the reconstructed residual error is close to the true error.

Three applications of the technique are introduced. First, it is used to improve

gray level estimates. Second, for reconstruction algorithms that assume a priori

knowledge of the gray levels, it is used to improve the segmentation itself. Finally,

the reconstructed residual error is used to select the most accurate of several

segmentations, for experimental µCT data.

3.1 Introduction

In many applications of tomography, the tomographic reconstruction (the to-

mogram) must be segmented before the results can be analyzed. Segmentation
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amounts to the classification of image pixels into distinct classes, based on similar-

ity with respect to some characteristic. Image segmentation is a well established

field, and a range of methods has been developed, such as global or local thresh-

olding, region growing, and clustering [1, 2].

The current paper focuses on reconstruction problems for which the segmenta-

tion is based on the density of the scanned object, where we use the term density

to refer to the particular physical property of the object of which linear projections

are acquired during the scanning process (e.g., mass density, X-ray attenuation,

electron beam scattering, etc.). In this common case, each material in the tomo-

gram is expected to have a (relatively) constant gray level, since each gray level

represents, e.g., a type of tissue (in medical applications) or a composition (in

materials science). This allows exploiting the projection images during the seg-

mentation step, since those represent projections of that density. Most current

segmentation methods do not exploit this information, since they are not specific

towards the modality that was used to acquire the image.

Recently, global and local thresholding methods were proposed that do em-

ploy the projection data to improve the selection of threshold parameters [3, 4].

In addition, reconstruction methods were developed for which the segmentation

was directly incorporated into the reconstruction algorithm. These discrete and

partially discrete algorithms assume that the gray levels to be used for the recon-

struction are known a priori. The recently proposed DART [5, 6] and PDART [7, 8]

are examples of such algorithms. In [9], the projection data is used to estimate

the parameters of DART.

This paper introduces the reconstructed residual error of a segmented tomo-

gram, which reconstructs the difference between the recorded data and the forward

projection of that segmented tomogram. The result is a reconstruction of the seg-

mentation errors, which provides a visual map of those errors. The technique is

independent of the reconstruction and segmentation algorithms, since it takes the

final segmented tomogram as an input. Hence, an error map can be computed

regardless of the algorithms that were used to create that segmented tomogram.

The reconstructed residual error allows to detect and correct errors in the gray

levels of the segmented image. For reconstruction algorithms that assume a priori

knowledge of the gray levels, it allows correcting the segmentation itself.

We use the Moore-Penrose pseudoinverse (see, e.g., [10, Section 7.3]) of the

projection matrix as a mathematical model, both for the original reconstruction

and for the reconstructed residual error, allowing for mathematical rigor. As many

iterative reconstruction methods converge to this pseudoinverse, it can serve as a

model for the behavior of actual reconstruction methods. An overview of recent

developments in iterative reconstruction algorithms is given in [11].

Various types of iterative methods exist. The examples from discrete tomogra-
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phy that were mentioned before are iterative algorithms that exploit prior knowl-

edge of the gray levels. Model-based algorithms try to model the acquisition pro-

cess as closely as possible, including, e.g., the geometry of the scanner and the

X-ray beam being polychromatic [12–14]. Statistical methods incorporate count-

ing statistics of the detected photons, leading to algorithms such as expectation-

maximization [15]. The most basic type of iterative reconstruction is done by

algorithms such as ART, SART, and SIRT [16–18]. The Moore-Penrose pseu-

doinverse of the projection matrix is the limit case of this last type of solutions.

It provides exactly the shortest least squares (LS) solution of the reconstruction

problem. Conjugate gradient methods can be used to compute this shortest LS

solution in practice [19]. However, an algorithm such as SIRT is often preferable,

since it has a regularizing effect on the reconstruction by providing a weighted LS

solution. SIRT can also be interpreted as the shortest LS solution of a rescaled

system of equations [20]. Algorithms such as SART and SIRT are still the subject

of active research, to improve their performance, to add new functionality, and to

implement them on graphics processing units (GPUs) [21–25].

The pseudoinverse is used to show that the artifacts of a reconstruction cannot

be removed using the recorded data. However, it is then shown that a segmen-

tation step mostly replaces these artifacts with ones that can be removed. The

reconstructed residual error exploits this by creating a reconstruction of the seg-

mentation artifacts, thereby extracting new information from the recorded data,

which is the reason that the proposed technique can provide superior results over

techniques that operate solely in the reconstruction domain. The approach is then

generalized, to show that any suitable reconstruction algorithm can be used to

compute the reconstructed residual error.

The structure of this paper is as follows. In Section 3.2, the reconstructed resid-

ual error is defined, its properties are described in detail, and several applications

are introduced. Section 3.3 reports on the results of experiments, using both sim-

ulations and experimental µCT data. These results are discussed in Section 3.4,

and a conclusion is reached in Section 3.5.

3.2 Reconstructed Residual Error

Here, we describe the reconstructed residual error. We first present an intuitive

overview of the algorithm, before giving a complete description of the algorithm

and its properties.
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3.2.1 Overview

Fig. 3.1 presents an overview of the computation of the reconstructed residual

error. Its inputs are the original projection data (Fig. 3.1b) and the segmented

reconstruction (Fig. 3.1e). The original (non-segmented) reconstruction (Fig. 3.1c)

is not used. The original projection data (Fig. 3.1b) is a sinogram, acquired by

rotating around the object (Fig. 3.1a). The segmented reconstruction is computed

by thresholding Fig. 3.1c, and subsequently choosing gray levels. To compute

the reconstructed residual error, the segmented reconstruction (Fig. 3.1e) is first

projected forward. The result of this operation (Fig. 3.1d) is then subtracted from

the original projections, resulting in the residual projection error (Fig. 3.1g).

The residual projection error is then reconstructed to provide the reconstructed

residual error (Fig. 3.1h), which provides a visual map of the segmentation error.

From Fig. 3.1h, it is clear that both gray levels of the segmented reconstruction are

incorrect. The erroneous lines and dots in the segmented reconstruction (Fig. 3.1e),

which are caused by artifacts in the reconstruction (Fig. 3.1c), are also clearly

visible in Fig. 3.1h. Note that the true error (Fig. 3.1i), which is the difference

between the original object (Fig. 3.1a) and the segmented reconstruction, is quite

close to the reconstructed residual error.

An alternative that might be considered, is to simply compute the difference

between the original and the segmented reconstruction (Fig. 3.1f). However, this

difference can be expected to show much more reconstruction artifacts, as is ex-

plained in Section 3.2.4. An intuitive way to see this is that, for phantom experi-

ments, the segmented reconstruction can potentially be identical to the phantom,

in which case the residual projection error (Fig. 3.1g) will be zero. Hence, a per-

fect segmentation results in the reconstructed residual error (Fig. 3.1h) being zero

everywhere, while the difference between the original and the segmented recon-

struction (Fig. 3.1f) will always exhibit the reconstruction artifacts of the original

reconstruction (Fig. 3.1c).

3.2.2 Notation and Concepts

The projection process in tomography can be modeled as a linear operator that is

determined by the projection geometry. This leads to a system of linear equations,

Wx = p, (3.1)

where p ∈ Rm contains the projection data and x ∈ Rn corresponds to the image.

The linear operator is represented by the m× n matrix W , the projection matrix.

An approximate solution x̂ ∈ Rn of (3.1) can then be computed, for example by

minimizing some norm ‖Wx− p‖.
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Figure 3.1: Overview of the computation of the reconstructed residual error.
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We explicitly refer to the ground truth object as g ∈ Rn, which leads to p =

Wg. We denote a general reconstruction algorithm as an operator R : Rm → Rn,

which leads to x̂ =RWg. The (shortest) least squares solution is denoted as x+,

where x+ = W+p, with W+ the Moore-Penrose pseudoinverse of W . We denote

the row space of W by R(W ), and the null space by N(W ). See, e.g., [10], for

details on these concepts from linear algebra.

The final step in the tomographic workflow is often segmentation. A segmenta-

tion method essentially partitions the pixels of an image into sets Y1, . . . , Yd, where

d is the number of classes (segments) in the segmented image. If it is assumed

that the scanned object consists of homogeneous regions, then the segmented im-

age should have the same gray level for all pixels in a set Yk. Hence, from the

reconstruction x̂, a segmented image s ∈ Rn can be created by assigning a gray

level ρk ∈ R to all pixels in a set Yk, for each k ∈ {1, . . . , d}. If the values of

ρ1, . . . , ρd are not known, the mean of all pixel values in a class can be used as an

estimate,

ρ̂k =
1

|Yk|
∑
y∈Yk

y, for each k ∈ {1, . . . , d}. (3.2)

3.2.3 Definition

Here, we define the reconstructed residual error. Inputs are the segmented image

s and the projection data p. First, s is forward projected to give ps ∈ Rm, so

ps = Ws. The residual projection error pe ∈ Rm is then defined as pe = p− ps.

Second, the residual error is reconstructed by computing an approximate solution

of the system

We = p− ps, (3.3)

as for the system of (3.1). Here, e ∈ Rn corresponds to the (unknown) error image.

The approximate solution ê ∈ Rn is then defined to be the reconstructed residual

error. The least squares solution is again denoted by e+, as for x+.

3.2.4 Least Squares Approach

In this Section, we study the reconstructed residual error under the assumption

that the Moore-Penrose pseudoinverse W+ is used for the reconstruction, both

for the original tomogram and for the reconstructed residual error. Doing so

makes the reconstruction algorithm a well-defined operator, and allows us to be

mathematically rigorous.

First, we formally define what we mean by the term artifact. Typically, a

tomogram contains different types of artifacts, with causes such as scanner imper-

fections, noise, the reconstruction algorithm, the segmentation algorithm, etc. In
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the current paper, we consider all differences between the ground truth object and

the (possibly segmented) final image to be artifacts.

Definition 1: The artifacts of an image y ∈ Rn are g− y, where g ∈ Rn is the

ground truth object.

Each image y ∈ Rn can be split into two orthogonal components, with the

first in the row space and the second in the null space of W . We write this as

y = yR + yN , with yR,yN ∈ Rn, and yR ⊥ yN . Below, we reiterate a few basic

properties of W and W+, for convenience.

Property 1: R(W ) ⊥ N(W ).

Property 2: WW+W = W .

Property 3: W+Wy = yR.

Property 3 implies that the shortest least squares reconstruction x+ exactly

recovers the row space component of g, since x+ = W+p = W+Wg = gR.

