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Abstract 

The goal of 4D computed tomography (4D CT) is to study the temporal deformation of a 3D sample with a sufficiently high 

temporal and spatial resolution. Conventionally, the sample is sequentially scanned, resulting in datasets of successive time 

frames. Each of these datasets is then independently reconstructed. This framework results in a trade-off between the temporal 

resolution and the signal-to-noise ratio (SNR) of the reconstructed images. The proposed registration based simultaneous 

iterative reconstruction technique (RBSIRT) allows shortening the acquisition time per time frame, leading to improved 

temporal resolution at comparable SNR. To this end, the algorithm estimates the deformation field between different time 

frames, which allows incorporating projections of other time frames into the reconstruction of a particular time frame. The 

technique was validated on numeric simulations and on a real dynamic experiment of a polyurethane foam sample. The 

reconstructions obtained with RBSIRT have a significantly higher SNR compared to the SNR of conventional 4D 

reconstructions. 
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1 Introduction 

4D (3 spatial dimensions + time) computed tomography (CT) has the ability to image dynamic processes in a non-destructive 

manner. This technique has great potential for validating models of dynamic processes, e.g. the compression of polyurethane 

(PU) foam [1].  

In dynamic CT, conventionally, several CT datasets (time frames) are acquired sequentially. Each time frame typically consists 

of a set of projections acquired over an angular range of 180 or 360 degrees. Afterwards, these time frames are independently 

reconstructed [2]. However, due to the long acquisition time of conventional micro-CT, two problems arise if a fast dynamic 

process is imaged. Firstly, the long acquisition time of a single time frame strongly limits the temporal resolution. Secondly, 

due the object deformation during the acquisition of a single time frame, the reconstructed images are blurry due to 

deformation artefacts. A straight forward method to avoid both problems is shortening the acquisition time of a single time 

frame. This can be achieved by shortening the integration time of a single projection or lowering the number of projections per 

time frame. A shorter integration time reduces the signal-to-noise ratio (SNR) of the projection data which in turn leads to a 

lower SNR in the reconstructed images. Lowering the number of projections, on the other hand, results in streaks in the 

reconstructed images, often referred to as sub-sampling artefacts. As a result the conventional workflow leads to a trade-off 

between the temporal resolution/deformation artefacts and low SNR/sub-sampling artefacts in the reconstructed images. 

However, this trade-off can be improved by exploiting data redundancy present in 4D CT datasets. Since in every time frame 

the same, though slightly changed, object is scanned, it is beneficial to include information about other time frames into the 

reconstruction process [3]. In this work, the object’s dynamics is modeled through a deformation vector field (DVF). This 

vector field describes the displacement of every voxel between two time frames. The proposed registration based simultaneous 

reconstruction technique (RBSIRT) incorporates these deformation fields into the reconstruction process, as such enabling the 

incorporation of the projections of other time frames into the reconstruction. Unfortunately, the DVF’s are unknown and need 

to be estimated. In order to estimate these, volume registrations are performed on conventionally reconstructed volumes of the 

different time frames.  

In section 2 the proposed reconstruction algorithm and deformation estimation strategy will be explained. Our method will be 

compared with other reconstruction algorithms in a numerical way as well as on an experimental dataset as explained in 

section 3. The results of these experiments are then discussed in section 4. 

2 Methods 

The proposed RBSIRT workflow consists of two main parts. The first part estimates the deformation between the different 

time frames. The RBSIRT reconstruction algorithm then exploits these deformation estimations to calculate a high SNR 

reconstruction. In subsection 2.1, an overview of the conventional Simultaneous Iterative Reconstruction Technique (SIRT) 

algorithm will be given. The SIRT algorithm is a well-known algebraic reconstruction algorithm for conventional (stationary) 
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CT. Next, in subsection 2.2, the RBSIRT reconstruction algorithm, which is based on the SIRT algorithm, will be introduced. 

Lastly, in subsection 2.3, an estimation method for the deformation vector fields is introduced. 

2.1 Simultaneous Iterative Reconstruction Technique 

Let � � ���� ∈ �	 represents the voxel values of the unknown volume. The (log-corrected) projections are represented by 


 � ���� ∈ ��. The system matrix  contains the contributions of each voxel to each detector element. As such, the 

projections can be simulated with � ≅ 
. This system of equations cannot be solved directly for � since it is ill-defined. 

