Publications

Export 145 results:
Author [ Type(Asc)] Year
Filters: Author is Jan De Beenhouwer  [Clear All Filters]
Conference Paper
A. - T. Nguyen, Renders, J., Sijbers, J., and De Beenhouwer, J., Region-based motion-compensated iterative reconstruction technique for dynamic computed tomography, in IEEE International Symposium on Biomedical Imaging (ISBI), Cartagena de Indias, Colombia, 2023.
L. - P. Lumbeeck, Paramonov, P., Sijbers, J., and De Beenhouwer, J., The Radon Transform for Terahertz Computed Tomography Incorporating the Beam Shape, in IEEE ICIP, 2020, pp. 3040-3044.PDF icon Download paper (692.64 KB)
A. Dabravolski, De Beenhouwer, J., and Sijbers, J., Projection-based polygon estimation in X-ray computed tomography, in 6th International Conference on Optical Measurement Techniques for Structures and Systems (OPTIMESS), 2016, pp. 41-50.PDF icon Download paper (615.72 KB)
B. Auer, De Beenhouwer, J., Fromme, T. J., Kalluri, K., Goding, J. C., Zubal, G. I., Furenlid, L. R., and King, M. A., Preliminary investigation of design parameters of an innovative multi- pinhole system dedicated to brain SPECT imaging, in IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia, 2018.
B. Auer, De Beenhouwer, J., Zeraatkar, N., Kuo, P. H., Furenlid, L. R., and King, M. A., Preliminary investigation of attenuation and scatter correction strategies for a next-generation SPECT system dedicated to quantitative clinical brain imaging, in IEEE Nuclear Science Symposium and Medical Imaging Conference, Manchester, UK, 2019.
B. Auer, Könik, A., Fromme, T. J., Kalluri, K., De Beenhouwer, J., Zubal, G. I., Furenlid, L. R., and King, M. A., Preliminary evaluation of surface mesh modeling of system geometry, anatomy phantom, and source activity for GATE simulations, in IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia, 2018.
N. Six, De Beenhouwer, J., and Sijbers, J., pDART: Discrete algebraic reconstruction using a polychromatic forward model, in The Fifth International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, Utah, USA, 2018.PDF icon Download paper (1.61 MB)
C. Bossuyt, De Beenhouwer, J., and Sijbers, J., Optimization of a multi-source rectangular X-ray CT geometry for inline inspection, in SPIE Optical Engineering: Developments in X-Ray Tomography XIV , 2022, vol. 12242, p. 1224219 .
N. Six, Renders, J., Sijbers, J., and De Beenhouwer, J., Newton-Krylov Methods For Polychromatic X-Ray CT, in 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, 2020, pp. 3045-3049.
E. Janssens, De Beenhouwer, J., Van Dael, M., Verboven, P., Nicolai, B., and Sijbers, J., Neural Network Based X-Ray Tomography for Fast Inspection of Apples on a Conveyor Belt, in IEEE International Conference on Image Processing, 2015, pp. 917-921.
J. Renders, De Beenhouwer, J., and Sijbers, J., Mesh-based reconstruction of dynamic foam images using X-ray CT, in International Conference on 3D Vision (3DV2021), 2021, pp. 1312-1320.
V. Nguyen, De Beenhouwer, J., Sanctorum, J., Van Wassenbergh, S., Aerts, P., Dirckx, J. J. J., and Sijbers, J., A low-cost and easy-to-use phantom for cone-beam geometry calibration of a tomographic X-ray system, in 9th Conference on Industrial Computed Tomography, Padova, Italy, 2019.PDF icon Download paper (1.93 MB)
N. Six, Renders, J., De Beenhouwer, J., and Sijbers, J., Joint reconstruction of attenuation, refraction and dark field X-ray phase contrasts using split Barzilai-Borwein steps, in SPIE Optical Engineering: Developments in X-Ray Tomography XIV , 2022, vol. 12242, p. 122420O.