Proposition 1: g − x+ ∈ N(W ), i.e., the artifacts of the shortest least squares

solution are in the null space of W .

We have x+ = W+p = W+Wg. It is instructive to split x+ into the ground

truth and a component that represents the artifacts, as x+ = W+Wg = g +

(W+W − I)g. On forward projection, the second component disappears, since

WW+W−W = 0. Hence, Wx+ = Wg, and the artifacts are indeed in N(W ).�
The implication of Proposition 1 is that the reconstruction artifacts of x+

cannot be studied or further reduced by comparing them with the projection data

p after forward projection.

This changes after the reconstruction is segmented. Reconstruction artifacts

are typically non-homogeneous structures such as streaks and blurring. Segmen-

tation into regions that each have a given gray level ρk, however, results in an

image that is composed of homogeneous regions, since the segmentation removes

the small variations of the gray levels within each region. Hence, it removes a large

part of the reconstruction artifacts, while, of course, also introducing new artifacts.

These new artifacts are typically very different from reconstruction artifacts, and

mainly consist of erroneous gray levels and wrongly classified pixels at the edges

of different regions in the image. In contrast with reconstruction artifacts, which

are in the null space of W , segmentation artifacts are not expected to have zero

ray sums. In a homogeneous region with a gray level offset, individual pixels all

share the same error, resulting in a nonzero total contribution. This means that

the artifacts of s are expected to have a (large) component in R(W ), and can

be studied and further reduced by comparing them with the projection data after

forward projection. The reconstructed residual error is an application of this.

Denote the segmentation artifacts a ∈ Rn of s as a ≡ g− s. We then have the

following proposition.

Proposition 2: e+ = aR, i.e., the reconstructed residual error exactly recovers
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the row space component of a.

From (3.3) and ps = Ws, we have e+ = W+(p−ps) = W+Wg−W+Ws =

W+Wa = aR. �
This means that the reconstructed residual error is a reconstruction of the seg-

mentation artifacts in the same way that the original tomogram is a reconstruction

of the scanned object, i.e., we have e+ = aR and x+ = gR. The main implication

of Proposition 2 is that the reconstructed residual error can be used to study the

segmentation artifacts directly, starting from the segmented tomogram.

Finally, we briefly return to the alternative of using the difference between the

reconstruction and the segmented reconstruction, x+ − s, as an estimate of the

segmentation artifacts a, as mentioned in Section 3.2.1. We compare the artifacts

of x+−s with those of e+. The artifacts of e+ are a−e+. The artifacts of x+−s,

seen as an estimate of a, are exactly the artifacts of x+, since a − (x+ − s) =

g − s − x+ + s = g − x+. And, since ‖a‖ � ‖g‖, we typically expect that

‖a− e+‖ � ‖g − x+‖, which would imply that the artifacts of x+ − s make it a

poor estimate of a.

3.2.5 General Reconstruction Algorithms

Leaving behind the “perfect” reconstruction algorithm that is the Moore-Penrose

pseudoinverse, we now investigate how the results from Section 3.2.4 change when

W+ is replaced by a practical reconstruction algorithm. In Section 3.3, we show

experimentally that doing so still results in useful maps of the segmentation arti-

facts. There, we employ a diverse set of reconstruction algorithms, not restricted to

linear ones for the reconstruction of the original tomogram. For the reconstructed

residual error itself, however, we restrict ourselves to SIRT [18], to keep the results

easily comparable.

If a general, possibly non-linear, reconstruction algorithm is used for the re-

construction of the original tomogram, then Proposition 1 is no longer applicable.

However, the reconstructed residual error uses the segmented reconstruction s,

which is still expected to have a (large) component in R(W ). Hence, the effec-

tiveness of the reconstructed residual error is not affected. Moreover, depending

on the component of the artifacts that is in R(W ), it might be possible to study

the reconstruction artifacts of the original tomogram directly, without a separate

segmentation step. An obvious example of this are discrete algorithms such as

DART, which directly produce a fully segmented result [5, 6].

A general reconstruction algorithm can also replace W+ for the computation

of the reconstructed residual error itself. The result is then no longer the row space

component of a. We have the following proposition.

Proposition 3: For a general reconstruction algorithm R, ê =RWa, i.e., the

reconstructed residual error is the reconstruction of the segmentation artifacts a.
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From (3.3) and ps = Ws, we have ê =R(p−ps) =R(Wg−Ws) =RWa.�
Proposition 3 states that ê is a reconstruction of a in the same sense that x̂ is a

reconstruction of the ground truth, since x̂ = RWg. Together with the shortest

least squares solution often not being a desirable solution anyway, due to noise

in the projection data, this implies that W+ can be replaced by a suitable more

general reconstruction algorithm for computing the reconstructed residual error.

3.2.6 Applications

This Section presents three applications of the reconstructed residual error. These

applications also appear in Section 3.3, where they are supported with experiments.

1) Improving Gray Level Estimates: As mentioned in the Introduction, we focus

on problems for which the segmentation is based on the density of the scanned

object. This gives the gray levels a physical meaning, in that they represent the

density of each region. It is therefore important to determine them accurately. Let

ρk denote the true gray levels. In practice, the ρk are often unknown, which means

that they have to be estimated from the tomogram x̂. However, any estimates ρ̂k
that are computed in this way will be influenced by the reconstruction artifacts of

x̂.

The reconstructed residual error avoids the reconstruction artifacts of x̂, since

it directly estimates the segmentation artifacts. Therefore, it allows improving the

estimates of the gray levels ρ̂k of the segmented image. If (3.2) is applied to ê,

with the segmentation classes of s as the sets Yk, the result is an estimate of the

gray level errors ε̂k. Therefore, the gray level estimates can be improved by setting

ρ̂′k = ρ̂k + ε̂k, for each k ∈ {1, . . . , d}. The updated gray levels can then be used

to improve the segmented image.

2) Improving Segmentation: Discrete reconstruction algorithms exploit a priori

knowledge of the gray levels to directly create a segmented tomogram s, combining

reconstruction and segmentation. These a priori gray levels are often estimated

from an initial (non-discrete) reconstruction, which again means that reconstruc-

tion artifacts limit their accuracy. Of course, since the gray levels of s are now

inputs of the reconstruction, they influence the classification of the pixels in s (the

partition Y1, . . . , Yd). Hence, after improving the gray level estimates as before,

rerunning the reconstruction algorithm might result in a more accurate segmented

image s′ (i.e., with a different partition Y ′1 , . . . , Y
′
d). Moreover, repeating these

steps may produce further improvements, since the accuracy of the segmentation,

in turn, influences the accuracy of the gray levels that are computed using (3.2).

3) Selecting the Most Accurate Segmentation: This is a straightforward appli-

cation, since a visual map of the segmentation error can clearly be used to discrim-

inate between several segmented tomograms. In Section 3.3, this is demonstrated

using experimental µCT Data.
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3.3 Experiments and Results

In this Section, we describe the experiments, for both simulated and experimental

data, which were carried out to investigate the properties of the reconstructed

residual error. Four phantom images were created, the first three of size 2048×2048

pixels (Figs. 3.2a, 3.2b, and 3.2c). These phantoms have a higher resolution than

the reconstruction grid to reduce the effect of the pixelation on the reconstructions.

The fourth phantom (Fig. 3.2d) is of size 64×64 pixels, to allow exact least squares

computations using W+. The simulation experiments using Phantoms 1–3 were

performed on a square reconstruction grid of size 512×512 pixels. The experiment

using Phantom 4 was performed on a grid of size 64× 64 pixels.

(a) Phantom 1 (b) Phantom 2

(c) Phantom 3 (d) Phantom 4

Figure 3.2: Phantom images. (a) Two gray levels, based on the FBP reconstruction of a
mouse femur. (b) Three gray levels. (c) Continuous grayscale. (d) Two gray levels, 64 × 64
pixels.

To demonstrate that the effectiveness of the reconstructed residual error does

not depend on the reconstruction method, the following diverse set of algorithms

was used in the experiments.

1) FBP is an analytical technique that is directly related to the inverse Radon

transform. A standard implementation of FBP was used, with a Ram-Lak filter

and linear interpolation in the projection domain.
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2) CGLS is an algebraic technique that computes the shortest least squares

solution of (3.1). We used 300 iterations of CGLS to approximate the effect of

W+, allowing for the use of a larger reconstruction area than is possible when

using the pseudoinverse directly.

3) SIRT is an algebraic technique that computes a weighted least squares solu-

tion of (3.1). SIRT was implemented as defined in [21], performing 300 iterations.

4) DART [5, 6] is a discrete algebraic technique that exploits prior knowledge of

the gray levels. SIRT was used as the (embedded) algebraic reconstruction method.

A total of 300 SIRT iterations was performed, divided between 100 initial and 200

update iterations. The fix probability was kept constant at 0.9.

5) PDART [7, 8] is a partially discrete technique that assumes that only the

densest material is homogeneous. The gray level of the densest material is exploited

as prior knowledge. A total of 300 iterations was performed.

6) TVMin solves (3.1) while minimizing the total variation (TV) seminorm of

the solution. There several algorithms that implement TVMin, such as FISTA [26,

27] and NESTA [28]. The NESTA algorithm was used for the experiments, with

the regularization parameter λ set to 0.05, and using 100 iterations. We used

the MATLAB implementation of the algorithm that can be downloaded from the

NESTA website1.

The results from DART and PDART are already segmented (partially for

PDART). Otsu’s method [29] was used for the algorithms that do not produce

a segmented image, i.e., FBP, SIRT, and TVMin. CGLS was only used to com-

pute row space components of images, so no segmentation was needed. Gray levels

are prior knowledge for DART and, for the densest material, for PDART. For the

other algorithms, they were estimated using (3.2) on the original reconstruction,

using the classes from the segmented reconstruction as the sets Yk.

The correctness of the DART reconstructions that are computed in Section 3.3.3

are assessed using the relative number of misclassified pixels (rNMP), defined as

the ratio between the number of misclassified pixels and the total number of pixels

in an image.

For all experiments, the reconstructed residual error was computed using 300

iterations of SIRT, to make the results comparable.

