Publications

Export 974 results:
[ Author(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Heylen, R., D. Burazerovic, and P. Scheunders, "Fully constrained least-squares spectral unmixing by simplex projection", IEEE Transactions on Geoscience and Remote Sensing, vol. 49, issue 11, pp. 4112-4122, 2011. PDF icon PDF (1.11 MB)Package icon Matlab code (1.93 KB)
Heylen, R., and P. Scheunders, "Nonlinear unmixing with a multilinear mixing model", IEEE Whispers 2015, Workshop on Hyperspectral Image and Signal Processing, June 2-5, Tokyo, 2015.
Heylen, R., and P. Scheunders, "A distance geometric framework for non-linear hyperspectral unmixing", IEEE-JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 1879-1888, 2014.
Heylen, R., A. Zare, P. Gader, and P. Scheunders, "Hyperspectral unmixing with endmember variability via alternating angle minimization", IEEE Transactions on Geoscience and Remote Sensing, vol. 54, issue 8, pp. 4983-4993, 2016.
Heylen, R., and P. Scheunders, "Hyperspectral unmixing using an active set algorithm", IEEE ICIP 2014, International Conference on Image Processing, October 27-30, Paris, France , 2014.
Heylen, R., M. Parente, and P. Scheunders, "Pixel purity vertex component analysis", IEEE IGARSS 2017, International Geoscience and Remote Sensing Symposium, Fort Worth, USA, July 23-28, 2017.
Heylen, R., and P. Scheunders, "Calculation of geodesic distances in non-linear mixing models: demonstration on the generalized bilinear model", IEEE Geoscience and Remote Sensing letters, vol. 9, issue 4, pp. 644-648, 2012.
Heylen, R., D. Burazerovic, and P. Scheunders, "A graph-based method for non-linear unmixing of hyperspectral imagery", IEEE IGARSS2010, IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Haway, July 25-30, pp. 197-200, 2010.
Heylen, R., M A. Akhter, and P. Scheunders, "On using projection onto convex sets for solving the hyperspectral unmixing problem", IEEE Geoscience and Remote Sensing Letters, 2013.
Heylen, R., and P. Scheunders, "A multilinear mixing model for nonlinear spectral unmixing", IEEE Transactions on Geoscience and Remote Sensing, vol. 54, issue 1, pp. 240-251, 2016.
Heylen, R., P. Scheunders, P. Gader, and A. Rangarajan, "Nonlinear unmixing by using different metrics in a linear unmixing chain", IEEE-JSTARS, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.
Heylen, R., and P. Scheunders, "A fast geometric algorithm for solving the inversion problem in spectral unmixing", IEEE-WHISPERS 2012, Workshop on Hyperspectral Image and Signal Processing, Shanghai, June 4-7, 2012.
Heylen, R., M. Parente, and P. Scheunders, "Estimation of the intrinsic dimensionality in hyperspectral imagery via the hubness phenomenon", LVA ICA 2017, International conference on latent variable analysis and signal separation, Grenoble, France, February 21-23, Lecture Notes in Computer Science, vol. 10169, 2017.
Heylen, R., and P. Scheunders, "Nonlinear barycentric dimensionality reduction", IEEE ICIP10, IEEE International Conference on Image Processing, Hong Kong, september 26-29, pp. 1341-1344, 2010.
Hufkens, K., R. Ceulemans, and P. Scheunders, "Ecotones in vegetation ecology: methodology and definitions revisited", Ecological Research, vol. 24, pp. 977-986, 2009.
Hufkens, K., P. Scheunders, and R. Ceulemans, "Validation of the sigmoid wave curve fitting algorithm on a forest-tundra ecotone in the Northwest Territories, Canada", Ecological Informatics, vol. 4, pp. 1-7, 2009.
Hufkens, K., G. Thoonen, J. Vanden Borre, P. Scheunders, and R. Ceulemans, "Habitat reporting of a heathland site: Classification probabilities as additional information, a case study", Ecological Informatics, vol. 5, no. 4, pp. 248 - 255, 2010.
Hufkens, K., R. Ceulemans, and P. Scheunders, "Estimating the ecotone width in patchy ecotones using a sigmoid wave approach", Ecological Informatics, vol. 3, pp. 97-104, 2008.
Huijs, S., T. Huysmans, A. De Jong, N. Arnout, J. Sijbers, and J. Bellemans, "Principal component analysis as a tool for determining optimal tibial baseplate geometry in modern TKA design", Acta Orthop Belg, vol. 84, issue 4, pp. 452-460, 2018.
Hung, C. C., P. Scheunders, M. Pham, M. C. Su, and T. Coleman, "Using Intelligent Optimization Techniques in the K-means Algorithm for Multispectral Image Classification", International Journal of Fuzzy Systems, vol. 6, no. 3, pp. 107-117, 2004.
Hung, C. C., T. Coleman, and P. Scheunders, "Using genetic differential competitive learning for unsupervised training in multispectral image classification systems", Proceedings IEEE International Conference on Systems, Man, and Cybernetics , San Diego, California, October 11-14, pp. 4482-4485, 1998.
Hung, C. C., T. Coleman, and P. Scheunders, "The genetic algorithm approach and K-means clustering: their role in unsupervised training in image classification", Proc. IASTED International Conf. On Computer Graphics and Imaging , Halifax, Canada, june 1-3, pp. 103-106, 1998.
Huysmans, T., J. Sijbers, and B. Verdonk, "Parameterization of tubular surfaces on the cylinder", Journal of the Winter School of Computer Graphics, vol. 13, no. 3, pp. 97-104, 2005. PDF icon Download paper (798.29 KB)
Huysmans, T., A. Bernat, R. Pinho, J. Sijbers, F. Van Glabbeek, P. M. Parizel, and H. Bortier, "A Framework for Morphometric Analysis of Long Bones: Application to the Human Clavicle", Liege Image Days 2008: Medical Imaging, March, 2008. PDF icon Full text (426.68 KB)
Huysmans, T., F. Danckaers, J. Vleugels, D. Lacko, G. De Bruyne, S. Verwulgen, and J. Sijbers, "Multi-patch B-Spline Statistical Shape Models for CAD-Compatible Digital Human Modeling", Advances in Human Factors in Simulation and Modeling, Cham, Springer International Publishing, pp. 179–189, 2019.

Pages