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Summary

This dissertation deals with data-driven methods for the analysis of complex Blood
Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI)
data sets. It explores and identifies the spatial layout and sequence of brain ac-
tivations associated with cognitive tasks. The relationship between the measured
haemodynamic effect and the underlying neuronal activity however, is complex
and poorly understood. Moreover, the resulting signal change is small and ex-
hibits a nonlinear component. Finally, confounding factors and the disturbance of
the weak signal by several noise sources hamper the interpretation of the results.
These constraints become particularly important when analysing complex, cogni-
tive data sets. However, several approaches exist to deal with these constraints,
such as a well-considered choice of experimental design, acquisition technique, and
analysis method. In this dissertation, the focus lies on the analysis method.

Originally, hypothesis-driven analysis techniques were applied. They specify a pri-
ori a spatially-invariant model of the haemodynamic response (HR). Its goodness-
of-fit is tested at each voxel by statistical methods. However, the assumption of
spatial invariance of the HR is suboptimal for the analysis of complex tasks. The
latter involve the activation of extended networks of brain regions with widely dif-
ferent HRs, exhibiting a substantial degree of trial-by-trial variability. Moreover,
hypothesis-driven methods typically ignore interactions between voxels. There-
fore, an alternative, data-driven approach was introduced. This shift led to the
application of the Fuzzy Clustering Method (FCM) and spatial Independent Com-
ponent Analysis (sICA). In both methods the data are decomposed into a set of
spatio-temporal modes, without strong a prior assumptions about the temporal
profile of the effects of interest. These methods however have a different view on
the data. Spatial ICA adopts a spatial view on the data, i.e. the data are con-
sidered as a sequence of volumes, whereas FCM adopts a temporal view, i.e. the
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data are considered as a spatial distribution of time courses. FCM divides the time
courses into a few types of activation, expressing the underlying neural activity.
Each group or cluster is characterised by its spatial map and corresponding time
course, the cluster centre. FCM expresses the similarity of a voxel time course
to a cluster centre by a so-called membership to that cluster. Spatial ICA is an
information theoretic approach, searching for statistical independence between the
components. It models the data as a linear combination of independent compo-
nents (ICs), expressing the underlying neural activity.
Both methods exhibit specific shortcomings for the analysis of complex, cognitive
data sets. A well-considered selection of method-specific parameters and the cor-
rect validation of the results is difficult to accomplish. Moreover, limitations on
the inherent detection accuracy of the methods may hamper the correct dissection
of the processing stages of complex, cognitive tasks.

In this dissertation, two approaches based on FCM and sICA are introduced to
overcome these shortcomings. Firstly, we deduce guidelines for the choice be-
tween the methods and for the setting of their parameters in the context of a
complex, cognitive task. Secondly, we present an enhanced FCM algorithm that
incorporates spatial information in the detection process. This approach takes into
account that task-induced neuronal activations and BOLD responses are expected
to produce similar signal changes in spatially contiguous regions, extending over
several millimetres.
The evaluation and comparison of these approaches and algorithms is performed
in terms of the detection accuracy and consistency, the robustness, the ease in
determination of parameter settings, and the validability and interpretability of
the results. In order to assess these criteria, appropriate data sets are presented.
Therefore, a newly devised complex visuospatial mental imagery experiment is
introduced, yielding time-resolved mental chronometry functional Magnetic Reso-
nance Imaging (fMRI) data sets.

In general, two approaches to accomplish this assessment exist. In order to as-
sess the aforementioned criteria quantitatively, simulations and tests on a synthetic
data set are indispensable. The assessment on real data sets on the other hand,
can only be performed qualitatively. However, findings resulting from earlier re-
search, applying alternative analysis techniques to the same (or similar) data sets,
offer a reference framework. Both approaches are applied in this dissertation, in
two separate studies.

A first study provides empirical guidelines for the choice between both methods,
i.e. FCM or sICA, as well as for their practical use. Both algorithms are evaluated
and compared on real fMRI data sets, acquired in the context of the visuospatial
mental imagery experiment. Validability and interpretability of physiologically
meaningful components, as well as robustness of the method are assessed qual-
itatively. Detection accuracy and consistency of the resulting time courses and
spatial maps within and between-subjects are assessed and compared quantita-
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tively, using the temporal and spatial correlation, respectively. In this study, the
influence on the latter assessment criteria of both the method-specific parameter
settings and preliminarily averaging over trials is determined as well.

A second study incorporates neighbourhood information in the ‘conventional’ FCM
algorithm. It elucidates under which conditions and for which parameter settings
‘spatio-temporal’ FCM outperforms conventional FCM in terms of detection ac-
curacy. Therefore, realistic simulated data sets are constructed, holding different
types of activation synthetically embedded in a realistic noise background. The
latter data sets are generated for a range of CNR values normally encountered in
fMRI analysis. A quantitative comparison between activation regions as well as
the corresponding time courses obtained by both methods is performed. The latter
is accomplished using the Receiver Operating Characteristics (ROC) methodology
and the temporal correlation, respectively.
Finally, the findings obtained in the context of the simulated data set are applied to
the analysis of the visuospatial mental imagery data sets with both methods. This
approach allows to determine and interpret the differences between corresponding
topological structures obtained by both methods.





Outline

This thesis is divided in two parts. Part I elaborately reviews the requisite back-
ground on Blood Oxygen Level Dependent (BOLD) functional Magnetic Reso-
nance (fMRI) measurement of cortical activity (chapter 1) and analysis techniques
for fMRI data sets (chapter 2). Part II provides the main contributions, i.e. the
proposed approaches and techniques, the visuospatial mental imagery experiment,
yielding appropriate data sets (chapter 3), and the applied studies (chapter 4 and
5).

Chapter 1 expounds on the relationship between the measured haemodynamic ef-
fect and the underlying neuronal activity. It focuses on the subsequent difficulties
for the analysis of complex, cognitive tasks. It considers the confounding factors
and the disturbance of the weak signal by several noise sources. Furthermore, this
chapter elaborates on the impact of the whole of these effects on the specificity of
the BOLD signal. Finally, approaches to improve the specificity by appropriate
paradigms, experimental design and acquisition techniques are proposed.

Chapter 2 covers the techniques to analyse fMRI data sets. It explains the shift
from a hypothesis-driven approach to a data-driven approach. It covers into detail
two data-driven techniques currently favoured for the analysis of complex data
sets: the Fuzzy Clustering Method (FCM) and spatial Independent Component
Analysis (sICA). It clarifies their principles, emphasises their strengths and short-
comings and presents a literature review of the major applications in a historical
perspective. Finally, the Receiver Operating Characteristics (ROC) technique to
assess the inherent accuracy of a detection procedure is explained and applied in
the fMRI context.

Chapter 3 deals with FCM and sICA based approaches for the analysis of time-
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resolved event-related mental chronometry data sets. It elucidates the dual view
on the data, i.e. temporal or spatial. It elaborates into detail on several algo-
rithms implementing FCM and sICA and introduces new approaches and algo-
rithms based on both techniques. Chapter 3 furthermore presents an appropriate
data set allowing to evaluate these approaches and techniques when dissecting
the distinct processing stages of a complex cognitive task. Therefore, a visuospa-
tial mental imagery experiment is introduced, yielding a multi-subject, multi-run,
time-resolved event-related mental chronometry fMRI data set.

Chapter 4 evaluates and compares FCM and sICA for the dissection of cogni-
tive stages of the visuospatial mental imagery experiment. It provides empirical
guidelines as to choose between FCM and sICA, as well as for their use. The
comparison holds a qualitative evaluation of the time courses and spatial maps
obtained by both methods. Moreover, it quantitatively evaluates the within- and
between subject-consistency as well as the spatial and temporal correspondence
between the decompositions obtained by both methods.

Chapter 5 compares ‘conventional’ FCM to ‘spatio-temporal’ FCM when analysing
fMRI time series. It elucidates the concept of ‘spatio-temporal’ FCM and compares
both methods on realistic simulated data sets, generated for a range of CNR val-
ues normally encountered in fMRI analysis. It investigates under which conditions
and for which parameter settings spatio-temporal FCM outperforms conventional
FCM in terms of detection accuracy. Finally, both methods are applied to the
visuospatial mental imagery data sets, applying the findings obtained in the con-
text of the simulated data sets. The differences between corresponding topological
structures obtained by both methods are determined and interpreted.



Terminology

Arterial spin labelling (ASL). ASL is an imaging technique based on cerebral
blood perfusion and uses RF pulses to ‘label’ flowing blood (i.e. the longitudinal
magnetisation is flipped) without the need for an exogenous contrast agent. Al-
though ASL techniques have high spatial and temporal precision, the methods are
not in widespread use for functional imaging because they provide lower (half or
even less) signal-to-noise than BOLD-based fMRI.

Blood composition (human). Human blood is composed of plasma (55%)
and cells (45%). Blood plasma contains proteins but mainly consists of water,
composed of oxygen and hydrogen nuclei. Hydrogen nuclei (protons) possess an
intrinsic magnetic moment and are therefore experiencing the NMR effect. The
cell component is dominated by red blood cells, containing haemoglobin.

Cerebral blood flow (CBF) is defined as the volume of blood passing per
unit time through the capillary bed in a given mass of tissue and is commonly ex-
pressed in ‘millilitres of blood per 100 g of tissue per minute’. Because the density
of the brain tissue is close to 1 g/ml, CBF is also expressed in units of inverse time.
A typical average value for CBF in the human brain is 60 ml/100 (g min) or 0.01 s-1.

Cerebral blood volume (CBV) is defined as the volume of blood present in a
given quantity of brain tissue and is dimensionless. A typical value for CBV in
the human brain is 4 %. Estimates of the relative sizes of CBV are: 5 % for the
arterial volume, with the rest divided about equally between capillaries and veins.

Cerebral cortex. See Grey matter.

Cerebral metabolic rate of glucose (CMRGlc). See Metabolism
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Cerebral metabolic rate of oxygen (CMRO2). See Metabolism

Cerebrospinal fluid (CSF). See Grey matter.

Diffusion. The diffusion effect, also known as Brownian motion, describes that a
group of molecules starting at the same position, will spread over time yielding a
displacement with zero mean and standard deviation growing as the square root of
time. The standard deviation of a water molecule in the blood is typically 20µm
for a time period of 200 ms. Capillaries typically have a diameter of less than
10 µm and a blood speed of 1 mm/s, small veins typically have a diameter of at
least 60 µm and a blood speed of at least 5 mm/s.

Computed Tomography (CT) is an imaging technique measuring the local
X-ray attenuation coefficient. Digital geometry processing is used to generate a
three-dimensional image of the internals of the subject from a large series of two-
dimensional slices taken around a single axis of rotation.

Electroencephalography (EEG) is the neurophysiologic measurement of the
electrical activity of the brain by recording from electrodes placed on the scalp
or, in special cases, subdurally or in the cerebral cortex. The resulting traces are
known as an electroencephalogram (EEG) and represent an electrical signal from
a large number of neurons.

Gradient echo (GE). See Pulse sequence.

Grey matter The brain consists of grey matter (40%) and white matter (60%)
contained within the skull. It is surrounded by Cerebrospinal fluid (CSF), cush-
ioning the brain, and is connected to the spinal cord, which carries nerve messages
for sensation and movement between the brain and the body. Generally, white
matter can be understood as the parts of the brain responsible for information
transmission, whereas grey matter is responsible for information processing. The
cerebral cortex is the extensive outer layer (typically 1-4mm thick) of grey matter,
is rich in neurons and therefore largely responsible for higher brain functions.

Haemodynamics refers to the branch of physiology that studies the circula-
tion of blood through the cardiovascular system and the pressures in the heart.

Haemoglobin is a protein in the red blood cells for the transportation of oxy-
gen. Haemoglobin consists of 4 polypeptide chains, which are identified in the
most common type of adult haemoglobin as alfa and beta chains. When bound to
oxygen, it is called oxyhaemoglobin (O2HbFe2+). When oxygen is released, it is
called deoxyhaemoglobin (HbFe2+).

Magnetoencephalography (MEG) is the neurophysiologic measurement of the
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magnetic fields produced by the electrical activity of the brain. The resulting traces
are known as an magnetoencephalogram (MEG) and represent a magnetic signal
from a large number of neurons.

Metabolism is the sum of chemical and physiological processes in living organ-
isms by which substances are produced or transformed to produce energy. In the
brain, oxygen and glucose are consumed as to supply the energy for the basic
processes of cellular work. The corresponding rates are called ‘Cerebral Metabolic
Rate of Oxygen’ (CMRO2) and ‘Cerebral Metabolic Rate of Glucose’ (CMRGlc),
respectively.

Neural system (nervous system). The system that coordinates the activ-
ity of the muscles, monitors the organs, constructs and processes input from the
senses, and initiates actions. It consists of the Central Nervous system (CNS) and
the Peripheral Nervous System (PNS). The CNS is located within the skull and
spine, whereas the PNS is located outside the skull and spine.

Neurovascular refers to blood vessels of the neural system.

Perfusion is a physiological term that refers to the process of nutritive delivery of
glucose and oxygen of arterial blood to a capillary bed in the biological tissue. In
medical imaging perfusion implies looking at phenomena such as regional cerebral
blood flow and volume, mean transit time, time to peak, and capillary permeabil-
ity.

Physiology is the branch of biological sciences dealing with the functioning of
living organisms or any of its parts (organs, tissues, cells).

Positron emission tomography (PET) is a nuclear imaging technique. A
short-lived radioactive tracer isotope, which is incorporated into a metabolically
active molecule, is injected in the blood circulation of the subject. The metaboli-
cally active molecule becomes concentrated in tissues of interest (e.g. the brain).
The isotope decays by emitting a positron, an effect used to produce a three-
dimensional image of functional processes.

Pulse sequence. A pulse sequence is a set of RF pulses applied to a sample
to produce a specific form of MR signal. Conventional fMRI imaging techniques
consist of two broad classes: spin echo (SE) and gradient echo (GE). An SE tech-
nique includes a 180◦ RF refocusing pulse that corrects for signal loss due to
magnetic field inhomogeneities. A GE technique has no refocusing pulse, yielding
a much shorter repetition time at the expense of a larger attenuation of the ac-
quired signal, however. Echo Planar Imaging (EPI) is a fast imaging technique.

Spin echo (SE). See Pulse sequence.
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Transcranial magnetic stimulation (TMS) is a noninvasive method to ex-
cite neurons by applying weak electric currents induced in the tissue by rapidly
changing magnetic fields. In repetitive TMS (rTMS), stimuli are repetitively ap-
plied.

White matter. See Grey matter.



Notations

Let X be a T × N matrix of observations.

xt is the t-th row vector of observations, with dimensions 1 × N .

xn
T is the n-th column vector of observations, with dimensions T × 1.

A column vector is denoted with the transpose operator (.)T . Whenever
an elaboration applies a deviating notation, such as with SVD, the latter
will be mentioned explicitly.

xt,n is the observed matrix element on row t and column n.

x̃t is a vector of random variables.

X̃ is a matrix of random variables.

X̄ is the mean over the rows of matrix X.

x̄ is the mean of vector x.

Xw is the whitened transform of matrix X.

C = E
{

X̃X̃T
}

is the covariance matrix of random matrix X̃.

E {.} is the expectation-operator.

Ĉ = XXT is the estimate of C based on the observed matrix X.
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Chapter 1

BOLD fMRI measurement of cortical
activity

1.1 Introduction

This chapter elaborates on the relationship between the measured haemodynamic
effect and its underlying neuronal activity. It focuses on the complexity of this
relationship and the fact that it is poorly understood. Furthermore, the confound-
ing factors and the disturbances of the weak signal by several noise sources are
elucidated. The impact of these effects on the specificity of the BOLD signal is
considered as well as approaches to improve the specificity.

1.2 Functional imaging techniques

1.2.1 Historical overview

First approaches

The goal of understanding the functional organisation of the human brain has
motivated neuroscientists for well over 100 years, but the experimental tools to
measure and map brain activity have been slow to develop. Fluctuating electric
and magnetic fields measured at the scalp with electroencephalography (EEG) or
magnetoencephalography (MEG), respectively, provide information on electrical
events within the brain. From these data, the location of a few sources of activity
is estimated, but the information is not sufficient to produce a detailed map of the
pattern of activation.
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The idea that cerebral blood flow (CBF) could reflect neuronal activity in the con-
cerning brain regions offered a promising alternative [1]. Neuronal activity could
now be determined by measuring the precise location of the metabolic activity
that followed. In 1948, Kety and Schmidt described the nitrous oxide technique
for measuring CBF [2]. It was the first technique capable of producing quantita-
tive measurements of global brain blood flow in humans, providing a new window
on the physiological functioning of the brain.
Subsequent techniques with radioactive tracers, like the radioactive xenon tech-
nique [3], led to positron emission tomography (PET) [4, 5], which is able to
measure CBF locally with improved spatial resolution. Patterns of activation in
the working human brain could now be mapped.

Nuclear Magnetic Resonance

In 1946, two teams led by Purcell and Bloch independently and simultaneously
discovered the Nuclear Magnetic Resonance (NMR) effect [6, 7]. Both research
groups detected that certain nuclei (including hydrogen) possess an intrinsic mag-
netic moment, and when placed in an external magnetic field, they orient them-
selves along this external magnetic field, performing a precession with a frequency
proportional to the field strength. This finding had far-reaching applications in
many domains, such as Magnetic Resonance Imaging (MRI), which was developed
in the 1970s as a new tool to reveal details of human anatomy. When a person is
placed in an MRI scanner, the aforementioned orientation of the intrinsic magnetic
moment of the hydrogen nuclei is disturbed by exciting these nuclei with a burst
of electromagnetic energy in the form of radiofrequent (RF) pulses. Afterwards,
the nuclei realign themselves by transmitting an RF signal that is detected in a
receiver coil placed around the patient’s head. The resulting signal reflects the
tissue-dependent magnetization of water molecules in space and can thus be used
to produce an image. In 1973, Lauterbur was the first to introduce an imaging
technique based on MR [8]. MRI quickly became an indispensable tool in diagnos-
tic radiology with a large flexibility: contrast between one tissue and another in
an image is varied simply by varying the acquisition parameters. Although very
interesting, a detailed description of the basic physics of MRI and the way the
MR signal is manipulated experimentally in the formation of an image is consid-
ered beyond the scope of this dissertation and is therefore omitted. An excellent
and complete description of the principles of MR and the MR imaging techniques
is found in the work of Buxton [9]. In this dissertation, we will frequently refer
to several issues covered by these imaging techniques, such as the applied pulse
sequences, the tissue- and pulse sequence dependent parameters, and the corre-
sponding contrast characteristics.
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Functional Magnetic Resonance Imaging

In the late 1980s, MR led to a revolutionary technique for research on the basic
functions of the human brain: functional magnetic resonance imaging (fMRI). It
was found that the MR signal’s sensitivity to local changes in perfusion allowed
the detection of local brain activity simply by evaluating the corresponding MR
signal change. Originally, the MR signal was made sensitive to perfusion by in-
travascular contrast agents, such as gadolinium- diethylene-triamine-pentaacetic
acid (Gd-DTPA) [10]. In the early 1990s, however, Ogawa et al. discovered a
natural physiological contrast mechanism. They found that local changes in the
oxygenation of the blood affected the MR signal and called this phenomenon the
‘Blood Oxygenation Level Dependent’ (BOLD) effect [11]. This finding resulted
in the first experiment measuring activity in the human brain, by Kwong et al.
[12].

1.2.2 Strength and shortcomings of fMRI

Strength

The flexibility of fMRI makes it a powerful tool to identify anatomic sources of
the electrophysiological events together with their temporal behaviour. Although
comparatively new, fMRI is now a primary technique for basic studies of the
organisation of the working human brain, because of several advantages over PET:

(1) fMRI has in principle higher spatial and temporal resolution.

(2) BOLD fMRI procedures are completely non-invasive and can be repeated in
a single subject without concern for exposure to ionizing radiation.

(3) Since anatomic and functional images can be acquired during the same imaging
session, functional maps can be superimposed directly to anatomic images
without any misregistration.

Figure 1.1 shows a typical fMRI image in which a coloured activation map is
overlaid on a high resolution anatomical image of a transversal slice, recorded
during the same session. In the (T1-weighted, see [9]) anatomical image, grey
matter is dark grey, white matter light grey, cerebrospinal fluid (CSF) is black.
The activation map indicates regions of auditory activation and a lighter shade
of a colour refers to a more significant result found by the applied method (see
section 4.2.5).

Shortcomings

As a disadvantage of fMRI, neuronal activity is not measured directly, but in-
stead by means of the haemodynamic effect associated with activation through a
neurovascular coupling composed of a cascade of complex and poorly understood
mechanisms [14, 15]. This limits the temporal resolution of fMRI to be orders of
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Fig. 1.1: Typical fMRI image in which a coloured activation map is overlaid on a
high resolution anatomical image of a transversal slice, recorded during
the same session [13].

magnitude poorer than that of EEG or MEG, and the resolution in space faces
a natural blurring and misregistration of the spatial sources of the BOLD signal.
The latter differs slightly from the neuronal source registration [16], since haemo-
dynamic effects can be somewhat dislocated to the neuronal events.

Moreover, fMRI’s flexibility makes it a tool difficult to grasp. A computed to-
mography (CT) X-ray image, for example, is relatively easy to understand: the
intensity at each point in the image is proportional to the corresponding local X-
ray attenuation coefficient. But in MRI, the intensity at each point in the image
depends not only on the local proton density but also on intrinsic tissue properties,
blood oxygenation, blood flow, the heterogeneous structure of the tissue, and the
local diffusion characteristics of water including anisotropic directional properties.
The extent to which each of these physical characteristics affects the MR signal
depends on how exactly the image is acquired.

1.3 Functional relationship between BOLD response and
underlying neuronal activity

1.3.1 Pooled neuronal activity

While one cannot non-invasively examine the response of single neurons in the
human cortex, a number of investigators examining the visual cortex [17–20] have
argued that behaviourally or perceptually significant activity occurs not at the
level of single cells, but in large pools of neurons. Consequently, fMRI, measuring
activity at the voxel level (typically 30 mm3), applies to the study of human
behaviour. However, there are several underlying assumptions implicit in any
assertion that fMRI reflects behaviourally relevant neuronal responses.

• fMRI response from a selected region of cortex has to be proportional to the
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spatial average of individual neurones’ metabolic activity integrated over
some time [14, 21].

• Physiological judgements have to be governed by pooled neuronal activity
and not by one or a small number of stimulus-specific neurones [22, 23].

• A certain number of neurones must spike above a threshold mean rate in
order for behaviour to occur [24].

1.3.2 Physiological changes during brain activation

Several physiological changes occur due to neuronal activity, such as a change in
energy metabolism, cerebral blood flow (CBF), and cerebral blood volume (CBV).
We expound on their relation and their use as to estimate relative changes in the
oxygen consumption of brain tissue, accompanying neuronal activity.

Cerebral blood flow and energy metabolism

Under normal conditions, the brain derives almost all of its energy from the ox-
idation of glucose. Therefore, it needs a nearly constant supply of glucose and
oxygen, delivered by the blood supply through a rich network of vessels. Although
the brain accounts for only about 2 % of the total body mass, it consumes 20 %
of the body’s glucose and oxygen and receives 20 % of its blood supply. Energy
metabolism and CBF are tightly linked to local neuronal activity, which implies
that maps of local glucose consumption, local oxygen consumption, or local blood
flow each provide information on neuronal activity. A complete description of
processes involved in neuronal activity from the perspective of thermodynamics is
found in Nicholls et al. [25].

Cerebral blood volume

Cerebral blood volume is a distinctly different physiological quantity compared to
CBF. Both are related however, because the change in CBF is accomplished by a
change in the cerebrovascular resistance, which is concentrated in the arterioles.
A dilation of the arterioles leads to a reduction in the resistance of the arterioles
and a reduced pressure drop across the arteriolar segment. This will increase the
pressure in all later segments of the vascular tree and dilates the veins (and possibly
the capillaries as well). The result is that changes in the blood volume are not
likely to be evenly distributed along the entire vascular tree, but may chiefly be
accomplished by the veins. The qualitative relationship between CBF and CBV
changes is derived in the work of Grubb et al. [26]:

CBV

CBV0
=

(
CBF

CBF0

)α

, (1.1)
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where α is a constant with an approximate empirically derived value of 0.4 and
the subscript ‘0’ refers to the baseline steady state of a variable.

1.3.3 Magnetic susceptibility changes accompany metabolic
changes

Exogenous contrast agent

Cerebral blood volume was first measured with the use of exogenous contrast
agents, such as gadolinium-DTPA (Gd-DTPA) [27, 28]. The presence of any sub-
stance in the magnetic field alters that field to some extent and the degree of this
effect is called the ‘magnetic susceptibility’. Gadolinium-DTPA, which has several
unpaired electrons, largely disturbs the local magnetic field, leading to a large
magnetic susceptibility effect. This in turn leads to attenuation of the MR signal.
Although the agent is confined to the intravascular space, the total MR signal is
affected because the microscopic field gradients penetrate into the extravascular
space, significantly extending beyond the vessel wall. The resulting signal changes
can be quite large (30-50 %) and grow for larger blood volumes.

Following a bolus injection of the agent, the local MR signal in the brain drops
transiently as the agent passes through the vasculature. This effect lasts only a
brief time (about 10 s) and fast dynamic imaging is thus required to measure it.
By integrating over the first passage of the contrast agent, cerebral blood volume
is determined. A bolus of contrast agent is injected twice, namely when the sub-
ject is at rest and while performing a task and the relative blood volume maps are
compared to infer which areas of the brain have been activated. The first fMRI
measurement of human brain activation using Gd-DTPA as a contrast agent was
performed by Belliveau et al. in a visual stimulus experiment [10].

The major shortcomings of this fMRI technique are the poor temporal resolution
and the requirement for an exogenous contrast agent, which limits the functional
measurements that can be performed in humans. Therefore, more recently in-
travascular contrast agents that can remain at stable concentrations in the blood
for several hours have been developed [29, 30]. Additional advantages of the latter
technique are the potentially high ‘signal-to-noise ratio’ (SNR) (see section 1.6.1.1)
and the fact that the measured signal is directly proportional to CBV. However,
as with Gd-DTPA bolus methods, toxicity limits the number and frequency of
studies that can be performed on an individual human subject.

Blood oxygenation

With contrast agents, a susceptibility difference between the intravascular and ex-
travascular space is induced by the experimenter. However, there is also a natural
physiological mechanism for producing such a susceptibility difference, resulting
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from the degree of oxygenation of the blood. Arterial blood arrives fully oxy-
genated at the brain. Basal neuronal activity consumes oxygen and thus increases
the concentration of deoxyhaemoglobin in the venous blood, thereby altering its
magnetic properties. Indeed, oxyhaemoglobin(O2HbFe2+) is diamagnetic whereas
deoxyhaemoglobin (HbFe2+) is paramagnetic due to the four unpaired electrons
[31]. Magnetic flux is reduced in diamagnetic materials, while paramagnetic ma-
terials on the other hand have increased magnetic flux.

Oxyhemoglobin therefore does not alter significantly the regional magnetic field
and is thus characterized by a small magnetic susceptibility effect. Deoxyhe-
moglobin on the other hand largely disturbs the local magnetic field in a region
of tissue, leading to a significant magnetic susceptibility effect. An increase in the
concentration of deoxyhaemoglobin in the blood thus leads to an increase in the
magnetic susceptibility (a proportional effect [32]) which results in a decrease of
the acquired MR signal. This phenomenon, by which local changes in the oxy-
genation of the blood effect the MR signal, is called the ‘Blood Oxygenation Level
Dependent’ (BOLD) effect and was first observed by Ogawa et al. [11].

1.3.4 BOLD effect

Imbalance between CBF and CMRO2

Empirically, the coupling between CBF change and functional activity is reason-
ably tight, both in location and degree of change. This was already indicated by
an early PET study, performed by Fox and Raichle, measuring the blood flow re-
sponse of the visual cortex to photic stimuli of different frequencies [33]. In a later
repetition of this experiment applying BOLD fMRI, Kwong et al. found that the
BOLD signal closely followed the CBF change, suggesting that the change in blood
oxygenation was altered in parallel with the CBF change [12]. Later, convincing
evidence for a close relationship between the CBF and the CMRO2 in the visual
cortex was reported [34, 35]. However, Kwong et al. also demonstrated that brain
activation led to a local signal increase rather than a decrease, which was surpris-
ing because it was already demonstrated that a reduction in blood oxygenation led
to a signal decrease [36]. Consequently, their measurement surprisingly suggested
that the blood becomes more oxygenated with activation.

Fox and Raichle on the other hand were the first to discover this imbalance between
some basic physiological changes following brain activation [5]. They performed a
somatosensory experiment and found a local CBF increase of about 30 % in the
appropriate area of the brain, but only a 5 % increase of cerebral metabolic rate
of oxygen (CMRO2). In a later visual stimulation experiment, this imbalance be-
tween CBF and CMRO2 changes was confirmed [37]. In recent years, fMRI has
provided ample confirmation that the imbalance of flow and oxygen metabolism
changes is indeed a physiological phenomenon [38].
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Coupling between CBF, CBV, and CMRO2

Several possible explanations for this large increase in CBF accompanying a smaller
increase in CMRO2 and the consequent signal changes have been proposed.

(1) A first hypothesis is that CBF is controlled on a coarse spatial scale, with areas
of increased CMRO2 occurring on a finer scale. This hypothesis has been poet-
ically described as ‘watering the garden for the sake of one thirsty flower’ [39].
If confirmed, this model has important consequences for the ultimate spatial
resolution obtainable with functional neuroimaging techniques based on blood
flow changes. The limitation on spatial resolution may then be physiologi-
cal, rather than technological, determined by the minimum volume of tissue
over which CBF can be controlled. However, further studies are required to
demonstrate that coarse control of CBF can provide a general explanation for
the observed imbalance of flow and oxygen metabolism changes.

(2) Another hypothesis for this imbalance is the limited oxygen delivery at rest
[40]. A large flow change is required to support a small increase in oxygen
metabolism. The argument is based on two assumptions. The first is that
oxygen delivery to tissue is ‘barrier-limited’, so that only a fraction of the
oxygen delivered to the capillary bed manages to leave the capillary and be-
come available for metabolism [41, 42]. The second assumption is that a CBF
increase is accomplished by increasing the velocity of capillary blood rather
than capillary recruitment, thus leading to decreased capillary transit time
[43, 44]. This yields that a small CBF increase leads to a reduction of oxygen
extraction. The flow must thus be increased substantially to support a small
increase in the oxygen metabolic rate.

(3) More recently, a hypothesis was developed based on dynamics of the BOLD
signal change and including the cerebral blood volume (CBV). When a brain
region is activated, the oxygen need grows and as a reaction, the cerebral
blood flow (CBF) and the cerebral blood volume (CBV) both increase. Sev-
eral studies indicated CBV changes were slow to follow CBF changes and
reported pronounced transient effects of the BOLD signal change [29, 45], as
indicated in Figure 1.2 (left). The latter figure shows the dynamics of CBV
and CBF signal changes in a rat model, during forepaw stimulation, as mea-
sured by Mandeville et al.

Two similar biomechanical models were proposed to explain this lagging blood
volume change: the delayed compliance model [46] and the balloon model [47].
Both models include mechanical properties of the vessels to account for the
dynamic changes in blood volume following pressure changes induced by the
change in arteriolar resistance. The transient shape of the BOLD signal change
follows from these models, keeping in mind that the BOLD effect depends
approximately on the total amount of deoxyhaemoglobin within an imaging
voxel. This amount depends not only on changes in the oxygen saturation of
the blood, i.e. the balance between CBF and CMRO2, but also on the change
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in cerebral blood volume (CBV). A CBF increase and a CBV increase have
competitive effects on the BOLD signal change. A CBF increase was found to
be accompanied closely by a smaller CMRO2 increase [48]. This effect lowers
the fraction of deoxygenated blood, thus leading to a positive BOLD signal
change. An increase in CBV however increases the amount of blood, and thus
increases the amount of deoxyhaemoglobin and so would tend to produce a
negative BOLD signal change. Normally, the first effect dominates, leading to
a positive BOLD signal. But if the CBV change lags behind the flow change
there can be pronounced transient effects, resulting in an initial overshoot of
the BOLD signal followed by a reduced plateau and an undershoot at the end
of the stimulation. Figure 1.2 (left and right) illustrates the dynamics of the
signal changes accounting for the BOLD signal change.

Fig. 1.2: Haemodynamic changes following stimulation: the CBV lags behind the
CBF, leading to a pronounced transient effect in the BOLD signal [48].

(4) Finally, it is worth mentioning that other possibilities for the explanation of
the mismatch between supply and consumption of blood oxygen exist. The
vasculature for example could very well deliver a fixed ratio of oxygen and
glucose appropriate for an aerobic process. It is suggested that both aerobic
and anaerobic processes demand glucose. Because glucose supply appears to
match the consumption, the result would be an oxygen surplus [49].
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1.4 Characteristics of BOLD signal change

1.4.1 Magnitude of the BOLD signal change

In the resting human brain, arterial blood arrives at the brain fully oxygenated, and
around 40 % of the oxygen is extracted in passing through the capillary bed [50].
The venous blood, and to a lesser extent the capillary blood, contains a significant
concentration of deoxyhaemoglobin. The susceptibility change due to this amount
of deoxyhaemoglobin, observed both in intravascular and extravascular spaces, is
about an order of magnitude smaller than that due to a concentrated bolus of
Gd-DTPA. This yields a weaker signal attenuation compared to contrast agents,
estimated to be about 8 % (field strength 1.5 T) compared to what the signal would
be if the blood remained fully oxygenated [51]. When the brain is activated, the
venous blood is more oxygenated and the degree of attenuation due to BOLD
effect is reduced. The measured signal increase is typically small: a few percent at
1.5 T (At higher fields, e.g. 4 T, the signal changes are much larger, in the range
of 5-15 %). For this reason experimenters mostly perform several trials to allow
sufficient averaging as to improve the signal-to-noise ratio.

1.4.2 Temporal characteristics of the BOLD response

The haemodynamic response

The haemodynamic response (HR) is the response to a brief stimulus. Although
neuronal activity can occur very rapidly (on the order of milliseconds) in responses
to a sensory event, changes in the HR occur much more slowly (on the order of
seconds). As shown in the simple model of Fig. 1.3 a, the HR function is not a
simple function of the stimulus pattern, but is temporally blurred in relation to
the underlying neuronal activity.

The BOLD response

A simple model for the BOLD response, being the response to a sustained stim-
ulus, is presented in Fig. 1.3 b. The latter figure shows a plateau level for the
duration of the stimulus, ensuing from two features of the HR: linearity and time-
invariance [14]. Boynton et al. assumed that the HR is proportional to the local
average neuronal activity, averaged over a small region of the brain and averaged
over a period of time. Time-invariance means that the HR to neuronal activity
does not change with time.

Combining these two features, the system transferring neuronal activity into a HR
is said to be a linear time-invariant (LTI) system. An LTI system transforms input
to output via convolution with an impulse-response function, i.e. the response of
the system to an input of short duration. In our context, the input being neuronal
activity, this response is by definition the HR. Therefore, the BOLD response is
mathematically described as the convolution of the stimulus pattern and the HR,
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as indicated in Fig. 1.3b.

Fig. 1.3: Model of the haemodynamic response to a brief stimulus (a) and the
BOLD response to a sustained stimulus (b) [9].

Figure 1.4 shows a realistic example of a BOLD signal response originating from
a human visual stimulus experiment [52]. The response exists of different phases.

• After the initiation of the stimulus, there is an initial delay of 1-3 s [53],
during which an initial dip may occur (as shown in Figure 4). This initial
dip typically lasts 1-2 s [52, 54, 55] and reaches its maximum excursion of
1-2 % at 2-3 s after the stimulus onset for 4 T experiments [55], but is much
weaker (compared to the late positive response) for 1.5 T experiments [56].
This fast response is potentially one of the most important aspects of the
BOLD response (see section 1.7.2). However, the initial dip is not always
seen, and this has led to controversy over its existence [57, 58].

• The initial delay (with or without initial dip) is followed by a ramp of about
5-8 s before a plateau signal change is reached.

• After the end of the stimulus the BOLD signal ramps down over several
seconds and often undershoots the original baseline. Although the post-
stimulus undershoot is not always evident, numerous examples can be found
in literature [52, 55, 59]. Bandettini et al. reported undershoots with am-
plitude about half the plateau amplitude and that take 20 s to resolve [53].
Other authors reported more pronounced undershoots that take more than
a minute to resolve [45, 58, 60].

1.4.3 Nonlinearity in BOLD response

The quantitative relationship between simple stimuli and the resulting BOLD re-
sponse is examined by several investigators in experiments comparing the response
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Fig. 1.4: Example of a BOLD signal response originating from a human visual
stimulus experiment [52].

to brief stimuli to the response to longer stimuli. These studies used visual stimuli
[14, 61, 62], auditory stimuli [63, 64], and motor tasks [63]. The consistent result
of these studies is that, even though the response is roughly linear, there is a defi-
nite nonlinear component. The nature of this nonlinearity is that the response to
a brief stimulus (e.g. < 4 s) appears stronger than would be expected given the
response to a longer stimulus.