We now provide an overview of the experiments that follow. First, the basic

properties of the algorithm are studied (Section 3.3.1). Then, three applications

are presented. It is demonstrated that the technique can be used to detect and

correct errors in the estimate of the gray levels (Section 3.3.2). The segmentation

itself (the classification of the pixels) can be improved for reconstruction algorithms

that use a priori knowledge of the gray levels (Section 3.3.3). Finally, the technique

is applied to experimental µCT Data (Section 3.3.4), to select the most accurate

1http://www-stat.stanford.edu/˜candes/nesta/
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of several segmentations.

3.3.1 Properties of the Algorithm

This first experiment demonstrates the least squares approach from Section 3.2.4.

Both the original and the segmented reconstruction were split into their row and

null space components. To be able to compute W+ in practice, a small reconstruc-

tion area of size 64×64 pixels was combined with taking only 32 projections. This

results in a system matrix W of size 2048× 4096, and W+ of size 4096× 2048. A

synthetic dataset was created from Phantom 4 (Fig. 3.2d), also shown in Fig. 3.3d,

using 32 equiangular parallel beam projections. Different from the other simulation

experiments, noise was not added to this dataset. The reconstruction (Fig. 3.3e)

was then computed using the Moore-Penrose pseudoinverse W+, making it the

exact shortest least squares solution. The reconstruction was segmented using

Otsu’s method (Fig. 3.3g). The gray levels of the segmented reconstruction were

determined using (3.2) on the pixels of the original reconstruction, with the Otsu

segmentation classes as Yk (k = 1, 2).

The artifacts of the reconstruction are shown separately (Fig. 3.3f), and split

into row and null space components. As shown theoretically by Proposition 1,

the artifacts are completely in the null space component (Fig. 3.3j). The row

space component (Fig. 3.3a) is zero everywhere. The artifacts of the segmented

reconstruction are also shown separately (Fig. 3.3h). The main assumption that

was made in Section 3.2.4, was that the segmentation artifacts have a (large)

component in the row space of W . This assumption is confirmed by again splitting

these artifacts into row and null space components. The null space component

(Fig. 3.3k) is not zero, but most of the artifacts are clearly in the row space

component (Fig. 3.3b). Using the least squares approach of Section 3.2.4, this row

space component is exactly e+. However, when the reconstructed residual error

is computed using SIRT (Fig. 3.3c), the result is very close to e+, indicating that

SIRT is an acceptable practical alternative for W+. The true error (Fig. 3.3m),

which is the difference between the original object (Fig. 3.3d) and the segmented

reconstruction (Fig. 3.3g), is close to both e+ and the reconstructed residual error

as computed with SIRT. The difference between the original and the segmented

reconstruction (Fig. 3.3i) can clearly not be used as an alternative.

For the second experiment, a synthetic dataset was created from Phantom 1

(Fig. 3.2a), using 90 parallel beam projections, evenly spaced at 2◦ intervals. A

detector with 512 pixels was used, to simulate the practical situation where the

detector pixel size equals the width of the reconstruction grid. Poisson noise,

corresponding to 105 initial photons per detector pixel, was applied to the syn-

thetic dataset. The dataset was then reconstructed using 300 iterations of SIRT

(Fig. 3.4a), and segmented using Otsu’s method (Fig. 3.4d). The gray levels of
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Figure 3.3: Complete results for a simple phantom, using a least squares approach. Artifacts
of both the original and the segmented reconstruction are split into row and null space
components.
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Fig. 3.4d were determined using (3.2) on the pixels of Fig. 3.4a, with the Otsu

segmentation classes as Yk (k = 1, 2).

(a) Reconstruction
 

 

−0.5

0

0.5

(b) Row space
 

 

−0.5

0

0.5

(c) Null space

(d) Segmentation
 

 

−0.5

0

0.5

(e) Row space
 

 

−0.5

0

0.5

(f) Null space

Figure 3.4: (a) SIRT reconstruction of Phantom 1. (b) Row space component of the recon-
struction artifacts. (c) Null space component of the reconstruction artifacts. (d) Segmented
SIRT reconstruction of Phantom 1. (e) Row space component of the segmentation artifacts.
(f) Null space component of the segmentation artifacts.

Using 300 iterations of CGLS as an approximation of W+, both the original

and the segmented reconstruction were then split into their row and null space

components. The artifacts of the reconstruction are again mainly in the null space

component (Fig 3.4c), even though SIRT has replaced W+ as the reconstruction

algorithm. The row space component (Fig. 3.4b) is small. For the artifacts of

the segmented reconstruction, this is clearly different. The gray level error of the

“bone” material, which is quite subtle since the gray levels were computed from the

original reconstruction, clearly shows as an artifact in the row space component

(Fig. 3.4e). The null space component (Fig. 3.4f) is small.

If the reconstructed residual error is computed using SIRT (Fig. 3.5a), then the

result is close to the row space component of the segmentation artifacts (Fig 3.4e).

The reconstructed residual error is also close to the true error (Fig. 3.5b).

The third experiment is based on Phantom 2. A synthetic dataset was created,

again using 90 parallel beam projections. Poisson noise, again corresponding to
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Figure 3.5: (a) Reconstructed residual error for the segmented reconstruction of Phantom 1.
(b) True error.

105 initial photons per detector pixel, was applied. The dataset was then recon-

structed twice, once using FBP (Fig. 3.6a), and once using 300 iterations of SIRT

(Fig. 3.6d). The gray levels were again computed from the original reconstruction,

using the Otsu segmentation classes.

(a) Segmented FBP
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(d) Segmented SIRT
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Figure 3.6: (a) Segmented FBP reconstruction of Phantom 2. (b) Reconstructed residual
error of (a). (c) True error of (a). (d) Segmented SIRT reconstruction of Phantom 2.
(e) Reconstructed residual error of (d). (f) True error of (d).
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As before, the reconstructed residual error (Figs. 3.6b and 3.6e) is close to the

true error (Figs. 3.6c and 3.6f, respectively). The gray level errors are apparently

quite small, in particular for the segmented SIRT reconstruction (Fig. 3.6e). How-

ever, we have not increased the gray level errors artificially to make the result more

clear, since we also use this result in Section 3.3.2 to show numerically that it can

still be used to correct the gray levels.

For the final experiment in this Section, a synthetic dataset was created from

Phantom 3 (Fig. 3.2c), again using 90 parallel beam projections, evenly spaced

at 2◦ intervals. Poisson noise, corresponding to 105 initial photons per detector

pixel, was applied. This synthetic dataset was then reconstructed using TVMin,

and segmented using Otsu’s method (Fig. 3.7a). The gray levels in Fig. 3.7a were,

as before, determined using (3.2) on the pixels of the original reconstruction, with

the Otsu segmentation classes as Yk.

From Fig. 3.7a, it is not clear which objects are homogeneous and which are

not. However, from the reconstructed residual error (Fig. 3.7b) this is obvious,

since the non-homogeneous objects have large structured errors. Objects that

seem merged in the segmented reconstruction of Fig. 3.7a can also be recognized

as separate in Fig. 3.7b. The reconstructed residual error is again quite close to

the true error (Fig. 3.7c).

(a) Segm. TVMin
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(c) True error

Figure 3.7: (a) Segmented TVMin reconstruction of Phantom 3. (b) Reconstructed residual
error of (a). (c) True error.

3.3.2 Application—Improving Gray Level Estimates

In this Section, we demonstrate that the gray level estimates of a segmented re-

construction can be improved using the reconstructed residual error. Visually,

Figs. 3.3c, 3.5a, and 3.6b already suggest that the gray levels of the different ob-

jects are not correct, since there is a clear and relatively uniform error inside the

objects. In Fig. 3.6f, this effect is less obvious, but Table 3.1 shows that this result

can still be used to correct the gray levels.
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Table 3.1 provides a numerical overview of the corrections that were achieved

for the experiments of Section 3.3.1. The true gray levels ρk were taken from

the phantoms (Fig. 3.2), with k = 1, 2 for Phantoms 1 and 4, and k = 1, 2, 3 for

Phantom 2. The estimated gray levels ρ̂k are the gray levels of the segmented

reconstructions, computed using (3.2) from the original reconstructions. The es-

timated gray level errors ε̂k were computed from the reconstructed residual error

using (3.2), the same procedure as for the ρ̂k. The sum of ρ̂k and ε̂k is shown as

the corrected gray level ρ̂′k.

Reconstruction Param. k = 1 k = 2 k = 3

Phantom 4 ρk 0.000 1.000 N/A

CGLS ρ̂k 0.004 0.985 N/A

ε̂k −0.004 0.015 N/A

ρ̂′k 0.000 1.000 N/A

Phantom 1 ρk 0.000 1.000 N/A

SIRT ρ̂k 0.012 0.904 N/A

ε̂k −0.011 0.071 N/A

ρ̂′k 0.000 0.975 N/A

Phantom 2 ρk 0.000 0.502 1.000

FBP ρ̂k −0.005 0.474 0.973

ε̂k 0.004 0.024 0.024

ρ̂′k −0.001 0.498 0.998

Phantom 2 ρk 0.000 0.502 1.000

SIRT ρ̂k 0.003 0.495 0.992

ε̂k −0.003 0.006 0.010

ρ̂′k −0.000 0.502 1.002

Table 3.1: Improving gray level estimates, showing true gray levels (ρk), estimated gray levels
(ρ̂k), estimated gray level errors (ε̂k), and corrected gray levels (ρ̂′k).

From comparison of the corrected gray levels ρ̂′k with the true gray levels ρk
from the phantom, it is clear that ε̂k is a good estimate of the difference between

ρ̂k and ρk, and that it can be used to correct ρ̂k. The corrections that are applied

to the gray levels are relatively small. However, they still have a visible effect on

the segmented reconstructions. This is clear from the reconstructed residual error

(Fig. 3.8) for reconstructions in which the corrected gray levels were used.
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Figure 3.8: Reconstructed residual error for reconstructions that use corrected gray levels.
(a) Phantom 1, using SIRT. (b) Phantom 2, using FBP. (c) Phantom 2, using SIRT.

3.3.3 Application—Improving Segmentation

In the application of the previous Section, the reconstructed residual error was

used to improve the gray level estimates. In this second application, we show how

these improved gray levels can improve the segmentation itself, for reconstruction

algorithms that exploit a priori knowledge of those gray levels. The simulations

in this Section are based on Phantoms 1 and 2. From both phantoms, synthetic

datasets were created as before, using 90 projections and a detector with 512 pixels.

Poisson noise, corresponding to 105 initial photons per detector pixel, was applied

to the datasets. Both datasets were then reconstructed with DART, using gray

levels that were different from their value in the phantom, to simulate the practical

situation where the density of a scanned object is not known precisely.