Therefore, the SIRT algorithm solves following optimization problem: �∗ � argmin�‖� � 
‖�, where ‖� � 
‖� �
�� � 
����� � 
� and � � ����� ∈ ��	�� is a diagonal matrix with ��� � 1 ∑ "���# [4]. The following iterative formula is 

known to converge to this minimum: 

�$%& � ��$� ' (� �)
 � �$ * 

where ( � �+��� ∈ �		�	 is a diagonal matrix with +�� � 1 ∑ "���# . The reconstruction accuracy of this method greatly 

depends on the dimensionality of the null space of the matrix . By adding more projections (more linear equations) to the 

problem the dimensionality of this null space can be reduced, yielding better results. In the following subsection 

transformations between time points will be incorporated into the SIRT algorithm. As such, projections of other time points 

can be included into the reconstruction process without causing deformation artefacts.  

2.2 Registration based SIRT 

The reconstructed object at time frame � can be represented as a column vector �, � ��-,�� ∈ �	. The vector 
, � ��-,�� ∈
��/  denotes all the acquired projections of the object at time frame �. The projections are simulated with the forward model:  


, � -	�,, where - � �"-,��� ∈ ��/	�	. To reconstruct the object at time frame �, we propose the following SIRT [4] based 

iterative reconstruction algorithm: 

 �,$%& � �,�$� ' ∑ 0--12-→-145-1 (-1-1� �-1)
,1 � ,12-→-1�,$* (1) 

where (- � �+-,��� ∈ �		�	 is a diagonal matrix with +-,�� � 1 ∑ "-,���#  and �- � ��-,��� ∈ ��/	��/ is a diagonal matrix with 

�-,�� � 1 ∑ "-,���# . The operator 2-→-1 transforms the object at time frame � to its state at time frame �′: 
 �,1 � 2-→-1�,. The weights 0--1 are normalized such that ∑ 0--1 � 1-1 . For each time frame �′, the proposed reconstruction 

algorithm transforms the current estimate of 	�, to the �′’th time frame and then calculates a SIRT update using the projection 

data of time frame �′. This SIRT update is then transformed back to time frame �, weighted with 0-1 and added to the current 

total update of �,$. This is repeated for all time frames after which the total update is added to �,$. An overview of a single 

RBSIRT iteration is given in figure 1. 

 
Figure 1: Schematic representation of a single iteration of the registration based SIRT algorithm 

2.2 Deformation estimation 

The deformation operators 2-→-1 and their inverse (see Eq. (1)) are unknown and have to be estimated. To this end, each time 

frame is first conventionally reconstructed with SIRT using only the projections corresponding to that time frame. Afterwards, 

these conventional reconstructions (75, 78, … , 7�) are pairwise registered with each other, resulting in deformation vector fields 

(DVFs). The registration, performed with the registration software Elastix [5], estimates the parameters :--; of a B-spline 

deformation model [6]. The inverse DVFs are calculated as described in Chen et al. [7]. The weights 0--1 reflect the accuracy 

of the corresponding DVFs and are calculated as follows: 
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where D--; � 5
	∑ )+-,E � �2�:--;�7-1�E*8E  corresponds to the mean squared distance (MSD) between the reconstructed time 

frame and the transformed reconstruction of the time frame �′. The parameter F regulates the magnitude of the weights. 

The proposed method was implemented in Matlab, the forward and back projections were performed with the ASTRA toolbox 

[8]. We will refer to the reconstruction algorithm as RBSIRT. An overview of the complete method is shown in figure 2. 

 

 

Figure 2: Schematic representation of the full RBSIRT reconstruction pipeline. 

3 Experiments 

The RBSIRT method was compared to several other methods in numerical simulations (subsection 3.1) and on an experimental 

dataset of polyurethane foam under compression (subsection 3.2). The results of these experiments are discussed in section 4. 

3.1 Numerical simulations 

Several numerical experiments were performed on a numerical phantom of PU foam under compression. These models were 

provided by Huntsman (Everberg, Belgium) and are based on finite element simulations of different stages in the compression 

process. Four models were voxelised on an isotropic voxel grid of 400 � 400 � 400 from which 100 � 100 pixel projections 

were generated, in order to avoid the "inverse crime" of generating the data with the same model as the model used in the 

reconstruction [9]. The projections were simulated in an interleaved scanning protocol with 20 projections per time frame, 

where each time frame has an angular range of 180 degrees [10]. Poisson distributed noise was applied on the data, assuming 

an incoming beam intensity of  10I (photon count). During each time frame the foam was compressed another 1,75% of the 

original sample height. 