Possible explanations of this nonlinearity can be given by considering the pro-
cess that leads from the stimulus to the BOLD response as consisting of three
stages, as illustrated in Fig. 1.5 Nonlinearities may enter in each of these stages.

Fig. 1.5: Different stages in the process from stimulus to BOLD response [9].
Nonlinearities may enter in each stage.
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(1) The first step is the translation of the stimulus pattern into a temporal se-
quence of neuronal activity. This neuronal response is likely to be nonlinear: it
often begins with an initial peak of activity before settling down to a sustained
plateau [65–67].

(2) The second step is the translation of the neuronal activity time course into
haemodynamic changes (blood flow, blood volume, and oxygen metabolism)
and is modelled as a simple linear convolution (see section 1.4.2).

(3) The third step is the translation of the haemodynamic changes into the BOLD
response and is likely to involve two types of nonlinearity. Firstly, the metabolic
changes follow different time courses, with the CBV lagging behind the CBF
change (see section 1.3.4) [29, 47]. Secondly, the nature of the BOLD effect
limits the signal to be measured in a BOLD experiment to a maximum, corre-
sponding to full oxygenation. Thus any BOLD signal increase is an approach
toward this ceiling. Any extrapolation of the BOLD change measured with a
small flow change will overestimate the BOLD change for a large flow change.

Despite these nonlinearities, it is common in the analysis of BOLD data to assume
linearity. This assumption undoubtedly introduces some error into the analysis
[53], but many applications indicated that the error is likely to be small [14, 68].

1.5 Brain mapping by BOLD fMRI experiments

1.5.1 Visualising human brain activation

The influence of deoxyhemoglobin concentration in the blood on magnetic suscep-
tibility was firstly confirmed by an MRI experiment performed at high magnetic
fields (7 T and 8.4 T) on brains of live mice and rats [69]. The contrast in the
acquired images depicted anatomical details of the brain by numerous dark lines,
representing the blood vessels. A subsequent study consisting of a series of in
vitro blood sample experiments and image simulations performed at high fields
indicated that image contrast subsequent to local field variation around blood ves-
sels was pronounced for gradient echo (GE) images and much weaker for spin echo
(SE) images [70]. In an animal study, Ogawa et al. showed that blood oxygenation
level dependent (BOLD) contrast follows blood oxygenation changes induced by
anaesthetics and by inhaled gas mixtures that alter metabolic demand for blood
[11].

These early animal studies in which blood oxygenation was manipulated by the ex-
perimenter suggested that BOLD contrast was suited to provide in vivo real-time
maps of blood oxygenation in the brain under normal physiological conditions.
The development of fast imaging techniques like Echo Planar Imaging (EPI), orig-
inally proposed by Peter Mansfield [71], offered the necessary improvement in time
resolution as to measure these BOLD signal changes (i.e. time courses). An image
consisting of a 128 × 128 matrix for example, can be measured using a GE pulse



16 Chapter 1. BOLD fMRI measurement of cortical activity

sequence in less than 1 s. With EPI, this image can be obtained within a few tens
of milliseconds.

Changes in image contrast were firstly visualized using EPI in a study on a cat
model imposing respiratory challenges [36]. Kwong et al. were the first to map
human brain activation using BOLD contrast, using visual and motor stimula-
tion paradigms [12]. This report marked the beginning of functional human brain
mapping experiments based on the BOLD effect.

1.5.2 Mapping brain functionality

Numerous studies have demonstrated that the human brain is segmented into
many distinct areas that are functionally specialized. However, the spatial scale
of this functional specialization varies. Although very interesting, the detailed
description of the latter specialization is considered beyond the scope of this dis-
sertation and is therefore omitted. An excellent description can be found in [72].
For the determination of the location of the various anatomical structures, we
refer to the human brain atlas of Talairach and Tournoux [73]. In the following
paragraph, a general review of literature concerning functional specialization is
presented.

Basic functions Some brain functions, like speech and language [74–76] are part of
a distributed network located primarily within the left hemisphere. Other
functions, such as vision [77–85], somatosensory [86], and motor control [87–
90] have their cortical representations located within both hemispheres, and
are localised within gyri and sulci tens of millimetres in size.

Auditory system The study of the auditory system [91, 92] proceeded considerable
slower compared to other functional systems, due to several factors. The
first concerns the intrinsic anatomy of the auditory system, i.e. the reduced
extension in space and the inter-individual variability of regions involved in
auditory perception. The second concerns specific difficulties arising mainly
from the loud acoustic noise, produced by the gradient system during image
acquisition. This considerable background noise can interfere with the ex-
perimental stimuli in an unpredictable way. Among the many effects derived
from this interference, the most expected one occurs in the partial satura-
tion of neuronal-evoked regional haemodynamics that reduces, probably in
a non-linear fashion, the BOLD signal amplitude in response to the auditory
stimuli. To overcome these problems, different approaches have been pro-
posed, which generally require a careful tailoring of the experimental designs,
the fMRI methodology, and the strategies of data processing to the specific
problems of audition and the particular research goal. An excellent review
of solutions already existing or under development to the specific problems
of auditory system, like ‘silent fMRI’, can be found in [93].

Complex tasks In the subsequent years, brain areas related to more complex mo-
tor and sensory tasks or cognitive tasks were investigated. Studies were for
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instance performed in the field of word generation [94], puzzle solving [95],
motor skill-learning [96], language-related brain organization [97], or border
determination of multiple visual areas [98–101]. In the latter studies, the vi-
sual cortex was found to be organised into multiple specialised areas, namely
areas V1 to V8.

Mental imagery Another vast area of research is mental imagery, which occurs
when perceptual information is assessed from memory. By contrast, percep-
tion occurs when information is registered directly form the senses. Mental
images do not only result from the recall of previously perceived objects or
events, they can also be created by combining and modifying stored percep-
tual information in novel ways.

Among the best studied mental imagery tasks are Paivio’s ‘mental clock’ task
[102] and Shepard and Metzler’s ‘mental rotation’ task [103]. Both tasks re-
quire several seconds of processing time and thus are particularly well suited
for an fMRI-based mental chronometry investigation. In the mental rotation
task photographs of two rotated objects are compared and subjects have to
report whether the two objects are identical or mirror-inversed. In the men-
tal clock task, pairs of clock faces are compared on the basis of acoustical
presented times. Subjects have to compare the mental images and report in
which of the two faces the clock hands form the greater angle.

Research concerning mental imagery can be generally divided in three classes.
A first class of studies performed visual [104–108], auditory [109, 110], and
motor [111–113] mental imagery experiments to collect evidence that imagery
engages brain mechanisms that are used in perception and action. A second
class of studies illustrated that visual mental imagery engages even the ear-
liest visual cortex. Some of the original areas have been further subdivided.
[114–116]. Finally, a last class showed that imagery engages mechanisms
that control physiological processes such as hart rate and breathing, having
effects much like those that occur with the corresponding perceptual stimuli
[117]. An excellent review of neural foundations of imagery and correspond-
ing neuroimaging studies is found in [118].

1.5.3 Block versus event-related paradigms

Basically two types of experimental designs for the localization of human brain
functionality exist: block and event-related. Due to specific shortcomings related
to block paradigms, a shift to event-related paradigms occurred.

Block paradigms

The first fMRI studies used a ‘block’ design. Early block design experiments al-
ternated ‘ON’ periods of activation, corresponding to the execution of a task, with
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‘OFF’ control periods of rest. Rest, however, is defined only with respect to the
specific activity being considered and contains ongoing baseline activity. Gener-
ally however, block designs consists of different tasks (instead of task-rest) and
brain responses to these tasks during the experiment are acquired and compared.
Each task is of roughly the same duration, typically in the range 20-30 s. The
alternation ensures that signal variations from small changes in scanner sensitiv-
ity, patient movement, or changes in attention have a similar impact on the signal
responses associated with each of the different states. As the shape of the BOLD
response function can assumed to be simple, regions of activity change between
one condition and another can be identified with considerable statistical power
(see section 2.2.1). The MR acquisition methods used in conjunction with block
paradigms are indeed designed to give both maximal SNR and maximum BOLD
contrast for whole brain coverage. An extensive overview of possible designs with
blocked paradigms can be found in [119, 120].

However, block design creates a highly artificial psychological constraint: it may
be difficult to control a cognitive state precisely for the relatively long periods of
each block. A ‘rest’ state is rarely a true rest, as the mind ‘wanders’ in a subject
who is not engaged in a specific task. Many types of stimuli (particularly sensory
stimuli) may show rapid habituation. The latter phenomenon is defined as the
reduction of responsiveness after prolonged or repeated exposure to a stimulus. It
is an adaptive ability to cease responding to irrelevant events in an environment
with multiple sensory stimuli [121]. More complex cognitive tasks simply may not
be amenable to a block design. Finally, information regarding the time course of
an individual response is lost within a block.

Event-related paradigms

To overcome these shortcomings, the so-called ‘event-related’ (ER) design was pre-
sented [122, 123]. Event-related paradigms differ from blocked paradigms in that
individual trial events are measured, rather than a temporally integrated signal.
Such a design may seem counterintuitive given the lag and the temporally blurring
inherent in the HR. However, the response within a given subject and within a
given region of cortex was found to be very consistent from one set of measure-
ments to the next [61, 124, 125]. The lag of onset and the time course of signal
evolution are highly reproducible. Activity can thus be revealed by averaging data
acquired after many such discrete events. Averaging increases the SNR for signal
changes when activity is time-locked to the experimental event, i.e. when the ac-
tivity is aligned with the event of interest [122, 126].

Several features of fMRI data proved to be critical in allowing event-related pro-
cedures to be developed.

• Firstly, technological advances in fMRI data acquisition speed allowed ac-
quiring the data over the time course of an individual event. Techniques like
EPI acquire data extremely rapidly: if only a few slices through the brain
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are acquired, measurements can be repeated in less than 1s, whereas whole
brain coverage can be acquired in as little as 2 s. The effective sampling
rate can even further be reduced by appropriate paradigm design. Miezin
et al. for example doubled the effective sampling rate using an interleaved
procedure [125]. For a fixed TR of 2 s, two data sets were acquired providing
odd and even sample points that contribute to a composite waveform with
1 s sampling resolution.

• Secondly, even for very brief periods of neuronal activity, resulting signal
changes were measurable despite the delayed and prolonged nature of the
time course of the HR [53, 80, 127], indicating high fMRI signal sensitivity.
Savoy et al. demonstrated that a visual stimulation as brief as 34 ms in dura-
tion will elicit small (i.e. signal changes less than 1%) but clearly detectable,
signal changes, as shown in Fig. 1.6 [128].

Fig. 1.6: Sensitivity of the BOLD signal. Even very brief periods of neuronal
activity (as brief as 34 ms), result in measurable signal changes, despite
the delayed and prolonged nature of the time course of the HR [128].

• Thirdly, the HR to neuronal activity has been shown to provide a highly
consistent response that summates over sequential events in a roughly lin-
ear fashion (see above). In the event-related context, linearity means that
the shape of the BOLD HR to a given period of stimulation is predictable
and relatively stable across events, even when there is an overlap in the re-
sponse to successive events, as illustrated in Fig. 1.7 [14, 61]. However, the
full impact of these nonlinearities, particularly in event-related experimental
paradigms that involve the separation of overlapping responses, has not been
explored until now.

Finally, we mention that, more recently, mixed designs were introduced. They pro-
vide the power and flexibility to address more complex cognitive hypotheses that
are otherwise difficult to study with block design or event-related design alone.
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Fig. 1.7: Event-related fMRI data show approximately linear summation of the
HR for closely spaced trials. The left figure shows the fMRI signal
intensity elicited by the presentation of one, two, or three trials. The
response is increased and prolonged by the addition of multiple trials,
but does not saturate as successive trials overlap. On the right, the
estimates of the individual responses to each of the three trials are
shown [61].

Laurenti et al, for example, superimposed in time visual blocked stimuli and au-
ditory events [129]. They demonstrated, using a GLM procedure, that regional
activity corresponding to both stimuli could be separated.

1.6 Non consistently-task-related BOLD effects

Neuroimaging literature is predominantly concerned with the determination of the
precise location and time course of consistently-task-related (CTR) responses cor-
responding to true neuronal activity. BOLD fMRI tries to measure the neuronal
activity indirectly by means of the haemodynamic effect. The latter however is as-
sociated with activation through a neurovascular coupling composed of a cascade
of complex and poorly understood mechanisms. Several non task-related effects
could occur during the linear transform pathway, leading to signal increases that
masquerade as BOLD activations. Various sources of noise as well as sources of
non-neuronal origin, such as the inflow effect, contribute to the fMRI response.
Other confounding effects are neuronal in origin, but do not reflect consistently-
task-related activity, like transiently-task-related (TTR) activity, default activity,
or negative BOLD response.

Several approaches exist to deal with these effects. An appropriate experimen-
tal design is used to prevent their occurrence as much as possible. Additionally,
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after data collection, remaining effects can be somewhat corrected with preprocess-
ing techniques. Finally, a careful interpretation of the activation patterns found
by the applied analysis method is performed post-hoc. Remaining artefactual
components can thus as yet be identified and subsequently excluded from further
analysis. In this section, we will elaborate on the origin of the confounding effects
as well as on specific techniques to prevent subsequent corruption of the analysis
results.

1.6.1 Noise

In the fMRI context, noise is (broadly) defined as the nuisance signal that disturbs
the fMRI response. Confounding effects are introduced at each stage of the linear
transform pathway for the transformation of stimulus related neuronal activity into
a BOLD response. However, according to the linear transform model of Boynton
et al. (elaborated for a visual stimulus), the effect of these individual noise sources
can be summarized by a single noise source that adds to the desired fMRI signal,
provided that the sources are independent of stimulus and temporal period [14]
(see Fig. 1.8).

Fig. 1.8: According to the linear transform model of Boynton et al, the effect of
individual noise sources can be summarized by a single noise source.
[14]

In order to determine techniques to reduce the noise-component in the measure-
ment data, noise sources are classified based on their characteristics. The latter
approach yields two categories: thermal noise and physiological noise.

1.6.1.1 Thermal noise

Characteristics

Thermal noise refers to thermal fluctuations in the electronics of the scanner hard-
ware and the detector coil on the one hand and fluctuating magnetic fields orig-
inating from random (stray) currents in the body on the other hand. Thermal
noise is independent and identically distributed (i.i.d.) and can accurately be de-
scribed by a Gaussian distribution. However, in practice the images acquired by
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the scanner are submitted to several transformations, influencing the aforemen-
tioned characteristics of the noise component. Originally, the scanner acquires a
complex (i.e. consisting of a real and imaginary component) image in the so-called
k-space. For a description of image acquisition and mapping in k-space, we refer
to [9], chapter 10. An inverse Fourier transform results in a spatial image. Due
to the orthogonality of the Fourier transform, Gaussian distributed k-space noise
will still be Gaussian distributed in the spatial domain. Spatial image data remain
complex valued. This complex image is generally transformed in a magnitude im-
age and a corresponding phase image. The phase image is in fact seldom used by
the current analysis methods (and often even not available). The thermal noise
component which is characterised by a Gaussian distribution in the complex im-
age, now becomes Ricean distributed in the magnitude image [130]. However, a
Ricean distribution may be approximated by a Gaussian distribution for an SNR
(see below) larger than 10. Since most fMRI images exhibit an intrinsic SNR on
the order of 100, the latter condition is met. Therefore, thermal noise in mag-
nitude data may be described by a Gaussian distribution. The noise parameters
can be estimated from MR data as to optimally describe the underlying Gaussian
distribution. [131–133].

Signal-to-noise ratio

Several studies pointed out that the ratio of the signal amplitude to the noise
standard deviation is a critical factor to determine whether an acquired MRI signal
can be used to extract relevant information [134–136]. As already mentioned, this
quantity is called the signal-to-noise ratio (SNR) of an image. This image SNR
depends both on the system SNR and the intrinsic SNR.

• The system SNR reflects the influence of the hardware, such as the coils.
In practice, it is determined by a trade-off between small coils for better
SNR and large coils for better coverage. Indeed, a small coil picks up less
stray noise from the rest of the body, but provides only limited coverage of
the brain. This trade-off can be overcome however by using multiple small
coils in a phased array system [137]. The latter solution is at the expense
of the uniformity of the sensitivity pattern and requires a scanner hardware
configuration with multiple receiver channels.

• The intrinsic SNR is determined by the intrinsic properties of the measured
sample. It is described as the signal from the sample volume competing
with thermal noise in the sample (i.e. body noise). Physiological noise (see
below) is not an intrinsic property of the measured volume and is therefore
not reflected in the SNR definition. The intrinsic SNR can be quite large.
In a single-shot EPI-image it is on the order of 100. It is affected by three
factors:

SNR = M∆V
√

Tread . (1.2)
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The first factor (M ) is the intrinsic magnitude of the generated transverse
magnetization M at the time of the data acquisition. It is expressed in terms
of the magnetic field strength B0 and parameters depending both on tissue
and pulse sequence. The second factor is the voxel volume (∆V ) while the
third factor (Tread) is the total duration of the data acquisition, the so-called
‘readout’. A detailed description of all influencing parameters can be found
in [138], pages 112-113.

Contrast-to-noise ratio

At first glance, it might appear that optimizing the SNR is preferred. However,
maximizing the SNR is not optimal for anatomical nor for functional imaging.
Indeed, instead of the signal amplitude, the contrast is what determines whether
one tissue can be distinguished from another in the image (MRI) or whether an
activated region can be distinguished from a non-activated one (fMRI). The latter
concepts are called anatomical or within image contrast (MRI) and functional
or between image contrast (fMRI), respectively. A simple difference map of the
contrasts however, would be dominated by vessel and CSF artefacts. Indeed, due to
the non-uniform physiological noise component, voxels with the largest fluctuations
will show the largest difference signal. Therefore, in most fMRI-applications, the
ability to distinguish between activated and non-activated regions depends not just
on the contrast, but rather on the ‘contrast-to-noise ratio’ (CNR) [139, 140]. The
latter ratio ‘normalizes’ the contrast by dividing it by an estimate of the intrinsic
variability of the signal in the voxel.

Removing thermal noise

Consistently task-related BOLD signal change during activation is quite small, on
the order of 1 % for a 50 % cerebral blood flow change at 1.5 T. The intrinsic SNR
in a single-shot EPI-image on the other hand is on the order of 100. Although
this is quite large, it results in a poor CNR, not much larger than 1. This is not
large enough to reliably detect this BOLD signal change in a voxel from a single
image in the stimulus state and a single image in the control state. For this reason
several approaches are applied to deal with thermal noise.

Averaging A first approach is to acquire a large number of images to allow suf-
ficient averaging over trials. For random signal variations with a normal
distribution and independence for each time point, averaging will improve
the SNR proportional to the square root of the number of averages. The
CNR is approximately linearly related with the intrinsic SNR (see 1.7.2).
Although averaging the data over several trials improves the detection sensi-
tivity of CTR signal changes, it must be applied with care. Indeed, averaging
reduces the detection sensitivity for TTR signal changes in the fMRI signal.
Moreover, averaging reduces sensitivity to CTR changes not consistently
time-locked to the experiment design. These CTR changes typically include



24 Chapter 1. BOLD fMRI measurement of cortical activity

changes in strategy by the subject during the test period, changes associ-
ated with learning or habituation of task performance, with fatigue, or with
other processes whose time course cannot be predicted in advance by the
experimenter.

Smoothing Thermal noise can also be reduced by temporal or spatial smoothing.
Both filtering approaches are subject to constraints however. The width and
type of the spatial filter are chosen on the basis of a trade-off between the
desired spatial resolution and the expected enhancement of the functional
CNR. In case of temporal smoothing, the choice of the bandwidth of the filter
is driven by a trade-off between the expected enhancement of functional CNR
and the loss of temporal resolution [141, 142].

Statistical approach As an alternative, several statistical approaches are applied
to deal with the Gaussian noise component in the signal. Descombes et al.
used ‘Markov Random Field’ theory to account for the non-independence of
neighbouring voxels [143]. Task-induced neuronal activations and BOLD
responses are indeed expected to produce similar signal changes in spa-
tially contiguous regions, extending over several millimetres. Therefore, De-
scombes et al. proposed to use this additional information in the detection
process and defined some interaction between neighbouring voxels which al-
lowed reducing the noise while preserving the signal characteristics. Ardekani
et al. modelled the nuisance component representing effects of no interest
and Gaussian white noise using a maximum likelihood procedure [144].

Acquisition-based approach Techniques mentioned so far to reduce thermal noise in
a voxel were all based on preprocessing approaches. Alternatively, acquisition-
based approaches exist. They focus on decreasing the bandwidth, increasing
the field of view (while maintaining the resolution), and increasing the voxel
size (to increase the signal amplitude rather than to decrease the noise).
As these parameters are fixed in the experiment providing the measurement
data used in this dissertation, we will not further elaborate on their use.

1.6.1.2 Physiological noise

Characteristics

Additionally to thermal noise, the BOLD signal is corrupted by physiological fluc-
tuations, originating from different sources:

• Cardiac pulsation (on the order of 1 Hz) creates a pressure wave that strongly
affects the signal of flowing blood, but it also creates pulsations in CSF and
in the brain parenchyma itself.

• Respiratory motion has a period of several seconds and changes the shape of
the body. It exhibits long temporal correlations and broad spatial patterns.
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• Vasomotion is a regular oscillation of blood oxygenation and flow due to
constriction or dilation of blood vessels [145]. It contributes to low-frequency
oscillations of the BOLD signal, particularly at high magnetic fields.

• In its broadest sense, physiological noise also includes subject movement. If
there are edges in the intensity pattern of the image, such as near the edge of
the brain, movements much smaller than a voxel dimension may produce a
signal change larger than the expected signal change due to the BOLD effect.
This effect is particularly troublesome if the motion is correlated with the
stimulus [146], e.g. if the subject tips his head slightly every time a visual
stimulus is presented or a button is pressed. The effect can create large
apparent activations that are purely artefactual.

Although most physiological motions are small, they nevertheless all can produce
signal fluctuations of the same order as the BOLD effect. The variance of the
signal over time measured in a human brain is several times larger than would be
suspected from thermal noise alone. Furthermore, physiological noise is likely to
violate assumptions of normal distribution and independence, as it exhibits both
temporal and spatial structure [147, 148].

Removing physiological noise

There are several approaches dealing with physiological artefacts.

• Motion is best prevented as much as possible in advance. This is accom-
plished by carefully coaching the subject about the importance of remaining
still. Stimulus-correlated motion can be considerably prevented by using
head restraints. Low-frequency oscillations [149] in the acquired data, in-
cluding heartbeat- and breathing-related motion, can be eliminated by tem-
poral filtering techniques. Motion-correcting algorithms can be applied to
produce the best mutual alignment of the images. In a recent study, Oakes
et al. performed a comparison between several motion correction software
tools [150].

• Confounding effects related to subcortical structures, such as the ventricles
and the white matter are eliminated by restricting the analysis to effects
originating in the cortex (i.e. the grey matter). The latter is accomplished
by a preliminary segmentation of the cortex [151].

• In case of thermal noise, averaging improves the SNR proportional to the
square root of the number of averages and the CNR approximately pro-
portional to the latter (see 1.7.2). For physiological noise, which is neither
normally distributed nor uncorrelated, this factor will be reduced.

• Several authors investigated alternative techniques to deal with physiological
noise. Biswal et al. used digital filtering techniques [152]. Frank et al.
proposed a Bayesian model which proved to be particularly suited to handle
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the spatial variations in the noise present in fMRI, allowing the comparison
of activated voxels that have different and unknown noise [153]. Restom et
al. proposed techniques within the GLM framework to reduce physiological
noise for ASL fMRI [154]. Triantafyllou et al. investigated the effect of
spatial smoothing on physiological noise [155]. They found that at 7 T,
5× 5× 3 mm3 resolution images derived from smoothing 1.5× 1.5× 3 mm3

data improved time course SNR by a factor of 1.89 compared to a time series
acquired at 5× 5× 3 mm3. They presumed that this effect was derived from
the reduced physiological-to-thermal noise ratio in the high spatial resolution
data followed by a smoothing operation that improves SNR without adding
physiological noise.

1.6.2 Neuronal and haemodynamic effects

Transient effects

In block design fMRI experiments, a number of transient patterns were reported
to occur at the transitions between rest and active state. These dynamic aspects
include signal overshoot and undershoot at both beginning and end of the stimuli.
Transients in the BOLD response could be an accurate reflection of transients in
the neuronal activity itself. However, because the BOLD signal depends on the
combined changes in CBF, CBV, and CMRO2, such transients also can arise due
to mismatches in the timing of the metabolic changes (see section 1.3.4).

In order to test the origin of the transients of the BOLD response, several authors
measured CBF directly with ASL techniques. The question was not unambigu-
ously resolved however, obliging cautiousness when interpreting transient features
of the BOLD signal, especially without measuring the flow response. Hoge et al.
found that initial overshoots and post-stimulus undershoots represented the tem-
poral pattern of neuronal activity rather than time lags of physiological changes
[35]. However, in a study combining motor and visual activation, Buxton et al.
found a pronounced post-stimulus undershoot in the BOLD signal without cor-
responding post-stimulus undershoot in the flow signal [156]. Other authors had
similar findings [47, 157].

Default activity

Functional brain image studies in normal human subjects with PET and fMRI
have frequently revealed task-induced decreases in regional brain activity that ap-
pear to be largely task-independent, varying little in their location across a wide
range of tasks [158]. The consistency with which certain areas of the brain partic-
ipate in these decreases led Raichle et al. to posit the existence of an organised
mode of brain function that is present as a baseline or default state and that is at-
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tenuated or suspended during specific goal-directed behaviours [159]. The default
activity might reflect ongoing processes, such as unconstrained verbally mediated
thoughts and monitoring of the external environment, body, and emotional state.

Negative BOLD signal changes

Negative BOLD responses refer to sustained negative responses to a stimulus that
causes positive activation elsewhere. We emphasize that the undershoot of the
baseline on cessation of stimulation and the small initial dip in the BOLD response
are no sustained responses and therefore do not refer to a negative BOLD response.

Several examples of negative BOLD were reported. In a visual stimulation study,
Smith et al. noticed that the resulting region of activation (positive BOLD) in the
primary visual cortex was surrounded by an extensive area of deactivation (neg-
ative BOLD). The latter area affected much of the visual cortex, apart from the
activated area [160]. The phenomenon of negative BOLD in the occipital cortex
has been noted by various other authors [161–163] and is also seen with PET [158].
There are both PET and fMRI studies of deactivation of a sensory or cognitive
system in association with activation of another system, although it is not clear
whether this reflects similar processes to negative BOLD in unstimulated portions
of the visual cortex [158, 164, 165].

Although the occurrence of negative BOLD in occipital cortex is not in doubt,
its interpretation is controversial. Several hypotheses exist.

• Raichle et al suggested that it reflects ‘inhibition’ or ‘suppression’ of neuronal
activity, which causes an actively controlled reduction in CBF [166]. This
was further supported by Shmuel et al [167].

• However in the latter study, Shmuel et al. raised the possibility of a contribu-
tion of haemodynamic origin. They proposed that the negative effect might
also reflect ‘blood stealing’. The elevation of blood flow at the activated
location could cause pressure changes which reduce blood supply in nearby
areas sharing the same blood vasculature (without compensatory decrease
in CMRO2). The suggestion of reallocation of cortical blood resources was
supported by Harel et al. [168].

• Smith et al. provided evidence against ‘blood stealing’ as the mechanism for
this reallocation and proposed the occurrence of another driving mechanism,
called ‘blood redistribution’ ‘[169]. Instead of passively stealing blood by
local pressure changes, the flow could be actively restricted elsewhere, by
neurally controlled constriction of vessels.

• Finally, the negative BOLD could also be the result of an increase of CMRO2
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without a compensatory increase of CBF, much as in the initial dip phe-
nomenon.

Inflow effect

Inflow effects refer to the non-saturated spins of blood flowing into the excited
slice. The inflowing spins are not saturated because they have not experienced
any RF-pulses yet. However, when the spins move into the slice, they are excited
by RF-pulses and become partially saturated. During activation of a brain region
blood flow increases, resulting in an increase of the blood velocity.
Gomiscek et al. showed that if the mean flow velocity in the vessels is lower than
a critical value (depending on the sequence parameters and tissue), the partial
saturation and, consequently, the signal intensity in the vessel depends on blood
velocity [170]. They illustrated that an increase in the blood velocity results in
a decreased partial saturation of spins and an increase in signal intensity in the
voxel containing the vessel (signal intensity increases of 10-30 % were measured).

The inflow effect yields a localisation problem for BOLD sequences. Blood flow
increases to the cortical region of increased brain activity are regulated by arte-
rial vessels, that can be a centimetre or more away from the active site. Arterial
inflow effects have been demonstrated to contaminate BOLD fMRI images under
rapid RF pulsing conditions [95, 171, 172]. Due to rapid RF pulsing, most fMRI is
not done in a fully T1 relaxed MR state. Therefore, the potential exists that the
inflow effects in these arterioles may result in signal increases that masquerade as
activation changes but which are not co-localised to the neuronal activity.

Several techniques exist to remove the effect, like outer-volume RF saturation
[171] or velocity nulling (also called diffusion weighting) [173, 174]. The latter
technique applies a bipolar gradient pulse to selectively suppress the intravascular
component with only a small effect on the extravascular signal [175]. As a result
large vessel effects in GE and SE fMRI are suppressed as illustrated in Fig. 1.9
and Fig. 1.10.

1.7 Specificity of the BOLD effect

1.7.1 Spatial relationship between BOLD response and
neuronal activity

Reliability of BOLD response

The reliability of the BOLD signal as an indirect measure of neuronal activity
has received support from the comparison of the results of numerous fMRI experi-
ments with other techniques (like a direct electrode recording [176–178]) as well as
from the well-established body of literature on the functional organisation of the
brain. They all clearly suggest that BOLD signal changes reflect some aspect of
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neuronal activity. Several authors also demonstrated reproducible spatial patterns
of activity associated with a task in a comparison across studies [179–181].
A recent review describing the current understanding of the causal relationship
between neural activity and the BOLD signal and how this challenges some basic
assumptions that have guided neuroscience can be found in [182].

Consistency of BOLD response

Many authors found that the BOLD response within a given subject and within a
given region of cortex was extremely consistent from one set of measurements to
the next [61, 125, 126, 183]. Therefore, although the signal is temporally blurred,
the lag of onset and time course of signal evolution are highly reproducible.

The response of a given cortex region between subject exhibits a larger variability.
Moreover, the HR varies across brain regions within a given subject. This vari-
ability is exhibited in terms of the onset and shape of the response, as indicated
by several studies.
Data from Buckner et al., for example, revealed the onset of the response in sec-
ondary visual cortex to be 1-2 s earlier than the response in prefrontal cortex during
a word generation task [184]. A related finding was presented by Schacter et al. in
the context of a memory study, revealing a difference of several seconds between
activity in anterior and dorsal prefrontal cortex [185]. Even within visual cortex
itself, Bandettini showed variance in the timing of responses of 1-2 s across voxels
of different subregions [127]. Patterns of activity within primary and secondary
visual cortex could be predicted on the basis of the well-understood retinotopic
organisation of the primary visual cortex [68, 98, 99]. Retinotopy reflects the prin-
ciple that greater precision regarding execution of a task requires the involvement
of a greater cortical surface.

Intra- versus extravascular signal changes

The BOLD signal consists in an intravascular component, referring to the blood
vessels, and an extravascular component, referring to the brain tissue. Brain ac-
tivation is located in the tissue. Since these components cannot be separated out
of the measured BOLD signal, the accuracy in mapping an activation volume in
brain tissue depends, amongst others, on how large the extravascular component
is compared to the intravascular one.

For GE BOLD experiments however, for a field strength of 1.5 T and for typical
voxel volumes of 30 mm3, the contributions of the intravascular and the extravas-
cular component are comparable [175]. The latter results from two opposite effects.
The dynamic range for the intravascular signal change is more than an order of
magnitude larger compared to the extravascular one, on the one hand. Within the
blood, large field gradients are produced around the red blood cells carrying the
deoxyhaemoglobin [186] so that at rest the venous blood signal may be reduced by
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as much as 50 % compared to what it would be if the blood were fully oxygenated
[175]. On the other hand, however, the intravascular compartment, is only a small
fraction (about 4 %) of the total tissue volume (i.e. cortical grey matter). The
latter reduces the influence of the first effect.

Micro- versus macrovascular signal changes

The BOLD signal consists in a microvascular component, referring to the capil-
laries, and an macrovascular component, referring to the veins. Brain activation
is located near the capillaries. Since these components cannot be separated out
of the measured BOLD signal, the accuracy in mapping an activation volume in
brain tissue depends, amongst others, on how large the microvascular component
is compared to the macrovascular one.

Gradient echo BOLD experiments are more sensitive to the veins than to the
capillaries, a phenomenon resulting from two competing effects [81]. Due to the
nature of the haemodynamic effects, the range of variation of the haemoglobin
saturation is reduced in capillaries as opposed to the veins, on the one hand. On
the other hand, signal reduction due to diffusion is different between micro- and
macrovascular components. Diffusion effects are indeed small in veins because
their diameter is large compared to a typical diffusion distance (as opposed to
capillaries). As a result of these two effects, the largest BOLD signal changes
are likely to occur around draining veins [187]. The latter may be removed from
the area of neuronal activation, so the location of the BOLD change could differ
by as much of a centimetre or more from the area of increased neuronal activity.
Arterial spin labelling (ASL) experiments indeed show that the locations of the
largest CBF change and the locations of the largest BOLD signal do not always
coincide [188, 189]. Fig. 1.9 illustrates the signal seen from the vessels and the
surrounding tissue for the GE pulse sequence (velocity nulling: see section 1.6.2).

1.7.2 Improving the specificity

Vast research is performed concerning the improvement of the specificity of the
BOLD signal. We expound several factors of influence.

Short duration stimuli

The use of short duration stimuli prevents the BOLD response from saturating
and permits the use of peak fMRI signal magnitude as a measure of the amount
of neuronal activity within a voxel [14].

Several authors reported poor functional resolution capabilities of fMRI when try-
ing to increase SNR using a block design experiment [68, 190]. In visual task
experiments using stimuli of at least 10 s in duration, they found that, when the
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Fig. 1.9: Localisation of BOLD-signal (grey colour) for a GE pulse sequence.
The small rectangles represent the vessels, whereas the larger rectangles
reflect the surrounding tissue. ‘Velocity nulling’ suppresses the section
1.6.2 [138].

BOLD response reaches a plateau, the measured fMRI signal extends to areas well
beyond the site of the excited neuronal tissue. This makes functional resolution at
a submillimetre scale unlikely for block design experiments. In designs using brief
stimuli (less than 4 s), the locus of neuronal activity may still be resolvable, at least
from adjacent areas that are activated under an orthogonal stimulus condition.

High field strength

Gati et al. investigated the influence of higher field strengths, i.e. 3 T or 4 T, in a
visual experiment study [191]. They presented several findings.

• Microvascular contributions increased relatively compared to macrovascular
contributions for higher field strengths.

• The average percentage signal change accompanying the increasing field
strength was larger in vessels compared to tissue, however.

• The SNR in fully relaxed proton density weighted GE images was found to
increase linearly with respect to the magnetic field strength.

• The CNR was found to behave less than linearly with field strength in voxels
containing vessels larger than the voxel itself and greater than linearly with
field strength in voxels containing a mixture of capillaries and veins with a
diameter less than the voxel.
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The optimal field strength for performing BOLD-based fMRI experiments has
been matter of debate however [192, 193]. Indeed, the actual choice of the scan-
ner’s magnetic field strength depends on several trade-offs, which include not only
the aforementioned aspects, but also bandwidth considerations [194], RF power
deposition [195], acoustic noise of the gradients [196], and physiological noise con-
straints [197, 198]. Especially the latter seems to impose a limit on further gains
in SNR, because physiological noise becomes a larger fraction of the total noise
when the signal increases due to higher field strength.

SE pulse sequence

Higher field strengths benefit the SE pulse sequence compared to the GE pulse
sequence in terms of specificity, without constraints imposed by the sensitivity. In
order to illustrate the latter, we elaborate on the sensitivity and specificity of SE
and GE and the influence of the field strength on these characteristics.

sensitivity Typically, in the first fMRI studies with field strengths of 1.5 T, GE
pulse sequences were applied. The sensitivity and the corresponding image
contrast subsequent to local field variation around blood vessels were pro-
nounced for GE images. For field strengths of 1.5 T, SE sensitivity was too
small for accurate detection of brain activity [70]. At higher field strengths
(4.7 T to 9.4 T) however, the sensitivity of a SE sequence no longer hampers
an accurate detection of brain activation.

specificity For the comparison of SE and GE in terms of specificity, both the con-
tribution of the extravascular versus intravasculare component and the con-
tribution of the microvascular versus the macrovascular component is con-
sidered. These contributions are illustrated in Fig. 1.9 and Fig. 1.10 for GE
and SE, respectively (velocity nulling: see section 1.6.2).

• The extravascular SE signal change at 1.5 T is more sensitive to the
smallest vessels, like the capillaries and small venules, as opposed to
GE.