For Phantom 1, the gray level of the “bone” material was set to 0.6 instead of 1.0

(the value from the phantom). This results in a reconstruction (Fig. 3.9a) in which

the bone structures are clearly too wide. This is confirmed by the reconstructed

residual error (Fig. 3.9b). The positive error in the interior of the material indicates

that its gray level is too low. The blue regions of negative errors at the edges of

the material indicate that it is too wide (i.e., the negative error suggests that bone

is not the appropriate material for those regions). As before, the gray levels can

be corrected by using (3.2). Moreover, since DART uses the gray levels as prior

knowledge, a new reconstruction can be computed, using the corrected values. If

this procedure is repeated, it can lead to a very accurate reconstruction (Fig. 3.9c

shows the result after eight steps), for which the reconstructed residual error does

not show a systematic error anymore (Fig. 3.9d). The evolution of the gray levels

(Fig. 3.10, plots for Phantom 1) shows that they quickly approach the true values.

The rNMP (Fig. 3.12, plot for Phantom 1) also shows quick improvement during

the first few steps of this procedure.

The results for Phantom 2 are similar. For the reconstruction of this phantom,
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Figure 3.9: (a) Initial DART reconstruction of Phantom 1, using an incorrect gray level.
(b) Reconstructed residual error for (a). (c) DART reconstruction after eight correction
steps. (d) Reconstructed residual error for (c).
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Figure 3.10: Gray levels of the DART reconstructions of Phantoms 1 and 2.
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the gray levels of both materials were set to an incorrect value (0.3 instead of 0.5

and 1.2 instead of 1.0). This leads to a reconstruction (Fig. 3.11a) in which the

free pixels in the interior of the objects deviate from the surrounding fixed pixels,

which already suggests that the gray levels are not correct. This is confirmed by

the reconstructed residual error (Fig. 3.11b), which clearly shows that the middle

gray level is too low (the error is positive) and that the brightest gray level is

too high (the error is negative). The gray levels were again corrected using (3.2),

and DART was rerun using the new values. As for Phantom 1, repeating this

procedure quickly leads to a more accurate estimate of the gray levels (Fig. 3.10,

plots for Phantom 2), and reduces the rNMP (Fig. 3.12, plot for Phantom 2).
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Figure 3.11: (a) Initial DART reconstruction of Phantom 2, using incorrect gray levels.
(b) Reconstructed residual error for (a). (c) DART reconstruction after eight correction
steps. (d) Reconstructed residual error for (c).

3.3.4 Application—Selecting the Most Accurate Segmentation

In this experiment, the reconstructed residual error was computed for experimental

cone beam data. A dataset of an ex vivo mouse femur was acquired with a SkyScan

1172 µCT scanner using 376 projections at 0.5◦ intervals, at a detector resolution

of 5µm. The SkyScan NRecon software package was used to correct for ring and
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Figure 3.12: Relative number of misclassified pixels for the DART reconstructions of Phan-
toms 1 and 2.

beam-hardening artifacts.

The dataset was reconstructed using two different algorithms. First, it was re-

constructed using 300 iterations of SIRT (Fig. 3.13a) and segmented using Otsu’s

method (Fig. 3.13b). The gray levels of the segmented reconstruction were es-

timated using (3.2) and the SIRT reconstruction. Second, it was reconstructed

using 300 iterations of PDART (Fig. 3.14c), using the gray level from the bone

material of the segmented SIRT reconstruction as prior knowledge. The partially

discrete PDART algorithm was used instead of the fully discrete DART, because

of the non-discrete background of the sample.

For the segmented SIRT reconstruction, the reconstructed residual error (Fig.

3.14a) shows that the gray level for the bone is underestimated. Corrections for

the gray levels were computed by applying (3.2) to the reconstructed residual er-

ror of Fig. 3.14a. With corrected gray levels for the segmented tomogram, the

reconstructed residual error (Fig. 3.14b) does not show a systematic error any-

more, in the sense that the bone now contains both positive and negative errors.

For the initial PDART reconstruction (Fig. 3.13c), the reconstructed residual error

(Fig. 3.14c) also shows that the gray level for the bone is underestimated. Ad-

ditionally, Fig. 3.14c suggests that the bone structures are too wide, since they

have a region of negative errors at their edges (compare with Fig. 3.9b, where

this effect is also visible). From Fig. 3.14c, the gray levels can again be corrected

using (3.2). Fig. 3.13d shows the resulting PDART reconstruction after six such

correction steps. It is clear from Fig. 3.14d that this final PDART reconstruction

is the most accurate of all four.
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(a) SIRT (b) Segmented SIRT

(c) PDART, step 1 (d) PDART, step 6

Figure 3.13: (a) SIRT reconstruction of a single slice of the femur dataset. (b) The recon-
struction from (a), segmented using Otsu’s method. (c) PDART reconstruction, using the
initial gray level estimate. (d) PDART reconstruction after six correction steps.

3.4 Discussion

Most existing segmentation algorithms that are used in tomography do no exploit

the projection data during segmentation. The few algorithms that do exploit this

information [3, 4], use it to compute a quality measure that is a single number

(the projection distance in [3] and the segmentation inconsistency in [4]). The

segmentation is then optimized by minimizing this number. In contrast, the re-

constructed residual error creates a spatial map of the segmentation quality. This

allows studying local variations of the error, which is not possible using a single

number.

The reconstructed residual error can exploit the projection data because the

artifacts of the reconstruction, which are typically largely in the null space of the

system matrix (Figs. 3.3j and 3.4c), are largely in the row space after the segmen-

tation step (Figs. 3.3b and 3.4e). Computing the exact row space component of the

segmentation artifacts is infeasible in practice, due to computational constraints

and noise. However, a regular reconstruction algorithm such as SIRT can be sub-

stituted without much degradation of the results (compare Figs. 3.3c and 3.5a with
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Figure 3.14: Reconstructed residual error for the femur dataset for (a) SIRT with the initial
gray level estimate, (b) SIRT with the corrected gray level estimate, (c) PDART with the
initial gray level estimate, and (d) PDART after six correction steps.

Figs. 3.3b and 3.4e, respectively). This allows adding the reconstructed residual

error as a new step in the tomographic workflow, including for large practical

datasets.

The reconstructed residual error seems able to detect even small errors in the

gray levels (e.g., Figs. 3.6b and 3.6e), as is evident from Table 3.1. Large errors in

the gray levels are visible too (e.g., Fig. 3.9b), but more important in this case is

that structural problems in the original reconstruction (Fig. 3.9a) are also revealed.

Non-homogeneous regions in the scanned object can be detected (Fig. 3.7b). In the

particular case of an algorithm that uses a priori knowledge of the gray levels, the

segmentation itself can be improved (Figs. 3.9 and 3.11). Moreover, the correction

step can be repeated for added improvements, as is illustrated by the evolution of

the gray levels (Fig. 3.10) and the rNMP (Fig. 3.12).

The results for experimental µCT data illustrate another type of analysis that

is enabled by the proposed method. After correction of the initial gray levels of

the segmented SIRT reconstruction (Fig. 3.13b), the reconstructed residual error

(Fig. 3.14b) suggests an uneven density of the bone. The conclusion might be

that this effect is real, or that it is due to the scanning process. However, when
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the PDART algorithm is used (Fig. 3.13d), the uneven density almost completely

disappears (Fig. 3.14d). Hence, this segmentation might be preferable, since it

does correspond with the bone material having a homogeneous density. Given the

relatively small differences between the segmented images (Figs. 3.13b and 3.13d),

it is not obvious how to choose a preferred one between them without access to

the reconstructed residual error.

3.5 Conclusions

We have introduced the reconstructed residual error, a simple way to analyze

and improve the segmentation quality of a tomogram. We have used the Moore-

Penrose pseudoinverse as a mathematical model for investigating the properties

of the technique, and then generalized this approach to practical reconstruction

algorithms.

The reconstructed residual error provides an accurate map of the errors in a

segmented tomogram. Visually, this map can be used to study the distribution of

the errors. Furthermore, it can be used to improve the gray level estimates, and,

for certain specific algorithms, the segmentation itself. The method is applicable

to experimental datasets.

From a practical point of view, the technique is trivial to implement, since the

only necessary tools are a forward projector and a reconstruction algorithm. The

computational cost of the basic algorithm is modest, since only a single forward

projection and a single reconstruction are needed. These practical aspects should

lower the threshold for adopting the method.

Acknowledgments

The mouse femur dataset is courtesy of Phil Salmon, Bruker microCT. This work

was financially supported by the IWT TomFood project (IWT is the agency for

Innovation by Science and Technology–Flanders, Belgium) and by the NWO (the

Netherlands Organisation for Scientific Research–The Netherlands, research pro-

gramme 639.072.005).

References

[1] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern

Recogn., vol. 26, no. 9, pp. 1277–1294, 1993.

[2] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image segmen-

tation,” Annu. Rev. Biomed. Eng., vol. 2, pp. 315–337, 2000.

74



REFERENCES

[3] K. J. Batenburg and J. Sijbers, “Optimal threshold selection for tomogram segmen-

tation by projection distance minimization,” IEEE Trans. Med. Imag., vol. 28, no. 5,

pp. 676–686, 2009.

[4] W. van Aarle, K. J. Batenburg, and J. Sijbers, “Optimal threshold selection for

segmentation of dense homogeneous objects in tomographic reconstructions,” IEEE

Trans. Med. Imag., vol. 30, no. 4, pp. 980–989, 2011.

[5] K. J. Batenburg, S. Bals, J. Sijbers, C. Kübel, P. A. Midgley, J. C. Hernandez,
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4
Localized Priors

This chapter is in preparation for publication as

T. Roelandts, K. J. Batenburg, and J. Sijbers, “Localized Priors in Tomography

using the Reconstructed Residual Error,” IEEE Transactions on Image Processing,

2013.

Abstract—Limited data problems form an important challenge in tomogra-

phy. For objects that consist of homogeneous regions, incorporating certain priors

in the reconstruction can reduce the necessary number of projections. However,

existing reconstruction algorithms that exploit such prior knowledge do not work

well when the scanned object also contains non-homogeneous regions. In this pa-

per, we present a way to automatically apply a localized prior, by means of the

recently proposed reconstructed residual error. The approach creates a map that

indicates the errors in the reconstruction, which is then used to determine the mask

of pixels for which the prior is likely to be unsuitable. The technique is applied

to two practical reconstruction algorithms, namely DART and FISTA. Based on

simulation experiments, it is shown that a localized prior results in more accurate

reconstructions for these algorithms.

