Publications

Export 162 results:
Author Type [ Year(Asc)]
Filters: Author is Arnold Jan den Dekker  [Clear All Filters]
2021
B. Shafieizargar, Jeurissen, B., Poot, D. H. J., Van Audekerke, J., Verhoye, M., den Dekker, A. J., and Sijbers, J., Accelerated multi-shot diffusion weighted imaging with joint estimation of diffusion and phase parameters, Magn Reson Mater Phy, vol. 34. pp. S57-S58, 2021.
A. De Backer, Fatermans, J., den Dekker, A. J., and Van Aert, S., Chapter Eight - General conclusions and future perspectives, in Advances in Imaging and Electron Physics, vol. 217, Science Direct Elsevier, 2021.
A. De Backer, Fatermans, J., den Dekker, A. J., and Van Aert, S., Chapter Five - Optimal experiment design for nanoparticle atom counting from ADF STEM images, in Advances in Imaging and Electron Physics, vol. 217, Science Direct Elsevier, 2021.
A. De Backer, Fatermans, J., den Dekker, A. J., and Van Aert, S., Chapter Four - Atom counting, in Advances in Imaging and Electron Physics,, vol. 217, Science Direct Elsevier, 2021.
A. De Backer, Fatermans, J., den Dekker, A. J., and Van Aert, S., Chapter One - Introduction, in Advances in Imaging and Electron Physics, vol. 217, Science Direct Elsevier, 2021.
J. Fatermans, De Backer, A., den Dekker, A. J., and Van Aert, S., Chapter Seven - Image-quality evaluation and model selection with maximum a posteriori probability, in Advances in Imaging and Electron Physics, vol. 217, Science Direct Elsevier, 2021.
J. Fatermans, De Backer, A., den Dekker, A. J., and Van Aert, S., Chapter Six - Atom column detection, in Advances in Imaging and Electron Physics, vol. 217, Science Direct Elsevier, 2021.
A. De Backer, Fatermans, J., den Dekker, A. J., and Van Aert, S., Chapter Three - Efficient fitting algorithm, in Advances in Imaging and Electron Physics, vol. 217, Science Direct Elsevier, 2021.
A. De Backer, Fatermans, J., den Dekker, A. J., and Van Aert, S., Chapter Two - Statistical parameter estimation theory: principles and simulation studies, in Advances in Imaging and Electron Physics, vol. 217, Science Direct Elsevier, 2021.
M. Nicastro, Jeurissen, B., Beirinckx, Q., Smekens, C., Poot, D. H. J., Sijbers, J., and den Dekker, A. J., Comparison of MR acquisition strategies for super-resolution reconstruction using the Bayesian Mean Squared Error, in International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2021.
C. Smekens, Beirinckx, Q., Vanhevel, F., Van Dyck, P., den Dekker, A. J., Sijbers, J., Janssens, T., and Jeurissen, B., High-resolution T2* mapping of the knee based on UTE Spiral VIBE MRI, Magn Reson Mater Phy, vol. 34. pp. S53-S54, 2021.
B. Shafieizargar, Jeurissen, B., Poot, D. H. J., den Dekker, A. J., and Sijbers, J., Multi-contrast multi-shot EPI for accelerated diffusion MRI, in 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2021, pp. 3869-3872.
V. Anania, Jeurissen, B., Morez, J., Buikema, A. Eline, Billiet, T., Sijbers, J., and den Dekker, A. J., Optimal experimental design for the T2-weighted diffusion kurtosis imaging free water elimination model, ESMRMB 2021 Online 38th Annual Scientific Meeting 7–9 October 2021. Magn Reson Mater Phy, vol. 34. pp. S54-S55, 2021.
M. Siqueira Pinto, Winzeck, S., Correia, M. M., Kornaropoulos, E. N., Menon, D. K., Glocker, B., den Dekker, A. J., Sijbers, J., Guns, P. - J., Van Dyck, P., and Newcombe, V. F. J., Outcome prediction in Mild Traumatic Brain Injury patients using conventional and diffusion MRI via Support Vector Machine: A CENTER-TBI study, ISMRM & SMRT Annual Meeting. 2021.
M. Siqueira Pinto, Winzeck, S., Richter, S., Correia, M. M., Kornaropoulos, E. N., Menon, D. K., Glocker, B., Guns, P. - J., den Dekker, A. J., Sijbers, J., Newcombe, V. F. J., and Van Dyck, P., Outcome prediction of mild traumatic brain injury using support vector machine based on longitudinal MRdiffusion imaging from CENTER-TBI, Magn Reson Mater Phy (ESMRMB), vol. 34. p. S54, 2021.
E. Ribeiro Sabidussi, Caan, M., Bazrafkan, S., den Dekker, A. J., Sijbers, J., Niessen, W. J., and Poot, D. H. J., Recurrent Inference Machines as Inverse Problem Solvers for MR Relaxometry, in MIDL 2021 - Medical Imaging with Deep Learning, 2021.
E. Ribeiro Sabidussi, Klein, S., Caan, M., Bazrafkan, S., den Dekker, A. J., Sijbers, J., Niessen, W. J., and Poot, D. H. J., Recurrent Inference Machines as inverse problem solvers for MR relaxometry, Medical Image Analysis, vol. 74, pp. 1-11, 2021.PDF icon Download paper (2.26 MB)

Pages