The sample was reconstructed with a range of different reconstruction techniques: 

• FDK:   The Feldkamp-David-Kress (FDK) algorithm applied on each rotation independently [11]. 

• FDKmean: A straight forward method to improve the FBP reconstructions. In a first step the FDK   

  reconstructions are registered to one another. The estimated deformations are then applied on the  

  reconstructions of the other time points and a weighted mean of the reconstructions is calculated.  

• SIRT:   the SIRT algorithm applied on each rotation independently. 

• SIRTmean: The same concept as FBPmean, but this time with the SIRT reconstructions. 

• RBSIRT: The method described in the method section starting from a zero image. 

• RBSIRTinit: The method described in the method section initialized with the result of SIRTmean. 

 

The volume registration was performed with a b-spline deformation model with a control point spacing of 8 voxels. The b-

spline parameters were optimized by minimizing the mean squared difference in a multi-resolution framework.  

The SIRT, RBSIRT and RBSIRTinit algorithms were iterated until the lowest Mean Squared Error (MSE) was achieved. The 

optimal value of the parameter F, in terms of the MSE of the reconstructions, was 0.8 and was selected in this experiment. 

Renderings of the different reconstructions are shown in figure 3. 

Both the Structural Similarity Index and the MSE of the reconstructions were calculated in function of the photon count and 

the number of projections per time frame [12]. These results are shown in figure 4 and figure 5, respectively. 
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Figure 3: Renderings of the reconstruction of the numerical simulation of the compression of a foam sample with different reconstruction 

techniques (detailed description section 3.1). The red circles indicate example areas where the struts that are better reconstructed in the 

RBSIRT reconstructions in comparison with the SIRTmean reconstruction. 

 

Figure 4: MSE and SSIM in function of the incoming photon count. Top left: mean squared error in function of the photon count. Top right: 

zoomed in version of the top left image. Bottom left: SSIM in function of the photon count. Bottom right: zoomed in version of the bottom 

left image. 

SIRT RBSIRT 

FDKmean SIRTmean RBSIRTinit 

FDK 
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Figure 5: MSE and SSIM in function of the number of projections per time frame. Top left: mean squared error in function of the number of 

projections. Top right: zoomed in version of the top left image. Bottom left: SSIM in function of the number of projections. Bottom right: 

zoomed in version of the bottom left image. 

 

 

3.2 Polyurethane dataset 

A dynamic x-ray CT dataset was acquired by Inside Matters with a gantry-based high-resolution scanner [13]. A polyurethane 

foam sample (provided by Huntsman) of 11mm high was loaded in a compression stage which was mounted in the scanner. 

Seven CT datasets were acquired. Each dataset (= time frame) consists out of 2000 equiangular projections (1316 �1312 

pixels, pixel size 0.1 mm) acquired over an angular range of 360 degrees. During these scans the sample was compressed	L ⋅
0.5	OO, where L=0,..,L-1 is the time frame number. All reconstructions were calculated on a 1316x1316x401 isotropic voxel 

grid with a voxel size of 16Pm. 

Each time frame was reconstructed with three different methods: Firstly, conventional SIRT with 2000 projections/time frame. 

Secondly, conventional SIRT with 1000 projections/time frame and, thirdly, RBSIRTinit with 1000 projections/time frame. 

RBSIRT estimates the deformation and includes the projections of a single neighbouring time frame to the reconstruction of a 

particular time frame. The SIRT reconstruction with 2000 projections has thus the best possible quality that the RBSIRT 

reconstruction can achieve by incorporating the projections of a single neighbouring time frame. Reconstructions with only 

1000 projections were performed with projections with projection numbers 1 ' �L	mod	2�, 3 ' �L	mod	2�, … , U, where L is the 

time frame number and U the total number of acquired projections/time frame. As such neighbouring time frames have 

interleaved projections. The volume registration was performed with a b-spline deformation model with a control point spacing 

of 8 voxels. The b-spline parameters were optimized by minimizing the mean squared difference in a multi-resolution 

framework. The RBSIRTinit reconstruction was initialized as described in section 3.1 after which 50 RBSIRT iterations were 

performed. 