4.1 Introduction

Limited data problems form an important challenge in tomography. For reasons

such as beam damage, scanning time, etc., it is sometimes difficult or impossible

to gather enough data to create an acceptable reconstruction. A solution for

this problem is to exploit prior knowledge about the scanned object during the

reconstruction. This can reduce the amount of data that is needed for an accurate

reconstruction to a feasible number of projections.

79



CHAPTER 4. LOCALIZED PRIORS

Objects that consist of only a few different materials that appear in homoge-

neous regions are particularly suitable for this approach. Several algorithms are

available for reconstructing these kinds of objects, e.g., DART [1] and FISTA [2, 3].

DART is an algorithm for discrete tomography (DT), which assumes prior knowl-

edge of the gray levels that represent each of the materials in the scanned object.

An overview of the field of DT is available in [4, 5]. FISTA employs total variation

minimization (TVMin), which assumes that the total variation of the scanned ob-

ject is low. TVMin was introduced in [6] as a noise removal algorithm, and was

later applied in tomography [7–9].

When applied to objects that contain not only homogeneous, but also non-

homogeneous regions, algorithms such as DART and FISTA may result in incorrect

reconstructions. For DART, reconstructing non-homogeneous regions will always

produce incorrect results, since all pixels of the reconstruction will be forcibly set to

one of the “known” gray levels. For FISTA, the result might be incorrect if the non-

homogeneous regions are such that the total variation (TV) prior is not suitable,

e.g., when very small structures are present. An additional problem is that it

will not necessarily be obvious that the resulting reconstructions are incorrect. If

DT or TVMin is applied to the reconstruction of objects that are expected to be

homogeneous, any resulting smooth reconstruction might be deemed acceptable.

Recently, the reconstructed residual error was introduced as a way of detecting

these kinds of problems [10]. The reconstructed residual error reconstructs the

difference between the recorded data and the forward projection of a segmented

tomogram. The result is a map that indicates the errors in that segmented tomo-

gram. However, instead of simply not using algorithms such as DART or FISTA

for objects that contain both homogeneous and non-homogeneous regions, it would

be better if these algorithms could still be used for the part of the reconstruction

for which their priors are valid, thereby possibly retaining some of their strengths.

In this paper, we present an approach that localizes the prior of algorithms

from DT and TVMin, based on the reconstructed residual error. We augment

the reconstruction area with a mask that defines where the prior is not valid.

This mask is determined by assuming that regions for which the reconstructed

residual error is higher than some given threshold do not sufficiently conform

to the prior, and should be reconstructed without applying it. This approach

allows reconstructing complex objects that contain both homogeneous and non-

homogeneous regions from relatively limited data. In the current paper, we apply

this general principle in practice to DART and FISTA by developing localized

versions of those algorithms, but it could also be applied to other algorithms from

DT or TVMin (e.g., NESTA [11], which is based on [12]).

The remainder of this paper is structured as follows. In Section 4.2, the tech-

nique is introduced, and applied to DART and FISTA. Section 4.3 reports on
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the results of several simulation experiments. These results are discussed in Sec-

tion 4.4, and a conclusion is reached in Section 4.5.

4.2 Methods

In this Section, we first present an overview of how the prior of a reconstruction

algorithm can be localized using the reconstructed residual error. We then describe

in general how we determine the regions for which a prior should not be applied,

and show how a reconstruction algorithm can be adapted to use a local prior. This

general principle is then applied to DART and FISTA.

4.2.1 Overview

Fig. 4.1 presents an overview of how a prior can be applied locally by using the

reconstructed residual error to locate non-homogeneous regions in the reconstruc-

tion. The original projection data (Fig. 4.1b) is a sinogram, acquired by rotating

around the object (Fig. 4.1a). In this example, the sinogram is reconstructed using

FISTA (Fig. 4.1c) and segmented using a global threshold (Fig. 4.1f). The recon-

structed residual error (Fig. 4.1i) is computed by reconstructing the difference

(Fig. 4.1h) between the original projections (Fig. 4.1b) and the forward projection

of the segmented reconstruction (Fig. 4.1e). The set of non-homogeneous pixels

is then determined by thresholding the reconstructed residual error, resulting in a

mask of pixels for which the prior should not be applied (Fig. 4.1g). The original

projections (Fig. 4.1b) and this mask are then used as input for a modified FISTA

algorithm that implements a local prior (Fig. 4.1d).

4.2.2 Notation and Concepts

The projection process in tomography can be modeled as a linear operator that is

determined by the projection geometry. This leads to a system of linear equations,

Wx = p, (4.1)

where p ∈ Rm contains the projection data and x ∈ Rn corresponds to the image.

The linear operator is represented by the m× n matrix W , the projection matrix.

An approximate solution x̃ ∈ Rn of (4.1) can then be computed iteratively. A

classical approach is the least squares (LS) estimate,

x̂LS = arg min
x

‖Wx− p‖2, (4.2)

81



CHAPTER 4. LOCALIZED PRIORS
(b

) 
O

ri
gi

na
l

pr
oj

ec
ti

on
s

pr
oj
ec
t

fo
rw
a
rd

su
bt
ra
ct

re
co
n
st
ru
ct

sc
a
n

o
bj
e
ct

(a
) 

O
ri

gi
na

l o
bj

ec
t 

re
co
n
st
ru
ct

se
gm
en
t

(c
) 

F
IS

TA
 r

ec
on

st
ru

ct
io

n

(f
) 

Se
gm

en
te

d 
FI

ST
A

re
co

ns
tr

uc
ti

on
(e

) 
Fo

rw
ar

d 
pr

oj
ec

te
d 

se
gm

en
te

d 
re

co
ns

tr
uc

ti
on

(h
) 

R
es

id
ua

l p
ro

je
ct

io
n 

er
ro

r
(i

) 
R

ec
on

st
ru

ct
ed

 r
es

id
ua

l e
rr

or

th
re
sh
o
ld

re
co
n
st
ru
ct

(d
) 

L
oc

al
 F

IS
TA

re
co

ns
tr

uc
ti

on

(g
) 

M
as

k 
of

 “
fr

ee
” 

pi
xe

ls

Figure 4.1: Overview of how a prior can be localized by using the reconstructed residual
error to locate non-homogeneous regions in a reconstruction.
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which minimizes the projection distance. In tomography, the well-known SIRT

algorithm [13], which results in a weighted least squares solution [14], is often

used. In this paper, SIRT is used both to reconstruct the residual error and as a

subroutine of DART.

The final step in the tomographic reconstruction process is often segmenta-

tion. A segmentation method essentially partitions the pixels of an image into sets

Y1, . . . , Yd, where d is the number of classes (segments) in the segmented image.

A straightforward way to perform segmentation is global thresholding, which is

also the technique that is employed by DART. Let {ρ1, . . . , ρd} be a set of gray

levels, with ρ1 < ρ2 < . . . < ρd. Also define a set of thresholds {τ1, . . . , τd−1}. A

thresholding function r : R× Rd−1 × Rd → R can then be defined as

r(v, τ, ρ) =


ρ1 if v < τ1

ρ2 if τ1 ≤ v < τ2
...

ρd if τd−1 ≤ v.

(4.3)

The thresholding function for an image x ∈ Rn is defined as

r(x, τ, ρ) = (r(x1, τ, ρ) · · · r(xn, τ, ρ))T . (4.4)

From the segmentation classes Yk, a segmented image s ∈ Rn can be created

by assigning a gray level ρk to all pixels in the set Yk, for each k ∈ {1, . . . , d}.
For global thresholding as defined in (4.4), which we use in this paper, such a seg-

mented image is the output of the thresholding step. However, other segmentation

algorithms can also be used, if all pixels in each class Yk are assigned the same

gray level ρk afterwards. If the values of ρ1, . . . , ρd are not known, the mean of all

pixel values in a class can be used as an estimate,

ρ̂k =
1

|Yk|
∑
y∈Yk

y, for each k ∈ {1, . . . , d}. (4.5)

The reconstructed residual error, introduced in [10], is a technique that creates

a visual map of the errors in a segmented tomogram. Inputs are a segmented

tomogram s and the projection data p. First, s is forward projected to give

ps ∈ Rm. The system of linear equations We = p−ps, where e ∈ Rn corresponds

to the (unknown) error image, can then be solved to produce an approximate

solution ẽ ∈ Rn, the reconstructed residual error.

We define a local (or localized) prior as a prior that is only applied to part of the

reconstruction area. When the word local is used with respect to a reconstruction
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algorithm, e.g., Local DART, it means that the prior of the original algorithm is

only applied locally.

4.2.3 Locating Non-Homogeneous Regions

Here, we describe how the reconstructed residual error is used to determine the

mask of non-homogeneous pixels. For this general presentation of the approach, we

assume that a segmented tomogram exists. Sections 4.2.5 and 4.2.6 below describe

how that is determined for the particular cases of DART and FISTA, respectively.

The algorithm that determines the mask of non-homogeneous pixels is shown in

Fig. 4.2. Let s ∈ Rn be a segmented tomogram. The reconstructed residual error

e can then be computed from s and p. Define a mask m ∈ Rn, with mj ∈ {0, 1}
for each j ∈ {1, . . . , n}, that indicates the location of the homogeneous (mj = 0)

and non-homogeneous pixels (mj = 1). For convenience, we also define the set

M ⊆ {1, . . . , n} of non-homogeneous pixels (i.e., for which mj = 1). The mask

m (and the corresponding set M) can be determined from e in a straightforward

manner, by setting m = r(|e|, c, {0, 1}), for a given threshold c ∈ R, and where | · |
denotes element-wise absolute value. The optimal value of c is different for each

reconstruction, since |e| depends on s and p. Morphological operations on M are

optional, but can be helpful to correct for imperfections in e. In all experiments in

this paper, the morphological operations that are shown in Fig. 4.2 were applied.

4.2.4 Reconstruction Algorithms with a Local Prior

After locating the non-homogeneous regions of an object, i.e., the set M , using

the reconstructed residual error, the next step is modifying the reconstruction

algorithm to take this information into account. The implementation of this is

different for each algorithm. The general approach is to modify the reconstruction

algorithm to no longer apply its prior to the whole reconstruction x, but only to

the pixels xj for which j 6∈M . In Sections 4.2.5 and 4.2.6, this principle is applied

to DART and FISTA, respectively.

