Publications

Export 9 results:
[ Author(Desc)] Type Year
Filters: Author is J Fatermans  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
F
Fatermans, J., A J. den Dekker, K.. Müller-Caspary, I. Lobato, C.. M. O'Leary, P. D. Nellist, and S. Van Aert, "Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images", Phys. Rev. Lett., vol. 121, pp. 056101, Jul, 2018.
Fatermans, J., S. Van Aert, and A J. den Dekker, "Bayesian model-order selection in electron microscopy to detect atomic columns in noisy images", RBSM 2016, Brussels, Belgium, pp. 53, 2016.
Fatermans, J., K. Müller-Caspary, A J. den Dekker, and S. Van Aert, "Detection of atomic columns from noisy STEM images", Microscopy Conference 2017 (MC 2017), Lausanne, Switzerland, pp. 445-446, 2017.
Fatermans, J., A J. den Dekker, K. Müller-Caspary, I. Lobato, and S. Van Aert, "Bayesian analysis of noisy scanning transmission electron microscopy images for single atom detection", SCANDEM 2018, Technical University of Denmark, Kgs. Lyngby, Denmark, pp. 95, 2018.
Fatermans, J., A J. den Dekker, K. Müller-Caspary, I. Lobato, and S. Van Aert, "The maximum a posteriori probability rule to detect single atoms from low signal-to-noise ratio scanning transmission electron microscopy images", IMC19, Sydney, Australia, 2018.
Fatermans, J., S. Van Aert, and A J. den Dekker, "The maximum a posteriori probability rule for atom column detection from HAADF STEM images", Ultramicroscopy, vol. 201, pp. 81-91, 2019.
Fatermans, J., A J. den Dekker, C. M. O'Leary, P. D. Nellist, and S. Van Aert, "Atom column detection from STEM images using the maximum a posteriori probability rule", MC 2019, Berlin, Germany, 2019.
Fatermans, J., A J. den Dekker, and S. Van Aert, "Atom detection from electron microscopy images", RBSM 2019, Louvain-la-Neuve, Belgium, pp. 15, 2019.
Fatermans, J., "Quantitative atom detection from atomic-resolution transmission electron microscopy images", Department of Physics, vol. Doctor of Science/Physics, 2019. PDF icon Download thesis (29.73 MB)