Publications

Export 28 results:
Author [ Type(Asc)] Year
Filters: Author is Rob Heylen  [Clear All Filters]
Journal Article
E. K. Ghasrodashti, Karami, A., Heylen, R., and Scheunders, P., Spatial Resolution Enhancement of Hyperspectral Images Using Spectral Unmixing and Bayesian Sparse Representation, Remote Sensing, vol. 9, no. 6, 2017.
R. Heylen, Burazerovic, D., and Scheunders, P., Nonlinear spectral unmixing by geodesic simplex volume maximization, IEEE Journal of Selected Topics in Signal Processing, vol. 5, pp. 534-542, 2011.
R. Heylen, Andrejchenko, V., Zahiri, Z., Parente, M., and Scheunders, P., Nonlinear hyperspectral unmixing with graphical models, IEEE Transaction on Geoscience and Remote Sensing, vol. 57, no. 7, pp. 4844-4856, 2019.PDF icon published.pdf (3.15 MB)
R. Heylen and Scheunders, P., Multi-dimensional pixel purity index for convex hull estimation and endmember extraction, IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 7, pp. 4059-4069, 2013.
R. Heylen and Scheunders, P., Hyperspectral intrinsic dimensionality estimation with nearest-neighbor distance ratio's, IEEE JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 2, pp. 570-579, 2013.
R. Heylen, Burazerovic, D., and Scheunders, P., Fully constrained least-squares spectral unmixing by simplex projection, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4112-4122, 2011.PDF icon PDF (1.11 MB)Package icon Matlab code (1.93 KB)
R. Heylen, Parente, M., and Scheunders, P., Estimation of the number of endmembers in a hyperspectral image via the hubness phenomenon, IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 4, pp. 2191-2200, 2017.
D. Burazerovic, Geens, B., Heylen, R., Sterckx, S., and Scheunders, P., Detecting the adjacency effect in hyperspectral imagery with spectral unmixing techniques, IEEE JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 3, pp. 1070-1078, 2013.
R. Heylen and Scheunders, P., Calculation of geodesic distances in non-linear mixing models: demonstration on the generalized bilinear model, IEEE Geoscience and Remote Sensing letters, vol. 9, no. 4, pp. 644-648, 2012.
A. Karami, Heylen, R., and Scheunders, P., Band-specific Shearlet-based Hyperspectral Image Noise Reduction, IEEE Transaction Geosciences and Remote Sensing , vol. 53, no. 9, 2015.
R. Heylen, Thanki, A., Verhees, D., Iuso, D., De Beenhouwer, J., Sijbers, J., Witvrouw, A., Haitjema, H., and Bey-Temsamani, A., 3D total variation denoising in X-CT imaging applied to pore extraction in additively manufactured parts, Measurement Science and Technology, vol. 33, no. 4, pp. 1-12, 2022.
Conference Paper
D. Burazerovic, Geens, B., Heylen, R., Sterckx, S., and Scheunders, P., Unmixing for detection and quantification of adjacency effects, in IEEE IGARSS2012, International Geoscience and Remote Sensing Symposium, Munich, July 22-27, 2012, pp. 3090-3093.
D. Burazerovic, Heylen, R., and Scheunders, P., Towards streaming hyperspectral endmember extraction, in IEEE IGARSS2011, IEEE International Geoscience and Remote Sensing Symposium , Vancouver, July 25-29, 2011.
T. Dox, Heylen, R., and Scheunders, P., Spectral variability in a multilinear mixing model, in IEEE IGARSS 2018, International Geoscience and Remote Sensing Symposium, Valencia, Spain, July 23-27, 2018.
R. Heylen and Scheunders, P., Spectral unmixing using distance geometry, in IEEE-WHISPERS 2011, Workshop on Hperspectral Image and Signal Processing, Lisbon, Portugal, 6-9 June, 2011.
V. Andrejchenko, Zahiri, Z., Heylen, R., and Scheunders, P., A spectral mixing model accounting for multiple reflections and shadow, in IGARSS 2019, International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp. 286-289.
R. Heylen, Parente, M., and Scheunders, P., Pixel purity vertex component analysis, in IEEE IGARSS 2017, International Geoscience and Remote Sensing Symposium, Fort Worth, USA, July 23-28, 2017.
R. Heylen and Scheunders, P., Non-linear fully-constrained spectral unmixing, in IEEE IGARSS2011, IEEE International Geoscience and Remote Sensing Symposium, Vancouver, July 25-29, 2011.
R. Heylen and Scheunders, P., Nonlinear barycentric dimensionality reduction, in IEEE ICIP10, IEEE International Conference on Image Processing, Hong Kong, september 26-29, 2010, pp. 1341-1344.
B. Koirala, Heylen, R., and Scheunders, P., A NEURAL NETWORK METHOD FOR NONLINEAR HYPERSPECTRAL UNMIXING, in IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018, pp. pp. 4233-4236.PDF icon a_nn_method_bikram_koirala_igarss2018.pdf (242.16 KB)
V. Andrejchenko, Heylen, R., Liao, W., Philips, W., and Scheunders, P., MRF-based decision fusion for hyperspectral image classification, in IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018.
R. Heylen, Burazerovic, D., and Scheunders, P., A graph-based method for non-linear unmixing of hyperspectral imagery, in IEEE IGARSS2010, IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Haway, July 25-30, 2010, pp. 197-200.
R. Heylen and Scheunders, P., A fast geometric algorithm for solving the inversion problem in spectral unmixing, in IEEE-WHISPERS 2012, Workshop on Hyperspectral Image and Signal Processing, Shanghai, June 4-7, 2012.
D. Iuso, Chatterjee, S., Heylen, R., Cornelissen, S., De Beenhouwer, J., and Sijbers, J., Evaluation of deeply supervised neural networks for 3D pore segmentation in additive manufacturing, in SPIE Optical Engineering: Developments in X-Ray Tomography XIV , 2022, vol. 12242, p. 122421K.PDF icon Download paper (protected) (1.79 MB)
R. Heylen, Parente, M., and Scheunders, P., Estimation of the intrinsic dimensionality in hyperspectral imagery via the hubness phenomenon, in LVA ICA 2017, International conference on latent variable analysis and signal separation, Grenoble, France, February 21-23, Lecture Notes in Computer Science, 2017, vol. 10169.

Pages