The set M of non-homogeneous pixels must be computed from a segmented

reconstruction s (Fig. 4.2). There are two approaches for this. The first is comput-

ing a suitable s from an intermediate reconstruction x, during the reconstruction,

and possibly repeating that several times. The adapted version of DART that is

presented in Section 4.2.5 uses this approach. A second approach is to create an

initial reconstruction x0 first, using an unmodified reconstruction algorithm. After

segmenting x0 as s0, it can then be used to determine M . The adapted version of

FISTA that is presented in Section 4.2.6 uses this approach.
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Input:

projection data p

segmented reconstruction s

error threshold c

Algorithm:

Reconstruct the residual error e of s

Compute the mask m := r(|e|, c, {0, 1})
Determine the set M from m by including all pixels for which mj = 1

Perform optional morphological operations to clean up M ; in the current paper,
the following was done

1) Remove small clusters
2) Dilate with a 4× 4 square as structuring element
3) Remove small holes
4) Erode with a 4× 4 square as structuring element

Output: M

Figure 4.2: Algorithm that uses the reconstructed residual error to determine the set M of
non-homogeneous pixels, starting from a segmented reconstruction.

4.2.5 Application—Local DART

We give an overview of the DART algorithm here, and refer to [1] for a detailed

description. The prior that DART uses is that the scanned object is assumed to

consist of only a few different materials that appear in homogeneous regions, and

that the gray level for each of these materials is known. The idea behind DART is

illustrated in Fig. 4.3. A synthetic dataset was created from a phantom (Fig. 4.3a),

using only five equiangular projections. If this dataset is reconstructed with SIRT

(Fig. 4.3b), the quality is very poor. However, if the SIRT reconstruction is thresh-

olded (Fig. 4.3c) using the a priori known gray levels, it appears that the pixels

that are not too close to the boundary of the object are correctly classified as

either object or background. DART exploits this observation by first determining

that boundary (Fig. 4.3d), and then only updating the boundary pixels in subse-

quent iterations. Repeating this a number of times results in a final reconstruction

(Fig. 4.3e) that is very accurate.

DART implements its prior by interleaving iterations of an algebraic recon-

struction method (SIRT is used in this paper) with segmentation steps. In each of

those steps, a segmented image s is determined from the intermediate reconstruc-
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tion x by setting s = r(x, τ, ρ), where ρ = {ρ1, . . . , ρd} is the set of a priori known

gray levels, and τk = (ρk +ρk+1)/2, for each k ∈ {1, . . . , d−1}. The pixels of s are

then divided into two groups. The first group, the set of free pixels F ⊆ {1, . . . , n},
contains the boundary pixels of the segmented reconstruction. The second group

contains the remaining pixels, which are kept fixed during subsequent SIRT itera-

tions. Fixing pixels, which decreases the number of variables in the reconstruction

problem while still using all recorded data, is done as follows. Consider the system

of linear equations  | |
w1 · · · wn

| |


x1...
xn

= p. (4.6)

A pixel xj can be fixed at the value vj ∈ R by transforming (4.6) into

 | | | |
w1 · · · wj−1 wj+1 · · · wn

| | | |




x1
...

xj−1
xj+1

...

xn


= p− vjwj . (4.7)

With all the pixels in F fixed in this way, the next SIRT iterations are then

run on only the boundary pixels. After these SIRT iterations, the boundary pixels

are smoothed (see again [1]) before the reconstruction is segmented again and the

next DART iteration starts. Over several DART iterations, the position of the

border is optimized, resulting in a discrete reconstruction that incorporates the

prior knowledge about the gray levels.

To localize DART, the algorithm must be changed in two ways. First, the set

M of non-homogeneous pixels must be determined at some point. As mentioned

in Section 4.2.4, this is done during the reconstruction for DART. Second, the

algorithm must be adapted to stop applying its prior to the pixels of M . An

overview of the Local DART algorithm is shown in Fig. 4.4.

For computing M , a segmented reconstruction is needed (Fig. 4.2). However,

DART already computes such a reconstruction during its regular iterations, in the

statement st := r(xt, τ, ρ) (Fig. 4.4). Hence, the computation of M can simply be

added at that location in the algorithm.

Not applying the prior for the pixels of M is also straightforward, since DART

already maintains a set F of pixels that are not kept fixed during DART iterations.

Hence, M can simply be added to F after each segmentation step (the statement

F t := F t ∪M t in Fig. 4.4). If the set M is known a priori, it can be specified
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(a) Phantom (b) SIRT (c) Segm. SIRT (d) Boundary

(e) DART (f) FISTA (g) Segm. FISTA

Figure 4.3: Demonstration of the DART and FISTA algorithms. (a) Phantom image.
(b) SIRT reconstruction. (c) Segmented SIRT reconstruction. (d) Boundary pixels of (c).
(e) DART reconstruction. (f) FISTA reconstruction. (g) Segmented FISTA reconstruction.
(b–e) were created from a synthetic dataset with five equiangular projections, (f–g) from one
with ten.

as an input parameter. Setting M to the empty set recovers the original DART

algorithm. Depending on how M is obtained, two variants are discerned, namely

Automatic Local DART (if M is computed) and Manual Local DART (if M is

known a priori).

4.2.6 Application—Local FISTA

We give an overview of the FISTA algorithm here, and refer to [3] for a detailed

description. The prior that FISTA uses is that the scanned object is assumed to

have a low total variation. This is done by adding a TV regularization term to the

LS approach of (4.2). This results in

x̂FISTA = arg min
x

‖Wx− p‖2 + 2λ‖x‖TV. (4.8)

Here, ‖ · ‖TV is the TV seminorm. The regularization parameter λ provides a

trade-off between the LS and TV parts of the equation. The general nonsmooth

convex optimization problem that corresponds to (4.8) is the minimization of the
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Input:

projection data p

thresholds τ and gray levels ρ

error threshold c or set of free pixels M

Algorithm:

if M is not provided

Set M0 to the empty set

else

M0 := M

endif

t := 0

Compute an initial SIRT reconstruction x0 and an initial segmented image
s0 := r(x0, τ, ρ)

while stop condition is not met

Initialize the set F t with the boundary pixels of st

F t := F t ∪M t

Compute the image yt from xt and st, setting
ytj := xtj if j ∈ F t and ytj := stj otherwise

Compute the SIRT reconstruction xt+1, with yt as the start solution, while
keeping the pixels not in F t fixed

Smooth the pixels of xt+1 that are in F t

t := t+ 1

Compute the segmented image st := r(xt, τ, ρ)

if M is not provided

Compute M t from st, p, and c (Fig. 4.2)

else

M t := M t−1

endif

endwhile

Compute the image zt from xt and st, setting
ztj := xtj if j ∈M t and ztj := stj otherwise

Output: zt

Figure 4.4: The Local DART algorithm. All statements that use or compute M are new,
the rest of the algorithm is identical to the original DART, which is recovered by setting M
to the empty set.
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sum of two convex functions

min
x
f(x) + g(x), (4.9)

where f : Rn → R is smooth and g : Rn → (−∞,+∞] is nonsmooth. In (4.8),

we have f(x) ≡ ‖Wx − p‖2 and g(x) ≡ 2λ‖x‖TV. The key assumption that

is used in the current paper to adapt FISTA is that g is a closed proper convex

function. See [3] for other assumptions and the general presentation of (4.9) as

the underlying problem that is solved by FISTA.

Each iteration of FISTA consists of two steps. The first is a gradient step

in the direction of the minimum of f . The second is the solution of a denoising

subproblem, in which the current guess xc ∈ Rn for the solution is optimized using

TVMin. This subproblem,

min
x
‖x− xc‖2 + g(x), (4.10)

is a complete minimization problem in itself, which must be solved using an itera-

tive method. For FISTA, the denoising subproblem is solved using a dual approach,

as was already proposed in [15].

A FISTA reconstruction is not discrete. However, when applied to an object

that consists of homogeneous regions, such as the phantom from Fig. 4.3a, it results

in a reconstruction (Fig. 4.3f, created from ten equiangular projections) that is

much more homogeneous than SIRT (Fig. 4.3b), and that can be segmented easily

(Fig. 4.3g).

To localize FISTA, two changes to the algorithm are needed, as for DART. The

algorithm must be adapted to only apply its prior to the pixels that are not in M ,

and the set M itself must be determined at some point.

Not applying the prior for the pixels of M is done by adapting the definition

of g. Define the diagonal matrix Λ ∈ Rn×n, with λjj ∈ {0, 1} for each j ∈
{1, . . . , n}. We know that, for a closed proper convex function g on Rn and a

linear transformation L : Rn → Rn, the function gL(x) ≡ g(Lx) is also a closed

proper convex function on Rn [16, Theorems 5.7 and 9.5]. This means that we can

safely adapt the definition of g to

gΛ(x) ≡ 2λ‖Λx‖TV. (4.11)

The matrix Λ is computed from M by setting λjj = 0 if j ∈ M , and λjj = 1

otherwise. The solution of (4.10), with gΛ substituted for g, will then no longer

depend on the pixels of x that are in M , because of the multiplication Λx. Hence,

the TV will no longer be minimized for those pixels. We denote the variant of

FISTA that takes Λ into account as FISTAΛ. In practice, FISTAΛ differs little
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from the original algorithm. The matrix Λ, which is fixed during the entire run

of FISTAΛ, is simply used to exclude the pixels of M from the TV minimization

steps.

An overview of the Local FISTA algorithm is shown in Fig. 4.5. The set M

is computed from an initial FISTA reconstruction. Hence, Local FISTA consists

of two separate invocations of the algorithm. As for DART, the reconstructed

residual error must be computed from a segmented reconstruction. The initial

FISTA reconstruction is relatively easy to segment by thresholding, since FISTA

minimizes TV. Additionally, for the initial FISTA reconstruction, a “high” value

for λ is used. This makes the reconstruction even easier to threshold, since the

TV of the solution becomes smaller. For the final FISTAΛ reconstruction, the

specified λ is used unchanged.