• The intravascular SE signal change at 1.5 T is dominated by the veins
[199, 200]. The macrovascular component is thus larger than the mi-
crovascular one for SE. However, at higher field strengths, Lee et al.
estimated that the fractional contribution of the venous blood signal
change to the net SE BOLD signal change is 60 % at 1.5 T, 8 % at
4.7 T, and 1 % at 9.4 T [201].

Optimal voxel size

The determination of the optimal voxel size, i.e. spatial resolution is submitted
to particular constraints. When high spatial resolution is employed, the resulting
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Fig. 1.10: Localisation of BOLD-signal (grey colour) for a SE pulse sequence.
The small rectangles represent the vessels, whereas the larger rectan-
gles reflect the surrounding tissue. ‘Velocity nulling’ suppresses the
section 1.6.2 [138].

drop in SNR and CNR implies that only voxels exhibiting a large change in signal
will be detectable. Large vessels will thus dominate high resolution BOLD maps
of brain functioning. Lower spatial resolution on the other hand deteriorates the
functional localisation due to the partial volume effect. Since functional region
sizes are not well defined and are likely to vary over space and experimental ques-
tion, the optimal voxel size, corresponding to a trade-off between both influences,
is difficult to predict. Several approaches exist.

• Matching the voxel volume to the cortical thickness, which is about 3 mm,
is a common practice. Therefore, in many BOLD experiments the voxel size
is typically about 30 mm3, leading to BOLD activations of a few percent at
1.5 T.

• Frahm et al. noticed that, when the voxel size of the images is reduced,
the amplitude of the largest BOLD signal changes increases dramatically
(to 20 % and larger), suggesting that the changes are localised to a region
smaller than 1-2 mm [202]. Recent work suggests that the optimal volume
dimensions are 1.5 × 1.5 × 1.5 mm3 [203].

• Bodurka et al. determine the optimal voxel size by matching the contribu-
tion of thermal noise to that of physiological noise as to optimise activation
induced signal changes [204].

One of the challenges of fMRI is to explore the brain at submillimetre resolution.
This would allow researchers to investigate the complex interactions between the
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functional sub-units of the human brain. Hoogenraad et al. performed a study
with submillimetre resolution and concluded that the activated areas were predom-
inantly found to be in the sulci in the location of venous vessels with diameters on
the order of the pixel size [205]. Attempts to use conventional fMRI techniques
for high spatial resolution applications are hampered by technical limitations of
the MR scanner and the spatial limitations of the HRs.

Mapping CMRO2 changes

The fast response associated with the initial dip is potentially extremely impor-
tant for BOLD response localisation. Malonek and Grinvald suggested this fast
response is the result of a rapid increase in CMRO2 before the flow has begun to
increase, leading to an initial deoxyhaemoglobin increase [39]. If this interpretation
is correct, the initial dip of the BOLD signal could provide a much more accurate
map of neuronal activity in fMRI experiments. Indeed, this early CMRO2 is better
localised than the later positive BOLD signal, which includes contributions from
draining veins. Results of a visual stimulus experiment using an EPI acquisition
at 4 T by Menon et al. seemed to confirm this finding [52]. More recently, fMRI
studies at high magnetic field strengths of 4.7 T and 9.4 T have demonstrated that
the initial dip is detectable within cat visual cortex and can be used to resolve
details on a spatial scale of 100-200 µm. [190, 206]. However, the initial dip is not
always seen, and this has led to controversy over its existence [57, 58].

1.8 Conclusions

Since its introduction in the early 1990s, BOLD fMRI is widely used to iden-
tify the spatial layout of brain activation associated with sensory stimulations,
motor actions and cognitive tasks. The technique tries to measure the neuronal
activity indirectly, by means of the haemodynamic effect. The latter effect how-
ever, is associated with activation through a neurovascular coupling composed of
a cascade of complex and poorly understood mechanisms. Moreover, the resulting
signal change is small and exhibits a nonlinear component. The application of spe-
cific acquisition and processing techniques however, made BOLD fMRI a powerful
approach to map brain functionality. Furthermore, the design of event-related
paradigms overcame specific problems related to complex tasks.

Nevertheless, various confounding effects, both neuronal or non-neuronal in ori-
gin, as well as different noise sources contribute to the fMRI response. Several
approaches exist to deal with these effects, such as an appropriate experimental
design or correction with preprocessing techniques. However, a post-hoc inter-
pretation of the detected activation patterns is mostly indispensable. Remaining
artefactual components are as yet identified and subsequently excluded from fur-
ther analysis.
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The latter interpretation has to be performed with great care, as it introduces
a subjective component in the analysis. Therefore, techniques for the analysis of
fMRI data sets are assessed not only in terms of detection accuracy and robust-
ness. Features such as the validability and interpretability of the results are as
important. This combined approach will be the guideline for the assessment and
comparison of techniques for the analysis of complex fMRI data sets. This topic
is covered in chapter 2.





Bibliography

Bibliography

[1] C S Roy and C S Sherrington. On the regulation of the blood supply of the
brain. Journal of Physiology, 11:85–108, 1890.

[2] S S Kety and C F Schmidt. The nitrous oxide method for the quantificative
determination of cerebral blood flow in man: theory, procedure and normal
values. J Clin Invest, 27(4):476–483, Jul 1948.

[3] W D Obrist et al. Determination of regional cerebral blood flow by inhalation
of 133-Xenon. Circ Res, 20(1):124–135, Jan 1967.

[4] R S Frackowiak et al. Quantitative measurement of regional cerebral blood
flow and oxygen metabolism in man using 15O and positron emission to-
mography: theory, procedure, and normal values. J Comput Assist Tomogr,
4(6):727–736, Dec 1980.

[5] P T Fox and M E Raichle. Focal physiological uncoupling of cerebral blood
flow and oxidative metabolism during somatosensory stimulation in human
subjects. Proc Natl Acad Sci USA, 83(4):1140–1144, Feb 1986.

[6] F. Bloch et al. Nuclear induction. Phys. Rev., 69(3-4):127, Feb 1946.

[7] E. M. Purcell et al. Resonance absorption by nuclear magnetic moments in
a solid. Phys. Rev., 69(1-2):37–38, Jan 1946.

[8] P C Lauterbur. Image formation by induced local interactions: examples
employing nuclear magnetic resonance. Nature, 242:190–191, 1973.

[9] R.B. Buxton. ”Introduction to Functional Magnetic Resonance Imaging:
principles and techniques”. Cambridge University Press, 2001.



38 Chapter 1. BOLD fMRI measurement of cortical activity

[10] J W Belliveau et al. Functional mapping of the human visual cortex by
magnetic resonance imaging. Science, 254(5032):716–719, Nov 1991.

[11] S Ogawa et al. Brain magnetic resonance imaging with contrast dependent
on blood oxygenation. Proc Natl Acad Sci USA, 87(24):9868–9872, Dec
1990b.

[12] K K Kwong et al. Dynamic magnetic resonance imaging of human brain
activity during primary sensory stimulation. Proc Natl Acad Sci USA, 89
(12):5675–5679, Jun 1992.

[13] A Smolders et al. Dissecting cognitive stages with time-resolved fMRI data:
a comparison of fuzzy clustering and independent component analysis. Magn
Reson Imaging, May 2007.

[15] A Villringer and U Dirnagl. Coupling of brain activity and cerebral blood
flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev, 7(3):
240–276, Fall 1995.

[14] G M Boynton et al. Linear systems analysis of functional magnetic resonance
imaging in human V1. J Neurosci, 16(13):4207–4221, Jul 1996.

[16] C Grimm et al. A comparison between electric source localisation and fMRI
during somatosensory stimulation. Electroencephalogr Clin Neurophysiol,
106(1):22–29, Jan 1998.

[17] P S Churchland and T J Sejnowski. Perspectives on cognitive neuroscience.
Science, 242(4879):741–5, 1988.

[18] K H Britten et al. A relationship between behavioral choice and the visual
responses of neurons in macaque MT. Vis Neurosci, 13(1):87–100, 1996.

[19] P Lennie. Single units and visual cortical organization. Perception, 27(8):
889–935, 1998.

[20] G M Boynton et al. Neuronal basis of contrast discrimination. Vision Res,
39(2):257–69, 1999.

[21] M Jueptner and C Weiller. Review: does measurement of regional cere-
bral blood flow reflect synaptic activity? Implications for PET and fMRI.
Neuroimage, 2(2):148–56, 1995.

[22] M N Shadlen et al. A computational analysis of the relationship between
neuronal and behavioral responses to visual motion. J Neurosci, 16(4):1486–
510, 1996.

[23] M L Platt and P W Glimcher. Neural correlates of decision variables in
parietal cortex. Nature, 400(6741):233–8, 1999.



BIBLIOGRAPHY 39

[24] A Bradley et al. Visual orientation and spatial frequency discrimination: a
comparison of single neurons and behavior. J Neurophysiol, 57(3):755–72,
1987.

[25] J G Nicholls et al. From Neuron to Brain. Sinauer, Sunderland, MA, 1992.

[26] R L Grubb et al. The effect of changes in PCO2 on cerebral blood volume,
blood flow, and vascular mean transit time. Stroke, 5:630–639, 1974.

[27] A Villringer et al. Dynamic imaging with lanthanide chelates in normal
brain: contrast due to magnetic susceptibility effects. Magn Reson Med, 6
(2):164–174, Feb 1988.

[28] B R Rosen et al. Perfusion imaging by nuclear magnetic resonance. Magn
Reson Q, 5(4):263–281, Oct 1989.

[29] J B Mandeville et al. Dynamic functional imaging of relative cerebral blood
volume during rat forepaw stimulation. Magn Reson Med, 39(4):615–624,
Apr 1998.

[30] K Scheffler et al. Titration of the BOLD effect: separation and quantitation
of blood volume and oxygenation changes in the human cerebral cortex dur-
ing neuronal activation and ferumoxide infusion. Magn Reson Med, 42(5):
829–36, 1999.

[31] L Pauling and C D Coryell. The magnetic properties and structure of
Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl
Acad Sci USA, 22(4):210–216, 1936.

[32] R M Weisskoff and S Kiihne. MRI susceptometry: image-based measurement
of absolute susceptibility of MR contrast agents and human blood. Magn
Reson Med, 24(2):375–383, Apr 1992.

[33] P T Fox and M E Raichle. Stimulus rate dependence of regional cerebral
blood flow in human striate cortex, demonstrated by positron emission to-
mography. Journal of Neurophysiology, 51(5):1109–1120, 1984.

[34] R D Hoge et al. Investigation of BOLD signal dependence on cerebral blood
flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn
Reson Med, 42(5):849–863, Nov 1999.

[35] R D Hoge et al. Linear coupling between cerebral blood flow and oxygen
consumption in activated human cortex. Proc Natl Acad Sci USA, 96(16):
9403–9408, Aug 1999.

[36] R Turner et al. Echo-planar time course MRI of cat brain oxygenation
changes. Magn Reson Med, 22(1):159–166, Nov 1991.

[37] P T Fox et al. Nonoxidative glucose consumption during focal physiologic
neural activity. Science, 241(4864):462–464, Jul 1988.



40 Chapter 1. BOLD fMRI measurement of cortical activity

[38] J W Prichard and B R Rosen. Functional study of the brain by NMR. J
Cereb Blood Flow Metab, 14(3):365–372, May 1994.

[39] D Malonek and A Grinvald. Interactions between electrical activity and
cortical microcirculation revealed by imaging spectroscopy: implications for
functional brain mapping. Science, 272(5261):551–554, Apr 1996.

[40] R B Buxton and L R Frank. A model for the coupling between cerebral
blood flow and oxygen metabolism during neural stimulation. J Cereb Blood
Flow Metab, 17(1):64–72, Jan 1997.

[41] A Gjedde et al. Is oxygen diffusion limiting for blood-brain barrier transfer
of oxygen? In N A Lassen et al., editors, Brain Work and Mental Activity.
Alfred Benzon Symposium, pages 177–184, Copenhagen, 1991.

[42] I G Kassissia et al. Tracer oxygen distribution is barrier-limited in the
cerebral microcirculation. Circ Res, 77(6):1201–1211, Dec 1995.

[43] D Bereczki et al. Hypoxia increases velocity of blood flow through parenchy-
mal microvascular systems in rat brain. J Cereb Blood Flow Metab, 13(3):
475–486, May 1993.

[44] U Gobel et al. Lack of capillary recruitment in the brains of awake rats
during hypercapnia. J Cereb Blood Flow Metab, 9(4):491–499, Aug 1989.

[45] J Frahm et al. Dynamic uncoupling and recoupling of perfusion and oxidative
metabolism during focal brain activation in man. Magn Reson Med, 35(2):
143–148, Feb 1996.

[46] J B Mandeville et al. Evidence of a cerebrovascular postarteriole windkessel
with delayed compliance. J Cereb Blood Flow Metab, 19(6):679–689, Jun
1999.

[47] R B Buxton et al. Dynamics of blood flow and oxygenation changes during
brain activation: the balloon model. Magn Reson Med, 39(6):855–864, Jun
1998.

[48] J B Mandeville et al. MRI measurement of the temporal evolution of relative
CMRO2 during rat forepaw stimulation. Magn Reson Med, 42(5):944–951,
Nov 1999.

[49] P J Magistretti and L Pellerin. Cellular mechanisms of brain energy
metabolism and their relevance to functional brain imaging. Philos Trans R
Soc Lond B Biol Sci, 354(1387):1155–1163, Jul 1999.

[50] G Marchal et al. Regional cerebral oxygen consumption, blood flow, and
blood volume in healthy human aging. Arch Neurol, 49(10):1013–1020, Oct
1992.



BIBLIOGRAPHY 41

[51] T L Davis et al. Calibrated functional MRI: mapping the dynamics of ox-
idative metabolism. Proc Natl Acad Sci USA, 95(4):1834–1839, Feb 1998.

[52] R S Menon et al. BOLD based functional MRI at 4 Tesla includes a capil-
lary bed contribution: echo-planar imaging correlates with previous optical
imaging using intrinsic signals. Magn Reson Med, 33(3):453–459, Mar 1995.

[53] P A Bandettini. MRI studies of brain activation: dynamic characteristics.
In: functional MRI of the Brain, pages 144–151. Society of Magnetic Reso-
nance in Medicine, Berkeley, 1993.

[54] T Ernst and J Hennig. Observation of a fast response in functional MR.
Magn Reson Med, 32(1):146–149, Jul 1994.

[55] X Hu et al. Evaluation of the early response in fMRI in individual subjects
using short stimulus duration. Magn Reson Med, 37(6):877–884, Jun 1997.

[56] E Yacoub and X Hu. Detection of the early negative response in fMRI at
1.5 Tesla. Magn Reson Med, 41(6):1088–1092, Jun 1999.

[57] J J Marota et al. Investigation of the early response to rat forepaw stimula-
tion. Magn Reson Med, 41(2):247–252, Feb 1999.

[58] P Fransson et al. Temporal characteristics of oxygenation-sensitive MRI
responses to visual activation in humans. Magn Reson Med, 39(6):912–919,
Jun 1998.

[59] K D Merboldt et al. Functional MRI of human brain activation combining
high spatial and temporal resolution by a CINE FLASH technique. Magn
Reson Med, 34(4):639–644, Oct 1995.

[60] G Kruger et al. Dynamic MRI sensitized to cerebral blood oxygenation and
flow during sustained activation of human visual cortex. Magn Reson Med,
35(6):797–800, Jun 1996.

[61] A M Dale and R L Buckner. Selective averaging of rapidly presented indi-
vidual trials using fMRI. Human Brain Mapping, 5:329–340, 1997.

[62] A L Vasquez and D C Noll. Nonlinear aspects of the BOLD response in
functional MRI. Neuroimage, 7:108–118, 1998.

[63] G H Glover. Deconvolution of impulse response in event-related fMRI. Neu-
roimage, 9:416–429, 1999.

[64] M D Robson et al. Measurements of the temporal fMRI response of the
human auditory cortex to trains of tones. Neuroimage, 7(3):185–198, Apr
1998.

[65] E D Adrian. The impulses produced by sensory nerve endings: Part I. J
Physiol, 61(1):49–72, Mar 1926.



42 Chapter 1. BOLD fMRI measurement of cortical activity

[66] A B Bonds. Temporal dynamics of contrast gain in single cells of the cat
striate cortex. Vis Neurosci, 6(3):239–255, Mar 1991.

[67] T Maddess et al. Factors governing the adaptation of cells in area-17 of the
cat visual cortex. Biol Cybern, 59(4-5):229–236, 1988.

[68] S A Engel et al. Retinotopic organization in human visual cortex and the
spatial precision of functional MRI. Cereb Cortex, 7(2):181–92, 1997.

[69] S Ogawa et al. Oxygenation-sensitive contrast in magnetic resonance image
of rodent brain at high magnetic fields. Magn Reson Med, 14(1):68–78, Apr
1990a.

[70] S Ogawa and T M Lee. Magnetic resonance imaging of blood vessels at high
fields: in vivo and in vitro measurements and image simulation. Magn Reson
Med, 16(1):9–18, Oct 1990.

[71] P Mansfield. Multi-planar image formation using NMR spin echoes. J. Phys.
C:Solid State Phys., 10:L55–L58, 1977.

[72] J P J Pinel. Biopsychology. Pearson, 1999.

[73] J Talairach and P Tournoux. Co-planar Stereotaxic Atlas of the Human
Brain. New York: Thieme Medical Publications, 1988.

[74] R M Hinke et al. Functional magnetic resonance imaging of Broca’s area
during internal speech. Neuroreport, 4(6):675–678, Jun 1993.

[75] J R Binder et al. Human brain language areas identified by functional mag-
netic resonance imaging. J Neurosci, 17(1):353–62, 1997.

[76] A C Nobre et al. Word recognition in the human inferior temporal lobe.
Nature, 372(6503):260–3, 1994.

[78] J Frahm et al. Dynamic MR imaging of human brain oxygenation during
rest and photic stimulation. J Magn Reson Imaging, 2(5):501–505, Sep 1992.

[79] R S Menon et al. Functional brain mapping using magnetic resonance imag-
ing. Signal changes accompanying visual stimulation. Invest Radiol, 27 Suppl
2:47–53, Dec 1992.

[80] A M Blamire et al. Dynamic mapping of the human visual cortex by high-
speed magnetic resonance imaging. Proc Natl Acad Sci USA, 89(22):11069–
11073, Nov 1992.

[77] S Ogawa et al. Intrinsic signal changes accompanying sensory stimulation:
functional brain mapping with magnetic resonance imaging. Proc Natl Acad
Sci USA, 89(13):5951–5955, Jul 1992.



BIBLIOGRAPHY 43

[81] S Ogawa et al. Functional brain mapping by blood oxygenation level-
dependent contrast magnetic resonance imaging. A comparison of signal
characteristics with a biophysical model. Biophys J, 64(3):803–812, Mar
1993b.

[82] R Turner et al. Functional mapping of the human visual cortex at 4 and 1.5
tesla using deoxygenation contrast EPI. Magn Reson Med, 29(2):277–279,
Feb 1993.

[83] R T Constable et al. Functional brain imaging at 1.5 T using conventional
gradient echo MR imaging techniques. Magn Reson Imaging, 11(4):451–459,
1993.

[84] A Connelly et al. Functional mapping of activated human primary cortex
with a clinical MR imaging system. Radiology, 188(1):125–130, Jul 1993.

[85] W Schneider et al. Functional topographic mapping of the cortical ribbon in
human vision with conventional MRI scanners. Nature, 365(6442):150–153,
Sep 1993.

[86] C R Jr Jack et al. Sensory motor cortex: correlation of presurgical mapping
with functional MR imaging and invasive cortical mapping. Radiology, 190
(1):85–92, Jan 1994.

[88] S G Kim et al. Functional magnetic resonance imaging of motor cortex:
hemispheric asymmetry and handedness. Science, 261(5121):615–617, Jul
1993a.

[89] S G Kim et al. Functional imaging of human motor cortex at high magnetic
field. J Neurophysiol, 69(1):297–302, Jan 1993b.

[90] S M Rao et al. Functional magnetic resonance imaging of complex human
movements. Neurology, 43(11):2311–2318, Nov 1993.

[87] P A Bandettini et al. Time course EPI of human brain function during task
activation. Magn Reson Med, 25(2):390–398, Jun 1992.

[91] E Formisano et al. Localisation and characterisation of auditory perception
through Functional Magnetic Resonance Imaging. Technol Health Care, 6
(2-3):111–123, Sep 1998.

[92] F Di Salle et al. Functional fields in human auditory cortex revealed by
time-resolved fMRI without interference of EPI noise. Neuroimage, 13(2):
328–338, Feb 2001.

[93] F Di Salle et al. fMRI of the auditory system: understanding the neural basis
of auditory gestalt. Magn Reson Imaging, 21(10):1213–1224, Dec 2003.



44 Chapter 1. BOLD fMRI measurement of cortical activity

[94] G McCarthy et al. Echo-planar magnetic resonance imaging studies of frontal
cortex activation during word generation in humans. Proc Natl Acad Sci
USA, 90(11):4952–4956, Jun 1993.

[95] S G Kim et al. Activation of a cerebellar output nucleus during cognitive
processing. Science, 265(5174):949–951, Aug 1994.

[96] A Karni et al. Functional MRI evidence for adult motor cortex plasticity
during motor skill learning. Nature, 377(6545):155–158, Sep 1995.

[97] B A Shaywitz et al. Sex differences in the functional organization of the
brain for language. Nature, 373(6515):607–609, Feb 1995.

[98] M I Sereno et al. Borders of multiple visual areas in humans revealed by
functional magnetic resonance imaging. Science, 268(5212):889–893, May
1995.

[99] E A DeYoe et al. Mapping striate and extrastriate visual areas in human
cerebral cortex. Proc Natl Acad Sci USA, 93(6):2382–2386, Mar 1996.

[100] R B Tootell et al. New images from human visual cortex. Trends in Neuro-
science, 19:481–489, 1996.

[101] R B Tootell et al. From retinotopy to recognition: fMRI in human visual
cortex. Trends in cognitive science, 2:174–183, 1998c.

[102] A Paivio. Comparisons of mental clocks. J Exp Psychol Hum Percept Per-
form, 4(1):61–71, Feb 1978. Comparative Study.

[103] R N Shepard and J Metzler. Mental rotation of three-dimensional objects.
Science, 171(972):701–703, Feb 1971.

[105] M S Cohen et al. Changes in cortical activity during mental rotation. A
mapping study using functional MRI. Brain, 119:89–100, 1996.

[106] M D’Esposito et al. A functional MRI study of mental image generation.
Neuropsychologia, 35(5):725–730, May 1997.

[107] L Trojano et al. Matching two imagined clocks: the functional anatomy of
spatial analysis in the absence of visual stimulation. Cereb Cortex, 10(5):
473–481, May 2000.

[104] E Formisano et al. Tracking the mind’s image in the brain I: time-resolved
fMRI during visuospatial mental imagery. Neuron, 35(1):185–194, Jul 2002.

[108] G Ganis et al. Brain areas underlying visual mental imagery and visual
perception: an fMRI study. Brain Res Cogn Brain Res, 20(2):226–241, Jul
2004.

[109] M A Just et al. Imagery in sentence comprehension: an fMRI study. Neu-
roimage, 21(1):112–124, 2004.



BIBLIOGRAPHY 45

[110] A J King. Auditory neuroscience: activating the cortex without sound. Curr
Biol, 16(11):410–411, Jun 2006.

[112] W Richter et al. Motor area activity during mental rotation studied by
time-resolved single-trial fMRI. J Cogn Neurosci, 12(2):310–20, 2000.

[113] G Vingerhoets et al. Motor imagery in mental rotation: an fMRI study.
Neuroimage, 17(3):1623–1633, Nov 2002.

[111] C Windischberger et al. Human motor cortex activity during mental rota-
tion. Neuroimage, 20(1):225–232, Sep 2003.

[114] I Klein et al. Transient activity in the human calcarine cortex during visual-
mental imagery: an event-related fMRI study. J Cogn Neurosci, 12 Suppl 2
(NIL):15–23, 2000.

[115] S M Kosslyn and W L Thompson. When is early visual cortex activated
during visual mental imagery? Psychol Bull, 129(5):723–46, 2003.

[116] S D Slotnick et al. Visual mental imagery induces retinotopically organized
activation of early visual areas. Cereb Cortex, 15(10):1570–1583, Oct 2005.

[117] P J Lang et al. Looking at pictures: affective, facial, visceral, and behavioral
reactions. Psychophysiology, 30(3):261–273, May 1993.

[118] S M Kosslyn et al. Neural foundations of imagery. Nat Rev Neurosci, 2(9):
635–642, Sep 2001.

[119] J R Binder and S M Rao. Human brain mapping with functional magnetic
resonance imaging. In: Localization and Neuroimaging in Neuropsychology,
pages 185–212. Academic Press, San Diego, 1994.

[120] M D’Esposito et al. Event-related functional MRI: implications for cognitive
psychology. Psychol Bull, 125(1):155–64, 1999.

[121] S Laurian et al. Short-term habituation of auditory evoked responses in
schizophrenics. Res. Commun. Psychol. Psychiatry Behav., 13:35–42, 1988.

[122] R L Buckner et al. Detection of cortical activation during averaged single
trials of a cognitive task using functional magnetic resonance imaging. Proc
Natl Acad Sci USA, 93(25):14878–83, 1996.

[123] K J Friston et al. Stochastic designs in event-related fMRI. Neuroimage, 10
(5):607–19, 1999.

[124] R S Menon et al. Spatial and temporal resolution of functional magnetic
resonance imaging. Biochem Cell Biol, 76(2-3):560–71, 1998b.

[125] F M Miezin et al. Characterizing the hemodynamic response: effects of
presentation rate, sampling procedure, and the possibility of ordering brain
activity based on relative timing. Neuroimage, 11(6):735–59, 2000.



46 Chapter 1. BOLD fMRI measurement of cortical activity

[126] R S Menon et al. Mental chronometry using latency-resolved functional
MRI. Proc Natl Acad Sci USA, 95(18):10902–10907, Sep 1998a.

[127] P A Bandettini. The temporal resolution of MRI. In: functional MRI, pages
205–220. Springer-Verlag, Mauer, Germany, 1999.

[128] R L Savoy et al. Pushing the temporal resolution of fMRI: Studies of very
brief visual stimuli, onset variability and asynchrony, and stimulus-correlated
change in noise. In Proceedings of the Society of Magnetic Resonance Third
Scientific Meeting and Exhibition, volume 2, pages 450–..., 1995.

[129] P J Laurienti et al. Separating neural processes using mixed event-related
and epoch-based fMRI paradigms. J Neurosci Methods, 131(1-2):41–50, Dec
2003.

[130] H Gudbjartsson and S Patz. The Rician distribution of noisy MRI data.
Magn Reson Med, 34(6):910–914, Dec 1995.

[131] J Sijbers and A J den Dekker. Maximum likelihood estimation of signal
amplitude and noise variance from MR data. Magn Reson Med, 51(3):586–
594, Mar 2004.

[132] A J den Dekker and J Sijbers. Implications of the Rician distribution for
fMRI generalized likelihood ratio tests. Magn Reson Imaging, 23(9):953–959,
Nov 2005.

[133] J Sijbers et al. Automatic estimation of the noise variance from the histogram
of a magnetic resonance image. Phys Med Biol, 52(5):1335–1348, Mar 2007.

[134] D I Hoult and R E Richards. The signal to noise ratio of the nuclear magnetic
resonance experiment. J Magn Reson, 24:71–85, 1979.

[135] A Macovski. Noise in MRI. Magn Reson Med, 36(3):494–497, Sep 1996.

[136] D L Parker and G T Gullberg. Signal-to-noise efficiency in magnetic reso-
nance imaging. Med Phys, 17(2):250–257, Mar 1990.

[137] P E Grant et al. High-resolution imaging of the brain. Magn Reson Imaging
Clin N Am, 6(1):139–154, Feb 1998.

[138] P Jezzard et al. Functional MRI. An introduction to Methods. Oxford
University Press, 2001.

[139] R E Hendrick et al. Optimizing tissue contrast in magnetic resonance imag-
ing. Magn Reson Imaging, 2(3):193–204, 1984.

[140] F W Wehrli et al. The dependence of nuclear magnetic resonance (NMR)
image contrast on intrinsic and pulse sequence timing parameters. Magn
Reson Imaging, 2(1):3–16, 1984.



BIBLIOGRAPHY 47

[141] K J Friston et al. To smooth or not to smooth? Bias and efficiency in fMRI
time-series analysis. Neuroimage, 12(2):196–208, Aug 2000.

[142] O. Friman et al. Detection and detrending in functional MRI data analysis.
NeuroImage, 22(2):645–655, 2004.

[143] X Descombes et al. fMRI signal restoration using a spatio-temporal Markov
Random Field preserving transitions. Neuroimage, 8(4):340–349, Nov 1998.

[144] B A Ardekani et al. Activation detection in functional MRI using subspace
modeling and maximum likelihood estimation. IEEE Trans Med Imaging,
18(2):101–114, Feb 1999.

[145] J Mayhew et al. Spectroscopic analysis of changes in remitted illumination:
the response to increased neural activity in brain. Neuroimage, 10(3):304–
326, Sep 1999.

[146] J V Hajnal et al. Artifacts due to stimulus correlated motion in functional
imaging of the brain. Magn Reson Med, 31(3):283–291, Mar 1994.

[147] P L Purdon and R M Weisskoff. Effect of temporal autocorrelation due to
physiological noise and stimulus paradigm on voxel-level false-positive rates
in fMRI. Hum Brain Mapp, 6(4):239–249, 1998.

[148] E Zarahn et al. Empirical analyses of BOLD fMRI statistics. I. Spatially
unsmoothed data collected under null-hypothesis conditions. Neuroimage, 5
(3):179–197, Apr 1997.

[149] A M Smith et al. Investigation of low frequency drift in fMRI signal. Neu-
roimage, 9(5):526–533, May 1999.

[150] T R Oakes et al. Comparison of fMRI motion correction software tools.
Neuroimage, 28(3):529–543, 2005.

[151] E Formisano et al. Cortex-based independent component analysis of fMRI
time series. Magn Reson Imaging, 22(10):1493–1504, 2004.

[152] B Biswal et al. Reduction of physiological fluctuations in fMRI using digital
filters. Magn Reson Med, 35(1):107–113, Jan 1996.

[153] L R Frank et al. Probabilistic analysis of functional magnetic resonance
imaging data. Magn Reson Med, 39(1):132–148, Jan 1998.

[154] K Restom et al. Physiological noise reduction for arterial spin labeling func-
tional MRI. Neuroimage, 31(3):1104–1115, Jul 2006.

[155] C Triantafyllou et al. Effect of spatial smoothing on physiological noise in
high-resolution fMRI. Neuroimage, 32(2):551–557, Aug 2006.



48 Chapter 1. BOLD fMRI measurement of cortical activity

[156] R B Buxton et al. Application of the balloon model to the bold response to
stimuli of different duration. In 7th Scientific Meeting of the International
Society for Magnetic Resonance in Medicine, pages 1735–.., Philadelphia,
1999.

[157] T L Davis et al. Susceptibility contrast undershoot is not matched by in-
flow contrast undershoot. In SMR, 2nd Annual Meeting, pages 435–.., San
Fransisco, 1994.

[158] G L Shulman et al. Common blood flow changes across visual tasks: de-
creases in cerebral cortex. J Cog Neurosci, 9:648–663, 1997.

[159] M E Raichle et al. A default mode of brain function. Proc. Natl. Acad. Sci.
USA, 98:676–682, 2001.

[160] A T Smith et al. Attentional suppression of activity in the human visual
cortex. Neuroreport, 11(2):271–277, 2000.

[161] Z S Saad et al. Analysis and use of fMRI response delays. Human Brain
Mapping, 13(2):74–93, 2001.

[162] R B Tootell et al. The retinopy of visual spatial attention. Neuron, 21(6):
1409–1422, 1998a.

[163] R B Tootell et al. The representation of the ipsilateral visual field in human
cerebral cortex. In Proc Natl Acad Sci USA, Feb(3), volume 95, pages 818–
824, 1998b.

[164] P H Ghatan et al. Coexistence of attention-based facilitation and inhibition
in the human cortex. Neuroimage, 7(1):23–29, 1998.

[165] M Hutchinson et al. Task-specific deactivation patterns in functional mag-
netic resonance imaging. Magn Reson Imaging, 17(10):1427–1436, 1999.

[166] M E Raichle. Behind the scenes of functional brain imaging: a historical and
physiological perspective. In Proc Natl Acad Sci USA, Feb(3), volume 95,
pages 765–772, 1998.

[167] A Shmuel et al. Sustained negative BOLD, blood flow and oxygen consump-
tion response and its coupling to the positive response in the human brain.
Neuron, 36(6):1195–1210, 2002.

[168] N Harel et al. Origin of negative blood oxygenation level-dependent fMRI
signals. 22(8):908–917, 2002.

[169] A T Smith et al. Negative BOLD in the visual cortex: evidence against
blood stealing. Human Brain Mapping, 21(4):213–220, 2004.

[170] G Gomiscek et al. A possible role of in-flow effects in functinal mr-imaging.
Magnetic Resonance Materials in Physics, Biology and Medicine, 1(3-4):
109–113, 1993.



BIBLIOGRAPHY 49

[171] J H Duyn et al. Inflow versus deoxyhemoglobin effects in BOLD functional
MRI using gradient echoes at 1.5 T. NMR Biomed, 7(1-2):83–8, 1994.

[172] J Frahm et al. Brain or vein–oxygenation or flow? On signal physiology
in functional MRI of human brain activation. NMR Biomed, 7(1-2):45–53,
1994.

[173] D Le Bihan et al. Separation of diffusion and perfusion in intravoxel inco-
herent motion MR imaging. Radiology, 168(2):497–505, Aug 1988.

[174] B LeBihan. Diffusion and perfusion magnetic resonance imaging. Raven
Press, New York, 1995.

[175] J L Boxerman et al. The intravascular contribution to fMRI signal change:
Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson
Med, 34(1):4–10, Jul 1995.

[176] D J Dubowitz et al. Functional magnetic resonance imaging in macaque
cortex. Neuroreport, 9(10):2213–2218, Jul 1998.

[177] L Stefanacci et al. fMRI of monkey visual cortex. Neuron, 20(6):1051–1057,
Jun 1998.

[178] N K Logothetis et al. Functional imaging of the monkey brain. Nat Neurosci,
2(6):555–562, Jun 1999.

[179] J G Ojemann et al. Functional MRI studies of word-stem completion: reli-
ability across laboratories and comparison to blood flow imaging with PET.
Hum Brain Mapp, 6(4):203–15, 1998.

[180] V P Clark et al. Functional magnetic resonance imaging of human visual cor-
tex during face matching: a comparison with positron emission tomography.
Neuroimage, 4(1):1–15, 1996.

[181] B J Casey et al. Reproducibility of fMRI results across four institutions
using a spatial working memory task. Neuroimage, 8(3):249–61, 1998.

[182] Nikos K Logothetis and Brian A Wandell. Interpreting the BOLD signal.
Annu Rev Physiol, 66:735–769, 2004.

[183] G K Aguirre et al. The variability of human, BOLD hemodynamic responses.
Neuroimage, 8(4):360–9, 1998.

[184] R L Buckner et al. Functional-anatomic study of episodic retrieval. II. Se-
lective averaging of event-related fMRI trials to test the retrieval success
hypothesis. Neuroimage, 7(3):163–75, 1998.

[185] D L Schacter et al. Late onset of anterior prefrontal activity during true and
false recognition: an event-related fMRI study. Neuroimage, 6(4):259–69,
1997.



50 Chapter 1. BOLD fMRI measurement of cortical activity

[186] K R Thulborn et al. Oxygenation dependence of the transverse relaxation
time of water protons in whole blood at high field. Biochim Biophys Acta,
714(2):265–270, Feb 1982.

[187] S Lai et al. Identification of vascular structures as a major source of signal
contrast in high resolution 2D and 3D functional activation imaging of the
motor cortex at 1.5T: preliminary results. Magn Reson Med, 30(3):387–392,
Sep 1993.

[188] D C Alsop and J A Detre. Reduced transit-time sensitivity in noninvasive
magnetic resonance imaging of human cerebral blood flow. J Cereb Blood
Flow Metab, 16(6):1236–1249, Nov 1996.

[189] E C Wong et al. Implementation of quantitative perfusion imaging tech-
niques for functional brain mapping using pulsed arterial spin labeling. NMR
Biomed, 10(4-5):237–249, Jun 1997.

[190] D S Kim et al. High-resolution mapping of iso-orientation columns by fMRI.
Nat Neurosci, 3(2):164–9, 2000.

[191] J S Gati et al. Experimental determination of the BOLD field strength
dependence in vessels and tissue. Magn Reson Med, 38(2):296–302, 1997.

[193] M S Cohen and S Y Bookheimer. Localization of brain function using mag-
netic resonance imaging. Trends Neurosci, 17(7):268–77, 1994.

[192] K K Kwong. Functional magnetic resonance imaging with echo planar imag-
ing. Magn Reson Q, 11(1):1–20, Mar 1995.

[194] F Farzaneh et al. Analysis of T2 limitations and off-resonance effects on
spatial resolution and artifacts in echo-planar imaging. Magn Reson Med,
14(1):123–39, 1990.