N. Six, De Beenhouwer, J., Van Nieuwenhove, V., Vanroose, W., and Sijbers, J., Joint reconstruction and flat-field estimation using support estimation, in IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia, 2018.PDF icon Download paper (1.53 MB)
K. Zarei Zefreh, De Beenhouwer, J., Welford, F. M., and Sijbers, J., Investigation on Effect of scintillator thickness on Afterglow in Indirect X-ray Detectors, in 6th Conference on Industrial Computed Tomography, Wels, Austria (iCT 2016), 2016.
B. Auer, Zeraatkar, N., De Beenhouwer, J., Kalluri, K., Kuo, P. H., Furenlid, L. R., and King, M. A., Investigation of a Monte Carlo simulation and an analytic-based approach for modeling the system response for clinical I-123 brain SPECT imaging, in 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2019, vol. 11072, pp. 187 – 190.
J. Weissenböck, Fröhler, B., Gröller, E., Sanctorum, J., De Beenhouwer, J., Sijbers, J., Karunakaran, S. Ayalur, Hoeller, H., Kastner, J., and Heinzl, C., An Interactive Visual Comparison Tool for 3D Volume Datasets represented by Nonlinearly Scaled 1D Line Plots through Space-filling Curves, in 9th Conference on Industrial Computed Tomography, Padova, Italy, 2019.PDF icon Download paper (1.22 MB)
B. Huyge, Jeurissen, B., De Beenhouwer, J., and Sijbers, J., Fiber orientation estimation by constrained spherical deconvolution of the anisotropic edge illumination x-ray dark field signal, in SPIE: Developments in X-Ray Tomography XIV, 2022, vol. 12242, p. 122420V .PDF icon Download paper (956.82 KB)
T. Elberfeld, De Beenhouwer, J., and Sijbers, J., Fiber assignment by continuous tracking for parametric fiber reinforced polymer reconstruction, in 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D), 2019, vol. 11072.PDF icon Download paper (5.15 MB)
E. Janssens, Senck, S., Heinzl, C., Kastner, J., De Beenhouwer, J., and Sijbers, J., Fast Reconstruction of CFRP X-ray Images based on a Neural Network Filtered Backprojection Approach, in 7th Conference on Industrial Computed Tomography, Leuven, Belgium, 2017.PDF icon Download paper (345.06 KB)
E. Janssens, Sijbers, J., Dierick, M., and De Beenhouwer, J., Fast detection of cracks in ultrasonically welded parts by inline X-ray inspection, in 9th Conference on Industrial Computed Tomography, Padova, Italy, 2019.
L. F. Alves Pereira, De Beenhouwer, J., Kastner, J., and Sijbers, J., Extreme Sparse X-ray Computed Laminography Via Convolutional Neural Networks, in ICTAI 2020, 2020.PDF icon Download paper (2.5 MB)
D. Iuso, Chatterjee, S., Heylen, R., Cornelissen, S., De Beenhouwer, J., and Sijbers, J., Evaluation of deeply supervised neural networks for 3D pore segmentation in additive manufacturing, in SPIE Optical Engineering: Developments in X-Ray Tomography XIV , 2022, vol. 12242, p. 122421K.PDF icon Download paper (protected) (1.79 MB)
N. Francken, Paramonov, P., Sijbers, J., and De Beenhouwer, J., Enhancing industrial inspection with efficient edge illumination x-ray phase contrast simulations, in IEEE EUROCON 2023 -20th International Conference on Smart Technologies, Torino, Italy, 2023.PDF icon eurocon_2023.pdf (8.52 MB)
P. Paramonov, Renders, J., Elberfeld, T., De Beenhouwer, J., and Sijbers, J., Efficient X-ray projection of triangular meshes based on ray tracing and rasterization, in SPIE Optical Engineering: Developments in X-Ray Tomography XIV , 2022, vol. 12242, p. 122420W .PDF icon Download paper (1.72 MB)

Pages