Input:

projection data p

regularization parameter λ

thresholds τ and gray levels ρ

error threshold c or set of free pixels M

Algorithm:

if M is not provided

Set λh to a high value; in the current paper λh := 10λ

Compute an initial FISTA reconstruction x0, using λh

Compute the segmented image s0 := r(x0, τ, ρ)

Compute M from s0 and c (see Fig. 4.2)

endif

Compute the diagonal matrix Λ from M , setting
λjj := 0 if j ∈M and λjj := 1 otherwise

Compute the final FISTAΛ reconstruction x, using λ and Λ

Output: x

Figure 4.5: The Local FISTA algorithm. FISTAΛ is a version of FISTA that takes Λ into
account, i.e., it uses gΛ from (4.11).

Depending on how M is obtained, two variants are again discerned, namely

Automatic Local FISTA (if M is computed) and Manual Local FISTA (if M is

known a priori).
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4.3 Experiments and Results

In this Section, the properties of Local DART and Local FISTA are studied using

simulation experiments. All reconstructions were performed on a square grid of

size 512 × 512 pixels. The quality of a reconstruction x is measured using the

relative Euclidean phantom distance dph : Rn → R, defined as

dph(x) =
‖x− h‖2
‖h‖2

, (4.12)

where h ∈ Rn is the original phantom image. For the discrete part of a localized

DART reconstruction, the quality is also measured using the relative number of

misclassified pixels (rNMP), defined as the ratio between the number of misclassi-

fied pixels and the total number of pixels in the image. We also use the phantom

distance and the rNMP (for DART) restricted to part of an image.

4.3.1 Phantom Images

Phantom images of size 2048× 2048 pixels were created (Fig. 4.6). The resolution

of the phantoms is higher than that of the reconstruction grid to reduce the effect

of the pixelation on the reconstructions.

Phantoms 1 (Fig. 4.6a) and 2 (Fig. 4.6b) are basic phantoms. Phantoms 3–

6 (Figs. 4.6c–4.6f) each represent a set of phantoms. These sets are composed

of phantoms with a varying ratio of homogeneous to non-homogeneous elliptical

particles, allowing to investigate the properties of the localized algorithms with

different amounts of non-homogeneous material. The examples shown in Fig. 4.6

have 40% (Figs. 4.6c and 4.6f) or 60% (Figs. 4.6d and 4.6e) of homogeneous par-

ticles. In the phantom sets represented by Phantoms 3 and 5, the ellipses are

non-overlapping. In the sets represented by Phantoms 4 and 6, they are allowed

to overlap. In all four sets, the arrangement of the ellipses is random and different

for each phantom. This may cause some extra variation in the resulting graphs

(Figs. 4.9, 4.10, 4.12, and 4.13), but it also ensures that the results are not skewed

by any particular arrangement.

Phantoms 1 (Fig. 4.6a) and 2 (Fig. 4.6b) are used in Section 4.3.2 to demon-

strate the general principle of reconstruction with a local prior. The sets repre-

sented by Phantoms 3 (Fig. 4.6c) and 4 (Fig. 4.6d) are used in Section 4.3.3 to

study Local DART. Phantom sets 3 and 4 could also have been used for FISTA.

However, algorithms that apply TVMin can still result in accurate reconstructions

for samples that contain continuous grayscale objects, if the spatial variation is

low. Therefore, Phantom sets 5 (Fig. 4.6e) and 6 (Fig. 4.6f) were designed to have

high spatial variation, and are used in Section 4.3.4 to study Local FISTA.
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(a) Phantom 1 (b) Phantom 2 (c) Phantom 3

(d) Phantom 4 (e) Phantom 5 (f) Phantom 6

Figure 4.6: Phantom images. (a) and (b) are basic phantoms. Phantoms 3–6 (c–f) each
represent a set of phantoms, with each element containing elliptical particles with an increas-
ing ratio of homogeneous to non-homogeneous ones. (c) and (f) have 40% of homogeneous
particles, (d) and (e) have 60% of homogeneous particles.

4.3.2 Reconstruction Algorithms with a Local Prior

Using DART as an example, this Section illustrates the mechanism of creating

reconstructions with a local prior, both based on the reconstructed residual error

and on the true mask of non-discrete pixels. The experiments in this Section

are based on Phantoms 1 and 2 (Figs. 4.6a and 4.6b). From these phantoms,

synthetic datasets were created using parallel beam equiangular projections. A

total of 40 projections was used for Phantom 1, and 55 for Phantom 2. Poisson

noise corresponding to 105 photons per detector pixel was applied to the data.

Automatic Local DART was then used to reconstruct these datasets (Figs. 4.7f

and 4.7l). The sets of free pixels M , from the last DART iteration, are shown

in Figs. 4.7c and 4.7i. These were computed from the reconstructed residual

error (Figs. 4.7b and 4.7h). The reconstructed residual error itself was com-

puted from the segmented images that are computed internally by the DART

algorithm (Figs. 4.7a and 4.7g). The gray levels ρ that are input parameters of

DART were taken from the phantom, and the thresholds τ were computed as

τk = (ρk + ρk+1)/2. For experimental datasets, the gray levels can be optimized
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manually [1], or automatically using the projection data [17]. The error threshold

c was set to 0.06 for Phantom 1 and to 0.04 for Phantom 2. SIRT (Figs. 4.7d

and 4.7j) and (regular) DART (Figs. 4.7e and 4.7k) reconstructions are shown for

comparison.

Using the true masks (Figs. 4.8a and 4.8d) increases the accuracy, or allows us-

ing more limited data while keeping the same accuracy, of the results over approx-

imate masks that are computed using the reconstructed residual error (Figs. 4.7c

and 4.7i). This is illustrated in Fig. 4.8, where Manual Local DART reconstruc-

tions are shown (Figs. 4.8c and 4.8f). For these reconstructions, the number of

projections was decreased to 20 for Phantom 1 and 35 for Phantom 2. Although, in

practice, the true mask is unknown, using the true mask with a simulated dataset

illustrates one of the theoretical limits of the approach. SIRT reconstructions are

shown for comparison (Figs. 4.8b and 4.8e).

4.3.3 Local DART

The experiments in this Section are based on phantom sets 3 (Fig. 4.6c) and 4

(Fig. 4.6d). As for the experiments in Section 4.3.2, synthetic datasets were created

using parallel beam equiangular projections. A total of 55 projections was used for

all datasets, with Poisson noise corresponding to 105 photons per detector pixel

applied to each dataset. As before, the gray levels ρ were taken from the phantoms,

and the thresholds τ were computed as τk = (ρk + ρk+1)/2. The error thresholds

c were optimized manually, and set to 0.7 for the phantoms with 0% and 20% of

homogeneous particles, and 0.6 for the other ones. The two variants, Automatic

and Manual Local DART, were compared with regular DART and SIRT for all the

phantoms in the set.

The quality of the overall reconstructions is given by the phantom distance

(Figs. 4.9a and 4.10a). Regular DART does not perform well here, since it cannot

accurately reconstruct the non-homogeneous part of the phantoms. This disadvan-

tage decreases when the percentage of homogeneous particles is increased. When

all particles are homogeneous (data point 1 in Figs. 4.9a and 4.10a), the phantom

distances of regular DART and the two variants of Local DART are the same.

This implies that Automatic Local DART correctly determined that there were

no non-homogeneous particles left. If the true mask is used (in Manual Local

DART), the phantom distance is the lowest. For SIRT with this set of phantoms,

the phantom distance seems almost completely independent of the percentage of

homogeneous particles, and it is higher than for both variants of Local DART.

The quality of both parts of the reconstructions (i.e., the homogeneous and the

non-homogeneous part) can also be measured separately. The phantom distance

of the non-homogeneous part (Figs. 4.9b and 4.10b) suggests that Automatic Lo-

cal DART results in a reconstruction quality that is close to that of SIRT. For
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Figure 4.7: Automatic Local DART reconstructions of Phantoms 1 (top row) and 2 (bot-
tom row), where the mask of free pixels was computed during the reconstruction. (a), (g)
Segmented reconstruction (internal to the DART algorithm). (b), (h) Reconstructed residual
error. (c), (i) Mask of free pixels. (d), (j) SIRT reconstruction. (e), (k) DART reconstruction.
(f) ,(l) Local DART reconstruction.
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(a) Free pixels (b) SIRT (c) Local DART

(d) Free pixels (e) SIRT (f) Local DART

Figure 4.8: Manual Local DART reconstructions of Phantoms 1 (top row) and 2 (bottom
row), where the mask of free pixels was provided manually.

phantoms for which the percentage of homogeneous particles is close to zero (data

points 0 and 0.2 in Figs. 4.9b and 4.10b), SIRT seems to be slightly better. If the

percentage of homogeneous particles is close to one, Automatic Local DART seems

to have a slight advantage. Manual Local DART provides the highest accuracy

for all phantoms of the set. The data point for 1 is missing, since there is no

non-homogeneous part for that point.

From the phantom distance of the homogeneous part of the reconstructions

(Figs. 4.9c and 4.10c), it appears that Automatic and Manual Local DART are

very close together. Both show a lower phantom distance than SIRT and DART,

and the three variants of DART again coincide at the same value at data point 1.

The data point for 0 is missing, since the only homogeneous part there is the (zero

valued) background, making (4.12) no longer meaningful.

The rNMP for regular DART is lower than for Automatic Local DART (Figs.

4.9d and 4.10d). This is despite the fact that the Local DART reconstruction

(Fig. 4.11b, shown for the phantom with 40% of homogeneous particles) is clearly

visually closer to the phantom (Fig. 4.6c) than the regular DART reconstruction

(Fig. 4.11a). The reason for this is that the mask that is computed automatically

during the reconstruction is not exact (Fig. 4.11c), since it is estimated from the
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Figure 4.9: Results for DART, using Phantom set 3. (a) Phantom distance of the complete
reconstruction. (b) Phantom distance of the non-homogeneous part. (c) Phantom distance
of the homogeneous part. (d) Relative number of misclassified pixels of the homogeneous
part.

reconstructed residual error. The rNMP for the homogeneous part, however, is

computed using the true mask (Fig. 4.11f), causing a lot of pixels at the edges

of the non-homogeneous particles to be marked as misclassified (Fig. 4.11e), even

though their value is close to the true value. For regular DART, the pixels in the

non-homogeneous particles have completely wrong values (Fig. 4.11a), but these

happen to be concentrated inside of the true mask, which results in a low number

of misclassified pixels (Fig. 4.11d) in the homogeneous part.