[195] C M Collins et al. SAR and B1 field distributions in a heterogeneous human
head model within a birdcage coil. specific energy absorption rate. Magnetic
Resonance in Medicine, 40:847–856, 1998.

[196] F G Shellock et al. Determination of gradient magnetic field-induced acoustic
noise associated with the use of echo planar and three-dimensional, fast spin
echo techniques. J Magn Reson Imaging, 8(5):1154–1157, Sep 1998.

[197] B P Poncelet et al. Brain parenchyma motion: measurement with cine echo-
planar MR imaging. Radiology, 185(3):645–51, 1992.

[198] G Kruger et al. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-
sensitive magnetic resonance imaging. Magn Reson Med, 45(4):595–604,
2001.

[199] J M Oja et al. Venous blood effects in spin-echo fMRI of human brain. Magn
Reson Med, 42(4):617–626, Oct 1999.



BIBLIOGRAPHY 51

[200] P C van Zijl et al. Quantitative assessment of blood flow, blood volume and
blood oxygenation effects in functional magnetic resonance imaging. Nat
Med, 4(2):159–167, Feb 1998.

[201] S P Lee et al. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascu-
lar/tissue contribution to BOLD signal changes. Magn Reson Med, 42(5):
919–928, Nov 1999.

[202] J Frahm et al. Functional MRI of human brain activation at high spatial
resolution. Magn Reson Med, 29(1):139–144, Jan 1993.

[203] J S Hyde et al. Optimal voxel size in fMRI. In Proceedings ISMRM 8th
Annual Meeting, pages 240–..., Denver, 2000.

[204] J Bodurka et al. Mapping the MRI voxel volume in which thermal noise
matches physiological noise–implications for fMRI. Neuroimage, 34(2):542–
549, Jan 2007.

[205] F G Hoogenraad et al. Sub-millimeter fMRI at 1.5 Tesla: correlation of high
resolution with low resolution measurements. J Magn Reson Imaging, 9(3):
475–482, Mar 1999.

[206] T Q Duong et al. Spatiotemporal dynamics of the BOLD fMRI signals:
toward mapping submillimeter cortical columns using the early negative re-
sponse. Magn Reson Med, 44(2):231–42, 2000.





Chapter 2

Data-driven analysis techniques for
fMRI data sets

2.1 Introduction

This chapter elaborately reviews and compares the applied techniques to analyse
the acquired BOLD fMRI data. It elucidates the shift from a hypothesis-driven
approach to a data-driven approach and focuses on two data-driven techniques cur-
rently favoured for the analysis of complex data sets: the Fuzzy Clustering Method
and spatial Independent Component Analysis. This chapter illustrates their prin-
ciples and clarifies their strengths and shortcomings and covers a literature review
of the major applications in a historical perspective. Finally, the Receiver Operat-
ing Characteristics (ROC) technique to assess the inherent accuracy of a detection
procedure is elucidated.

2.2 Hypothesis versus data-driven approach

Determining the precise location and time course of the responses corresponding
to true neuronal activity is the subject of many BOLD fMRI studies. The acquired
fMRI signals have no simple quantitative physiological interpretation but contain
temporal and spatial structure. Basically two different signal processing strate-
gies exist to extract this structure: hypothesis (or model)-driven and data-driven
methods.

Hypothesis-driven techniques specify a priori a model of the haemodynamic re-
sponse and its goodness-of-fit at each voxel is tested by statistical methods.
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This approach is also called confirmatory analysis.

Data-driven techniques attempt to find common features within the data, without
(strong) a priori assumptions about the time profile of the haemodynamic
response. This approach is also called exploratory analysis.

Combining the strength of the data-driven and the hypothesis-driven techniques
in a hybrid method may lead to a more powerful approach. We will now elaborate
into detail on methods implementing these approaches.

2.2.1 Hypothesis-driven approach

Subtraction and t-test

In the first fMRI studies, a simple method based on image subtraction was used
to create descriptive images of the task-dependent brain areas [1–3]. Voxels with
high signal amplitude in the difference image, formed by subtracting the ‘control’
from the ‘task’ condition images, reflect the areas with a task induced differen-
tial activation. To remove artefacts due to voxels with highly variable signals,
each measured difference signal is normalized by dividing by an estimate of the
intrinsic variability of the signal from that voxel (see 1.6.1). Voxels with a large
signal difference due only to the fact that they have a large intrinsic variance will
be suppressed, whereas true activations in which the signal change is much larger
than the intrinsic variance will remain. The final result is a statistical parametric
map (SPM), i.e. a map of the SNR of the difference measurement [4, 5].

A standard statistical test used to quantify the quality of an activation is the
t-statistic [2]. The Student t-statistic is a parametric statistic to test whether a
significant difference can be found between two states, in this case rest and acti-
vation. In case of non-parametric data, a Kolmogorov-Smirnov test is performed
[6]. For a complete and detailed description of statistical tests we refer to [7].

In the simplest form of the t-test, the signals measured from a particular voxel
are treated as samples of two populations, namely ‘active’ and ‘rest’, as defined by
the stimulus. The t-test assesses whether there is a significant difference between
the means of the measured BOLD values, corresponding to these two groups. It is
a measure of how large the difference of the means is, compared to the variability
of the populations. The test is performed under the null hypothesis that the
distribution of voxel values during the behavioural task is identical to that during
performance of the experimental task. Subsequently, a significance threshold is
selected, such as p < 0.05, expressing that the possibility that a measured effect
will arise by chance alone is less than 5 %. This significance threshold corresponds
to a threshold on t and the voxels which pass the test are labelled ‘activated’. It is
also worth mentioning that the value of the statistic itself should not be taken as
a measure of the degree of activation: a larger value of the statistic does not imply
a larger level of activation. To draw such a conclusion, one must show that the
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difference in the statistic is due to a difference in the signal change, rather than a
difference in the intrinsic variability of the signal.

Correlation analysis

The use of the stimulus function as a reference to detect HRs corresponding to ac-
tivation is not optimal however. The BOLD response of a particular brain region
does not precisely match the stimulus. BOLD fMRI provides a measure of the
local, temporal pattern of neural activity, but only after that pattern has passed
through a haemodynamic filter that smoothes and delays the signal. Bandettini
et al. were the first to produce a reference time course by averaging the haemo-
dynamic responses in a region of interest for a motor-task experiment [8]. They
accounted for the shape and the delay of the response (Fig. 2.1). Each measured
voxel time course was analysed by calculating the correlation coefficient between
the data (after removal of linear drift) and the reference function. The correlation
coefficient expresses the degree to which the measured signal follows the refer-
ence function. It is used as a statistical parameter for mapping once a threshold
is selected (corresponding to a significance level) to determine activated voxels.
When the MR signal from a voxel drifts (usually slightly) over the course of an
experiment, simple linear detrending will enhance the accuracy of the correlation
analysis. However, the time courses of processes related to changes in arousal, task
strategy, head position, machine artefacts or other endogenous processes occurring
during a trial may not resemble simple linear functions.

Fig. 2.1: Stimulus paradigm (a) and correlation reference function (b) used in
the study performed by Bandettini et al. [8].

There is a one-to-one correspondence between the correlation coefficient and the
t-test value. The simple t-test in which the time course data are divided into two
groups and the means compared is equivalent to using a model reference function
that precisely matches the stimulus pattern for correlation analysis. As indicated
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before, the correlation analysis is more general, because a model function, reflecting
the true response, is used instead of the square-wave stimulus pattern.

Modelling the HR function

Bandettini et al. produced a reference HR to detect motor activity by averag-
ing the haemodynamic responses in a particular region of interest. However, this
approach is difficult to generalise due to the variability and nonlinearity of the
BOLD response, as discussed more elaborately in section 1.4. It was illustrated
that the BOLD response exhibits a large variability between subjects [9] and even
within subjects. The latter variability exists between multiple scans (the same
day of different days spread out over a longer period, such as several months) and
between cortical regions [9]. Moreover, the BOLD response is not a linear function
of the stimulus duration [10–14].

Several authors proposed approaches to model the HR function a priori, as to
accurately predict the shape of the fMRI signal (Fig. 2.2). Boynton et al. used
a gamma function with 2 free parameters to model empirically derived HRs [11].
Friston et al. suggested to model the shape of the HR with a Poisson function
[15]. Aguirre et al. proposed a model based on the first eigenvector of the HR in
a study of the variability in the haemodynamic response within and between sub-
jects [16]. Although the parameters of the proposed models are usually reasonably
well known, it is worth estimating these parameters from the data [17–21].

Fig. 2.2: Three different models of the HR function. The thick solid line (circles)
is described by a gamma function [11]. The thin solid line (diamonds)
is based on a Poisson function [15]. The dotted line (squares) is base
on the first eigenvector [16].
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General linear model

Correlation analysis applies only one model function. However, the analysis can
be generalized to include any number of model functions each testing a factor
of interest that may contribute to the fMRI signal in addition to the task design.
Drift is also taken into account by including additional model functions which vary
linearly or quadratic (or even following higher orders) in time. This basic multiple
regression approach is referred to as the general linear model [15, 22, 23]. It is
worth emphasizing that ‘linear’ refers to the fact that the data are modelled as
a linear combination of model functions but that the model functions themselves
need not be linear.

The GLM procedure determines the relative contribution of the modelled effects
for each voxel and those voxels whose contribution to an effect exceeds a prese-
lected threshold are labelled ‘activated’. The residuals, i.e. the signals where the
reference functions can’t account for, are assumed to be independent and identi-
cally normally distributed with zero mean and constant variance. It can be shown
that the t-test and correlation analysis (as well as most other parametric tests)
can be regarded as special cases of the GLM.

2.2.2 Shortcomings of hypothesis-driven approach

A priori construction of the model

A hypothesis-driven approach is a powerful technique, but the accurate determi-
nation of a model of the expected HRs a priori can be difficult to accomplish. The
influence of failure to accurately model the shape of the HR on sensitivity depends
primarily on the design. In case of traditional block designs, in which relatively
long duration periods of neural activity are evoked, the latter failure will likely
result in only small decrements of sensitivity. For event-related fMRI designs, ac-
curate estimation of the HR becomes more important to maintain sensitivity. For
designs in which different trial types (task variance) are randomly ordered, the
latter failure can be expected to result in substantial decrements in sensitivity,
especially as the spacing between the trials decreases [10, 24].

Additionally, data sets originating from a complex task contain unexpected phe-
nomena that are not modelled or phenomena that cannot be modelled a priori.
Detection and characterisation of these phenomena is not possible with this tech-
nique.

Univariateness of the model

A hypothesis-driven approach mostly is univariate, i.e. voxel-based. They ignore
interactions between voxels and are therefore expected to result in many false
positives. Indeed, statistical tests are performed separately for a large number of
time courses (on the order of 100,000 for whole brain coverage). Therefore, a large
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amount of voxel comparisons will be statistically significant due to a change that
has nothing to do with the task (for p < 0.05, on average 5,000 for whole brain
coverage).

Several approaches exist to deal with this shortcoming.

Bonferroni correction The Bonferroni correction decreases the statistical threshold
in proportion to the number of comparisons made [25]. It is however overly
conservative, since it does not take into account for correlations among ad-
jacent voxels, which are not statistically independent, but tend to be func-
tionally similar.

False discovery rate Benjamini and Hochberg proposed a similar approach based on
the ‘false discovery rate’ (FDR) [26, 27]. The latter technique is better suited
for multiple comparisons, since it controls for the expected proportion of false
positives across only those values reaching statistical significance, rather than
controlling false positives for all voxels in the analysis that potentially could
be significant due to chance.

Multivariate approach An alternative approach is the application of a multivariate
technique, which takes advantage of the functional organization of the brain
[28, 29]. Indeed, the brain processes information in a massively parallel net-
work of highly interconnected neuronal ensembles. The latter is reflected
by two complementary principles: localization and connectionism [30]. Lo-
calization implies that each psychomotor function is performed principally
in a small set of brain areas. Connectionism posits that the brain regions
involved in a given psychomotor function may be widely distributed. The
brain activity required to perform a given task may thus be the functional
integration of activity in multiple macroscopic loci or distinct brain systems.

The principle of localization derives originally from clinical experience where
a restricted locus of damage to the nervous system could usually be inferred
from a specific pattern of deficits demonstrated by a subject. The princi-
ple of connectionism was demonstrated in several studies determining the
locus of a lesion. Occasionally, this could not accurately be accomplished,
because the lesion interrupts connections between macroscopic loci required
to perform some psychomotor task [31]. The principles of localisation and
connectionism of the neural processes imply that the different physiological
phenomena of interest as well as artefacts, may concern measurements in
different brain regions.

In general, hypothesis-driven methods implement a univariate approach, but
occasionally, multivariate extensions of existing univariate hypothesis-driven
techniques were proposed. Friston et al. used standard multivariate statis-
tics and the general linear model to make inferences about effects of interest
when analysing fMRI data [4]. Canonical correlation analysis (CCA) is a
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multivariate generalization of correlation analysis, measuring the linear re-
lationship between multidimensional variables [32, 33].

2.2.3 Data-driven approach

A model-free and multivariate approach

Since hypothesis-driven approaches for the analysis of complex fMRI data sets
often failed to extract the underlying neuronal responses, data-driven approaches
were introduced. They do not require the a priori construction of a model of
the underlying neuronal responses, but attempt to find common features within
the data, without (strong) a priori assumptions about the data content itself.
Moreover, they take advantage of the multivariate nature of the fMRI data set
[34]. However, as their approach is exploratory instead of confirmatory, the repro-
ducibility inter- and intra-subjects is a key issue.

Classes of data-driven methods

Most data-driven methods applied for the analysis of fMRI data sets can be divided
into two categories, based on the approach used to elucidate the structure in the
acquired data sets.

(1) A first class of methods transforms the original data as to separate signal from
noise or to distinguish between different signals. At the same time, a reduc-
tion of the dimensionality is often obtained. Typical techniques implementing
this approach are principal components analysis (PCA), factor analysis (FA),
independent component analysis (ICA), wavelets [35–37], and autocorrelation
maximisation [38].

(2) A second class of methods is based on a clustering approach. Clustering tech-
niques classify the observed signals into several patterns according to simi-
larity between each other. An overview of clustering methods can be found
in [39]. Most clustering methods follow a partitioning-based approach, i.e.
the data will be partitioned into an a priori determined number of clusters,
thereby optimising an objective function or likelihood. The clusters that are
thus identified may be exclusive, i.e. every element belongs to one group only
(C-means). Or, they may be overlapping, meaning that an element may be-
long to several clusters to a certain degree (Fuzzy C-means). Or, they may
be probabilistic, meaning that an element has a certain probability to belong
to a cluster (Gaussian Mixture Model). As opposed to partitioning-based
methods, techniques exist that do not need the number of clusters as prelimi-
nary information, such as hierarchical clustering techniques. They iteratively
merge clusters that are the most similar into a larger structure. Alternatively,
a combined split-merge approach can be applied.
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The latter subdivision of analysis techniques is not exhaustive, however. Several
other techniques exist, such as deterministic annealing [40], neural gas [41, 42],
temporal clustering analysis [43], region-growing methods [44], and a self organis-
ing map (SOM) [45, 46].
It is worth mentioning that most methods are based on the magnitude data. Rel-
atively few studies exist that are based on the complex data to take advantage of
the phase information [47–49].

In this dissertation, the focus lies on FCM and ICA, two data-driven techniques
for the analysis of magnitude fMRI data, originating from a complex fMRI ex-
periment. In the following sections, we will elaborate on the principles of both
methods, as well as on PCA, which is typically used as a preprocessing technique.
Additionally, an application-oriented overview of literature is presented.

2.3 Preprocessing the data with Principal Components Analysis

2.3.1 Partitioning variance

One of the first data-driven approaches used to extract the relevant information
out of an fMRI signal consisted in a transformation of the original data as to
reduce the variance. This idea was initially implemented using the principal com-
ponent analysis (PCA) technique, which explores and decomposes the (temporal
or spatial) correlations present in the data set. The technique was first described
in 1901 by Pearson [50] and developed independently by Hotelling [51]. It has since
then been used widely for data decomposition, dimension reduction in signal, and
image data compression and coding applications. In the latter domain it is also
known as the Karhunen-Loève transform.

PCA was first applied in functional neuroimaging studies to PET data in a letter
repetition and word generation task [52]. In the latter study, PCA revealed a
component which could not (easily) be detected by a hypothesis-driven approach.
Subsequently, experiments were performed in the field of fMRI [53–56].

In the analysis of fMRI data sets, PCA typically applies a spatial view on the
data (see section 3.2). Spatial PCA tries to describe the acquired images as a lin-
ear combination of orthonormal spatial patterns, the so-called eigenimages. The
first eigenimage represents the largest source of variance; the second represents
the largest source of residual variance orthogonal to the first eigenimage and so
on. This procedure is repeated up to a maximum number, determined by the rank
of the data matrix. The images can be seen as maps of functional connectivity,
because they share the same time pattern. The associated time patterns can be
seen as modulation functions of the spatial components. PCA relegates most of
the random noise to the trailing components, while the systematic structure is col-
lected into the leading ones. Reducing the variance can thus be used to separate
distinct responses and noise sources from each other. PCA also provides a useful
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way to reduce the data dimensionality, because it allows the data to be represented
by a limited number of principal components (PCs) to a specified level of accuracy
(see section 3.3.1). Low-percentage signal variations, having a small influence on
overall signal variance, can thereby be discarded.

2.3.2 Strength and shortcomings of PCA

PCA components are linear combinations of the original images and therefore
usually do not correspond to real physical quantities, i.e. the images of the area
activated by physiological stimulation. These physiologically relevant images, the
so-called factors, are searched for in factor analysis (FA) by rotation of the PCA
components. This is the reason why factor analysis is often called ‘rotated principal
component analysis’. The transformation of the factors need not to be orthogonal,
but can also be oblique. An oblique transformation overcomes the limitation given
by the orthogonality of PCA and separates the weak and mutually correlated (i.e.
spatially overlapping) activated areas. This operation is a search amongst all lin-
ear combinations of the PCs and can be seen as a projection pursuit task. The
interesting projections of the data can be found by using some a priori information
about the expected result [Andersen 1999; Backfrieder 1996].

Both methods were occasionally successful but failed just as often in detecting
task-related activations. The main reason for failure is that both PCA and FA seg-
regate the data by partitioning its total variance into (un)correlated components.
Performance-related fMRI changes, however, are often only a small part of the
total signal variance. The influence of small activation regions may result in small
percentages of the total variance, compared to other sources, both physiological
and artefactual, distributed across brain voxels. Movement-related components
for example can cause large signal variations in the data set, contributing heavily
to the overall variance. Therefore, variance partitioning, whether using orthogo-
nal or oblique components, does not always separate the data unambiguously into
activated, noisy, and artefact-related components.

At present, PCA is mainly used as a preprocessing step to separate signal from
noise and to reduce the number of dimensions. The relevance of the PCs is usually
quantified by the percentage of variance explained by the components. Because
usually the first PCs account for most of the variance in the signal, a threshold is
set to capture most of the variance in the data (e.g. 90%) while removing the vari-
ance due to the noise. The latter threshold determines the number of components
to be retained for further analysis. A larger percentage of the total data variance
is now represented in a subspace of reduced dimension spanned by the dominant
principal components.
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2.4 Principles and applications of sICA for the analysis of fMRI
data sets

2.4.1 Searching for statistical independence

Independent component analysis (ICA) is conceptually similar to PCA. Like PCA,
ICA is a technique that models the data as a linear combination of components,
expressing the underlying neural activity corresponding to a task. The main dif-
ference between the methods lies in the fact that in case of ICA the components
are assumed to be statistically independent. Therefore, ICA also takes into ac-
count higher order statistics, whereas PCA is based on second order correlations
only. Statistical independence proved to be useful as a guiding principle in a broad
range of applications: telecommunication, image feature extraction, financial time
series analysis, to artefacts separation in brain imaging [57].

2.4.1.1 History of ICA

In the early 1980s, techniques lying at the base of ICA were introduced by Hérault,
Jutten, and Ans [58, 59], when trying to recover underlying signals from linear
mixtures of those signals. The problem of unmixing these measured signals was
known as blind source separation (BSS). Both the sources and the mixing process
are unknown and the term ‘blind’ implies that such methods can separate data
into source signals even if very little is known about the nature of those source
signals. The first solutions to the BSS problem were presented by Comon [60] and
Cardoso [61] during an international workshop on higher-order spectral analysis.
Cardoso used higher-order cumulant tensors. A cumulant of an order is expressed
as a combination of moments but has favourable properties. Among other advan-
tages, a cumulant presents in a clearer way the additional information provided
by higher order statistics. Several alternative approaches were proposed in the
early 90s, based on nonlinear decorrelation [62], maximum likelihood [63, 64], or
fourth-order cumulants [65].

In 1995, Bell and Sejnowski presented an information theoretic approach to extract
the statistically independent components (ICs) [66]: ‘InfoMax’. This algorithm
maximizes the information in the components, which is equivalent to minimizing
the mutual information between the components. The method was first applied
to solve problems similar to the ‘cocktail party’ problem in which many people
are speaking at once. The algorithm, assuming temporal independence (indepen-
dence of the voices), could separate mixed signals into individual sources (voices).
InfoMax proved to be a powerful new approach for the analysis of neuroimaging
data sets. It was applied to the analysis of EEG data in which a set of signals,
one from each electrode, are separated into temporally independent groups [67].
McKeown et al. were the first to analyse an fMRI data set with InfoMax [68].
They found that each of the separate processes (CTR, TTR, as well as confound-
ing modes representing e.g. head motion) could be represented by one or more
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spatially-independent components, each associated with a single time course and
a spatial map. ICA subsequently broke through as a technique for the analysis of
more complex fMRI data, holding several patterns of activation.

In 1997, Hyvärinen and Oja presented an information theoretic approach, based on
the maximisation of negentropy, a concept based on entropy [69]. Their algorithm,
‘FastICA’ has contributed to the application of ICA to large-scale problems due
to its computational efficiency based on the use of a fixed-point algorithm. The
technique produced similar results as InfoMax [70].

2.4.1.2 Temporal and spatial ICA

As with PCA, ICA of fMRI data can be carried out in the temporal or spatial
domain. In case of spatial ICA (sICA), the data set is decomposed into a set
of spatial patterns of activations with associated time courses, assuming statisti-
cal independence among the spatial patterns. In case of temporal ICA (tICA),
the data set is decomposed into a set of temporal patterns of activations with
associated spatial maps, assuming statistical independence among the temporal
patterns. Fig. 2.3 visually depicts both approaches for the analysis of fMRI data
[71]. Data matrix X, containing results of an fMRI experiment (i.e. the number of
voxels N is much larger than the number of time samples T ) is transposed when
switched to the other approach. The yellow rectangles indicate the location of
temporal information of a particular voxel in both views.

Generally, spatial ICA is chosen for the analysis of fMRI data sets. The latter
choice involves two aspects.

• The choice depends on the agreement with both hypotheses of statistical
independence. From a neuroscientific point of view, spatial independence is
generally more plausible for fMRI data and temporal independence for EEG
data. The experiment of McKeown et al., applying ICA for the first time to
fMRI data instead of EEG data, introduced an abrupt change from tICA to
sICA [68, 72].

• As an additional advantage, sICA is computationally less demanding, as
independence has to be accomplished between a limited number of source
images (i.e. the number of acquired time samples per experimental run). A
data matrix resulting from an EEG experiment has a much larger temporal
than spatial dimension. Functional MRI on the other hand results in a data
set with much larger spatial than temporal dimension: typically 100.000
voxels for the whole brain, each holding a time course of hundreds of time
points.

Although spatial ICA has by far dominated the functional imaging literature to
date, some reports of the application of temporal ICA to fMRI data have appeared.
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Fig. 2.3: Visual depiction of the matrix representation of sICA (a) and tICA
(b) approaches [71]. In each case, the spatial information is rearranged
in one dimension (next to the temporal dimension). In sICA, the al-
gorithm attempts to find spatially independent maps with associated
time courses. In tICA, the algorithm attempts to find temporally inde-
pendent time courses with associated spatial maps.

Biswal and Ulmer found that tICA analysis was able to resolve two different in-
duced effects on the fMRI signals, a task induced effect and CO2 inhalation [73].
The use of tICA was motivated by the fact that the latter is a global effect, which
makes sICA less suited. Peterson et al. suggested that sICA and tICA yield similar
results for experiments in which there is one predictable task-related component
[74]. However, the study also shows that sICA and tICA diverge if the predictable
components are highly correlated in space or time, respectively. Calhoun et al.
showed that both methods give similar results in decomposing data containing a
pair of task-related waveforms, that are both spatially and temporally independent
[71]. However, if the components are correlated in time, tICA will not separate all
components and if the components are spatially correlated, sICA will not separate
all components. In the remainder of this chapter, dealing with the analysis of
fMRI data sets, spatial independence between the source maps will be pursued.
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2.4.2 Strength and shortcomings of ICA

2.4.2.1 Comparison to hypothesis-driven techniques

ICA was compared to hypothesis-driven techniques on simulated and real fMRI
data. For a comparison between ICA and FCM, we refer to section 2.5.2.1. A
study performed by Lange et al. illustrated that ICA was able to identify features
in brain maps not accessible by simple correlation or t-test based methods [75].
Other studies showed that ICA was also able to retrieve more complex patterns
of brain activation often left undetected by PCA. More generally, ICA has proven
to be remarkably versatile in several applications in which the brain activation
was hard to predict beforehand. Activity in the visual [76–79], auditory [80], and
cognitive domains [81], and even complex social interaction while simultaneously
scanning more than one subject [82] have all been investigated with ICA.

Much work was done to assess the ability of ICA to reduce the contribution of
noise sources to the fMRI signal. To that purpose, Thomas et al. explored and
compared PCA and ICA-based techniques for the isolation of structured and ran-
dom noise components [83]. After removal of these components, the images were
reconstructed from the decomposed data sets. ICA proved better for the isola-
tion and removal of structured noise, while PCA was superior for random noise.
Perlbarg et al. corrected for structured noise in fMRI data by automatically iden-
tification of the ICA components [84]. Therefore, they used prior information on
the spatial localisation of the main physiological fluctuations. A more detailed
review can be found in [85].

2.4.2.2 Selection of parameters

Independent component analysis is an information theoretic approach yielding
several algorithmic implementations, each characterised by specific parameters.
Therefore, the elaboration on these parameters and the approach to determine a
well-considered setting is performed in chapter 3 (see section 3.3.3, dealing with
the implementing ICA algorithms). The determination the optimal ‘number of
ICs’ is a common problem for all algorithms and is elucidated in section 2.4.2.3 in
the context of the validation of the ICs.

2.4.2.3 Interpretation of the results

The interpretation of the results concerns the determination of maps of significant
activation and their corresponding time courses out of the ICA results. Prelim-
inary, however, the validation of the results, i.e. the selection of physiologically
interesting ICs has to be accomplished. Both aspects are elucidated in this sec-
tion. However, the interpretation may be hampered by the limited applicability
of the ICA model in the analysis of a particular data set. The latter is therefore
expounded as well.
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Applicability of the model

Although ICA is a powerful technique for the analysis of fMRI data, it imposes
some constraints: statistical independence is often only satisfied approximately,
ICA offers a linear model [86], and it attempts to characterize the data globally.
The latter means that even if the dataset is spatially heterogeneous, the ICA model
tries to describe it as if the data were spatially homogeneous [87]. In principle, a
nonlinear version of ICA might solve this problem of distributional heterogeneity
[88], but excessive computational requirements for high-dimensional data, and the
likelihood of non-unique solutions, cast serious doubt on the practical realization
of such nonlinear variants [89–92].

Validation of ICs

Inferring the optimal number of components is difficult to accomplish, since even
those eigenimages explaining the smallest variance in the data typically possibly
have a statistical structure unlike Gaussian noise. Therefore, the number of ICs to
be retrieved is carefully considered (using expertise), combining the need to cap-
ture all physiologically interesting components on the one hand and algorithmic
and computational constraints on the other hand. The physiologically meaningful
task-related ICs are determined post hoc out of the results. However, the lack of a
particular order of the resulting ICs means that a given physiological signal source
could be expressed in any one of the ICs. Moreover, ICA is not able to determine
the absolute energies and sign of the time courses (see 3.3.2.4). This yields a (sub-
jective) interpretation of the resulting ICs or the application of carefully designed
criteria to identify the clusters of interest. Several implementations of the latter
approach exist:

• Nakada et al. evaluate the correlation coefficient between the time courses of
each component and a reference function depicting the task [93]. The com-
ponents whose associated time courses highly correlate with the paradigm
are considered (consistently-) task related, whereas components whose ac-
tivation is related only partly to the paradigm are classified as transiently
task-related components.

• De Martino et al. used a classification based on three descriptive measures:
the kurtosis of the map values, the degree of spatial clustering of each map,
and the one-lag autocorrelation of each map time series [94, 95]. The kurtosis
takes into account the distribution properties of each map intensity, the
degree of spatial clustering (after thresholding based on the z-score) was
chosen because activation maps usually have a defined spatial structure, and
the one-lag autocorrelation was chosen to detect a temporal structure in the
maps. The method showed that the simultaneous inspection of these values
could reveal potentially meaningful phenomena, because in different tasks
the interesting components show similar combinations of these parameters.
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• Moritz et al. ranked the independent components of a periodic fMRI complex
motor paradigm according to frequency content [96]. Their method identified
and ranked the TTR components high, hence separating these from artefacts
and confounds.

• McKeown et al. introduced a hybrid procedure [97]. In a first stage, ICA
is applied to determine a set of independent components. These ICs are
subsequently utilised as a set of regressors for a conventional GLM, which
allows to determine a subset of meaningful ICs.

Construction of activation maps

The thresholding operation of each map is usually performed by scaling the inten-
sity values to the z-score. Within each component map, the voxels that contribute
significantly to the map are those having a z-score whose absolute value is greater
than a threshold. Voxels whose time series are modulated opposite to the time
score of the component show a negative z-score. We emphasize once more that the
z-score has no statistical significance, but is only used for descriptive purposes. In
order to make statistical inferences about these maps, some hypothesis about the
distribution of the noise or the signal is needed.

2.4.2.4 Robustness

The algorithmic and statistical reliability of the estimated components were probed
by Himberg et al. by running the FastICA algorithm (see section 3.3.3) with
different initial conditions or bootstrap samples respectively [98]. Visualizing the
cluster structure in the maps showed that the expected components are reliable.
On the other hand, components where found whose interpretation was not obvious
but showed high reliability, suggesting unknown underlying phenomena.

2.5 Principles and applications of FCM for the analysis of fMRI
data sets

2.5.1 Searching for similarities

The analysis of fMRI data involves the identification of regions of activation and
the corresponding temporal behaviour associated with a task. It can be assumed
that the pattern of activation actually has a structure and can be divided into a
few types of activations. Clustering techniques try to classify signals into several
groups or clusters according to similarity among these signals, quantified using a
distance measure. Each cluster is characterized by its spatial map and the cor-
responding time course, the cluster centre. Subsequently, cluster centres can be
analysed with regard to descriptive parameters such as activation strength and
delay. Clustering techniques provide additional information, namely the cluster
assignments, i.e. the labels for each of the voxels, according to their similarity. It
is therefore possible to isolate zones with similar activation. The clusters derived
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during the latter clustering process (unsupervised clustering) can also be used as
reference groups for the analysis of similar data sets (supervised clustering).

2.5.1.1 C-means

The standard clustering algorithm for functional imaging is C-means [99, 100].
The clusters are a partition of the data, such that each voxel belongs to exactly
one cluster. Fig. 2.4 shows a schematic result of the C-means clustering algorithm
for a two-dimensional feature space (i.e. two time samples are taken for each voxel)
and three clusters. The clusters are indicated by the circles and the cluster centres
by the bold circles.

Fig. 2.4: Example of a C-means clustering result for a two-dimensional data set.
Three clusters were searched for. The clusters are indicated by the
circles and their centres by the bold circles [101].

Fig. 2.5 shows typical C-means results, i.e. spatial maps and corresponding time
courses, obtained by Goutte et al. in the context of a visual experiment study
[102]. The paradigm consisted of a rest period of 20 s of darkness (using a light
fixation dot), followed by 10 s of full-field checker board reversing at 8 Hz, and
ending by 20 s of darkness. Three runs of 100 images were entered in a C-means
algorithm, preceded by a statistical test eliminating most of the non activated
voxels. The figure shows the activation maps and corresponding time courses
of four of the seven clusters found. The first three (top row and bottom left)
are positively correlated with the paradigm and correspond possibly to different
regions in the visual cortex, each with different response strength. The fourth
cluster is anticorrelated with the stimulus and turned out to reflect the heart
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beat. The other three clusters contained voxels that are weakly correlated with
the stimulus (not shown).

Fig. 2.5: Example of maps and time courses resulting from a C-means clustering
procedure, taken from [102]. The first three clusters (top row and bot-
tom left) are positively correlated with the paradigm and correspond
possibly to different regions in the visual cortex, each with different re-
sponse strength. The fourth cluster is anticorrelated with the stimulus
and turned out to reflect the heart beat.

2.5.1.2 Fuzzy C-means

The C-means algorithm was noticed to lack potentially in reproducibility (see sec-
tion 2.5.2.4). In order to deal with this shortcoming, the fuzzy clustering method
(FCM) was introduced by Zadeh in 1977 [103]. Fuzziness relates to the fact that
each voxel belongs to all clusters to a certain degree. The similarity of a voxel to
each cluster centre is expressed by a so-called membership to that cluster. FCM
takes the latter approach into account during the analysis of the data. It results
in a set of clusters (maps and centre time courses) and the memberships of all vox-
els to each cluster. Moreover, a fuzziness coefficient m is introduced determining
the influence of the memberships in the latter procedure (see 2.5.2.2). In 1981,
Bezdek presented an iterative algorithm based on the latter approach [104, 105].
This algorithmic implementation proved to be very fast.
Finally, we mention that FCM represents the data both in a nonlinear manner and
locally, i.e. the cluster centroids rarely involve the combination of all time courses.
The former is opposed to the usual linear approach of PCA and ICA.

The concept of FCM is illustrated in Fig. 2.6, considering a one-dimensional exam-
ple. Looking at the scatter plot of the observations of variable z (Fig. 2.6a), two
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clusters can be identified, called ‘A’ and ‘B’. The C-means approach (Fig. 2.6b)
leads to an assignment of each observation to one of the clusters only, whereas
the FCM-approach indicates how much every observation belongs to each cluster.
The corresponding membership function follows a smooth line.

Fig. 2.6: Difference between FCM and C-means. The C-means approach leads
to an assignment of each observation to one of the clusters (A or B)
only, whereas the FCM-approach indicates how much every observation
belongs to each cluster. As an example, the red coloured observation is
considered. Its membership to cluster ‘B’ is 0.2 and to cluster ‘A’ 0.8.

Note that fuzzy algorithms do not give the probability of an individual time course
belonging to a particular fuzzy centre, but express the degree to which the time
course belongs to the centre. More formally, the probability of a time course being
correlated with a particular cluster is an absolute concept, whereas the member-
ship function is always calculated relative to all other clusters.
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2.5.2 Strength and shortcomings of FCM

2.5.2.1 Comparison to other techniques

FCM was extensively compared to alternative techniques for the analysis of fMRI
data sets in terms of accuracy, robustness, and computation speed.

• Baumgartner et al. compared FCM to correlation analysis and concluded
that FCM outperformed for typical low CNR data sets in terms of detection
accuracy [106]. In a subsequent study comparing the performance of FCM
and PCA, Baumgartner et al. showed that FCM outperformed PCA in the
entire CNR range studied in terms of detection accuracy for physiological
noise [107]. The results for scanner noise, results were comparable.

• Dimitriadou et al. performed a comparison between several clustering algo-
rithms, such as FCM, C-means, SOM, neural gas, and hierarchical clustering
[108]. Their analysis was performed as function of several major design fac-
tors, such as noise characteristics, CNR level, and initial number of clusters.
In this study, a hybrid data set was generated out of baseline in vivo data
and artificially added activation. FCM resulted in a better classification.
The authors concluded however that the neural gas algorithm seemed the
best choice for non-hierarchical cluster analysis.

• Hierarchical clustering was suggested in case of reasonably small data sets.
Lu et al. compared FCM to the region-growing method [44] and to a hybrid
method based on split-merge and region-growing techniques [109], conducted
on simulated and in vivo data sets. They concluded that, compared to
FCM, their hybrid method finds more homogeneous brain regions, i.e. more
continuous and fewer scattered clusters were found.

• Meyer-Baese et al. compared (amongst other clustering algorithms) FCM
based on deterministic annealing (a hierarchical algorithm monitoring dif-
ferent control parameters: the free energy and entropy) to FastICA and In-
foMax [110]. Fuzzy clustering outperformed both ICA algorithms in terms
of classification results and sensitivity range of the CTR component, but
required a longer processing time.