In figure 6, a slice, reconstructed with the three methods described above, of the third time frame are shown. This figure also 

shows zoomed reconstructions and a segmentation of each reconstruction performed with Otsu’s method [14]. 
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Figure 6: Reconstructions (top), zoomed reconstructions (middle) and segmentations (bottom) of the 3th time frame of the polyurethane 

dataset. Left: SIRT with 1000 proj/time frame. Middle: RBSIRTinit with 1000 proj/time frame. Right: SIRT with 2000 proj/time frame. 

4 Discussion 

In this section, the results of the numerical simulations and the polyurethane dataset will be discussed. 

4.1 Numerical simulations 

Figure 3 shows renderings of the second time frame of the compressed foam sample calculated with the different 

reconstruction techniques explained in section 3.1. FDK produces the worst results. The reconstruction is very noisy and the 

foam structures are very hard to differentiate from their surroundings. The FDKmean algorithm improves this reconstruction 

significantly, however high levels of noise are still present around the pressure plates due to cone beam artefacts. The SIRT 

and SIRTmean reconstructions show the foam structure nicely, however some struts of the foam are missing in the 

neighbourhood of the pressure plates. The RBSIRT and RBSIRTinit reconstructions show the foam structure clearly and are 

able to reconstruct the struts close to the pressure plate better than the SIRT and SIRTmean reconstructions (see red circles in 

figure 3 for example regions). The RBSIRT and RBSIRTinit reconstructions are almost indistinguishable. Note that, 

RBSIRTinit is faster than the RBSIRT reconstruction since it needs much less RBSIRT iterations to converge to the optimal 

solution. 

In figure 4 the MSE and SSIM in function of the photon count is shown. Both in respect of the MSE and SSIM the RBSIRT 

and RBSIRTinit reconstructions perform the best and almost no difference can be observed between both methods. The 

SIRTmean method provides slightly worse reconstruction, but is an improvement over the conventional SIRT reconstructions. 

Only at very low noise levels the RBSIRT methods result in slightly worse reconstructions than the SIRT methods, which is 

caused by inaccurate deformation estimations on the very low SNR initial SIRT reconstructions. FDK and FDKmean provide 

the worst results, although FDKmean clearly improves upon conventional FDK. 

From figure 5, similar conclusions can be drawn. Here the RBISRT methods provide the best results with respect to the MSE 

and SSIM. This confirms our expectation that all results improve if more projections per time frame are provided. 
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4.2 Polyurethane dataset 

The results of the polyurethane are shown in figure 6. The SIRT reconstruction with 2000 projections/time frame shows the 

foam structures very clearly. The SNR is sufficiently high to observe small foam structures. The SIRT reconstruction with only 

1000 projections/time frame has a visibly lower SNR than the SIRT reconstruction with 2000 projections/time frame. High 

frequency components of the images are heavily degraded with noise. The RBSIRT reconstruction (1000 projections/time 

frame) possesses slightly lower SNR as the SIRT reconstruction with 2000 projections/time frame, however the SNR is 

considerably higher than that of the SIRT reconstruction with 1000 projections/time frame.   

The segmented reconstructions show that the foam structures in both the RBSIRT and SIRT reconstruction with 2000 

projections per time frame can be easily segmented with the Otsu segmentation algorithm. Due to noise, this isn’t the case for 

SIRT with only 1000 projections per time frame.   

These results clearly indicate that RBSIRT can achieve results with higher reconstruction quality in comparison to the SIRT 

reconstructions of the same 4DCT dataset. RBSIRT allows shortening the acquisition time of each time frame, by lowering the 

number of projections, without considerable reconstruction quality loss. 

5 Conclusions 

The performed experiments show that the RBSIRT algorithm is able to successfully exploit the data redundancy present in 4D 

CT datasets. It allows lowering the acquisition time of a single time frame without compromising the SNR of the reconstructed 

images. This is achieved by estimating the deformation between different time frames which allows including projections of 

different time frames into the reconstruction of a certain time frame without introduction of deformation artefacts. The method 

was validated on numerical simulations and a real dataset of polyurethane foam under compression. Both experiments showed 

an increase of reconstruction quality with respect to conventional reconstruction algorithms. 
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