Export 276 results:
Author [ Type(Asc)] Year
Filters: Author is Paul Scheunders  [Clear All Filters]
Journal Article
G. Van de Wouwer and Scheunders, P., Wavelet-based texture classification, Recent Research in the Development of Pattern Recognition, vol. 1, pp. 77-87, 2000.
P. Scheunders, Livens, S., Van de Wouwer, G., Vautrot, P., and Van Dyck, D., Wavelet-based texture analysis, Intern. Journal on Computer Science and Information Management, vol. 1, pp. 22-34, 1998.
A. Duijster, Scheunders, P., and De Backer, S., Wavelet-Based EM Algorithm for Multispectral-Image Restoration, IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 3892-3898, 2009.
P. Scheunders, Wavelet thresholding of multivalued images, IEEE Transactions on Image Processing, vol. 13, pp. 475-483, 2004.
P. Scheunders and De Backer, S., Wavelet denoising of multicomponent images, using Gaussian Scale Mixture models and a noise-free image as priors, IEEE Transactions on Image Processing, vol. 16, pp. 1865-1872, 2007.
G. Van de Wouwer, Scheunders, P., Livens, S., and Van Dyck, D., Wavelet correlation signatures for color texture characterization, pattern Recognition, vol. 32, pp. 443-451, 1999.
J. Sijbers, Verhoye, M., Scheunders, P., Van Der Linden, A., Van Dyck, D., and Raman, E., Watershed based segmentation of 3D MR data for volume quantization, Magnetic Resonance Imaging, vol. 15, pp. 679-688, 1997.PDF icon Download paper (3.18 MB)
G. Van de Wouwer, Scheunders, P., Van Dyck, D., Wuyts, F. L., and Van de Heyning, P. H., Voice recognition from spectrograms: a wavelet based approach, Fractals, vol. 5, pp. 165-172, 1997.
B. Weyn, Van de Wouwer, G., Koprowski, M., Van Daele, A., Dhaene, K., Scheunders, P., Jacob, W., and Van Marck, E., Value of morphometry, texture analysis, densitometry and histometry in the differential diagnosis and prognosis of malignant mesothelioma, Journal of Pathology, vol. 4, pp. 581-589, 1999.
K. Hufkens, Scheunders, P., and Ceulemans, R., Validation of the sigmoid wave curve fitting algorithm on a forest-tundra ecotone in the Northwest Territories, Canada, Ecological Informatics, vol. 4, pp. 1-7, 2009.
B. Weyn, Tjalam, W., Van de Wouwer, G., Van Daele, A., Scheunders, P., Jacob, W., Van Marck, E., and Van Dyck, D., Validation of nuclear texture density, morphometry and tissue syntactic structure analysis as prognosticators of cervical carcinoma, Analytical and Quantitative Cytology and Histology, vol. 22, pp. 373-382, 2000.
R. Heylen, Akhter, M. A., and Scheunders, P., On using projection onto convex sets for solving the hyperspectral unmixing problem, IEEE Geoscience and Remote Sensing Letters, 2013.
C. C. Hung, Scheunders, P., Pham, M., Su, M. C., and Coleman, T., Using Intelligent Optimization Techniques in the K-means Algorithm for Multispectral Image Classification, International Journal of Fuzzy Systems, vol. 6, pp. 107-117, 2004.
M. Brackx, Verhelst, J., Scheunders, P., and Samson, R., On the use of dorsiventral reflectance asymmetry of hornbeam (Carpinus betulus L.) leaves in air pollution estimation, Environmental Monitoring and Assessment, vol. 189, no. 9, 2017.
B. Rasti, Koirala, B., Scheunders, P., and Ghamisi, P., UnDIP: hyperspectral unmixing using deep image prior, IEEE Transactions on Geoscience and Remote Sensing, pp. 1-15, 2021.
W. Van den Broek, Verbeeck, J., Schryvers, D., De Backer, S., and Scheunders, P., Tomographic Spectroscopic Imaging; an experimental proof of concept, Ultramicroscopy, vol. 109, pp. 296-303, 2009.
S. De Backer and Scheunders, P., Texture segmentation by frequency-sensitive elliptical competitive learning, Image and Vision Computing, vol. 19, pp. 639-648, 2001.
S. Livens, Scheunders, P., Van de Wouwer, G., Van Dyck, D., Smets, H., Winkelmans, J., and Bogaerts, W., A texture analysis approach to corrosion image classification, Microscopy, Microanalysis, Microstructures, vol. 7, pp. 1-10, 1996.
B. Koirala, Khodadadzadeh, M., Contreras, C., Zahiri, Z., Gloaguen, R., and Scheunders, P., A supervised method for nonlinear hyperspectral unmixing, Remote Sensing, vol. 11, no. 20 , 2019.