2.5.2.2 Parameter selection and methodological approaches

The first studies applying FCM to fMRI data sets performed clustering directly on
the time-series and applied the Euclidean distance to quantify the similarity among
the acquired signals (similar for C-means). Furthermore, they selected a value for
method-specific parameters, such as the fuzziness coefficient and the number of
clusters, without extensive investigation about their influence on the results. A
large amount of studies exist, investigating alternative implementations of distance
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measures and extracted features to cluster on. Moreover, they try to determine
well-considered settings for the aforementioned method-specific parameters. In
this paragraph, we will elaborate on these aspects as to elucidate their importance
in this dissertation. The approach concerning the ‘number of clusters’ however is
expounded in section 2.5.2.3 in the context of the cluster validation.

Feature space

Using the raw time series as input is limited by the potentially high dimensional
space and the high noise level. Therefore it is better to perform clustering on
selected features, in a lower dimensional feature space [111]. Several authors ap-
plied clustering to features extracted from the time series, instead of clustering
on the raw time series. Goutte et al. investigated the use of two simple features,
namely the activation strength and the response delay of the cross-correlation
function between the time series and the excitation paradigm, thereby combin-
ing hypothesis-and data-driven techniques [112]. In the same study, the authors
performed a meta-analysis in a seven-dimensional feature space, using different
standard single-voxel analysis techniques, like Student t-test (between rest and
activation) and correlation with the paradigm. Simon et al. applied clustering to
data from six different task-control pairs (6 Student t-values) collected for each
subject in the study [113]. Jahanian et al. presented a feature space based on
multiscale decompositions obtained by scalar wavelet and multiwavelet transforms
[114].

Alternatively, as is done in this dissertation, clustering can be performed on the
averaged (with respect to task onset) time courses. This yields a feature space
that still represents time course data of all voxels but with fewer dimensions. Av-
eraging over trials however, may reduce detection sensitivity for TTR activity or
activity which is not time-locked to the experimental event (see section 3.5.3).

Distance measure

In order to elaborate on typical distances measures applied when analysing an
fMRI data set with FCM, we present some quantities and notations. Let xn be
the time course of voxel n (n = 1 . . . N), with N the total number of voxels in
a single image. Let vc be the centre time course of cluster c (c = 1 . . . C), with
C the number of clusters. Each time course consists of T samples (t = 1 . . . T ).
Therefore, the t-th sample of cluster centre vc or voxel xn is represented by vc,t

or xn,t, respectively. The following measures express the distance between a voxel
time course xn and a cluster centre vc in a feature space consisting of time samples.

Typically, in FCM, the distance measure is implemented as the Euclidean dis-
tance, defined by the L2-norm:
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dE (xn,vc) = ‖xn − vc‖2
=

√√√√
T∑

t=1

(vc,t − xn,t)
2

. (2.1)

However, in order to overcome problems related to the data set or the analysis
method, other measures were suggested. Bradley et al. proposed to reduce the
convergence problem of C-means by using the L1-norm as a distance measure:

dL1
(xn,vc) =

T∑

t=1

|vc,t − xn,t| , (2.2)

thereby calling their method C-median [115]. The latter measure is less sensitive
to outliers than the traditional Euclidean L2-norm. Due to the high noise level
in fMRI experiments, the results of clustering on raw time series are often unsat-
isfactory and do not necessarily group data according to the similarity of their
pattern of response to the stimulus. This consideration has led Golay et al. [116]
and Toft et al. [117] in two independent abstracts to consider a metric based on
the correlation between stimulus and time series:

dρ (xn,vc) =

(
1 − ρ (xn,vc)

1 + ρ (xn,vc)

)m

, (2.3)

with ρ Pearson’s cross-correlation coefficient and m the membership.

The Mahalanobis distance [118] is defined as:

dM (xn,vc) = (xn − vc) Cc
−1 (xn − vc)

T
. (2.4)

Instead of treating all voxels xn equally when calculating the distance to the
cluster centre vc, the Mahalanobis distance weights the differences by the range
of variability, described by cluster’s covariance matrix Cc, in the direction of the
voxel [102]. The Euclidean distance does not take into account the shape of the
cluster, i.e. it assumes a spherical shape, corresponding to a covariance matrix
Cc with ones on the main diagonal and zeros elsewhere. The matrix inversion
however results in longer computation times and may lead to singularity problems
when estimating the covariance matrix during the iterative process.

Fuzziness coefficient

The fuzziness coefficient m theoretically lies between 1 and plus infinity. When m
equals 1, hard partitioning is performed and FCM is similar to C-means. When
m tends to infinity, the membership values tend to 1/C, i.e. each voxel is assigned
to all clusters to the same degree. The ideal value of the fuzziness coefficient
is problem-dependent and has to be determined a priori. However, Fadili et al.
noticed that for values of m larger than 3, it was difficult to distinguish between
the non-activated and activated voxels [119]. Common values for fMRI data set
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analysis range from 1.3, which was experimentally determined [120] to two, which
was determined using ROC methodology [119].

2.5.2.3 Interpretation of the results

The interpretation of the results concerns the determination of maps of significant
activation and their corresponding time courses out of the FCM results. Prelim-
inary, however, the validation of the results, i.e. the selection of physiologically
interesting clusters has to be accomplished. Both aspects are elucidated in this
chapter. However, the interpretation is severely hampered by the large amount of
inactivated voxels, a phenomenon known as the ‘ill-balanced data problem’. The
latter is therefore expounded in detail as well.

Ill-balanced data problem

FCM is very sensitive to the large amount of inactivated voxels [119]. The clusters
found can be biased by voxels containing movement-related artefacts or large-
vein contributions. This ‘ill-balanced data problem’ is usually alleviated by an
adequate preprocessing technique reducing the number of voxels to be analysed.
Several approaches exist to determine such a subset:

• A first approach is to distinguish between noisy voxels and potentially inter-
esting ones by analysing the temporal structure in the measured data. Fadili
et al. quantified the latter using autocorrelation [119]. Baumgartner et al.
used one-lag autocorrelation, Spearman’s rank-order based correlation, and
measures of negentropy and kurtosis [121]. Jarmasz and Somorjai defined a
statistic that measures the departure from flatness of the power spectrum of
the time courses [122].

• Furthermore, ‘classical’ analysis techniques can be applied to decompose an
fMRI data set in two classes only as to separate signal and noise. Yao et
al. for example performed an SVD decomposition of the delay-correlation
matrix as to separate signal subspace from noise subspace [123].

• Finally, functional information can be used to determine a region of interest
(ROI). Alternatively anatomical information can be used to determine a
subset, since functional activity is restricted to those voxels that lie within
the cortex (gray matter) [119, 124, 125].

Cluster validity problem

FCM requires an a priori definition of the number of clusters. However, the exact
number is mostly not known. Therefore it is carefully considered (using expertise),
combining the needs to capture all physiologically interesting components and to
avoid the further subdivision of functionally uniform clusters. The physiologically
meaningful clusters must therefore be determined post hoc out of the results.
However, the lack of a particular order of the resulting clusters means that a given
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physiological signal source could be expressed in any one of the clusters. This
yields a (subjective) interpretation of the resulting clusters or the application of
carefully designed criteria to identify the clusters of interest. In FCM literature,
this issue is known as the ‘cluster validity problem’. Several approaches were
proposed to deal with this problem.

• Some authors introduced heuristics as to estimate the optimal number of
clusters. The result however is often problem-dependent. Fadili et al. intro-
duced a criterion based on compactness, separation, fuzzy intersection and
fuzzy union to deduce a quantitative measure to compare partitions with
different number of clusters [126]. Jahanian et al. introduced an ROC (see
section 2.6) based technique to determine the number of clusters [127].

• Another approach consists in the validation of the resulting clusters. Möller
et al. proposed an approach consisting of two steps [128]. Firstly, a sequence
of partitions with increasing number of clusters is created from the data.
Secondly, a validity index is applied to select the partition exhibiting the
clearest indication of an existing structure in the data. Baumgartner et al.
used a resampling technique to validate the results of an FCM analysis and
computed the statistical significance for each voxel to belong to a cluster
[129]. Auffermann et al. assessed the statistical significance associated with
partitioning one cluster into two clusters or the inverse problem of combining
two clusters into one. Their method is based on Fisher’s linear discriminant
and the bootstrap and was demonstrated for the SOM clustering algorithm
[130].

• Alternatively, clustering algorithms have been presented that do not need
the number of clusters as prior information, such as hierarchical clustering
[102, 131]. This technique consists of two parts: the division and merging
part. During the first part, clusters are iteratively divided into smaller en-
tities, using the C-means clustering algorithm. Therefore, two clusters are
considered in each iteration step. The procedure is halted when there is
no significant structure left in the data. During the merging part, similar
clusters (defined in terms of a distance measure, such as the Euclidean dis-
tance) are iteratively re-combined. The procedure is stopped when there is
a sudden increase of the distances for the remaining cluster pairs. Another
approach consists in dynamical clustering. This technique avoids to fix the
number of clusters a priori by generating and annihilating cluster centres
dynamically, i.e. during the data fitting process. Algorithms implementing
the latter approach are ISODATA [132] and Dynamical Clustering Analysis
(DCA) [133]. Baune et al. showed that compared to C-means, DCA led to
much better reproducibility of results, at the expense of computation time
however.

• Finally, a hybrid approach is often proposed. In a first step, hierarchical
clustering may be applied as to determine an estimate of the number of
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clusters and their centres. These results are subsequently used to initialise
the actual FCM procedure. An example of this approach (for segmentation
purposes) is described in [134].

It is worth emphasizing that the lack of a particular order of the resulting clusters
and the corresponding necessity of a validation are similar for the independent
components resulting from an ICA analysis. FCM however, is able to determine
the absolute energies and the sign of the cluster centroids, as opposed to ICA.

Construction of activation maps

The C-means algorithm results in a hard partitioning (crisp clustering), i.e. each
voxel belongs to one cluster only. The physiologically meaningful clusters are
therefore converted to activation maps without further manipulation.
FCM results consist of membership maps of all voxels to the clusters and their cor-
responding centroids, representing the average time course of the cluster. Within
each cluster map, the voxels that contribute significantly to the map are selected
by imposing a (user-defined) threshold on the membership. Several authors sug-
gested 0.8 as a threshold value (m > 0.8) as to impose a high degree of similarity
of the remaining voxels to the cluster centroids [135, 136]. In our research, a
threshold of 0.5 is applied, as to assure that each voxel is assigned to at most one
cluster.

2.5.2.4 Accuracy, robustness, and convergence speed

Scarth et al. were the first to apply FCM on fMRI data [120]. In a study with
simulated and real fMRI data of motor and cognitive tasks, they demonstrated
that the technique was able to identify both the regions and the temporal nature
of the functional activations. The influence of higher field strengths on accuracy
was investigated in several studies. In an experiment applying a field strength of
3 T, Barth et al. [137] were able to separate large vessel from small vessel activa-
tion, whereas Windischberger et al. [138] identified and locally separated various
artefacts.

The robustness of the applied clustering techniques was a key feature in the shift
from C-means to FCM. The robustness of C-means is poor, because of strong de-
pendence on the initialization of the cluster centres especially for high-dimensional
fMRI data sets (i.e. with hundreds of sampling points in time). This is due to the
fact that the gradient-descent performed by the C-means algorithm is a local mini-
mizer. The latter frequently fails to find the global minimum for high-dimensional
data sets. Fuzzy clustering on the other hand proved to be a robust method for
the extraction of localized haemodynamic responses from the microvasculature.
[135, 139].

Convergence of C-means and FCM is usually very fast. This is an important
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feature in view of the large and complex data sets to be analysed, as convincingly
argued in many studies [140, 141].

2.6 ROC analysis

In this section, the Receiver Operating Characteristics (ROC) technique to assess
the inherent accuracy of a detection procedure is elucidated. The assessment of the
detection capability inherent to a analysis method implies measuring separately
the detection accuracy for actually positive (i.e. activated) and actually negative
(i.e. not activated) voxels. This can only be accomplished if the ground truth is
available. For that purpose, a synthetic data set is constructed, in which mimicked
activation is added to a real background data set (i.e. real noise). The assessment
is then expressed in terms of a pair of indices: the ‘sensitivity and the ‘specificity.
The sensitivity is the fraction of voxels actually activated that is correctly diag-
nosed as activated. This fraction is also called the ‘true-positive rate or TPR. The
specificity on the other hand is the fraction of voxels actually not activated that is
correctly diagnosed as not activated. As an alternative to the latter, one usually
expresses the fraction of voxels actually not activated that is wrongly diagnosed
as activated. This fraction is called the ‘false-positive rate or FPR.

These two figures of merit, TPR and FPR are not fixed values of the detection
procedure however, but are dependent on a ‘rating parameter’, expressing the ap-
plied sensitivity of the detection procedure [142–144]. However, for the assessment
of the detection procedure, the extraction of a single figure of merit to assess the
procedure is desirable. This is accomplished in two steps.

Firstly, an ROC curve is established. As shown in Fig. 2.7, an ROC is a con-
tinuous plot of TPR versus FPR in a unit square for a range of threshold values
of the rating parameter. In this dissertation, the ROC methodology is applied
on the FCM method. FCM results in a set of memberships of each voxel to all
clusters, expressing the degree to which a voxel is similar to the cluster centre.
Therefore, such a membership acts as a rating parameter of FCM. The decision
criterion thus corresponds to a specific threshold on the membership [[119, 139]. A
low threshold value (close to 0) assesses many imaging voxels as being activated,
resulting in large values for TPR and FPR. A high threshold value (close to 1)
assesses few imaging voxels as being activated, resulting in low values for TPR
and FPR).
It is worth mentioning that the basic assumption for ROC curve fitting (i.e. turn-
ing discretely calculated data into a continuous plot) is that the underlying data
for truly positive (i.e. activation) and truly negative (i.e. no activation) trials
form a binormal distribution. However, binormal ROC methods are also useful
when the underlying distributions of test results for truly positive and truly nega-
tive trials are unknown and/or non-Gaussian. It is only necessary that the rating
parameter can be transformed to create an approximately binormal distribution
[145]. These conditions are satisfied for the FCM method analysing fMRI data,
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Fig. 2.7: Typical example of an ROC curve. The solid line shows the FPR versus
the TPR as function of a rating parameter of the detection procedure.
The dotted line represents a random classification. The area under
the solid line (0.89) is a measure for the assessment of the detection
procedure.

making ROC methodology applicable.

The second step consists in extracting the best single parameter out of the ROC
curve for characterizing the methods detection accuracy. Because ROC curves
indicating better decision performance lie higher in the unit square, the area un-
der the fitted ROC curve, commonly denoted as Az, is widely for this purpose.
In fMRI experiments however, the ratio of false activations is much smaller than
the ratio of real activations. Indeed, the number of activated voxels involved in
a particular stimulation is much smaller than the number of inactivated voxels
(ill-balanced data problem). Therefore, Az is not desirable as a figure of merit for
ROC analysis of fMRI data sets. As an alternative Skudlarski et al. [146] intro-
duced the mean of the ROC curve over the limited range of false-positive ratio
between 0 and (the somewhat arbitrary value of) 0.1 as a measure. By limiting
the value of merit to low, but realistic false-positive rates (high thresholds only)
we limit the scope of our analysis to the cases that are of primary interest in fMRI.

2.7 Conclusions

In the analysis of BOLD fMRI data, the estimation of the spatial layout of task-
related brain activation was originally based on hypothesis-driven methods. This
category of methods assumes a spatially-invariant model of the HR function. It was
illustrated that this assumption is not optimal for the analysis of complex tasks.
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Indeed, these tasks normally involve the activation of extended networks of brain
regions with widely different HRs. Additionally, within each region, a substan-
tial degree of experimentally-induced trial-by-trial variability is to be expected.
Moreover, hypothesis-driven methods are mostly univariate, thereby ignoring in-
teractions between voxels.

A complementary approach to estimate the spatio-temporal pattern of brain ac-
tivation was introduced: data-driven methods, such as spatial Independent Com-
ponent Analysis and the Fuzzy Clustering Method. In both these methods, a
representation of the data is obtained by decomposing the data into a set of spatio-
temporal modes, without strong a priori assumptions about the temporal profile
of the effects of interest. FCM is applied to decompose the data set into a set of
time patterns with associated spatial maps (i.e. a temporal view on the data is
adopted). In case of ICA however, a spatial view on the data is adopted (sICA).
The data set is decomposed into a set of spatial patterns of activation with asso-
ciated time courses.

Both techniques are successful in retrieving complex patterns of brain activation
often left undetected by other methods or hard to predict beforehand. However,
the correct validation of the results and a well-considered selection of method-
specific parameters and approaches are subjected to the complexity of the data
set and method-specific features. In this dissertation, dealing with the dissection
of the distinct stages of a cognitive task, these shortcomings may severely impede
a successful application of the methods. Therefore, in chapter 3, we will elab-
orate on the characteristics of specific algorithms implementing FCM and sICA
and thoroughly investigate the influence of their parameters. The guideline is to
introduce approaches based on both techniques as to improve the detection ac-
curacy, consistency and robustness when analysing complex data sets. In order
to provide data sets allowing to evaluate these criteria, a newly devised mental
imagery experiment will be introduced.
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Chapter 3

FCM and sICA based approaches and
techniques for the analysis of

time-resolved event-related mental
chronometry data sets

3.1 Introduction

This dissertation deals with the assessment and comparison of data-driven tech-
niques for the analysis of complex, cognitive fMRI data sets.
In the first two chapters, we clarified the strengths and shortcomings of FCM and
sICA for the analysis of an fMRI data set. Several problems arose, concerning
both their use and the interpretation of their results. These problems became
particularly impeding when analysing complex, cognitive data sets, i.e. when dis-
secting the hierarchical processing stages of the applied cognitive task.

In this dissertation, two approaches based on FCM and sICA are presented to
overcome these shortcomings. Firstly, we want to deduce guidelines for the setting
of their parameters in the context of a complex, cognitive task. Therefore, in this
chapter a detailed elaboration on the implementing algorithms, their use and their
parameters, is performed. Secondly, we expect task-induced neuronal activations
and BOLD responses to produce similar signal changes in spatially contiguous re-
gions, extending over several millimetres. Therefore, in this chapter, we present an
enhanced FCM algorithm that incorporates spatial information in the detection
process.
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The guideline in these approaches is the improvement of the detection accuracy,
consistency, and robustness, as well as on validability and interpretability of the
results. In order to allow the assessment of these criteria, appropriate data sets
were selected. Time-resolved event-related mental chronometry fMRI data sets
were acquired in the context of a newly devised visuospatial mental imagery ex-
periment. In this chapter, we also elaborate on the experiment as well as on the
characteristics of the latter data set. The findings of this chapter will be applied
in two studies in chapter 4 and 5.
Since the proposed techniques apply two different views on the data, i.e. temporal
or spatial, we will first clarify the method-dependent presentation of the acquired
data in a corresponding data matrix.

3.2 Spatial and temporal view on fMRI data

In this section, the arrangement of the acquired data in a matrix, prior to their
analysis, is expounded. Some quantities, earlier presented in chapter 2 are thereby
recalled.

An fMRI experiment results in a 4-dimensional data set, consisting of 3 spatial
dimensions (the acquired volume) and 1 temporal dimension (T successive acquisi-
tions). Preliminary to the analysis by multivariate methods, the data are presented
in a 2-dimensional matrix X. Therefore, the spatial dimensions are rearranged,
which is accomplished in a two step procedure. Firstly, one takes advantages of
the fact that functional activity is restricted only to those voxels of a functional
data set that lie within the cortex. The measured volume data are therefore pro-
jected on the inflated and flattened representation of the cortical surface of the
brain [1]. Subsequently, this 2 dimensional matrix representation is reshaped into
a 1-dimensional array of N cortex voxels. For reasons of simplicity we will refer
in the remainder of this dissertation to such array as an ‘image’.

The latter rearrangement results in a T × N data matrix X. Each row vector
xt of this matrix holds an image, acquired at time t (t = 1 . . . T ). Each image
xt consists of N observed voxel amplitudes xt,n (n = 1 . . . N). Since T successive
observations are made, the data matrix can be interpreted as observations of a T -
dimensional variable. We emphasize that in this dissertation, dealing with specific
methods for the analysis of fMRI data sets, the observed data vectors are conven-
tionally represented by row vectors (as opposed to usual conventions). A column
vector will be indicated by the transpose operator (.)T . Whenever an elaboration
uses a deviating notation, such as with SVD (see section 3.3.1), the latter will be
mentioned explicitly.

Finally, we mention that in this dissertation, the mean value (i.e. the mean
image) of the observed data matrix is subtracted, because we are interested in
signal changes. In compact notation, this yields (for reasons of brevity we will not
introduce a new variable, but refer in the rest of this section to the zero mean data
matrix with X):
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X ← X − X̄ , (3.1)

with X̄ the mean image, i.e. the mean over the rows.

The T × N data matrix X implies an interesting duality for its interpretation
and the subsequent analysis, as shown in Fig. 3.1. In the aforementioned re-
arrangement procedure, a spatial view was adopted. The data matrix X was
considered as a time sequence of volumes, i.e. T images, consisting of N voxel
values each, are observed (Fig. 3.1a). Alternatively, adopting a temporal view, X

can be considered as a spatial distribution of time courses, i.e. N time courses,
consisting of T time samples each, are observed (Fig. 3.1b). In order to comply
with conventions used in this dissertation, the matrix shown in Fig. 3.1b will be
transposed for subsequent analysis.

Fig. 3.1: Two dual views on the data matrix X. In the spatial view, the data
matrix X is considered as a time sequence of volumes, i.e. T images
consisting of N voxel values each (a). In the temporal view, X is
considered as a spatial distribution of time courses, i.e. N time courses,
consisting of T time samples each (b).

Whether the temporal or spatial representation is preferred depends both on the
acquisition technique, determining the dimensions of X, as well as on the analysis
method, imposing requirements on the characteristics of X. As the data sets used
in this dissertation originate from fMRI experiments only, the view on the data
will depend on the adopted analysis method. In the following sections, 3.3 and
3.4, we elaborate on algorithms implementing sICA and FCM, respectively, for the
analysis of the data represented by matrix X. We will present extensions to the
algorithms and approaches to determine the parameter settings. The focus lies on
the improvement of the detection accuracy in the context of complex tasks.
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3.3 Methodology of sICA-based approaches

3.3.1 Principal Components Analysis

In this dissertation, principal components analysis is applied as a preprocessing
technique prior to sICA and FCM, to reduce the number of dimensions and to
separate noise from signal. In this section, the singular value decomposition algo-
rithm for the determination of the principal components is considered, as it will
be applied in mathematical elaborations on ICA. For a detailed overview of alter-
native implementing algorithms, we refer to [2].

In the following, the spatial point of view is applied. Data vectors are repre-
sented in columns, which leads to deviating notations compared to the rest of the
dissertation. Let the T × N data matrix X be of rank R (R ≤ min(T ,N)). PCA
is achieved by means of the singular value decomposition of X:

X = UDV T , (3.2)

where U is an orthonormal T×R matrix, whose columns {ur} (r = 1 . . . R) are the
R eigenvectors of matrix X spanning its column space. These eigenvectors have
dimension T× 1, i.e. they represent the eigentime-courses of matrix X. Matrix
V T is an orthonormal R × N matrix, whose rows {vr

T } are the R eigenvectors
of matrix X spanning its row space. These eigenvectors have dimension N× 1,
i.e. they represent the eigenimages of matrix X. The diagonal R × R matrix D

contains the square root of the eigenvalues {dr} on the main diagonal. The data
matrix can thus be written as:

X =

R∑

r=1

√
drurvr

T . (3.3)

In the following, we consider the eigenvectors ordered such that their associated
eigenvalues are ranked in descending order. Either set of eigenvectors can be used
to uniquely represent the data matrix X. The products {Xvr} yield the set of R
time courses (T× 1), for a decomposition in terms of the principal images {vr

T }.
The products {XT ur} yield the set of R spatial images (N× 1), for a decompo-
sition in terms of the principal time courses {ur}.

The latter is now illustrated by a simulated example. Fig. 3.2 shows a bidi-
mensional (i.e. T = 2) scatter plot of the observed (zero mean) values xn of the
image voxels. The covariance of the images is described by the covariance matrix
C, which is estimated from the data matrix X:

Ĉ =
1

M
XXT , (3.4)

where the denominator expresses that the (maximum likelihood) estimate of the
covariance matrix is calculated using M observed voxels. In the following, the
equality is replaced by a proportionality, thereby omitting the denominator M :
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Ĉ ∝ XXT . (3.5)

Using Eq.(3.2), the covariance matrix is expressed as a function of the SVD de-
composition of X:

Ĉ ∝ XXT = UDV T V DUT = UD2UT . (3.6)

The PCs are found by means of the eigenvectors of C (we recall that they are
ordered such that their associated eigenvalues are in decreasing order). The eigen-
values equal the variance explained by the corresponding PC and the sum of the
eigenvalues equals the variance of the original observations, i.e.

T∑

t=1

σ2
t =

R∑

r=1

dt , (3.7)

with σt
2 the variance of the t-th variable (see [2] for further details). Fig. 3.2

shows the directions of the eigenvectors (PCs) and the associated eigenvalues.

Fig. 3.2: Bidimensional (i.e. T = 2) scatter plot of the observed (zero mean)
values xn of the image voxels. Principle components and associated
eigenvalues of the data matrix X are shown. [3]

3.3.2 The ICA model

3.3.2.1 Assumptions for the applicability of ICA to fMRI data sets

In a study applying ICA application to fMRI data, McKeown et al. concluded
that the fMRI signals recorded during the performance of psychomotor tasks can
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be decomposed into a number of independent component maps and associated
component activation waveforms under the following assumptions [4, 5]:

(1) The component maps, each specified by a spatial distribution of voxel val-
ues, represent possibly overlapping multifocal brain areas related to a specific
functional activation.

(2) The component map distributions are spatially independent. This is a much
stronger assumption than uncorrelatedness, because independence also implies
that higher-order correlations are zero.

(3) The observed fMRI signals are a linear sum of the contributions of the indi-
vidual spatial processes at each voxel.

These assumptions imply that the change in the fMRI data results from the relative
contributions from each of the component maps rather than of changes of the
component maps themselves, i.e. the maps are fixed throughout the experiment.
In order to investigate the validity of these assumptions, a number of quantities are
recalled or introduced. Let X be the T × N matrix representing the spatial view
on the data. Each row xt contains an fMRI image of N voxels xt,n (n = 1 . . . N)
acquired at time t (t = 1 . . . T ), with T the number of scans. Let S be the K ×N
matrix whose rows sk (k = 1 . . . K) contain the unknown independent images
(K ≤ T ) and A the T × K linear mixing matrix whose columns ak

T contain the
unknown time courses of the K independent images. The matrix A is assumed
to be of full rank. As illustrated in Fig. 3.3, the assumptions can be expressed
rigorously by the following matrix equation:

X = AS . (3.8)

3.3.2.2 Conditions for the identifiability of the ICA-model

The acquired fMRI data can be modelled as a linear mixture of source-signals
expressing the underlying neural activity corresponding to all stages of the task.
The problem of the ICA-decomposition of fMRI time series can thus be formu-
lated as the estimation of both matrices of the right side of Eq.(3.8). No a priori
assumption is made about the mixing matrix A, i.e. about the time courses cor-
responding to the independent images. However, in order to assure that the ICA
model is identifiable, i.e. that the mixing matrix and the ICs can be estimated (up
to some trivial ambiguities that will be discussed next), the following restrictions
are made:

• The mixing matrix A must be square, i.e. the number T of observed mixtures
is equal to the number N of independent components, as this simplifies the
estimation significantly [6, 7]. In case the number of mixtures is larger, PCA
can be used to reduce the dimension of the data. In general, PCA is not able
to find the subspace correctly, because of the presence of noise. As a result,
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Fig. 3.3: Schematic of fMRI data decomposed into independent components [5].
Each independent component produced by the ICA algorithm consists
of a spatial distribution of voxel values (‘component map’), and an as-
sociated time course of activation. The four schematic component maps
(possibly partially overlapping) show voxels participating most actively
in each of the four hypothetical components. The signal observed at a
given voxel is modelled as the sum of the contributions of all the inde-
pendent components. The amount each component contributes to the
data is determined by its time course.

some ‘weak’ ICs may be lost in the dimension reduction process, but PCA
is still efficient in finding ‘strong’ ICs [8]. Moreover, reducing the dimension
of the data reduces noise and prevents overlearning. The latter means that
the number of parameters in a statistical model is too large compared to the
number of available data points, making the estimation of the parameters
difficult or even impossible. Overlearning typically produces estimates of
the ICs that have a single spike or bump, and are practically zero elsewhere
[9]. Finally, the unmixing matrix W (see below), which is the inverse of the
square-made matrix A, is well-defined, and does not require to be computed
as the pseudo-inverse of A. In the remainder of this section, we will assume
the matrix A to be squared (T × T ). Consequently, T independent images
are searched for, i.e. S has dimensions T × N .

• The independent components must have non-Gaussian distributions. As it
will be explained in section 3.3.2.6, the presence of more than one Gaussian
source makes the model not undefined.
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3.3.2.3 Investigating the assumptions

The assumption of statistical independence means that knowledge of the intensity
values of one image sk cannot give information about the other source images sj 6=k.
More formally, considering the T images as random variables s̃1, s̃2, . . . , s̃T , the
images are said to be independent if and only if the joint probability distribution
function (pdf) p of these images can be expressed as the product of their marginal
densities pt:

p (s̃) =

T∏

t=1

pt (s̃t) . (3.9)

In the aforementioned study, McKeown et al. showed that, as higher-order statis-
tics were used to enforce stricter criteria for spatial independence between maps,
better estimates for the CTR components were obtained [5]. The latter suggests
that spatial independence is a reasonable assumption for maps that are sparse and
mostly non-overlapping. However, spatial dependence between CTR and TTR
components was inferred by the changes in the TTR maps when the CTR compo-
nent was removed. Also, no explicit noise model was adopted. Rather, the noise
was assumed to be distributed among one or more components.

In another study, Mc Keown et al. explored the validity of the remaining assump-
tions, i.e. constant mixing of components throughout the brain, linear mixing,
as well as the additional requirement that the number of components equals the
number of time points [10]. Therefore, a representative fMRI data set was used to
calculate the log-likelihood of observing each voxel’s time course conditioned on
the ICA model. If any of the mentioned assumptions are not valid, the ICA algo-
rithm will be less able to separate statistically independent component maps. The
estimated probability of observing the data under the null hypothesis that the ICA
assumptions are valid will therefore be reduced. Although the assumptions were
generally confirmed, models incorporating nonlinear mixing were studied [11].

3.3.2.4 Unmixing the data in an iterative procedure

Under the aforementioned assumptions and restrictions, the ICA decomposition
of X can be defined as a linear transformation, referring to Eq.(3.8):

S = WX , (3.10)

where the ‘unmixing’ matrix W is such that the independence of the target com-
ponents of S is maximised. The latter is accomplished in an iterative procedure
consisting of two steps:

(1) The sources S are updated as described in Eq.(3.10), using the unmixing
matrix W obtained in the former iteration step.
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(2) The unmixing matrix W is updated to improve the independence of the
sources. The practical implementation of the applied update (or learning)
rule is algorithm-dependent and will be elaborated in section 3.3.3.

Note that the linear transform W is in general unique, only up to scaling and
permutation. The latter results in the following ambiguities:

• The variances (energies) of the independent components cannot be deter-
mined. Indeed, any scalar multiplier (including sign inversion) in one of the
sources of S could always be cancelled by dividing the corresponding column
of A by the same scalar.

• The order of the independent components cannot be determined.

3.3.2.5 Whitening the data

A whitening (or sphering) step is applied, as to transform the zero mean data
matrix X into a new set of voxel values Xw that are uncorrelated and have unit
variance. The covariance matrix Ĉw of the whitened data Xw thus equals the
unity matrix I:

Ĉw = I . (3.11)

The procedure to obtain whitened data will now be elucidated formally, i.e. for

random variables X̃ with covariance matrix C. The so-called whitening matrix P

accomplishing the transformation

X̃w = PX̃ , (3.12)

is determined by:

P = C−1/2 . (3.13)

Starting from the definition of the covariance matrix of Cw and taking into account
Eq.(3.12) yields :

Cw = E
{

X̃wX̃T
w

}
= P E

{
X̃X̃T

}
P T , (3.14)

where E{.} is the expectation operator.
An estimate for the mixture matrix P is obtained by combining Eq.(3.13) and
Eq.(3.6):

P̂ = UD−1UT . (3.15)

As an estimate for the expected value of the covariance matrix of X̃ is obtained
by Eq.(3.6), an estimate of Cw is obtained by:

Ĉw = UD−1UT UD2UT UD−1UT . (3.16)



104 Chapter 3. FCM and sICA based approaches and techniques

In equations 3.15 and 3.16, the proportionality in Eq.(3.6) is replaced by an equal-
ity, as the proportionality constant is incorporated in the diagonal matrix D. The
latter manipulation has no impact on the validity of the proof. Indeed, it can
easily be seen that, irrespective of the proportionality constant, the right hand
side of equation 3.16 equals I.

At the end of the whitening process, the data matrix Xw will thus have un-
correlated components with unit norm. The search for independent components
will now consist in a suitable orthogonal transformation. To further clarify this
concept, it is useful considering a two-dimensional example. In the left panel of
Fig. 3.4, the (zero mean) raw data are plotted. In the middle panel, the whitened
data are depicted. The data are now uncorrelated and have unit variance, but
they are not independent. This can be seen from the figure since knowledge about
the x-axis value gives information about the range of possible y-axis values. The
last panel illustrates that a suitable rotation yields the independent decomposition
of the original variables, as searched for by ICA.

Fig. 3.4: Example of whitening and ICA of bidimensional random data. The
raw bidimensional data are shown in (a). At the end of the whitening
process, the whitened data are uncorrelated and have unit variance (b).
The independent components are determined by a suitable rotation (c)
[6].

Additionally, whitening reduces the computational complexity. This can be de-
duced as follows. Combining Eq.(3.8) and Eq.(3.12), yields:

X̃w = PAS̃ . (3.17)

Therefore, the new mixing matrix Aw can be written as:

Aw = PA . (3.18)

The latter is orthogonal. This can be seen when reformulating the covariance
matrix of Cw using Eq.(3.17) and Eq.(3.18):

Cw = E
{

X̃wX̃T
w

}
= E

{
(AwS̃)(AwS̃)T

}
. (3.19)

Rewriting this expression, taking into account that the matrix S is orthogonal
(independent sources) yields:
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Cw = AwE
{

S̃S̃T
}

Aw
T = AwAw

T . (3.20)

Since the covariance matrix Cw equals the unity matrix I, the new mixing matrix
is orthogonal:

AwAw
T = I . (3.21)

Consequently, an estimate of T (T -1)/2 elements of the matrix Aw is needed to
solve the ICA problem, instead of T 2 elements of the matrix A. The complexity
of the problem is thus reduced by the whitening preprocessing step.

3.3.2.6 Why Gaussian variables are forbidden

It is worth emphasizing once more that statistical independence is related to the
entire pdf and therefore differs from uncorrelatedness, which is limited to second
order statistics. Uncorrelatedness is a necessary but not sufficient condition for
independence. For Gaussian distributions however, uncorrelatedness is equivalent
to independence. This can be seen from the fact that a Gaussian distribution
of an image st is described only by its mean and its covariance matrix, without
incorporating further information in higher order statistics:

p (st) =
1

(2π)
d/2

∣∣∣Ĉt

∣∣∣
1/2

exp

(
−1

2
st Ĉ

−1/2
t st

T

)
, (3.22)

where d is the dimension of the multivariate distribution (in our case d = T ) and∣∣∣Ĉt

∣∣∣ the determinant of the covariance matrix Ĉt of the (zero mean) independent
source st.

As mentioned, the mixing matrix A is whitened preliminary to the actual search
for independence. As any orthogonal rotation of a multivariate whitened Gaussian
distribution will not change its joint density distribution, there is no way to infer
the mixing matrix A from the mixtures X in case of more than one Gaussian
variable. Indeed, if some but not all components are Gaussian, the ICA model can
estimate all the non-Gaussian components, but the Gaussian components cannot
be separated from each other. Some of the estimated components will be arbitrary
linear combinations of the Gaussian components. Therefore, the ICA model can
still be estimated in case of just one Gaussian component.

This phenomenon can be graphically elucidated by the whitened bivariate dis-
tribution of two independent Gaussian variables, as shown in Fig. 3.5. This figure
shows a rotationally symmetric density and therefore does not contain any infor-
mation on the directions of the columns (containing the weights of the independent
images) of the mixing matrix A. Therefore, it is not possible to estimate A.
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Fig. 3.5: Gaussian variables are forbidden. The latter is illustrated by the exam-
ple of the whitened distribution of a bidimensional Gaussian variable.
The density is rotationally symmetric and therefore it is not possible to
determine the independent components by a suitable rotation [6].

3.3.3 Approaches and algorithms

Statistical independence of the components is accomplished when their joint prob-
ability density function factorizes, as described by Eq.(3.9). As it is rather diffi-
cult to estimate this joint probability density function, alternative approaches to
measure independence are employed. Therefore, an objective function denoting
independence is determined and a procedure is chosen to optimise it. Both the
objective function and the optimisation procedure account for the overall perfor-
mance of the ICA separation. Most objective functions proposed in literature are
based on

• information theoretic criteria, such as mutual information or entropy [12], or
non-Gaussianity [13].

• second-order statistics incorporating additional spatial information, such as
accomplished by the lagged cross-covariances [14, 15].