4.3.4 Local FISTA

The experiments in this Section are based on phantom sets 5 (Fig. 4.6e) and 6

(Fig. 4.6f). As before, synthetic datasets were created using parallel beam equian-
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Figure 4.10: Results for DART, using Phantom set 4. (a) Phantom distance of the complete
reconstruction. (b) Phantom distance of the non-homogeneous part. (c) Phantom distance
of the homogeneous part. (d) Relative number of misclassified pixels of the homogeneous
part.

gular projections. A total of 90 projections was used for all datasets, with Poisson

noise corresponding to 105 photons per detector pixel applied to each dataset.

During the initial run of FISTA, the value of λ was 0.25. The value of λ for the

final run was 0.025. As before, the gray levels ρ were taken from the phantoms,

and the thresholds τ were computed as τk = (ρk +ρk+1)/2. The error thresholds c

were optimized manually, and set to decrease linearly from 0.135 for the phantoms

with 0% of homogeneous particles to 0.095 for those with 100%. The two variants,

Automatic and Manual Local FISTA, are compared with regular FISTA and SIRT

for all the phantoms in the set.

The quality of the overall reconstructions (Figs. 4.12a and 4.13a) is better for

both variants of Local FISTA than for regular FISTA and SIRT. As for DART,

the advantage of the local algorithms decreases for phantoms with an increasing
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(a) DART (b) Local DART (c) Computed mask

(d) Misclassified pixels (e) Misclassified pixels (f) True mask

Figure 4.11: (a) DART reconstruction of Pantom 3. (b) Automatic Local DART recon-
struction of Phantom 3. (c) Computed mask of non-discrete pixels for (b). (d) Misclassified
pixels for (a). (e) Misclassified pixels for (b). (f) True mask.

percentage of homogeneous particles, again resulting in an equal phantom distance

for the fully discrete phantoms (data point 1 in Figs. 4.12a and 4.13a). The

advantage of the Local FISTA reconstructions over SIRT remains about the same

for the entire set of phantoms, while the accuracy improves for both when the

percentage of homogeneous particles increases.

For the non-homogeneous part of the reconstructions (Figs. 4.12b and 4.13b),

both local variants of FISTA improve upon the result of regular FISTA. The results

are also better than for SIRT, which performs better than regular FISTA for the

non-homogeneous part for this set of phantoms.

From the phantom distance of the homogeneous part of the reconstructions

(Figs. 4.12c and 4.13c), it is apparent that the advantage of Local FISTA is small

there. This is as expected, since algorithms that minimize TV are very suitable

to reconstruct homogeneous objects. We do note that the advantage from the

non-homogeneous parts does not impede the quality of the homogeneous part.
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Figure 4.12: Results for FISTA, using Phantom set 5. (a) Phantom distance of the complete
reconstruction. (b) Phantom distance of the non-homogeneous part. (c) Phantom distance
of the homogeneous part.

4.4 Discussion

Reconstruction algorithms that exploit prior knowledge can greatly improve the ac-

curacy of a reconstruction (Fig. 4.3). However, if the prior is not valid for the com-

plete object, as for the phantoms from Fig. 4.6, then those algorithms can lead to

incorrect results (Figs. 4.7e and 4.7k). The reconstructed residual error (Figs. 4.7b

and 4.7h) can detect non-homogeneous regions, starting from a segmented recon-

struction (Figs. 4.7a and 4.7g). From this, a mask of non-homogeneous pixels can

be computed (Figs. 4.7c and 4.7i). If the prior of the reconstruction algorithm,

where that prior does not necessarily have to be homogeneity, is then no longer

applied for the pixels of that mask, the accuracy of the resulting reconstruction is

improved (Figs. 4.7f and 4.7l).

For each reconstruction algorithm, this general principle must be implemented

99



CHAPTER 4. LOCALIZED PRIORS

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

Percentage of homogeneous particles

P
h

a
n

to
m

 d
is

ta
n

c
e

 

 

FISTA

Automatic Local FISTA

Manual Local FISTA

SIRT

(a) Phantom distance

0 0.2 0.4 0.6 0.8
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Percentage of homogeneous particles

P
h

a
n

to
m

 d
is

ta
n

c
e

 

 

FISTA

Automatic Local FISTA

Manual Local FISTA

SIRT

(b) Ph. dist., non-homogeneous part

0 0.2 0.4 0.6 0.8 1
0.1

0.12

0.14

0.16

0.18

0.2

Percentage of homogeneous particles

P
h

a
n

to
m

 d
is

ta
n

c
e

 

 

FISTA

Automatic Local FISTA

Manual Local FISTA

SIRT

(c) Phantom dist., homogeneous part

Figure 4.13: Results for FISTA, using Phantom set 6. (a) Phantom distance of the complete
reconstruction. (b) Phantom distance of the non-homogeneous part. (c) Phantom distance
of the homogeneous part.

separately. Although it can probably not be applied to all possible reconstruction

algorithms, the two algorithms that are localized in the current paper do exploit

priors that are quite different. DART uses a hard constraint of discreteness, which

results in reconstructions that are exactly homogeneous. DART is completely

unable to reconstruct non-homogeneous objects, resulting in large differences in

performance between regular DART on the one hand, and Local DART and a

classical method such as SIRT on the other hand (Figs. 4.9 and 4.10). FISTA only

assumes that the TV should be low, which does not result in discrete reconstruc-

tions. FISTA is capable of reconstructing non-homogeneous objects, as long as the

spatial variation of those objects is small. Therefore, the overall results for FISTA

are closer to Local FISTA and SIRT, although there is still a clear advantage from

using Local FISTA (Figs. 4.12 and 4.13).

DART has been used extensively in practice, in fields such as electron tomog-
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raphy and X-ray crystallography [18–21]. It is likely that Local DART could make

(partially) discrete tomography available for additional datasets, since the results

that are described in the current paper (Figs. 4.9 and 4.10) indicate that Local

DART improves upon the results of SIRT. The recently proposed PDART algo-

rithm also improves upon SIRT, but its use is restricted to the specific case of

the densest material being homogeneous [22]. Local DART is more generally ap-

plicable, since it does not impose restrictions on the discrete region, which may

contain a mix of (homogeneous) materials. FISTA has also been used in diverse

applications such as electrical resistance tomography [23] and mouse whole-body

imaging using optoacoustic tomography [24]. As for DART, it seems likely that

Local FISTA can make additional datasets available for use with FISTA.

4.5 Conclusions

We have presented a way of determining how prior knowledge that is exploited by a

reconstruction algorithm can be localized, based on the reconstructed residual er-

ror. The application to the DART and FISTA algorithms shows that this approach

is feasible in practice, and that it results in more accurate reconstructions.

Implementing the procedure is not complicated. The first step, determining the

mask of pixels for which the prior knowledge should not be applied, is performed

by computing the reconstructed residual error of a segmented reconstruction and

then thresholding it. The second step is different for each algorithm. For DART,

the mask is determined during the execution of the algorithm. For FISTA, the

mask is determined from an initial reconstruction. Both these changes are simple,

compared to the DART and FISTA algorithms themselves.

As discrete tomography and total variation minimization are becoming more

established as reconstruction methods, we expect that the technique from the

current paper could be useful for a subset of the reconstruction problems that

cannot be solved accurately by using algorithms like DART or FISTA unmodified.
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5
Conclusions

Computed tomography is an established imaging modality, with applications in

diverse fields such as medical imaging, preclinical research, materials science, non-

destructive testing, astronomy, etc. Having only a limited amount of recorded

data, however, can lead to inaccurate reconstructions. Prior knowledge about

the scanned object can help to improve the reconstruction quality, and several

algorithms for discrete tomography and total variation minimization are currently

used in practice. However, those algorithms are generally limited to objects for

which the prior is valid for the whole object.

In this thesis, we have explored two approaches that use local prior knowledge

to solve the limited data problem. The first one is to create a specific new algo-

rithm that directly applies the local prior knowledge that is available for a given

problem. Developing an algorithm for a particular problem allows carefully tuning

it to maximize the reconstruction quality, but it is not at all straightforward and

its application will be limited to the specific setting that it was developed for.

The second approach is to devise a general scheme that allows adapting existing

algorithms, to enable their use for additional applications, thereby leveraging the

existing body of reconstruction algorithms.

In the context of the first approach, we have developed the novel PDART

algorithm (Chapter 2) for the specific setting of dense homogeneous particles within

(possibly) non-homogeneous surroundings. In electron tomography and preclinical

imaging, we encountered several datasets for which DART did not provide accurate

reconstructions, even though some of the objects that were imaged were expected

to consist of homogeneous materials. When PDART was applied to these datasets

(for electron tomography in Chapter 2 and for preclinical imaging in Chapter 3),

the PDART reconstructions were more accurate than SIRT. This implies that

PDART expands the set of samples for which concepts of discrete tomography

can be applied, and that it succeeds in retaining some of the strengths of discrete

tomography.
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In the context of the second approach for solving the limited data problem, we

have developed the reconstructed residual error (Chapter 3), which creates a map

of the errors in a segmented tomogram. It can be used to create local versions of

existing reconstruction algorithms. However, the reconstructed residual error also

has several applications by itself, as shown in Chapter 3. It can be used to improve

the gray level estimates of a segmented tomogram, and, for algorithms that assume

prior knowledge of those gray levels, to improve the segmentation itself. It can

also be used in a straightforward manner to select the most appropriate of several

available reconstructions.

The reconstructed residual error can also be used to localize the available prior

knowledge (Chapter 4), through providing a map of the errors in a segmented

reconstruction. If the segmented reconstruction was created using prior knowledge,

then the reconstructed residual error can be thresholded to create a mask of pixels

that indicates where that prior knowledge was apparently not valid. This leads to a

general method for localizing reconstruction algorithms. As applications, we have

developed local versions of two practical algorithms from discrete tomography and

total variation minimization, namely Local DART and Local FISTA, respectively.

These local variants expand the set of samples for which the strengths of discrete

tomography and total variation minimization can be used.

Building on the techniques that were developed in this thesis, we see several

possibilities for future research. It would be interesting to compare PDART with

Local DART, since there clearly is some overlap in their applicability. Comparing

reconstructions from several phantoms and experimental datasets might result

in a general way to decide on the appropriate algorithm to use for each object.

Another interesting research direction is exploring the reconstructed residual error

with other segmentation techniques that are used in tomography. The technique

might be useful for selecting the most accurate of several (classical) segmentation

methods, such as region growing and clustering, in each particular application.
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