• nonlinear techniques, such as nonlinear decorrelation [16, 17].

In this dissertation, we will elaborate on approaches implementing the first two
criteria. Techniques implementing nonlinear decorrelation or nonlinear PCA are
omitted in this dissertation, as they are considered beyond its scope. A detailed
description on those techniques can be found in [6].



3.3. Methodology of sICA-based approaches 107

3.3.3.1 Information maximization

Mutual information and entropy Entropy is a basic concept of information the-
ory, describing the uncertainty associated with a message. In the field of ICA, it
will be applied to estimate the degree of independence reached in an iteration step
searching for independent images st (t = 1 . . . T ). Given a set of observed images
st constituting the matrix of all observed images S, the entropy H associated with
st is defined as (discrete-valued):

H (st) =

J∑

j=1

p (st = bj) log p (st = bj) , (3.23)

where bj (j = 1 . . . J) are the possible values of st, p(st = bj) is the probability
that st is lj , and log is usually the base-2 logarithm.
The entropy H(st) can be interpreted as the degree of information that the obser-
vation st of the random variable s̃t gives. The more random, i.e. unpredictable
the image is, the larger its entropy. For images having equal probability for all
possible values, it is not possible to predict their value, which is reflected by large
entropy. If there is little randomness in the image, since it takes almost always the
same value, entropy is small. A remarkable property of entropy is that a Gaussian
variable has the largest entropy among all the random variables having the same
mean and variance.

Mutual information I can be defined as a measure of the information that some
members of the set of images {st} have on the other images in the set. It is closely
connected with entropy, as illustrated by the following definition:

I (s1, s2, . . . , sT , ) =

T∑

t=1

H (st) − H (S) . (3.24)

The first term is related to the amount of information we get from the observation
of the images separately. The second term H(S) is the joint entropy of all images;
it is related to the amount of information we get from the observation of all images
together. The mutual information can thus be interpreted as the redundancy
between the images st or, alternatively, as the reduction in uncertainty of a image
(st) due to the observation of the other images (su u 6= t). In the two dimensional
case, the latter can be written as

I (s1, s2) = H (s1) − H (s1|s2) . (3.25)

If the images are statistically independent, there is no additional information about
any image from the observation of any other, and the entropy of the complete set
of images is the sum of the entropies of the individual images. As can be deduced
from Eq.(3.24) and Eq.(3.25), in this case the mutual information equals zero.
If there is some redundancy in the image set, it means that we can get some
information about some image from the observation of the other images, and
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the entropy of the complete set of images is lower than the sum of the individual
entropies. This results in a mutual information larger than zero. The minimisation
of mutual information among a set of images is thus equivalent to maximising their
statistical independence.

Bell and Sejnowski: InfoMax In 1995, Bell and Sejnowski proposed the InfoMax
algorithm, which determines an unmixing matrix W by attempting to maximise
the joint entropy of suitably transformed component maps [12].

In order to clarify the algorithm and to demonstrate differences with PCA and
correlation, a simulated experiment is described [5]. A hypothetical fMRI data
set is considered as the sum of the activity of two spatially-independent processes,
recorded at two separate time points. At time point t = 1, the subject is per-
forming an experimental task, while time point t = 2 occurs during a control task
condition. The two component processes, portrayed schematically in Fig. 3.6 a,
are primarily active during the control and experimental task periods, respectively.
Component IC2 is mostly task-related, since it is highly active at t = 1 and only
weakly activated at t = 2. Component IC1 (representing either endogenous ac-
tivity or machine artefact) is somewhat more active at t = 2 than at t = 1. We
assume that distributions of voxel values for the two components are independent
of one another, with fairly small and discrete sets of active voxels (such as those
indicated for the cartoon head of Fig. 3.6 b). Here a simple reference function for
detecting task-related brain areas via correlation (Fig. 3.6 c) will have the values
1 (= ‘ON’) at t = 1 and 0 (=‘OFF’) at t = 2.

Figure 3.7 a shows a scatter plot of the hypothetical fMRI data. Here, for each
voxel, the signal recorded at time t = 1 is plotted against its value at t = 2. The
relative activations of components IC1 and IC2 (Fig. 3.6) appear in Fig. 3.7 as
fixed vector directions. The assumption that component processes IC1 and IC2
are spatially independent implies that the data points will tend to be distributed
uniformly along each of the vectors labelled IC1 and IC2. Note that the distribu-
tion of data values at t = 1 is correlated with the data distribution at t = 2. Thus,
the marginal probability density distributions of the data in its current form are
not uniform, and the data distribution cannot have maximum entropy.

The InfoMax algorithm attempts to find directions IC1 and IC2 by iteratively
adjusting W so as to maximise the entropy of the resulting transformed distribu-
tion. The unmixing matrix W is initialized to the identity matrix I. The iterative
process consists of two steps:

(1) S = WXw. The unmixing matrix W obtained in the former iteration step is
applied to the whitened data Xw in search for a ‘more independent’ unmix of
the contributions of both IC-processes to the data. The linear transformation
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Fig. 3.6: A simple fMRI ‘thought experiment’ to demonstrate differences between
ICA, PCA, and correlation analysis methods (see Fig. 3.7) [5]. a : A
hypothetical fMRI data set is the sum of he activity of just two spatially-
independent processes (IC1 and IC2) recorded at two observation times
(t = 1, experimental; t = 2, control). We assume that process IC2
is more task-related, as opposed to process IC1. b : Voxels with the
largest map values in the two hypothetical component distributions are
active voxels of the components. c : The simplest reference function
for detecting task-related activations using correlation analysis is active
(= 1) during the experimental task and inactive (= 0) during the control
task.

of the scatter plot of the fMRI signal values thereby becomes more rectangular,
i.e. the transformed data have larger entropy compared to the original data
(Fig. 3.7 b).

(2) Y = g(S). Passing the transformed data through a nonlinearity g will more
evenly spread out the data within the rectangle, producing a data distribu-
tion that has still larger entropy (Fig. 3.7 c). In order to bias the algorithm
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Fig. 3.7: Analysis of the simulated experiment described in Fig. 3.6 [5]. a : The
scatter plot of the hypothesized fMRI signal values (at times t = 1 and
t = 2) for each brain voxel contains arrows IC1 and IC2, which show
the directions determined by the relative activations of the two com-
ponent processes. The two parallelograms (solid borders) indicate the
active voxels for each component. Active voxels by correlation analy-
sis are those enclosed by the rectangle (dashed borders). Active voxels
associated with the first principal component are those lying inside the
tilted rectangle (dotted borders). ICA, PCA, and correlation analysis
thus find overlapping, but typically not identical collections of active
voxels. Only ICA will find the active areas of each independent com-
ponent. b : The independent component directions IC1 and IC2 can be
indirectly determined by finding the linear transform W , which results
in a rectangular distribution. c : The sigmoid transformation g(WX)
produces the most uniform (i.e. maximum entropy) distribution for the
data shown. The ICA algorithm of Bell and Sejnowski adjusts IC1’ and
IC2’ to maximize the entropy of the distribution. [12]
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towards finding spatially sparse component maps with relatively few highly
active voxels, McKeown et al. chose to use the sigmoide [5]:

g (S) =
1

1 + e−s
. (3.26)

The principle behind the sigmoid function is illustrated in Fig. 3.8 for one in-
put and one output. The steepest part of the sigmoid is aligned to the input
distribution and the slope is scaled to match the variance. This flattens the out-
put distribution and increases its entropy H(Y ). A gradient descent algorithm is
applied, yielding an update rule for the elements of the unmixing matrix W :

∆W = ε
([

W T
]−1

+ g (WX)XT
)

, (3.27)

where ε is a learning rate that is reduced gradually during the iterative process.
In practice, a user-defined threshold on a criterion expressing the change in W

between two iteration steps determines when convergence is reached (e.g. the root
mean square change for all elements is smaller than 10−6). As soon as the latter
is smaller then . The procedure is simple and smooth, but may lead to the closest
local minimum instead of the global minimum.

Fig. 3.8: Maximizing entropy by a sigmoidal function [12]. The input d, with the
density function f(d) is passed through a nonlinear function, c = g(d).
The maximum amount of information the output can provide about
the input is realized when the entropy of the output distribution f(c)
is maximized, i.e. when the output distribution is flat .

Fig. 3.7 compares the results obtained by ICA to these obtained by PCA or cor-
relation. Active voxels in the component maps, i.e. the voxels highlighted in Fig.
3.6b, are those that project most strongly on the vectors IC1 and IC2, as indicated
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by the two parallelograms (‘Active IC’). Active voxels according to correlation of
the data with the assumed reference function (illustrated in Fig. 3.6c) are those
whose projection on the reference function direction exceeds some threshold. The
latter is indicated by the dashed rectangle (‘Active Corr’). Unlike ICA, PCA finds
orthogonal directions of maximum variance in the data, which has in general no
specific relationship to the directions (i.e. time courses) of the independent com-
ponents. Active voxels in the PC1 direction are indicated by the tilted dotted
rectangle (‘Active PC1’). The second component of these data has no particular
relationship to either of the independent components. Results of the three meth-
ods will thus not be identical. Given the validity of the assumptions of linear
summation, spatial sparsity, and statistical independence between components,
ICA should more accurately determine the exact spatial extents and time courses
of activations contributing to the data.

Maximum Likelihood Methods In case of sub-Gaussian distribution of sources,
the presented InfoMax algorithm fails to recover the underlying sources. To over-
come this drawback, Lee et al. proposed an extension of the InfoMax algorithm
based on maximum likelihood (ML) estimation [18]. The likelihood function L
calculates the chance that the observed images xt of the data matrix X are gener-
ated according to a predefined model with unknown parameters. In our context,
the model is the unmixing matrix W . The latter approach yields

g1 (S) = −2 tanh (S) , (3.28)

for super-Gaussian sources and

g2 (S) = tanh (S) − S , (3.29)

for sub-Gaussian sources.

Due to the inversion of the matrix W T in Eq.(3.27), needed in every iteration
step, the Bell and Sejnowski algorithm converges slowly. Amari et al. pointed out
that the parameter space of W T is not Euclidean, but has a Riemannian metric
structure [19, 20]. In such a case the steepest direction is given by the so-called
natural gradient. The corresponding update avoids matrix inversions and thus
speeds up convergence:

∆W = ε

(
∂H (Y )

∂W

)
W T W . (3.30)

3.3.3.2 Non-Gaussianity maximisation

Central limit theorem Another widely used criterion is the maximization of non-
Gaussianity. The latter principle is illustrated by a simple example, considering
two independent components having uniform densities. Their joint distribution
is illustrated in Fig. 3.9a, in which a sample of the independent components is
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plotted on the two-dimensional plane. Fig. 3.9b shows a histogram estimate of
the uniform densities. These variables are then linearly mixed, and the mixtures
are whitened as a preprocessing step. The joint density of the whitened mixtures,
which is a rotation of the original joint density, is given in Fig. 3.10a. The densities
of the two linear mixtures are estimated in Fig 3.10b. One can clearly see that the
densities are closer to a Gaussian density than the densities of the independent
components shown in Fig. 3.9b.

Fig. 3.9: The joint distribution of two independent components with uniform
densities (a). The estimated density of one uniform independent com-
ponent, with the Gaussian density (dashed curve) given for comparison
(b). [6]

Fig. 3.10: The joint distribution of two whitened mixtures of independent com-
ponents with uniform densities (a). The marginal densities of the
whitened mixtures are closer to the Gaussian density (dashed curve)
than the densities of the independent components (b). [6]

The latter principle is known as the ‘central limit theorem’ (CLT), stating that the
linear mixing of statistically independent random signals is more Gaussian than
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the original ones. It can be shown that, if the estimated ICs are constrained to
have the unit variance, the principle of minimizing mutual information is equiva-
lent to maximizing non-Gaussianity (see [6] chapter 10).

The independent components can now be retrieved by applying the CLT: an un-
mixing variable is maximally non-Gaussian when it equals one of the independent
components. As an additional indication of problems with Gaussian components
it has to be noted that if more than one component has a Gaussian probability
density, it will not be possible to identify the ICs using CLT [7]. In order to esti-
mate the degree of non-Gaussianity of an image st, a measure must be used. A
first option is to use kurtosis that is the fourth order cumulant. Kurtosis is zero for
Gaussian distributions and nonzero for (almost) all non-Gaussian distributions.

kurt (st) = κ4 = E
{
s4

t

}
− 3

[
E

{
s2

t

}]2
. (3.31)

Hyvärinen: FastICA Kurtosis is not a robust measure with respect to noise and
outliers. The value of the kurtosis may depend on only a few observations in
the tails of the distribution, which may be erroneous or irrelevant observations.
Assume for example that a sample of 1000 values of a random variable with zero
mean and unit variance contains one value equal to 10. Then the kurtosis equals
at least 104/1000 - 3 = 7, which means that the single value makes kurtosis large.
A more robust measure is negentropy that is defined as:

J (st) = H (sGauss) − H (st) , (3.32)

where H(st) is the entropy of image st and sGauss is an image characterised
by Gaussian distribution and the same variance matrix as st. Entropy is not a
scale-invariant property, but the difference between entropies, as in Eq.(3.32) is.
Since Gaussian variables have the largest entropy among all variables with equal
variance, negentropy is always larger than or equal to zero. It can thus be used as
a measure of ‘distance’ between a random variable density and a Gaussian density
with the same mean and variance. The proper estimate of the negentropy of a
random variable requires the exact knowledge of the probability density of the
variable, which is mostly not feasible. Therefore approximations of negentropy are
used, such as:

J (st) = k [E {G (st)} − E {G (ν)}]2 , (3.33)

where k is a positive constant, ν is a Gaussian variable of zero mean and unit
variance, and st is assumed to have zero mean and unit variance. G is a non-
quadratic function, whose choice is influenced by the robustness of the estimator.
The following choices of G have proven to be useful [6, 21]:

G1 (st) =
1

a1
log (cosh (a1st)) , (3.34)
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G2 (st) = − exp

(
−s2

t

2

)
, (3.35)

where 1 ≤ a1 ≤ 2 is some suitable constant, often taken equal to one.

The FastICA algorithm employs these approximations of negentropy to estimate
the independent components [13]. Instead of using a gradient descent approach
to find the solution, it employs a fast fixed-point iteration scheme, yielding the
following learning rule:

W ← Xw g
(
W T Xw

)
− g

′ (
W T Xw

)
W , (3.36)

which is followed by a normalization step:

W ← W

‖W ‖ , (3.37)

function g
′

being the derivative of g and g the derivative of the functions suggested
in Eq.(3.34) and Eq.(3.35) or the derivative corresponding to the fourth power as
in kurtosis:

g1 (st) = tanh (a1st) , (3.38)

g2 (st) = st exp

(−s2
t

2

)
, (3.39)

g3 (st) = s3
t . (3.40)

Given the nature of the objective function employed, it is possible to extract with
FastICA one component at a time (deflation scheme) as well as all the components
together (symmetric scheme) [13, 21].

• In deflation scheme, the first independent component can be estimated by
calculating the direction w1 that maximizes the non-Gaussianity of w1X.
The remaining independent components are found as the directions that
maximise the non-Gaussianity of wiX, with the constraint that wi lies in
the subspace orthogonal to the one spanned by the directions found in the
previous steps. The latter constraint originates from Eq.(3.21) and the fact
that the inverse (W ) of an orthogonal matrix (Aw) is orthogonal as well.

• The symmetrical approach considers all components together and thereby
prevents the propagation of errors. Actually the symmetric scheme evenly
spreads the propagation error among the components.
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3.3.3.3 Incorporating spatial information: lagged cross-covariances

Techniques implementing the classical ICA approach, i.e. based on information
theoretic criteria, tend to neglect the intrinsic spatial structure in the data. Since
it is a reasonable assumption that task-induced neuronal activations and BOLD
responses produce similar signal changes in spatially contiguous regions, extending
over several millimetres, data are expected to exhibit a spatial structure. Shuffling
the columns of the matrix X will lose the spatial information (i.e. the relation
between a voxel and its spatial location), but will not affect the results of the
classical ICA techniques, as statistics are preserved. In order to use the available
spatial information, techniques have been proposed to extract independent com-
ponents with spatial structure. The following elaboration can also be applied to
the dual case of temporal structure. As it is an objective of this dissertation to
include spatial structure in the temporal FCM algorithm (see section 3.4.2) we
will elaborate here on the spatial structure for reasons of comparison.

The simplest form of spatial structure is given by the linear autocovariance, that
is the covariance between two voxels in an image:

cov (xt,m, xt,m−µ) , (3.41)

where t refers to the t-th image and µ is the so-called spatial lag, a constant
describing the ‘distance’ between the voxel m and the spatially neighbouring voxel.
In addition to autocovariances, it is possible to consider crosscovariances, i.e.
covariances between neighbouring voxels of two different images t and u (t 6= u):

cov (xt,m, xu,m−µ) . (3.42)

To consider all these statistics in compact form, the spatial-lagged covariance
matrix is considered:

Cµ = E
{
x̃T

mx̃m−µ

}
. (3.43)

As seen in section 3.3.2.5, whitening the data is not enough to achieve indepen-
dence. Therefore, higher order statistics are used to add some information. The
second order statistics approaches, instead, do not take this additional informa-
tion from higher-order statistics, but from the lagged covariance matrix Cµ. This
approach starts from the consideration that if two images are independent, not
only their cross-covariance will be zero, but also the lagged cross-covariances for
any lag. This means that we are looking for a linear transformation W of data
X yielding images st for which the following two properties hold:

E {s̃i,m s̃j,m} = 0 ∀i 6= j (i, j = 1 . . . T ) , (3.44)

E {s̃i,m s̃j,m−µ} = 0 ∀i 6= j,∀µ (i, j = 1 . . . T ) . (3.45)
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While Eq.(3.44) alone would lead to uncorrelatedness, the combination of 3.44 and
3.45 leads to independence, without using higher order statistics. Basically two
techniques implementing this approach have been proposed, depending on the use
of a single lag or several lags. Techniques with a single lag were elaborated by
Molgedey and Schuster [14] and Tong et al., the latter proposing the ‘AMUSE’
algorithm [22]. Well known algorithms based on the application of several lags
are ‘SOBI’ [23] and ‘TDSEP’ [15]. Compared to classical ICA techniques, second
order methods have the advantage of dealing also with Gaussian sources. However,
if the sources have all the same power spectra (and thus autocovariances), second
order methods will fail in recovering the sources, while higher order techniques do
not suffer from this limitation.

3.4 Methodology of FCM-based approaches

In this section, we will elaborate on the fuzzy clustering technique, starting from
the standard partitioning-based unsupervised clustering algorithm, C-means (also
called K-means). In this dissertation, clustering is performed using the Euclidean
distance and adopting the temporal view on the data. Therefore, it is worth to
recall the appropriate quantities and notations. Let X be the N×T matrix, whose
rows contain the acquired time courses xn (n = 1 . . . N). Each time course consists
of T time points (t = 1 . . . T ). Clustering classifies the observed time courses xn

into C clusters with centroids vc (c = 1 . . . C).

3.4.1 Approaches and algorithms

3.4.1.1 Crisp clustering: C-means

Minimizing the within-group variance The standard clustering algorithm for
functional imaging is C-means [24, 25]. The clusters are a partition of the data,
such that each vector xn belongs to exactly one cluster. The goal is to find
homogeneous clusters, i.e. to minimize the within-group variance σW

2, and at the
same time separable clusters, i.e. maximizing the between-group variance σB

2.
Therefore, a within-class inertia IW and a between-class inertia IB are defined:

IW =
1

N

C∑

c=1

Nc∑

n=1

d (xn,vc) , (3.46)

IB =
1

N

C∑

c=1

Nc d (vc,va) , (3.47)

where Nc is the number of voxels in cluster c, va is the weighted average of all
cluster centres:

va =

C∑

c=1

Nc

N
vc , (3.48)
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and d is a distance measure, such as the Euclidean distance dE:

dE (xn,vc) = ‖xn − vc‖2
=

√√√√
T∑

t=1

(vc,t − xn,t)
2

. (3.49)

For a large class of distance measures, such as the Euclidean distance, the inertia
of the cluster is minimized when the cluster centre is the average of all cluster
members:

vc =
1

Nc

Nc∑

n=1

xn ∀c . (3.50)

Under this condition, the average cluster centre cluster va becomes the average of
the data and IW and IB become the within-group variance σW

2 and the between-
group variance σB

2 respectively. It can be proven that the sum of the within-group
variance and the between-group variance is constant and equal to the total data
variance, regardless of the number of clusters or their compositions. Therefore
minimizing IW or maximizing IB is equivalent. Accordingly, the within class inertia
IW alone provides a possible way of assessing the quality of a partition of clusters,
but it cannot be used to qualitatively compare two partitions with different number
of clusters. In particular, IW of the optimal partition with C clusters is always
higher than that of the optimal partition with C +1 clusters. The trivial partition
of N clusters each containing one point only leads to a global minimum of IW.

Iterative procedure C-means partitions the observed data into C clusters, thereby
trying to minimize the objective function IW. This is accomplished using an itera-
tive procedure starting from a first hierarchical clustering step or a random cluster
initialization. C-means results may depend in this initialisation step. The iterative
procedure consists of two alternating steps. The first is the assignment of a voxel
to the group with the smallest distance to its mean. The second is the calculation
of new group means, as described by Eq.(3.50), based on the assignment. The
algorithm repeats these steps until the partition does not significantly change.

3.4.1.2 Fuzzy Clustering: Fuzzy C-means

Bezdek’s algorithm The similarity of the time course of voxel n to the centroid
of a cluster c is expressed by the ‘membership’ ucn. Based on this concept, Bezdek
adapted the C-means objective function of Eq.(3.46) as follows:

IW =
1

N

C∑

c=1

N∑

n=1

ucn
m d (xn,vc) , (3.51)

where m > 1 is the fuzziness coefficient used to ‘tune out the noise’ in the data.
This objective function is minimised using Lagrange multipliers, under the follow-
ing constraints:
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C∑

c=1

ucn
m = 1 ∀n , (3.52)

0 ≤ ucn ≤ N ∀c, n , (3.53)

0 ≤
N∑

n=1

ucn ≤ N ∀c . (3.54)

Eq.(3.52) implies that a solution holding an empty cluster is not allowed. The
latter optimisation yields an iterative procedure updating the centroids vc and
memberships ucn:

vc =

∑N
n=1 ucn

m xn∑N
n=1 ucn

m
, (3.55)

ucn =
1

∑C
k=1

(
d(xn,vc)
d(xn,vk)

) 2

m−2

. (3.56)

Bezdek suggested starting the algorithm from an initial set of membership values
for the data set, expressed in matrix form as:

U0 =

(
1 −

√
2

2

)
U1 +

√
2

2
U2 , (3.57)

with U1 a matrix with all elements equal to 1/C and U2 a matrix of randomly
chosen elements. The procedure is stopped when successive iterations do not fur-
ther change significantly memberships and cluster centres, yielding a convergence
of the objective function IW. In practice a user-defined threshold for change in IW

in terms of percentage (e.g. 10−5) determines when convergence is reached.

Preprocessing includes the transformation of each time series into its z-score as
to avoid the clustering algorithm to classify the voxels based on signal ampli-
tude, instead of signal shape. Additionally, PCA is performed to reduce the data
dimensionality as well as the noise.

3.4.2 Incorporating spatial information

Typically, in hypothesis based analysis of fMRI data spatial information is not
used and activation maps are obtained considering only the temporal relation be-
tween each single voxel’s time course and a specified model. Similarly, in fMRI
applications of clustering, the assignment of a voxel to a specific cluster is only
based on its temporal relation to the cluster centroid, and thus potential informa-
tion from voxels in the spatial proximity of the examined voxel is ignored. Because
task-induced neuronal activations and BOLD responses are expected to produce
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similar signal changes in spatially contiguous regions, extending over several mil-
limetres, it would be useful to use this additional information in the detection
process. A few applications incorporated various forms of spatial information to
improve detection accuracy in hypothesis based analysis. Descombes et al. used
a ‘Markov Random Field’ (MRF) to perform a signal restoration which spatially
smoothes the noise but at the same time preserves the signal shape [26]. Kiebel
et al. accounted for the spatial smoothness of BOLD response with anatomically
informed basis functions on reconstructed gray matter surfaces [27].

In this dissertation, a spatial function hcn is introduced to include spatial informa-
tion to the clustering of time series. The latter function expresses the probability
that a voxel xn belongs to a cluster c:

hcn =
∑

k∈ R (xn)

uck . (3.58)

Function hcn is obtained by adding memberships in a predefined neighbourhood R
(with size NR) but only takes into account those neighbouring voxels exhibiting a
strong membership to the cluster c of interest. For the calculation of the updated
cluster centre in Eq.(3.55), the ‘temporal’ (i.e. based on time course data only)
membership function ucn is now replaced by a spatio-temporal membership ucn

s

as defined by:

ucn
s =

ucn
p hcn

q

∑C
k=1 ukn

p hkn
q

, (3.59)

which describes a multiplicative model that expresses the membership in function
of temporal (ucn, Eq.(3.56)) and spatial (hcn, Eq.(3.58)) components. Their rela-
tive influence is controlled by p and q, 2 exponents that vary independently. The
denominator ensures each membership value for ucn

s is in the range of 0 to 1.

3.5 Time-resolved event-related mental chronometry

A large body of research in human cognition is concerned with the segregation
of mental events into their presumed hierarchical processing stages, the temporal
aspect of such processing being termed mental chronometry. In this section, we
illustrate that advances in single-event fMRI at high magnetic field strengths,
combined with the application of a time-resolved approach, allows to extract the
timing information in different neural substrates.

3.5.1 Single trial events

A single event refers to a single movement or the presentation of a single stimulus.
In order to explain the need of a single event, we focus on the difference in consis-
tency of HRs between simple and cognitive tasks. We recall that, for simple tasks,
the lag of onset and the time course of the event-related fMRI signal are highly
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reproducible, in spite of the temporal blurring [28–30]. This allows to average
over trials to improve the fMRI signal’s poor CNR (see section 1.6.1.1). In cogni-
tion however, several time-dependent modulations often occur, such as learning,
alterations in strategy, habituation, and fatigue. Due to the latter phenomena,
averaging looses unique information associated with each individual execution of
the task. This constraint led to the need of studies imaging single events.

We further recall that the fMRI signal sensitivity was sufficient to detect small
signals resulting from simple stimuli (see section 1.5) [31–34]. Importantly, sev-
eral studies indicated a similar finding for the exploration of higher-order cognitive
functions, which are typically associated with smaller responses. [35–37]. The first
studies about cognition however, still performed averaging over individual trials,
each corresponding to the applied single event [35]. Subsequent studies applied
higher magnetic fields and achieved higher SNR levels. They were able to detected
activation from single trial events without the need to average [36, 38, 39]. Tem-
poral resolution however is larger in the latter case. For averaged trials, the latter
is about 50 ms in certain cases [40]. True single trials can distinguish responses
separated by 1-2 s [36, 39].

3.5.2 Mental chronometry

Mental chronometry provides information regarding the temporal aspects of brain
activation, such as the onset and the duration of neuronal activity in a brain area,
as well as the order of activations across different brain areas. [41]. A wide variety
of studies was performed, generally averaging single trials with repetition times on
the order of 30 s. The latter requirement assures that the fMRI response recovers
completely to baseline prior to the next trial.

A vast amount of studies indicates that both the sequence and the duration of
neuronal activity in the brain are revealed by BOLD fMRI. Excellent reviews,
considering the applications of cognitive neuroimaging and mental chronometry
can be found in [42] and [43], respectively. However, the application of BOLD-
based fMRI in the study of mental chronometry is hampered by several factors.
We will now elaborate on these factors and indicate how to deal with them in
practice.

• The BOLD signal reflects a delayed haemodynamic response to neuronal ac-
tivity, though the exact mechanism of the coupling between brain activity
and vascular response is not well understood (see section 1.4). This sets
a limit on how consistent the vascular response might be between differ-
ent brain areas [30]. Therefore, the analysis results have to be interpreted
carefully.

• Functional MRI signals are thought to reflect neuronal activity in the brain.
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However, any discussion of brain metabolic demand and its effect on blood
flow should consider the presence of a second main cell type in the brain:
glial cells. Glial cells or simply glia are non-neuronal cells that, amongst
others, provide support and nutrition to neurons. They are estimated to
outnumber neurons by at least 10 to 1. Moreover, the time scale of their
activity is generally slower than the spiking activity or neurons. However,
measurements elucidating how both processes are reflected in the BOLD
signal have yet to be done.

• When neurons fire, they typically have one of two effects on the ‘receptor
neuron’: an excitatory effect, which increases the likelihood that the re-
ceptor neuron will fire in its turn and an inhibitory effect, which decreases
the likelihood that the receptor neuron will fire in its turn. Recent reports
give opposite indications concerning differentiating inhibitory from excita-
tory metabolic activity response. Waldvogel et al. suggested that BOLD
signal changes corresponding to inhibitory activity are not likely to be seen
[44], while Richter et al. suggested otherwise [38].

• Given that a single voxel in a typical fMRI experiment may contain 107

neurons, fMRI (as well as other techniques) is measuring local population
averages. Therefore, many of the features of the individual neurones will be
lost. There is no particular reason to believe that all the neurons are firing
synchronously within the measured volume element. Consequently, if the
neuronal code depends on the phase of the firing neurones, this information
will likely be lost. This is certainly the case in some signalling pathways. In
many cognitive tasks, neural processing lasts from a few hundred millisec-
onds to a few seconds [45]. Events on this time scale can be revealed with
EPI, which acquires BOLD fMRI images on a time scale of tens of millisec-
onds. Therefore, it is suggested that fMRI is applicable to examine timing
relationships between neurons when investigating behaviour.

3.5.3 Time-resolved fMRI

A time-resolved approach links one or more fMRI signal characteristics to a be-
havioural feature or presentation of a stimulus [42, 46]. A time-resolved approach
is advantageous in several ways. It allows to ‘time-lock’ the data. This concept
yields the temporal alignment of fMRI data of different trials, prior to averaging.
Moreover, a time-resolved approach allows to be conclusive about the temporal se-
quence of neural activity between different regions from the acquired time courses.
Functional MRI responses in all regions indeed are intrinsically different and there-
fore it is not straightforward to compare temporal characteristics between regions.
This was indicated by many studies. Buckner et al., for example, observed that
activation in the left prefrontal cortex language area was delayed about 1-2 s rela-
tive to activity in extrastriate areas during the performance of a word generation
task [47].
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In order to clarify the concept of time-resolved fMRI, a hypothetical experiment
is considered [42]. A cognitive task consisting of three neural components is as-
sumed: a visual presentation of the task (green), a cognitive process invoked by
the task (red), and a motor component involved in responding to the task (blue),
such as a push button response (Fig. 3.11A). Two trials are considered. The vi-
sual and motor components remain constant during the two trials. The cognitive
processing component on the other hand varies in duration from trial to trial due
to a different processing load. Its onset is assumed to be constant. The fMRI
responses in the corresponding brain areas are shown in Fig. 3.11B for both trials.
The time course of the visual component is consistent over trials. The shape of
the time course related to the motor component is similar for both trials, since
the motion duration for a button press is invariably the same. The onset however
occurs at variable times, due to the cognitive component. The latter induces fMRI
responses with the same onset time, but different duration depending on task diffi-
culty. Figure 3.11C illustrates the correlation between behaviour, such as reaction
time, with temporal characteristics of fMRI signals, such as onset time (dotted
lines) and width (solid lines). Brain regions exhibiting a significant correlation are
assumed to reflect activity involved in the processing strategy.

In practice, stimulus onset is often linked to the time to recognize an object
[34, 36, 40], whereas stimulus width is often linked to the time to perform a
mental rotation [39].

3.6 Visuospatial mental imagery

Mental imagery refers to the generation and manipulation of mental representa-
tions in the absence of sensory stimulation and is a core element in numerous
cognitive processes. Many authors studied the cortical mechanisms underlying
imagery and the spatial analysis in the visual, auditory, or motor domain using
event-related fMRI during an appropriate task (see section 1.5.2). In this disser-
tation, visuospatial mental imagery is considered. In this section, we introduce a
visuospatial mental imagery experiment and elucidate the cortical regions involved
in its execution.

3.6.1 The visuospatial mental imagery experiment

In this dissertation, data originating from a visuospatial mental imagery experi-
ment were analysed. The introduction of the experiment as well as the acquisi-
tion of the data was performed in the context of a study of Staeren et al. [48].
They analysed data resulting from this experiment with the ‘Granger Causality
Mapping’ method, which allows to extract directed connections from fMRI data
without requiring an a-priori specification of the underlying anatomical model [49].
The latter study was performed early 2005, at the University of Maastricht. It
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Fig. 3.11: A hypothetical experiment, consisting of two trials, explaining time-
resolved event-related fMRI [42]. A : A cognitive task is assumed with
three different neural components: a visual presentation of the task
(green), a cognitive process invoked by the task (red), and a motor
component (button press) involved in responding to the task (blue).
The visual and motor components remain constant during the two tri-
als. The cognitive processing component varies in duration from trial
to trial due to a different processing load. Its onset is assumed to be
constant. B : The fMRI responses in the corresponding brain areas.
The shape of the time course related to the motor component is similar
for both trials, since the motion duration for a button press is invari-
ably the same. The onset however occurs at variable times depending
on the processing load. C : Behaviour, such as reaction time is cor-
related with temporal characteristics of fMRI signals, such as onset
time (dotted lines) and width (solid lines). Brain regions exhibiting a
significant correlation are assumed to reflect activity involved in the
processing strategy.

used BrainVoyagerQX (Brain Innovation, Maastricht, The Netherlands), a soft-
ware package for the analysis of fMRI data sets and subsequent visualization, in a
research environment. The study of Staeren et al. was in the line of the research of
this dissertation. The shared interest in the research topic led to contacts resulting
in an intensive training course at the fMRI research unit of the Department of Psy-
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chology of the University of Maastricht. This training course provided up-to-date
know-how in the field of mental imagery experiments as well as experience with
the BrainVoyagerQX software. Moreover, it led to a close and lasting collabora-
tion with the fMRI research group and resulted in two submitted papers, which
are the subject of chapters 4 and 5, respectively.

The experiment was specifically devised for the extraction of spatiotemporal pat-
terns of activation as well as for the investigation of directed interactions between
active cortical regions. Subjects were required to online mentally construct ab-
stract geometric figures by juxtaposing six sequentially either visual or auditory
presented stimuli. A typical geometric figure, composed of six blocks is shown in
Fig. 3.12 (see ‘Response’), which visually represents the design of the experiment.
In our study, data referring to auditory instructions were analysed.
Each trial starts with a fixation cross, followed by a delay, and the sequential pre-
sentation of the six stimuli. After the construction phase, a jittered delay precedes
the presentation of the target stimulus. The target stimulus is a figure composed
of six blocks of which only the contours are shown by black lines. These target
stimuli are either a copy or mirror image of the mentally constructed cube assem-
bly, and are rotated by 0, 40, 80 or 120. Subjects have to indicate via button press
whether the presented target stimulus is identical or mirror-reversed with respect
to the constructed mental image.

This task involves a sequence of sensory, cognitive and motor processes which
can take up to several seconds and can thus be studied applying fMRI mental
chronometry. Staeren et al. suggested effective connectivity patterns between
parietal, frontal and premotor regions [48].

3.6.2 Cortical regions involved in visuospatial mental imagery

We recall that a detailed description of the functional regions involved in the ex-
ecution of the task, as well as the localization of the corresponding anatomical
structures of the brain can be found in [50] and [51], respectively.

Several studies provided evidence that the analysis of visual space in perception
and imagery has a common neural basis in the parietal lobes [52] and that the
posterior parietal cortex (PPC) is strongly involved in the processing of spatially
coded material in the imagery domain [53–56].
The functional differentiation between various cortical areas involved in visuospa-
tial mental imagery was investigated by Trojano et al. [52] and Formisano et al.[57].
In the latter study, the cortical mechanisms underlying imagery during the mental
clock task were investigated. Following results were found, as illustrated in Fig.
3.13:

• The most prominent activation related to imagery was found along the supe-
rior part of the intraparietal sulcus (IPS) and in the superior parietal lobule
(SPL).
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Fig. 3.12: The visuospatial mental imagery experiment, in which a mental repre-
sentation of simple two-dimensional geometric figures is created. The
task involves a sequence of sensory, cognitive, and motor processes
which can take up to several seconds.

• An asymmetric sequential activation of the left and the right PPC was no-
ticed, suggesting that these regions perform distinct functions in the imagery
task.

• A part of the right PPC also participated in earlier activation, indicative of
a transition from an early, more distributed, processing stage (presumably
the construction of the mental representation of the angular information)
to a later stage (presumably the spatial analysis) that is largely confined
to the right PPC. This hypothesis that early and late clusters in the PPC
participate in different stages of the task was confirmed (in the same study)
by a trial-by-trial analysis of behavioural correlates of the HRs of the acti-
vated brain regions and by a subsequent study using repetitive transcranial
magnetic stimulation (rTMS) [58].

3.7 Conclusions

In this dissertation, approaches and algorithms based on FCM and sICA are pro-
posed as to enhance the analysis results of complex, cognitive data sets. We
particularly aim to present guidelines for the use of both methods and for the
setting of their parameters in the contect of a complex, cognitive task. Moreover,
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Fig. 3.13: The sequential cortical activation from auditory perception to motor
response corresponding to the mental clock task is shown [57]. Sur-
face map are superimposed on a flattened representation of the sub-
ject’s cortex in case of response with the right (A) and with the left
(B) hand. The colour of significantly task-related voxels (p < 0.001,
corrected) encodes the latency of BOLD activation following the au-
ditory presentation of the stimulus. Blue (red) colour indicates early
(late) latencies of task-related activation corresponding to the audi-
tory stimulation (motor response). Intermediate latencies are linearly
represented according to the colour bar. A different degree of later-
alisation of early and late activation in the left and right posterior
parietal cortex is suggested. AC= auditory cortex, IPS = intrapari-
etal sulcus (posterior branch), PPC = posterior parietal cortex, RS =
rolandic sulcus, SMA = supplementary motor area, STS = superior
temporal sulcus.

we aim at the enhancement of the inherent detection accuracy of the method, by
incorporating spatial information in the detection process.

Therefore, in this chapter, we elaborately reviewed the implementing algorithms
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and focused on their use and their parameter settings. Moreover, additional in-
formation of the spatial layout of the activations was incorporated in the fuzzy
clustering detection process, yielding ‘spatio-temporal FCM’.
In order to assess and compare these techniques and approaches, eligible data
sets were acquired. Therefore, a newly devised visuospatial mental imagery ex-
periment was introduced, yielding time-resolved event-related mental chronometry
fMRI data sets.

In the remainder of this dissertation, we investigate the performance of both ap-
proaches. In chapters 4 and 5 two studies are presented, assessing and comparing
these approaches and techniques in the context of the latter experiment. Chap-
ter 4 compares FCM to sICA as to provide guidelines for the selection between
both methods and the determination of parameter settings. Chapter 5 compares
‘conventional FCM’ to ‘spatio-temporal FCM’ as to deduce conditions for the im-
provement of the detection accuracy by adding spatial information.
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Chapter 4

Dissecting cognitive stages with
time-resolved fMRI data: A comparison

of Fuzzy Clustering and spatial
Independent Component Analysis

The work in this chapter has been published in

A. Smolders, Federico De Martino, Noël Staeren, Paul Scheunders, Jan Sijbers,
Rainer Goebel, and Elia Formisano, “Dissecting cognitive stages with time-resolved
fMRI data: a comparison of fuzzy clustering and independent component analysis”,
Magnetic Resonance Imaging, volume, number, pages, 2007.

Abstract

In combination with cognitive tasks entailing sequences of sensory and cognitive
processes, event-related acquisition schemes allow using functional MRI to exam-
ine not only the topography but also the temporal sequence of cortical activation
across brain regions (time-resolved fMRI). In this study, we compared two data-
driven methods - Fuzzy Clustering (FCM) and Independent Component Analysis
(ICA) - in the context of time-resolved fMRI data collected during the performance
of a newly devised visual imagery task. We analysed a multisubject fMRI data set
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using both methods and compared their results in terms of within- and between-
subject consistency and spatial and temporal correspondence of obtained maps
and time courses.

Both FCM and spatial ICA allowed discriminating the contribution of distinct
networks of brain regions to the main cognitive stages of the task (auditory per-
ception, mental imagery and behavioural response), with good agreement across
methods. Whereas ICA worked optimally on the original time-series, averaging
with respect to the task onset (and thus introducing some a priori information on
the stimulation protocol) was found to be indispensable in the case of FCM. On
averaged time-series, FCM lead to a richer decomposition of the spatio-temporal
patterns of activation and allowed a finer separation of the neuro-cognitive pro-
cesses subserving the mental imagery task.

This study confirms the efficacy of the two examined methods in the data-driven
estimation of haemodynamic responses in time-resolved fMRI studies and provides
empirical guidelines to their use.

4.1 Introduction

Since its introduction in 1992 [1], functional Magnetic Resonance Imaging (fMRI)
is used widely to identify the spatial layout of brain activation associated with
sensory stimulations, motor actions and cognitive tasks [2]. The recent combi-
nation of event-related acquisition schemes and methods for accurate estimation
of the blood oxygenation level dependent (BOLD) responses allows examining, in
some cases, not only the topography but also the temporal sequence of cortical
activation across brain regions [3, 4].
The achievable temporal resolution is limited to a few hundred milliseconds by the
sluggishness and variability of the haemodynamic responses [5]. This approach of
time-resolved fMRI is thus useful particularly in the study of complex cognition,
in combination with cognitive tasks entailing sequences of cognitive processes and
relatively long neural processing times. A recent study, for example, used time-
resolved fMRI to address the issue of functional differentiation between the various
cortical regions subserving a complex task of visuo-spatial mental imagery [6].

In the analysis of time-resolved fMRI data, the accurate estimation of task-related
BOLD responses assumes a particular relevance. Complex tasks normally involve
the activation of extended networks of brain regions with widely different haemo-
dynamic responses (HRs). A region involved in the maintenance in memory of
one or more items, for example, may exhibit a much more sustained neural (and
haemodynamic) response than a region that transiently responds to the switching
between two conditions.
Additionally, within each region, a substantial degree of experimentally-induced
trial-by-trial variability is to be expected. In such cases, the analysis of HRs based
on conventional model (or hypothesis)-driven methods (such as the General Linear
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Model [7]) may not be optimal. Indeed, these methods assume a spatially-invariant
parametric model of the HR function and this may result in a different sensitivity
in one or another region of the brain. Furthermore, they do not account for the
trial-by-trial variability of the responses.

A complementary approach to estimate the spatio-temporal pattern of brain ac-
tivation is to use data-driven methods, such as Independent Component Analysis
[8] and clustering techniques [9]. In both these approaches, a new and poten-
tially more informative representation of the data is obtained by decomposing the
original time series into a set of spatio-temporal modes, without strong a priori
assumptions about the temporal profile of the effects of interest.

As applied to fMRI time series analysis, ICA attempts to separate blindly data
into a set of non-Gaussian and ‘spatially’ statistically independent modes (indepen-
dent components or ICs, see below) [8]. The ability of spatial ICA to distinguish
between neurophysiologically interesting sources and noise sources has been mat-
ter of investigation in several recent publications [10, 11]. Spatial ICA has been
showed to outperform Principal Component Analysis (PCA). One difficulty, how-
ever, consists in the fact that ICA does not provide any intrinsic order of the ICs.
The experimenter is thus confronted with the problem of selecting and interpreting
a subset of these components [6, 12, 13].

Clustering techniques separate time series into several patterns according to simi-
larity among them. A well known member of this category is the Fuzzy Clustering
Method (FCM) [14]. In the first FCM applications in neuroimaging, clustering was
performed directly on the time series, using the Euclidean distance to quantify the
similarity among the acquired signals [14, 15].
To overcome problems related to noise, a distance measure was introduced based
on the correlation between the HRF and a stimulus function, rather than the raw
time series [16]. Other studies compared FCM to alternative techniques in the
field of fMRI, like correlation [17] or principal component analysis [18]. Several
studies dealt with other aspects, like the cluster validity problem [19–21] or the
influence of higher fields on FCM results [22]. Clustering on features extracted
from the fMRI time series at each voxel was also investigated [23, 24]. Typical
drawbacks of clustering approaches are the need of an a priori definition of the
number of clusters (cluster validity problem) and the negative influence on the
algorithm’s results caused by the large amount of inactivated voxels (ill-balanced
data problem). As in ICA a post hoc interpretation of the resulting clusters is
required.

As illustrated in [6, 25], the new spatio-temporal representation of the data ob-
tained by either clustering or spatial ICA has several appealing properties in the
context of time-resolved fMRI. Firstly, the description of the sequence of spatial
patterns of brain activation is obtained blindly thus reducing the problem of hav-
ing an explicit model of the HR. Secondly, each spatio-temporal mode includes
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voxels with co-varying time courses of activity and thus this representation is very
helpful in highlighting the simultaneous involvement of spatially remote brain re-
gions in the same stage of the task (functional connectivity). It is thus of interest
to examine similarity and differences between the results obtained using these two
different data-driven approaches. A comparison of spatial ICA and clustering has
been recently described in [26]. However, this comparison was limited to a block-
designed experiment with a simple visual stimulation.

In the present study, we investigate and compare the ability of FCM and ICA
to estimate the spatio-temporal patterns of brain activity in the context of time-
resolved fMRI measurements collected during the performance of a newly devised
mental imagery task. This complex task requires the construction, maintenance,
and comparison to a visual target of simple geometric figures, mentally created
from auditory instructions. We analyse a multisubject fMRI data set using both
methods and compare their results in terms of within- and between- subject consis-
tency and spatial and temporal correspondence of obtained maps and time courses.

4.2 Methods

4.2.1 Fuzzy clustering

For the analysis by FCM, the temporal view is adopted, i.e. the data matrix X

has dimensions N ×T . Fuzzy clustering attempts to partition a subset of N voxels
in C ‘clusters’ of activation [27]. This is achieved by comparing the voxel’s time
courses xn (n = 1 . . . N) with each other and assigning them to representative
time courses, called cluster centroids vc (c = 1 . . . C), derived during this process.
Fuzziness relates to the fact that a voxel is generally not uniquely assigned to one
cluster only (hard clustering), but instead, the similarity of the voxel time course
to each cluster centroid is determined. This is expressed by the ‘membership’ ucn

of voxel n to cluster c. For each voxel, we have:

C∑

c=1

ucn
m = 1 ∀n . (4.1)

Both centroids vc and memberships ucn are updated in an iterative procedure,
elaborated by Bezdek [28] and expressed by:

vc =

∑N
n=1 ucn

m xn∑N
n=1 ucn

m
, (4.2)

ucn =
1

∑C
k=1

(
d(xn,vc)
d(xn,vk)

) 2

m−2

, (4.3)

where d is a distance measure, determining the similarity between the time course
of a voxel and a cluster centre, and m is the ‘fuzziness coefficient’, determining the
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fuzziness of the procedure and used to ‘tune out’ the noise in the data. Theoreti-
cally, m lies between 1 (smallest fuzziness) and infinity. Its ideal value, however,
is problem-dependent. Several distance measures d can be defined: the Euclidean
distance dE and the Mahalanobis distance dM [29] are mostly used and are defined
as:

dE (xn,vc) = ‖xn − vc‖2
=

√√√√
T∑

t=1

(vc,t − xn,t)
2

, (4.4)

dM (xn,vc) = (xn − vc) Cc
−1 (xn − vc)

T
, (4.5)

where Cc represents the covariance matrix of cluster c. The Mahalanobis distance
takes into account the actual (elliptical) shape of the cluster, i.e. instead of treat-
ing all voxels xn equally when calculating the distance d to the cluster centre vc, it
weights the differences by the range of variability, described by Cc, in the direction
of the voxel. The Euclidean distance does not take into account the shape of the
cluster, i.e. it assumes a spherical shape, corresponding to a covariance matrix Cc

with ones on the main diagonal and zeros elsewhere.

The algorithm starts from an initial set of membership values for the data set,
expressed in matrix form as:

U0 =

(
1 −

√
2

2

)
U1 +

√
2

2
U2 , (4.6)

with U1 a matrix with all elements equal to 1/C and U2 a matrix of randomly
chosen elements. Next, the new cluster centres and memberships are computed
using Eq.(4.2) and Eq.(4.3) . The procedure terminates when successive iterations
do not further change significantly memberships and cluster centres, as calculated
by Eq.(4.2) and Eq.(4.3). This procedure corresponds to the minimisation of the
following objective function:

σW
2 =

1

N

C∑

c=1

N∑

n=1

ucn
m d (xn,vc) , (4.7)

which computes the within class variance over all clusters σW
2. In practice, a

user-defined threshold for change in σW
2 determines when convergence is reached.

The a priori determination of the fuzziness coefficient and the number of clusters
are research topics often encountered in literature [19]. Although several heuris-
tics are introduced, the result is often problem-dependent. Preprocessing includes
the transformation of each time series into its z-score as to avoid the clustering
algorithm to classify the voxels based on signal amplitude, instead of signal shape.
Finally PCA is performed to reduce data dimensionality.
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4.2.2 Spatial independent component analysis

For the analysis by ICA, the spatial view is adopted, i.e. the data matrix X has
dimensions T × N . Each row xt contains an fMRI image (the spatial processes)
of N voxels (n = 1 . . . N) acquired at time t (t = 1 . . . T ), with T the number of
scans. Let S be the T ×N matrix whose rows st contain the independent images
and A the T × T mixing matrix whose columns at

T contain the time courses of
the T independent images and is assumed to be of full rank. The problem of the
ICA-decomposition of fMRI time series can be formulated as the estimation of
both matrices of the right side of the following equation:

X = AS , (4.8)

under the constraint that the images st are (in the ideal case) spatially indepen-
dent. No a priori assumption is made about the mixing matrix A, i.e. about
the time courses corresponding to the independent images. In this model, all the
spatial components, with the possible exception of one, are assumed to be non-
Gaussian. Structured (non-Gaussian) artefacts in the data (e.g. head movements,
machine and physiological artefacts) are not explicitly modelled, but instead are
treated as independent sources and are expected to be represented in one or more
of the components. The amount of statistical dependence within a fixed number
of spatial components can be quantified by means of their mutual information.
Thus, the ICA decomposition of X can be defined as a linear transformation:

S = WX , (4.9)

where the matrix W (the ‘unmixing’ matrix) is determined such that the mutual
information of the target components st is minimised. Note that this definition
of ICA and Eq.(4.9) imply that ICs are determined up to a permutation, a multi-
plicative constant and to the sign.

We estimated S using cortex based ICA (cb-ICA) [30] as implemented in Brain-
VoyagerQX (Brain Innovation, Maastricht, The Netherlands). Cb-ICA uses indi-
vidual anatomical constraints and a fixed-point ICA algorithm (FastICA) [31] and
allows an optimized analysis of cortical sources. After sphering the matrix X and
reduction of the temporal dimension of the data set with PCA, the hierarchical
(deflation) mode of the FastICA algorithm was used, i.e. the components were
estimated one-by-one. After the decomposition, voxel values of IC spatial maps
were z-transformed and colour coded according to the absolute value and sign [8].
It should be noted that the z-scores do not pertain to any significance statistic,
because no comparison is made to a null hypothesis.

4.2.3 Functional MRI data

Fuzzy clustering and spatial ICA were compared in the context of an fMRI in-
vestigation of visuospatial mental imagery. During the functional measurements
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(see below), subjects were asked to create a mental representation of simple two-
dimensional geometric figures based on a sequence of auditory instructions se-
quentially building up each figure. After a jittered delay, subjects had to mentally
rotate the internally constructed image, in accordance with a visually presented
target figure, rotated over an angle (40, 80, or 120 degrees), and had to indicate
with a button press whether these were identical or mirror-inversed. This task
involves a sequence of sensory, cognitive and motor processes which can take up
to several seconds and can thus be studied using fMRI mental chronometry.

Three healthy, young subjects participated to the experiment. For each subject,
several successive fMRI data runs were recorded in a single session: 3 for subject
‘LM’, 3 for subject ‘AB’, and 4 for subject ‘CJ’. During each run, 18 trials were
acquired each trial lasting 30 seconds. Functional scans consisted of 23 transver-
sal slices acquired on a 3 T Siemens Allegra (Siemens, Erlangen Germany) scan-
ner using a single shot gradient-echo echo-planar imaging sequence (TE=30 ms,
TR=1500 ms, matrix size = 64 × 64, voxel size = 3.5 × 3.5 × 4 mm3, 730 images).
During the same session each subject underwent a high resolution T1 weighted
anatomical scan (MDEFT sequence, voxel size = 1 × 1 × 1 mm3, 176 slices per
slab, slice thickness = 1 mm, data matrix = 224 mm × 256 mm, TR = 7.92 s, TE
= 2.4 ms).

4.2.4 Preprocessing

The fMRI time series were subject to a series of preprocessing steps using Brain-
VoyagerQX (Brain Innovation, Maastricht, The Netherlands):

(1) Slice scan time correction was performed by resampling the time courses with
sinc interpolation such that all voxels in a given volume represent the signal
at the same point in time.

(2) Head movements were corrected automatically minimising the sum of squares
of the voxel-wise intensity differences between each volume and the first volume
of each run. Each volume was then resampled in three dimensional space
according to the optimal parameters using trilinear interpolation.

(3) Temporal high pass filtering was performed to remove temporal drifts of a
frequency below five cycles per run.

(4) After co-registration to the anatomical images collected in the same session
functional volumes were projected into Talairach space [32].

(5) For each of the original 10 functional time series (3 subjects, 3 runs for sub-
ject ‘AB’ and ‘LM’ and 4 runs for subject ‘CJ’) an averaged data set was
obtained considering an interval of 30 seconds around the onset of each audi-
tory instruction (2 seconds pre stimulus onset and 28 seconds post stimulus)
corresponding to 20 time points. This was done to increase the signal-to-noise
ratio of consistently task-related (CTR) processes. The effect of this averaging
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was evaluated for both methods (FCM and cb-ICA). In case of FCM, we found
that averaging over the trials was indispensable to have a reasonable detection
power of CTR processes. In case of ICA, we found that averaging over the
trials deteriorates the results. Therefore, in this study, we consider FCM of
averaged data and ICA of the original time-series.

4.2.5 Fuzzy clustering and spatial ICA: selection of parameters
and visualization

Both FCM and sICA require setting of specific parameters (fuzziness coefficient,
number of clusters, number of ICs), which can have a substantial influence on the
results of the analyses and the comparisons between methods. Here we determined
these settings by a preliminary analysis and inspection of one functional time series
(subject ‘LM’, run 1). For this dataset, as for the other datasets (see section 4.3),
maps obtained by FCM and spatial ICA were superimposed to 3D anatomical
images and/or projected on an inflated and flattened representation of the cortical
sheet of the subject’s brain. This latter representation allows displaying in one
picture the spatial topography of the clusters/ICs, thus providing a useful tool for
their interpretation.

• To determine an appropriate value of the fuzziness coefficient m, we applied
FCM for a range of values of m between 1 and 3. After visual assessment of
the topography and time course of the resulting clusters, 1.25 was chosen as
an acceptable value for the fuzziness coefficient, which is in close agreement
with literature [19].

• The number of clusters was fixed to 13 for all the extractions. We applied
PCA to the data sets under investigation and typically retained 13 of the
20 total dimensions, capturing at least 90 % of its variance/covariance. Ini-
tialising to higher or lower number of clusters yield to non optimal results.
In case of lower number of clusters, some ‘meaningful’ clusters (see below)
were not found and in case of higher number of clusters they were split into
several clusters.

• In order to determine the influence of the initialization step, during which
membership values and cluster centres are randomly chosen, we repeated the
FCM decomposition multiple times (a random data set was analysed 100
times) and results were compared across multiple extractions. No significant
difference in results was observed, indicating the robustness of the method
to random initialization.

• When using cb-ICA, a PCA based reduction of dimensions was performed
prior to the ICA decomposition. Based on data inspection the number of
retained dimensions was fixed to 30, accounting for more than 99 % of the
variance/covariance of the data.
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4.2.6 Fuzzy clustering and spatial ICA: selection of clusters /
components and comparison

To assess and compare the results of FCM and spatial ICA we focused on the
clusters/components whose representative time-courses were clearly related to the
imagery task. Clusters/components were compared, qualitatively, by visual inspec-
tions of the maps and time-courses and, quantitatively, by calculating the spatial
(temporal) cross-correlation coefficients between maps (time-courses). Further-
more, for both FCM and spatial ICA we analysed the consistency of the results
across runs (within subjects) and subjects.

4.3 Results and Discussion

4.3.1 FCM and spatial ICA maps and time-courses

Fig. 4.1 and 4.2 show a representative example of maps and time-courses ob-
tained using FCM and spatial ICA. In Fig. 4.1, IC- (a) and cluster- (b) maps
are colour-coded and projected on a flattened reconstruction of the subject (LM,
run 1) cortex. Overlay of cluster-maps corresponds to membership values in the
range of 0.5 to 1. Hence, only those voxels clearly assigned to a single cluster are
shown. Overlay of IC-maps corresponds to normalized amplitudes greater than
1.8. Cluster-centre time-courses (solid line) and event-related averaged IC time
courses (dash-dot line) are illustrated in Fig. 4.2.

Both FCM and spatial ICA decompositions allowed highlighting the contribu-
tion of distinct networks of areas to the sequential stages of the task, with good
agreement across methods.

• According to the sequential ordering of the representative time-courses (see
Fig. 4.2), a first cluster/IC (light green) included regions of the transverse
temporal gyrus and of the superior temporal sulcus/gyrus bilaterally, re-
flecting the activation of the auditory cortex at the beginning of the trial.
Interesting, in some FCM decompositions (see Tab. 4.1) this ‘auditory’ clus-
ter was dissected into two clusters, whose time courses and spatial topog-
raphy are compatible with a distinction between early auditory regions and
language specific regions (dark green).

• Following cluster(s)/IC(s) (light and dark blue) were representative of brain
activation during the performance of the visuospatial mental imagery task.
Two clusters and one/two ICs (see Tab. 4.1) were found to include bilateral
frontal and posterior parietal regions which have been previously involved
in similar tasks of mental imagery [6]. Regions of the occipito-temporal
cortex were also included in these maps. The time-courses of these two
clusters/ICs suggested a sequential involvement of corresponding cortical
networks in early and late stages of the imagery task.
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• Finally, one or two cluster(s)/IC(s) (see Tab. 4.1) reflected the activity in
the occipital (red) and in the occipito-parietal and motor regions (yellow),
mostly dominated by response related to the visual presentation of the target
stimulus and consequent motor response.

Fig. 4.1: Projection of maps of activation regions on inflated and flattened rep-
resentation of the cortical sheet of the subject’s brain (‘LM’, run 1, left
and right hemisphere) for ICA (a) and FCM (b): green = auditory;
light blue = imagery 1; dark blue = imagery 2; red=visual; yellow =
visual/motor. A lighter shade of a colour indicates a larger membership
or IC-amplitude

4.3.2 Comparison between methods

4.3.2.1 Within- and between subject consistency

Table 4.1 illustrates ICs and clusters found by the two methods in all the data
sets analysed. In all cases, both ICA and FCM were able to dissect the original
time series into ICs/clusters reflecting the three main cognitive processing stages
required to perform the task. The within and between subject consistency of
these results was very high. In fact, FCM and ICA decompositions typically
included an ‘auditory’ (10/10 with both methods), an ‘imagery’ (10/10 with both
methods) and a ‘visual/motor’ IC/cluster (10/10 with ICA, 9/10 with FCM). In



4.3. Results and Discussion 145

Fig. 4.2: Time courses of corresponding processing stages found by FCM (solid
line) and ICA (dash-dot line) for subject ‘LM’, run1.: (a) auditory 1,
(b) auditory 2 (FCM only), (c) imagery 1, (d) imagery 2, (e) visual, (f)
visual/motor.

all cases, the spatial (anatomical) and temporal layout of these ICs/clusters closely
resembled those described above for subject LM and were consistent with previous
an expected results.

Table 4.1 also shows that, especially in the case of analysis with FCM, an even
finer discrimination of neuro-cognitive stages could be reliably achieved. In par-
ticular, FCM was able to highlight in all the cases (10/10) a second cluster with
fronto-parietal spatial distribution (labelled as ‘imagery 2’), with a different and
slightly delayed time-course with respect to imagery 1. Similarly, FCM found addi-
tional clusters presumably related to the early (auditory) and late (target related)
processing stages of the tasks, respectively in five and ten cases. Note that ICA
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Subject all (10 runs) AB (3 runs) CJ (4 runs) LM (3 runs)

Component/cluster ICA FCM ICA FCM ICA FCM ICA FCM

Auditory 1 10 10 3 3 4 4 3 3

Auditory 2 1 5 0 2 1 1 0 2

Imagery 1 10 10 3 3 4 4 3 3

Imagery 2 5 10 1 3 1 4 3 3

Visual 6 10 2 3 2 4 2 3

Visual/Motor 10 9 3 3 4 3 3 3

Tab. 4.1: Within- and between- subject consistency of components/clusters. The
values in the cells indicate the number of runs in which a specific com-
ponent/cluster was found.

decompositions of the same datasets not always produced ICs that corresponded
to these additional clusters. The high within- and between- subject consistency
together with their anatomical layout and temporal profile suggest that this fur-
ther separation is neurophysiologically meaningful and it is not due to an artificial
splitting of a cluster.

4.3.2.2 Spatial and temporal correspondence between ICA and FCM
decompositions

To examine the spatial and temporal similarity between ICs and clusters corre-
sponding to the same cognitive stage we calculated, for the three main components
in each data set, the spatial and temporal correlation coefficient of their maps and
time courses. The temporal correlation coefficient was calculated between the
time course of a cluster and the averaged time course of the corresponding IC.
The spatial correlation coefficient was calculated without imposing any threshold
on cluster membership or IC amplitude of spatial maps.

Figure 4.3 illustrates a summary of obtained results. Each box-plot has lines at the
lower quartile, median, and upper quartile values of computed correlations. The
whiskers show the extent of the rest of the data. Statistical significance threshold
(p<0.05) for temporal correlation is 0.3783 (T = 20) and for spatial correlation is
0.0095 (N≈30.000).

In all cases, obtained values of correlations are above this threshold, denoting a
good correspondence between the maps or time courses obtained with ICA and
FCM. It is noticeable that correspondence between the maps is highest in the
case of the ‘auditory’ IC/cluster. In the case of ‘imagery’ and ‘visual/motor’ (i.e.
‘target’ related) ICs/clusters obtained median values of correlation are lower and
a larger variability is present. This is mainly due to the fact that selected ICs
include in some cases (5 for ‘imagery’ and 4 for ‘visual/motor’) spatial regions
which are separated in two distinct clusters in the FCM analysis.

The previous analysis of spatial correspondence between ICs and clusters was
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Fig. 4.3: Boxplot of between-methods (FCM and ICA) spatial (a) and temporal
(b) correlation coefficient. Each box-plot has lines at the lower quar-
tile, median, and upper quartile values of computed correlations. The
whiskers show the extent of the rest of the data.

performed with unthresholded maps. Normally, however, interpretation of results
is done on thresholded maps. It is thus of interest to examine how the correspon-
dence between the peaks of ICA and FCM maps changes if cluster membership
and IC-amplitude thresholds are varied. Figure 4.4 shows a surface obtained by
calculating the spatial cross-correlation between ICA and FCM maps after they
have been thresholded at varying threshold values (i.e. values in the maps below
the threshold are set to 0).
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Fig. 4.4: Influence of thresholds (cluster membership and IC amplitude) on spa-
tial overlap between maps. Example for subject ‘LM’, run 1, spatial
correlation between thresholded maps of the auditory cluster/IC found
by FCM and ICA.

It can be seen that the overlap of peaks is rather insensitive to changes in the
cluster membership threshold but it can be affected to a certain extent by changes
in IC-amplitude threshold. Importantly, there is a relatively large range of IC-
amplitudes (1.5 - 3.5) within which there is an acceptable and constant overlap
between the peaks of the two maps. Similar results were found for the other
clusters.

4.4 Conclusions

In this study, we empirically compared two data-driven methods - Fuzzy Clustering
and spatial ICA - in the context of time-resolved fMRI measurements. Both FCM
and spatial ICA decompositions allowed highlighting the contribution of distinct
networks of brain regions to the sequential stages of a visual imagery task (auditory
perception, mental imagery and behavioural response). We evaluated the maps
and time courses resulting from spatial ICA and FCM in terms of their within-
and between- subject consistency, which resulted to be very high in both cases.
Furthermore, the calculation of spatial and temporal correlations of IC/cluster
maps and time courses showed a good agreement between the results obtained
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with these two methods, suggesting that the partitions of the time series obtained
using spatial ICA or FCM are comparable, even though they are based on sub-
stantially different principles (spatial independence vs similarity of time courses).

The analysis of our data sets also highlights a relevant distinction between the
two methods and of the underlying principles. On the original (i.e. non-averaged)
time series, interesting spatio-temporal patterns of activation were correctly de-
tected by spatial ICA but not by FCM. Conversely, when time series were averaged
with respect to task onset, analyses with FCM but not spatial ICA benefited from
the increase in functional contrast-to-noise of task related process. On averaged
time series, FCM lead to a richer decomposition of the spatio-temporal patterns of
activation and allowed a finer separation of the neuro-cognitive processes subserv-
ing the mental imagery task. In particular, processes that were united in ICA in
a single component were separated into distinct and presumably meaningful clus-
ters by FCM. Note, however, that averaging of the time series implies introducing
a priori information on the stimulation paradigm (but not on the shape of the
haemodynamic response) and thus the subsequent analysis cannot be considered
‘blind’. Also, averaging prevents examining the variability of single-trial responses
and processes which are not task-related (e.g. activity in the ‘default mode’ net-
work).

In sum, these results and considerations suggest complementary characteristics of
FCM and spatial ICA decompositions, with an advantage of FCM in the analysis
of task-related responses and averaged time series and an advantage of spatial ICA
in the case the variability of single trial responses and non-task related processes
are relevant.
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Chapter 5

Spatio-temporal fuzzy clustering of fMRI
time series

The work in this chapter has been submitted to A. Smolders, Federico De Martino,
Noël Staeren, Paul Scheunders, Jan Sijbers, Rainer Goebel, and Elia Formisano,
“Spatio-temporal fuzzy clustering of fMRI time series”, Neuroimage, 2007.

Abstract

We introduce a fuzzy clustering algorithm, specifically tailored to the analysis of
fMRI data sets. In contrast to previous approaches, our algorithm clusters fMRI
time series based on both spatial and temporal information (spatio-temporal clus-
tering). The probability that a voxel belongs to a cluster is weighted by a spatial
function, which takes into account the neighbourhood relationships between vox-
els. The proposed approach is described and compared to conventional FCM on
realistic simulated fMRI data sets. We use Receiver Operating Characteristics
(ROC) and correlation analyses for a quantitative comparison of results. This
evaluation indicates that spatio-temporal FCM performs significantly better than
conventional FCM, especially in the case of low functional contrast-to-noise ra-
tio. Also, it shows that accounting for the neighbourhood relationships between
voxels during clustering is preferable to spatially smoothing of the original data.
Finally, we apply spatio-temporal clustering to real data from a mental imagery
experiment. Clusters obtained with the proposed method allow dissecting the
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brain activation in distinct spatio-temporal patterns that reflect the various cog-
nitive stages involved in the imagery task. Compared to conventional FCM and in
agreement with the results of our simulations, these clusters present a more plausi-
ble topological structure and include additional regions exhibiting weak activation.

5.1 Introduction

In the analysis of BOLD fMRI data, estimation of spatial layout of task-related
brain is conventionally based on model (or hypothesis)-driven methods, such as the
General Linear Model [1]. This category of methods assumes a spatially-invariant
model of the HR function. For the analysis of complex tasks however, this as-
sumption may not be optimal. Indeed, these tasks normally involve the activation
of extended networks of brain regions with widely different HRs. Additionally,
within each region, a substantial degree of experimentally-induced trial-by-trial
variability is to be expected [2, 3].

A complementary approach to estimate the spatio-temporal pattern of brain ac-
tivation is then to use data-driven methods, such as Independent Component
Analysis [4] and clustering techniques [5]. In both these approaches, a representa-
tion of the data is obtained by decomposing the original time series into a set of
spatio-temporal modes, without strong a priori assumptions about the temporal
profile of the effects of interest.

Clustering techniques separate time series into several patterns according to simi-
larity among them. A well known member of this category is the Fuzzy Clustering
Method (FCM) [6] that expresses the similarity of a time series to each refer-
ence pattern by a so-called membership to that pattern. FCM applications in
neuroimaging typically perform clustering directly on the time series, using the
Euclidean distance to quantify the similarity among the acquired signals [7–9].

Other similarity measures were introduced. To overcome problems related to
noise, a distance measure was introduced based on the correlation between the
time courses of the voxel and the cluster centre [10]. Alternatively the Maha-
lanobis distance can be used, which takes into account the elliptical shape of the
clusters, whereas the Euclidean distance assumes a spherical shape [5, 11].

Other studies compared FCM to alternative techniques in the field of fMRI, like
correlation [12], principal component analysis [13], neural networks [14], split-
merge and region growing techniques [15], independent component analysis [16],
and C-means and SOM [17]. A typical drawback of the clustering approach is the
cluster validity problem.

The optimal number of clusters needs to be determined a priori [18–20] and the
resulting clusters need to be interpreted post hoc [21–23].
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Preprocessing often also includes techniques to solve the ill-balanced data problem,
i.e. the negative influence on the algorithm’s results caused by the large amount of
inactivated voxels [24]. Windischberger et al. investigated the influence of higher
fields on FCM results [25].

Several authors applied clustering to features extracted from the time series, in-
stead of clustering on the raw time series. Goutte et al. investigated the use of
two simple features, namely the activation strength and the response delay of the
cross-correlation function between the time series and the excitation paradigm,
thereby combining model-and data-driven techniques [26]. In the same study, the
authors performed a meta-analysis in a seven-dimensional feature space, using dif-
ferent standard single-voxel analysis techniques, like Student t-test (between rest
and activation) and correlation with the paradigm. Simon et al. applied cluster-
ing to data from six different task-control pairs (6 Student t-values) collected for
each subject in the study [27]. Jahanian et al presented a feature space based on
multiscale decompositions obtained by scalar wavelet and multiwavelet transforms
[28].

Typically, in model based analysis of fMRI data spatial information is not used
and activation maps are obtained considering only the temporal relation between
each single voxel’s time course and a specified model. Similarly, in fMRI applica-
tions of clustering the assignment of a voxel to a specific cluster is only based on
its temporal relation to the cluster centroid, and thus potential information from
voxels in the spatial proximity of the examined voxel is ignored.

Because task-induced neuronal activations and BOLD responses are expected to
produce similar signal changes in spatially contiguous regions, extending over sev-
eral millimetres, it would be useful to use this additional information in the detec-
tion process. A few applications incorporated various forms of spatial information
for improving detection accuracy in model based analysis. Descombes et al. used
a Markov Random Field (MRF) to perform a signal restoration which spatially
smooths the noise but at the same time preserves the signal shape [29]. Kiebel et
al. [30] accounted for the spatial smoothness of BOLD response with anatomically
informed basis functions on reconstructed grey matter surfaces.

In the present paper, we propose an approach for adding spatial information to
the ‘temporal’ clustering of fMRI time series by weighting cluster memberships in
a 3-dimensional (3D) neighbourhood of the voxel. The probability that a voxel
belongs to a cluster is expressed by a spatial function, which takes into account
the neighbourhood relationships between voxels. A neighbouring voxel will have
an influence on the assignment to a cluster for the voxel being investigated which
depends on its membership value to this same cluster.

The model can be seen as an extension to 4-dimensional (4D) data sets of cluster-
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ing algorithms used for the segmentation of images, in which spatial information
is accounted for in the clustering objective function [31], membership [32], or dis-
tance measure [33].

It is worth emphasizing that the proposed method exploits spatial information
during clustering as opposed to spatial smoothing in which a Gaussian filter is
applied preliminarily to the measured data. Our method also differs conceptually
from previous approaches which incorporate spatial information preliminary to an
FCM analysis [34]. Indeed, in our approach, a neighbouring voxel which is not
clearly assigned to the same cluster as the current voxel will have a limited influ-
ence on the method’s outcome.

In this paper, we elaborate on spatio-temporal FCM, presenting an FCM algo-
rithm tailored to the 4D nature of fMRI data sets, compare our approach to
conventional FCM and to spatial smoothing using a realistic simulated data set,
and illustrate the method’s increased sensitivity in regions exhibiting low CNR.
Finally, we apply our findings to analyse real data originating from a complex
mental imagery experiment.

5.2 Methods and materials

In the following, the temporal view is adopted, i.e. the data matrix X has dimen-
sions N × T .

5.2.1 Conventional clustering

Fuzzy clustering attempts to partition a subset of N voxels in C ‘clusters’ of
activation [6]. Therefore a specific set of features is derived from the voxel’s time
course xn (n = 1 . . . N). The resulting sets of values for all voxels are then
compared and assigned to representative sets, called cluster centroids vc (c =
1 . . . C), derived during this process. Typically, as is the case in this study, features
used are the voxel’s time courses xn themselves. Clustering is thus performed in
the time domain. Fuzziness relates to the fact that a voxel is generally not uniquely
assigned to one cluster only (hard clustering), but instead, the similarity of the
voxel time course to each cluster centroid is determined. This is expressed by the
‘membership’ ucn of voxel n to cluster c. For each voxel, we have:

C∑

c=1

ucn
m = 1 ∀n . (5.1)

Both centroids vc and memberships ucn are updated in an iterative procedure,
elaborated by Bezdek [35] and expressed by:

vc =

∑N
n=1 ucn

m xn∑N
n=1 ucn

m
, (5.2)
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ucn =
1

∑C
k=1

(
d(xn,vc)
d(xn,vk)

) 2

m−2

, (5.3)

where d is a distance measure, determining the similarity between the time course
of a voxel and a cluster centre, and m is the ‘fuzziness coefficient’, determining the
fuzziness of the procedure and used to ‘tune out’ the noise in the data. Theoreti-
cally, m lies between 1 (smallest fuzziness) and infinity. Its ideal value, however,
is problem-dependent. Several distance measures d can be defined: the Euclidean
distance dE and the Mahalanobis distance dM [11] are mostly used and are defined
as:

dE (xn,vc) = ‖xn − vc‖2
=

√√√√
T∑

t=1

(vc,t − xn,t)
2

. (5.4)

The algorithm starts from an initial set of membership values for the data set,
expressed in matrix form as:

U0 =

(
1 −

√
2

2

)
U1 +

√
2

2
U2 , (5.5)

with U1 a matrix with all elements equal to 1/C and U2 a matrix of randomly
chosen elements. Next, the new cluster centres and memberships are computed
using Eq.(5.2) and Eq.(5.3) . The procedure terminates when successive iterations
do not further change significantly memberships and cluster centres, as calculated
by Eq.(5.2) and Eq.(5.3). This procedure corresponds to the minimisation of the
following objective function:

σW
2 =

1

N

C∑

c=1

N∑

n=1

ucn
m d (xn,vc) , (5.6)

which computes the within class variance over all clusters σW
2. In practice, a

user-defined threshold for change in σW
2 determines when convergence is reached.

The a priori determination of the fuzziness coefficient and the number of clusters
are research topics often encountered in literature [18]. Although several heuristics
are introduced, the result is often problem-dependent.

Preprocessing includes the transformation of each time series into its z-score as
to avoid the clustering algorithm to classify the voxels based on signal amplitude,
instead of signal shape. Finally PCA is performed to reduce data dimensionality.

5.2.2 Spatio-temporal clustering

To include spatial information to the clustering of time series, we introduce a
spatial function hcn, expressing the probability that a voxel xn belongs to a cluster
c, defined as:
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hcn =
∑

k∈ R (Xn)

uck . (5.7)

Function hcn is obtained by adding memberships in a predefined neighbourhood R
(with size NR) but only takes into account those neighbouring voxels exhibiting a
strong membership to the cluster c of interest. For the calculation of the updated
cluster centre in Eq.(5.2), the ‘temporal’ (i.e. based on time course data only)
membership function ucn is now replaced by a spatio-temporal membership ucn

s

as defined by:

ucn
s =

ucn
p hcn

q

∑C
k=1 ukn

p hkn
q

. (5.8)

Equation 5.8 describes a multiplicative model that expresses the membership in
function of temporal (ucn, Eq.(5.3)) and spatial (hcn, Eq.(5.7)) components. Their
relative influence is controlled by p and q, 2 exponents that vary independently.
The denominator ensures each membership value for ucn

s is in the range of 0 to 1.
In this study simulated data sets were constructed for a broad CNR range (0.6 to
5) (see below) to assess the method’s performance and compare to conventional
FCM and to spatial smoothing followed by conventional FCM. The values of p and
q for these analyses were determined by a preliminary analysis of several data sets.
Results indicated that varying p and q independently did not significantly change
compared to keeping p fixed (to unity) and varying q over a range (between 0.01
and 5), As the first solution yields much longer computation time, in the following
we present results obtained using the latter. The neighbourhood’s size NR was
restricted to three cases: 3 × 3 × 3, 5 × 5 × 5, and 7 × 7 × 7. A 5 × 5 × 5
neighbourhood for example covers an area of 2 voxels to the left and 2 to the right
of the central voxel, in all three directions. No distance weighting was performed.

5.2.3 Data sets

Simulated data sets

A synthetic data set was constructed by adding realistic spatio-temporal activation
patterns to background noise. Activation patterns were obtained from results of
previous studies on visuospatial mental imagery [36, 37] (experiment is described
in section ‘Real data sets’). Typical fMRI auditory, imagery and visual activations
with known intensity and spatial extent were extracted.
Fig. 5.1 shows a projection of the simulated activations on a flattened repre-
sentation of the cortical sheet of the subject’s brain (left and right hemisphere),
mimicking auditory (green), imagery (blue), and visual (yellow) activation. Fig.
5.2 shows the corresponding time courses (a = auditory, b = imagery, c = visual).
Time course period is 30 seconds (20 samples). These three different activations
were selected in order to examine the method’s performance under various cir-
cumstances and to take in consideration the variety of spatial structure normally
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encountered in real fMRI data sets. The ‘auditory’ activation (transverse tempo-
ral gyrus and superior temporal sulcus/gyrus bilaterally) includes more contiguous
regions as opposed to the ‘imagery’ activation (bilateral frontal and posterior pari-
etal regions and occipito-temporal cortex regions), which includes more disperse
and smaller regions.

Fig. 5.1: Projection of maps of inserted activation regions on inflated and flat-
tened representation of the cortical sheet of the subject’s brain (left and
right hemisphere) for generated synthetic data sets: green = auditory;
blue = imagery; yellow = visual.

Fig. 5.2: Time courses, corresponding to the activation regions of the synthetic
data set of Fig. 5.1: (a) auditory, (b) imagery 1, and (c) visual. Time
course period is 30 seconds.

Realistic background noise originating from a null-data set, i.e. acquired from
a subject who was resting during the entire imaging series, was added (Siemens
Allegra, 3 Tesla, GE-EPI, TR = 1500 ms, TE = 46 ms, 32 slices, 64 × 64, voxel size
= 3 × 3 × 3 mm3). Relative amplitude of activation and background noise was
controlled using the Contrast to Noise Ratio (CNR) which was varied in a range
of 0.6 to 5. For the comparison with spatial smoothing and FCM, we spatially
smoothed the synthetic data set using a Gaussian filter of FWHM (Full Width Half
Maximum) of 4 mm and subsequently applied the conventional FCM algorithm. In
this case, spatio-temporal FCM was applied using a weighting of spatial distance
with a Gaussian function with equal FWHM.
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Real data sets

Visuospatial mental imagery data are originating from functional measurements
(see below), in which subjects were asked to create a mental representation of
simple two-dimensional geometric figures based on a sequence of auditory instruc-
tions sequentially building up each figure. After a jittered delay, subjects had to
mentally rotate the internally constructed image, in accordance with a visually
presented target figure, rotated over an angle (40, 80, or 120 degrees), and had to
indicate with a button press whether these were identical or mirror-inversed. This
task involves a sequence of sensory, cognitive and motor processes which can take
up to several seconds.

Three healthy, young subjects participated to the experiment. For each subject,
several successive fMRI data runs were recorded in a single session: 3 for subject
‘LM’, 3 for subject ‘AB’, and 4 for subject ‘CJ’ (10 data sets in total). During
each run, 18 trials were acquired each trial lasting 30 seconds. Functional scans
consisted of 23 transversal slices acquired on a 3T Siemens Allegra (Siemens, Er-
langen Germany) scanner using a single shot gradient-echo echo-planar imaging
sequence (TE =30 ms, TR =1500 ms, matrix size = 64 × 64, voxel size = 3.5 ×
3.5 × 4 mm3, 730 images). During the same session each subject underwent a
high resolution T1 weighted anatomical scan (MDEFT sequence, voxel size =1 ×
1 × 1 mm3, 176 slices per slab, slice thickness = 1 mm, data matrix = 224 mm ×
256 mm, TR = 7.92 s, TE = 2.4 ms).

The fMRI time series were subject to a series of pre-processing steps using Brain-
VoyagerQX (Brain Innovation, Maastricht, The Netherlands):

(1) Slice scan time correction was performed by resampling the time courses with
sinc interpolation such that all voxels in a given volume represent the signal
at the same point in time.

(2) Head movements were corrected automatically minimising the sum of squares
of the voxel-wise intensity differences between each volume and the first volume
of each run. Each volume was then resampled in three dimensional space
according to the optimal parameters using trilinear interpolation.

(3) Temporal high pass filtering was performed to remove temporal drifts of a
frequency below five cycles per run.

(4) After co-registration to the anatomical images collected in the same session
functional volumes were projected into Talairach space [38].

(5) For each of the original 10 functional time series (3 subjects, 3 runs for sub-
ject ‘AB’ and ‘LM’ and 4 runs for subject ‘CJ’) an averaged data set was
obtained considering an interval of 30 seconds around the onset of each audi-
tory instruction (2 seconds pre stimulus onset and 28 seconds post stimulus)
corresponding to 20 time points. This was done to increase the signal-to-noise
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ratio of consistently task-related (CTR) processes, indispensable to have a
reasonable FCM detection power of CTR processes [37].

5.2.4 Setting of parameters common to both FCM methods

Both conventional and spatio-temporal FCM require setting of specific parameters
(fuzziness coefficient m, number of clusters C, threshold of convergence), which
may have influence on the results of the analyses and the comparisons between
methods. Their optimal setting was determined for synthetic and real data sets
separately.

Simulated data sets

We constructed several synthetic data sets for CNR values in a range of 0.6 to 5
and analysed them subsequently.

• To determine an appropriate value of the fuzziness coefficient m, we applied
both methods for a range of values of m between 1 and 3. After visual
assessment of the topography and time course of the resulting clusters, 1.1
was chosen as an acceptable value for the fuzziness coefficient, which is in
agreement with (data set dependent) reference values mentioned in literature
[7, 18]. Higher values of m did not lead to detection of clusters out of the
noise.

• Because only 3 types of activation were to be extracted out of the real noise
data set, a number of clusters set to 8 proved to be sufficient. Indeed,
initialising to higher or lower number of clusters yield to non optimal results.
In case of lower number of clusters, some clusters were not always found
(CNR dependent) and in case of higher number of clusters they were split
into several clusters.

• We applied PCA to the data sets under investigation, capturing at least 90 %
of its variance/covariance.

• In order to determine the influence of the initialization step, during which
membership values and cluster centres are randomly chosen, we repeated the
FCM decomposition multiple times and results were compared across multi-
ple extractions. No significant difference in results was observed, indicating
the robustness of the method to random initialization.

• Finally, we investigated the influence of spatio-temporal FCM’s threshold
of convergence on stability of the results, an important issue in view of the
computation time. The threshold value appeared to have little influence on
results for various CNR values if kept in a range of 10−2 to 10−5. We thus
used the less stringent value of 10−2.



164 Chapter 5. Spatio-temporal fuzzy clustering of fMRI time series

Real data sets

We determined the settings for real data sets by a preliminary analysis and in-
spection of one functional time series (subject ‘LM’, run 1).

• We selected 1.25 as an acceptable value for the fuzziness coefficient, which
is in close agreement with reference values mentioned in literature [7, 18].

• The number of clusters was fixed to 13 for all the extractions.

• We applied PCA to the data sets under investigation and captured at least
90 % of its variance/covariance.

• A value of 10−2 as threshold of convergence led to stable results and an
acceptable computation time for spatio-temporal FCM.

• Both methods also appeared robust to random initialization.

5.2.5 Selection and visualisation of clusters

Results of conventional and spatio-temporal FCM analysis of the data sets were
assessed. We thereby focused on the clusters whose representative maps and time
courses were clearly related to the imagery task, as described in a previous study
[37]. For all data sets, maps obtained by both methods were superimposed to 3D
anatomical images and/or projected on an inflated and flattened representation
of the cortical sheet of the subject’s brain. Overlay of cluster-maps corresponds
to membership values in the range of 0.5 to 1. Hence, only those voxels clearly
assigned to a single cluster are shown. The latter representation allows displaying
in one picture the spatial topography of the clusters (as well as their corresponding
time courses), thus providing a useful tool for their interpretation.

5.2.6 Assessment and comparison of results

We assessed quantitatively the results of conventional and spatio-temporal FCM
by means of specific figures of merit.

For simulated data, we compared how well the results of both methods matched
the simulated ground truth. For each method temporal assessment of a cluster’s
time course was obtained by the temporal correlation coefficient between the clus-
ter centroid and the simulated time course.

Spatial assessment of the corresponding activation region was performed using
Receiver Operating Characteristics (ROC) methodology. An ROC curve was con-
stucted as a continuous plot of TPR (True Positive Rate) versus FPR (False Pos-
itive Rate) for a range of threshold values of membership uscn [39]. The latter
acts as a rating parameter controlling the sensitivity of the detection procedure
(i.e. FCM ) [40]. To characterize detection accuracy we followed the approach of
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Skudlarski et al. [41] and considered the mean of the ROC curve over a limited
range of false-positive ratio between 0 and 0.1. By restricting the value of merit to
low, but realistic false-positive rates (high thresholds only) we limited the scope
of our analysis to the cases that are of primary interest in fMRI.

For real data, having unknown ground truth, the former approach, i.e. comparing
how good results of both methods match the ground truth, is not feasible. In this
study comparing the ability of methods to detect activation patterns correspond-
ing to different processing stages of a visuo-spatial mental imagery experiment, we
will visually compare corresponding cluster maps.

5.3 Results and discussion

5.3.1 Simulated data sets

Both conventional and spatio-temporal FCM decompositions allowed retrieval of
all activations synthetically embedded in the noise background, for the CNR range
under investigation. Results were consistent over all activations and runs.

5.3.1.1 Comparison to conventional FCM

Effect of relative influence of spatial information (parameter q)

Figure 5.3 shows the influence of q, the parameter expressing the relative influ-
ence of spatial information in the determination of the membership, on spatio-
temporal FCM results in terms of the applied temporal and spatial figures of
merit (CNR=1.2, p = 1, NR=3 × 3 × 3). Results are differentiated for all types
of simulated activations and are compared to conventional FCM.

For all activations, the spatial figure of merit is in favour of larger values of q,
in which case spatio-temporal FCM always outperforms conventional FCM. The
temporal figure of merit needs to be differentiated for the types of activation. For
‘auditory’ and ‘visual’ activation, an intermediate range of q exists within which
spatio-temporal FCM outperforms conventional FCM. Optimal values of q lie be-
tween 0.5 and 2. The existence of the upper limit could be due to the fact that for
excessive values of q the influence of border voxels on the membership may become
too large. The latter yields a significant change in the cluster centre’s time course.
For ‘imagery’ activation however, we observe a descending trend of the temporal
correlation as function of q, to such an extent that conventional FCM outperforms
spatio-temporal FCM for larger values.

This anomalous result could be explained by the fact that the spatial pattern
forming ‘imagery’ activation is more disperse compared to ‘auditory’ and ‘visual’
activation patterns, which are more contiguous and spatially clustered. Disperse
clusters consist of many small regions and thus contain relatively large amounts
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Fig. 5.3: Influence of q (parameter expressing the relative influence of spatial in-
formation in the determination of the membership) on spatio-temporal
FCM results of a synthetic data set (CNR=1.2, p = 1), compared to con-
ventional FCM. Results are differentiated for the 3 types of activation.
Figure of merit for temporal assessment is the temporal correlation co-
efficient (a, b, c) and figure of merit for spatial assessment is ’the mean
TPR in a FPR range of 0 to 0.1’ (d, e, f).
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of border voxels. The aforementioned effect thus arises even stronger, to such an
extent that even for very low values of q the influence of border voxels on the
membership becomes too large. Taking into account these findings, in this study
we select the largest value of q which, for all types of activation, leads to the best
assessment in terms of the temporal figure of merit. A value of q = 1 seems a good
overall compromise.

Effect of neighbourhood size NR

Figure 5.4 shows the influence of the neighbourhood size NR on spatio-temporal
FCM results in terms of the applied temporal (a) and spatial (b) figures of merit
(CNR=1, p = 1, q = 1). Results are differentiated for all types of activation, and
include the case ‘no neighbourhood’ (‘NO NB’), i.e. conventional FCM.

Fig. 5.4: Influence of neighbourhood size on spatio-temporal FCM results of a
synthetic data set (CNR=1, p = 1, q = 1), compared to conventional
FCM (no neighbourhood, marked ‘NO NB’). Figure of merit for tem-
poral assessment is the temporal correlation coefficient (a) and figure of
merit for spatial assessment is ‘the mean TPR in a FPR range of 0 to
0.1’ (b). Results are differentiated for the 3 types of activation.

Both figures of merits show better performance for spatio-temporal FCM com-
pared to conventional FCM, independent of the neighbourhood size, except for
the temporal assessment of the ‘imagery’ activation. Results are not unambiguous
however concerning the influence of the neighbourhood size on the figures of merit.
The temporal figure of merit only suggests improvement in detection accuracy for
‘auditory’ and ‘visual’ activation, not for ‘imagery’ activation. This could again
be explained by the dispersiveness of the ‘imagery’ region.

However, no general inference about the optimal neighbourhood size can be made,
due to the limited number of activation types involved in this study and due to
the fact that only one realistic noise data set was used to construct the different
simulated data sets (each for a different CNR). In view of the smaller computation
time a 3 × 3 × 3 neighbourhood is selected in this study.
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Effect of CNR

Figure 5.5 shows the influence of CNR on spatio-temporal FCM results in terms
of the temporal (a) and spatial (b) figures of merit (p = 1, q = 1, NR = 3 × 3 ×
3). Results are shown for ‘auditory’ activation (analogous results were obtained
for the ‘imagery’ and ‘visual’ activations) and are compared to conventional FCM.

Fig. 5.5: Influence of CNR on spatio-temporal FCM results of a synthetic data
set (p = 1, q = 1), compared to conventional FCM. Figure of merit
for temporal assessment is the temporal correlation coefficient (a) and
figure of merit for spatial assessment is ‘the mean TPR in a FPR range
of 0 to 0.1’ (b). Results are shown for auditory activation (analogous
for imagery and visual activation).

Both figures of merit show that fuzzy clustering techniques perform better for data
characterised by higher CNR values, as already illustrated by Fadili et al. [40]. For
data sets characterised by lower CNR values (i.e. up to 2.5), both figures of merit
indicate that spatio-temporal FCM outperforms conventional FCM, a finding in
line with the conclusions of Chuang et al. [32]. For higher CNR values, the
assessment of both methods in terms of the figures of merit becomes comparable.

5.3.1.2 Difference with spatial smoothing

Tab. 5.1 compares results between the two approaches in terms of the discussed
figures of merit and is differentiated for all activations (data set with CNR=1).
A first approach (marked ‘1’) applies our spatio-temporal FCM algorithm with a
Gaussian neighbourhood window of FWHM of 4 mm. A second approach (marked
‘2’) consists in spatially smoothing the synthetic data set using a Gaussian filter of
equal FWHM and subsequently applying the conventional FCM algorithm. Table
1 also shows results in case stronger smoothing is applied for the latter approach,
i.e. using a Gaussian filter with FWHM of 8 mm (marked ‘’)).
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Activation type Auditory Imagery Visual

Method 1 2 3 1 2 3 1 2 3

mean TPR in FPR range [0;0.1] 0.38 0.38 0.39 0.48 0.31 0.19 0.46 0.42 0.55

temporal correlation coefficient 0.84 0.80 0.75 0.87 0.70 0.59 0.80 0.82 0.81

Tab. 5.1: Table 1. Comparison between two FCM-based methods dealing with
noise for the analysis of a synthetic data set (CNR=1). The comparison
is made in terms of 2 figures of merits: ‘the mean TPR in a FPR range
of 0 to 0.1’ (spatial assessment) and the temporal correlation coefficient
(temporal assessment). Results are differentiated for all types of acti-
vation. Spatio-temporal FCM (NB=3 x 3 x 3, p = 1, q = 1, Gaussian
neighbourhood with FWHM=4mm) is marked ‘1’. Spatial smoothing
with a Gaussian filter, followed by conventional FCM is marked ‘2’ in
case a FWHM of 4 mm is used. Spatial smoothing with a Gaussian
filter, followed by conventional FCM is marked ‘3’ in case a FWHM of
8 mm is used.

The comparison indicates that spatio-temporal FCM clearly outperforms the pre-
liminary smoothing followed by conventional FCM in the case of the ‘imagery’
activation, and, to a smaller extent, in the other cases. Smoothing more severely
the data does not result in a clear improvement for ‘auditory’ and ‘visual’ activa-
tion, and even results in deterioration for ‘imagery’ activation. Spatial smoothing
as a technique to reduce noise in fMRI data sets suffers from major shortcomings,
like blurring and loss of low-amplitude signals. These shortcomings manifest them-
selves particularly in case of small, disperse activation regions, like the ‘imagery’
activation. The ensuing worsening of detection accuracy, especially in case of low
CNR data sets, probably explains the outperformance (in terms of both figures of
merit) of our method, incorporating spatial information into the procedure. This is
line with findings of FCM-based approaches adding spatial information directly to
the time courses [34] and findings of model-driven approaches, combining temporal
and spatial information [29, 30].

5.3.2 Real data sets

5.3.2.1 Comparison to conventional FCM

Both conventional and spatio-temporal FCM decompositions allowed highlighting
the contribution of distinct networks of areas to the sequential stages of the task.
Results were consistent over activations and runs.

Figure 5.6 shows the time courses of cluster centroids found by conventional FCM
(solid line) and spatio-temporal FCM (dash dot line). The amplitudes are normal-
ized. The baseline level is determined by the vertical line indicating the onset of
the different stages of the experiment. Figure 5.7 shows a projection of thresholded
and binarised membership maps of the corresponding activation regions on an in-
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flated and flattened representation of the cortical sheet of the subject’s brain, for
a typical visuospatial mental imagery data set (subject ‘AB’, run 4, left and right
hemisphere). The different stages of the experiment are indicated. Regions result-
ing from conventional FCM analysis are presented in yellow, regions resulting from
spatio-temporal FCM in red. Regions found by both methods are shown in orange.

Several patterns of activation are found: (a) reflects the activation of the auditory
cortex at the beginning of the trial. Subsequently, response is found represen-
tative of brain activation during the performance of a mental imagery task. As
suggested in a previous study [37] the subdivision in (b) and (c) indicates a se-
quential involvement of corresponding cortical networks in early and late stages
of this imagery task. Response related to visual presentation of the target stim-
ulus is represented in (d), while (e) is dominated by subsequent motor response.
Motor-related activity corresponds to a right hand button press.

Fig. 5.6: Time courses of cluster centres found by conventional FCM (solid line)
and spatio-temporal FCM (dash-dot line): (a) auditory, (b) early im-
agery, (c) late imagery, (d) visual, (e) motor. Time course period is 30
seconds. The baseline level is determined by the vertical line indicating
the onset of the different stages of the experiment.

Both methods perform clustering on time course features, yielding a large tem-
poral agreement across methods, shown in Fig. 5.6. Fig. 5.7 indicates that both
methods allowed highlighting the contribution of distinct networks of areas to the
sequential stages of the task, with good spatial agreement across methods. A closer
visual comparison between spatial results obtained by both methods suggests that
an even finer determination of physiologically interesting clusters is achieved by
spatio-temporal FCM. Spatio-temporal FCM is more successful (compared to con-
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ventional FCM) in the detection of following regions:

(1) Spatio-temporal FCM includes the fringes to regions detected by conventional
FCM.

(2) Spatio-temporal FCM reveals small detached regions belonging to a detected
cluster, but left unrecognised by conventional FCM.

(3) Spatio-temporal FCM favours more contiguous regions, as compared to con-
ventional FCM. Nearby regions, left distinct by conventional FCM are often
interconnected by spatio-temporal FCM by adding intermediate regions, thus
resulting in a more contiguous area.

The regions additionally found by spatio-temporal FCM are characterised by lower
membership values compared to the spatio-temporal FCM membership values of
regions found by both methods. It may be assumed that the degree to which
a brain area is activated for the performance of a processing stage of a task is
expressed by the FCM membership of a voxel to the corresponding cluster. More-
over, it is a reasonable assumption that the standard deviation of the noise is not
changing significantly within each of the detected activated regions. This infers
that the regions, additionally detected by spatio-temporal FCM are characterised
by lower CNR values compared to the regions found by both methods, a finding
which is in agreement with the results of the simulated data sets.

5.4 Conclusions

Spatio-temporal FCM is an approach for the analysis of fMRI data sets that com-
bines temporal and spatial information for the assignment of a voxel to a specific
cluster. We have demonstrated the validity of this approach by analysing realistic
simulated data sets and by comparing results to conventional FCM. This com-
parison showed that adding spatial information to the fuzzy clustering algorithm
improves its detection accuracy. In practical application, the advantage of using
spatio-temporal rather than conventional FCM may depend on the nature of the
specific data set and on the settings of various parameters. Therefore, we examined
the influence of the most relevant of these parameters and evaluated the differ-
ences between the two approaches for different topographies of activations and
for a range of functional CNR values, which are normally encountered in fMRI
analysis. Spatio-temporal FCM performed significantly better than conventional
FCM for the analysis of data sets characterised by low CNR data. This property
resulted in the detection of region’s fringes and weaker activated small regions.
Moreover it led to the detection of more contiguous regions. However, in order to
confirm the generality of these findings, more research is necessary.
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Fig. 5.7: Projection of binarised thresholded membership maps of activation re-
gions on inflated and flattened representation of the cortical sheet of the
subject’s brain for a typical data set (subject ‘AB’, run 4, left and right
hemisphere) for the applied visuospatial mental imagery task. The data
set was analysed with conventional FCM (yellow) and spatio-temporal
FCM (red), regions found by both methods are shown in orange. Acti-
vation regions found are (a) auditory, (b) early imagery, (c) late imagery,
(d) visual, (e) motor. Motor-related activity corresponds to a right hand
button press. The different stages of the experiment are indicated.
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Chapter 6

General conclusions

This dissertation deals with data-driven methods for the analysis of BOLD fMRI
data sets, resulting from a complex, cognitive task.

In the first part of this dissertation, we elaborately reviewed the underlying physio-
logical principles, the experimental design, and the analysis techniques, as to illus-
trate the shortcomings of actual approaches for the analysis of complex, cognitive
data sets. We elucidated the BOLD fMRI technique to map brain functionality.
More specifically, we elaborated on the relationship between the measured haemo-
dynamic effect and its underlying neuronal activity. We showed that the complex-
ity of this relationship, as well as many confounding factors severely complicate
the interpretation of the measured data. We emphasized that the emergence of
complex cognitive tasks, such as mental imagery, especially obliged an appropriate
choice of experimental design and subsequent analysis technique. We illustrated
that an event-related, time-resolved data acquisition technique, combined with a
data-driven analysis method yields the best approach to retrieve the hierarchical
processing stages of such tasks. We focused on two successful techniques: the fuzzy
clustering method (FCM) and spatial independent component analysis (sICA). We
emphasised that, for the analysis of a complex data set, an appropriate selection
of method-specific parameters and the correct validation of the results is difficult
to accomplish.

In the second part of this dissertation, we introduced new approaches and tech-
niques based on FCM and sICA, as to overcome the aforementioned shortcomings.
We determined guidelines for the selection between methods as well as for their
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use when analysing complex, cognitive data sets. We also incorporated neighbour-
hood information in the FCM algorithm. We applied techniques for the assessment
and comparison of these approaches and algorithms and provided time-resolved,
event-related mental imagery data sets. Therefore, we introduced a newly devised
visuospatial mental imagery experiment, in which subjects were asked to online
mentally construct abstract geometric figures by juxtaposing six sequentially audi-
tory presented stimuli. After the construction phase, a target stimulus was visually
presented and evaluated.

We evaluated the proposed approaches and algorithms in two studies. In a first
study, we determined the influence of method-specific parameter setting of FCM
and sICA on detection accuracy. We illustrated that both techniques allow to high-
light the contribution of distinct networks of brain regions to the sequential stages
of the task (auditory perception, mental imagery, and behavioural response). We
demonstrated that, on averaged time series, FCM leads to a richer decomposition
of activation patterns. In particular, FCM found additional clusters presumably
related to the early and late processing stages of all aspects of the tasks (e.g. early
and late imagery). Furthermore, we performed a quantitative comparison between
the methods. The high within- and between subject consistency of clusters/ICs,
together with the anatomical layout and temporal profile suggested a neurophysi-
ologically meaningful separation. Spatial and temporal correlations of cluster/IC
maps and time courses showed a good agreement between results of both methods,
suggesting that the partitions of the time series obtained using both methods are
comparable. Finally, the proposed FCM approach was incorporated in the Brain-
voyager QX analysis software.

In a second study, we incorporated neighbourhood information into the conven-
tional FCM algorithm. We constructed realistic simulated data sets and analysed
them using conventional and spatio-temporal FCM. We demonstrated the validity
of the spatio-temporal FCM approach by a quantitative comparison between re-
sults obtained by both approaches. We illustrated that, in practical applications,
the advantage of using spatio-temporal FCM rather than conventional FCM de-
pends on the nature of the specific data set, and the setting of various parameters.
We showed that, for different topographies of activations and for typical fMRI
data sets, improvements were most significant for data sets characterised by low
CNR values.

Although the proposed FCM and sICA based approaches and techniques were
able to dissect the main sequential processing stages of a cognitive task, a finer
discrimination of neuro-cognitive stages may still be achieved. In the analysis of
the visuospatial mental imagery data set, for example, we were only able to distin-
guish between an early and a late imagery stage. We were not able to link these
stages to a particular sub-task of the imagery experiment. Future investigation
aims at highlighting networks corresponding to all imagery sub-processes, such
as building and keeping in mind of the figure, mental rotation of the constructed



179

figure, and subsequent mental comparison to the presented target. A successful
approach however does not merely rely on the experimental design and analysis
techniques, but also on the acquisition techniques.





Nederlandse samenvatting

Dit proefschrift handelt over data-gedreven methodes voor de analyse van com-
plexe datasets. De gemeten signalen zijn bekomen met functionele Magnetische
Resonantie Beeldvorming (fMRI) en gebaseerd op het in het bloed gemeten zuur-
stofniveau (BOLD). Het onderzoekt en identificeert de spatiale lay-out en de se-
quentie van hersenactivaties bij de uitvoering van een cognitieve taak. De relatie
tussen het gemeten hemodynamisch effect en het onderliggend neuronaal effect is
echter complex en bovendien slecht begrepen. Bovendien is het gemeten signaal-
verschil zwak en onderhevig aan niet-lineariteiten. Tenslotte wordt de interpretatie
van de resultaten bemoeilijkt door interfererende fenomenen en de aanwezigheid
van verschillende ruisbronnen. Deze beperkingen worden bijzonder doorslagge-
vend bij de analyse van complexe, cognitieve datasets. Er bestaan verschillende
manieren om met deze beperkingen om te gaan, zoals een aangepaste keuze van
experimenteel ontwerp, acquisitie techniek en analyse methode. In deze dissertatie
ligt de nadruk op het laatste aspect, de analyse methode.

Initieel werden hypothese-gedreven analysetechnieken toegepast. Deze specifiëren
a priori een spatiaal-invariant model van de hemodynamische respons (HR). De
mate waarin dat model geldt wordt voor elk voxel bepaald met behulp van sta-
tistische methodes. De veronderstelling dat de HR spatiaal invariant is leidt tot
sub-optimale resultaten wanneer complexe datasets worden geanalyseerd. Deze
datasets brengen immers de activatie van uitgebreide netwerken binnen de herse-
nen met zich mee. De betrokken HRs verschillen sterk van elkaar. Bovendien is
de HR binnen elk gebied onderworpen aan een grote variabiliteit bij de uitvoering
van verschillende metingen. Hypothese-gedreven methodes tenslotte maken geen
gebruik van interacties tussen voxels. Om al deze redenen werd een alternatie-
ve, data-gedreven aanpak naar voor geschoven. Dit leidde tot de toepassing van
de Vage Clustering Methode (FCM) en de spatiale Onafhankelijke Componenten
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Analyse (sICA). Beide methodes ontleden de data in een set van spatio-temporele
modes, zonder a priori sterke voorwaarden op te leggen aan de signaalvorm. Beide
methodes hebben echter een complementaire kijk op de data. Spatiale ICA be-
kijkt de data vanuit een spatiaal perspectief, d.w.z. dat de data behandeld worden
als een spatiale verdeling van tijdsseries, terwijl FCM de data bekijkt vanuit een
temporeel perspectief, d.w.z. dat de data behandeld worden als een sequentie van
volumes. FCM verdeelt de tijdsseries in enkele types van activatie, die de onderlig-
gende neuronale activiteit weergeven. Elke groep of cluster wordt gekarakteriseerd
door een spatiaal gebied en een bijhorende tijdsserie, het cluster centrum. FCM
drukt de overeenkomst tussen de tijdsserie van een voxel en een bepaald cluster
centrum uit aan de hand van een zogenaamd lidmaatschap van die cluster. Spatia-
le ICA is een informatie-theoretische benadering die statistische onafhankelijkheid
tussen de componenten nastreeft. De methode modelleert de data als een lineaire
combinatie van onafhankelijke componenten (ICs), die de onderliggende neuronale
activiteit weergeven.
Beide methodes vertonen specifieke tekortkomingen wanneer complexe, cognitieve
datasets worden geanalyseerd. Het is voor deze datasets immers bijzonder moei-
lijk om de methode-specifieke parameters weloverwogen te bepalen alsook om de
resultaten correct te valideren. Bovendien kunnen beperkingen in de inherente
nauwkeurigheid van de detectie van de methodes een correcte dissectie van de ver-
schillende verwerkingsstadia van complexe, cognitieve taken in de weg staan.

In deze dissertatie worden twee manieren voorgesteld, gebaseerd op FCM en sICA,
om deze tekortkomingen te ondervangen. Vooreerst worden er richtlijnen opgesteld
betreffende de keuze tussen de beide methodes en de instelling van hun parameters
in de context van een complexe, cognitieve taak. Vervolgens stellen we een krachti-
ger FCM algoritme voor dat spatiale informatie mee in beschouwing neemt. Deze
benadering houdt rekening met de verwachting dat taak-gëınduceerde neuronale
activaties en BOLD responsies gelijkaardige signaalveranderingen produceren in
spatiaal aanééngesloten gebieden, die zich uitstrekken over verschillende millime-
ters.

Deze benaderingen en algoritmes worden geëvalueerd en vergeleken op basis van
de nauwkeurigheid en consistensie van de detectie, de robuustheid, het gemak
waarmee de parameters ingesteld kunnen worden en de valideerbaarheid en inter-
preteerbaarheid van de resultaten. Om deze criteria te kunnen beoordelen worden
geschikte datasets voorgesteld. In verband daarmee wordt een nieuw ontworpen
experiment m.b.t. visuospatiale mentale inbeelding voorgesteld. Dit experiment
resulteert in tijds-geresolveerde mentale chronometrie fMRI datasets.

Er bestaan twee manieren om de beoordeling van deze criteria te bewerkstelligen.
Om deze criteria kwantitatief te evalueren zijn simulaties en testen op synthetische
datasets onontbeerlijk. De evaluatie aan de hand van reële datasets daarentegen
kan alleen kwalitatief uitgevoerd worden. Bevindingen van eerder verricht onder-
zoek, met andere analysetechnieken en op dezelfde of soortgelijke datasets, biedt
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echter een referentiekader aan. Beide manieren worden toegepast in deze disser-
tatie, in twee verschillende studies.

Een eerste studie stelt empirische richtlijnen op voor de keuze tussen beide metho-
des, FCM en sICA, en voor hun gebruik in de praktijk. Beide algoritmes worden
geëvalueerd en vergeleken aan de hand van reële datasets, bekomen in de context
van het experiment m.b.t. visuospatiale mentale inbeelding. Een kwalitatieve
beoordeling van de valideerbaarheid en interpreteerbaarheid van fysiologisch bete-
kenisvolle componenten, alsook de robuustheid van de methode wordt uitgevoerd.
Daarnaast worden de nauwkeurigheid van detectie en consistentie van de gevonden
tijdsseries en spatiale gebieden binnen eenzelfde proefpersoon en tussen verschil-
lende proefpersonen kwantitatief geëvalueerd en vergeleken. Daartoe wordt respec-
tievelijk de temporele en spatiale correlatie bepaald. In deze studie wordt eveneens
nagegaan in welke mate de resultaten van deze beoordelingscriteria bëınvloed wor-
den door een aantal factoren. Enerzijds worden de methode-specifieke parameter-
instellingen beschouwd, anderzijds de invloed van het uitmiddelen van de - tijdens
opeenvolgende proeven gemeten - signalen vooraleer ze ter analyse aan te bieden.

Een tweede studie introduceert het ‘spatio-temporele’ FCM algoritme dat informa-
tie van de naburige meetpunten in het detectieproces opneemt. Het verheldert de
condities en de parameter-instellingen waaronder spatio-temporele FCM ‘conven-
tionele’ FCM overtreft op het gebied van de nauwkeurigheid van detectie. Daarom
worden realistische gesimuleerde datasets aangemaakt met verschillende types van
activatie, die synthetisch ingebracht zijn in een realistische ruisachtergrond. Deze
datasets worden gegenereerd voor het in fMRI-analyse gebruikelijke bereik van
de ‘Contrast-Ruis-Verhouding’ (CNR). Er wordt een kwantitatieve vergelijking
uitgevoerd van de activatiegebieden en bijhorende tijdsseries, bekomen via beide
methodes. Dit wordt respectievelijk gerealiseerd aan de hand van een techniek
bekend als ‘ontvanger bedrijfskarakteristieken’ (ROC) en de temporele correlatie-
coëfficiënt.
Tenslotte worden deze bevindingen, bekomen uit gesimuleerde datasets, toegepast
op de analyse van de datasets bekomen uit het experiment m.b.t. visuospatiale
mentale inbeelding. Deze datasets worden geanalyseerd met beide methodes om
de verschillen tussen de overeenkomstige topologische structuren te bepalen en te
interpreteren.


