Publications

Export 15 results:
[ Author(Asc)] Type Year
Filters: First Letter Of Last Name is N  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
N
M. Nicastro and Siqueira Pinto, M., BQ-MINDED: Introducing Quantitative MRI in routine clinical practice, Marie Curie Alumni Association Annual Conference. 2019.PDF icon Download abstract (2.21 MB)
M. Nicastro, Beirinckx, Q., Bladt, P., Jeurissen, B., Klein, S., Sijbers, J., Poot, D. H. J., and den Dekker, A. J., Optimal design of a T1 super-resolution reconstruction experiment: a simulation study, 12th Annual Meeting of the ISMRM Benelux Chapter. 2020.PDF icon Download abstract (810.88 KB)
V. Nguyen, De Beenhouwer, J., Sanctorum, J., Van Wassenbergh, S., Bazrafkan, S., Dirckx, J. J. J., and Sijbers, J., A low-cost geometry calibration procedure for a modular cone-beam X-ray CT system, Nondestructive Testing and Evaluation , In Press.
V. Nguyen, De Beenhouwer, J., Sanctorum, J., Van Wassenbergh, S., Aerts, P., Dirckx, J. J. J., and Sijbers, J., A low-cost and easy-to-use phantom for cone-beam geometry calibration of a tomographic X-ray system, in 9th Conference on Industrial Computed Tomography, Padova, Italy, 2019.PDF icon Download paper (1.93 MB)
V. Nguyen, De Beenhouwer, J., Bazrafkan, S., Hoang, A. - T., Van Wassenbergh, S., and Sijbers, J., BeadNet: a network for automated spherical marker detection in radiographs for geometry calibration, in 6th International Conference on Image Formation in X-Ray Computed Tomography, 2020.
Z. H. Nezhad, Karami, A., Heylen, R., and Scheunders, P., Superresolution Of Hyperspectral Images Using Spectral Unmixing And Sparse Regularization, in IGARSS 2016, Beijing China, 2016.
Z. H. Nezhad, Karami, A., Heylen, R., and Scheunders, P., Fusion of Hyperspectral and Multispectral Images Using Spectral Unmixing and Sparse Coding, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2377-2389, 2016.
L. Valeriano Neri, Tsang, I. R., Cavalcanti, G. D. C., Tsang, I. J., and Sijbers, J., A Combined Features Approach for Speaker Segmentation using BIC and Artificial Neural Networks, in IEEE International Conference on Systems, Man, and Cybernetics, 2013, pp. 4332-4335.
M. Nauwynck, Bazrafkan, S., Van Heteren, A., De Beenhouwer, J., and Sijbers, J., Ring Artifact Reduction in Sinogram Space Using Deep Learning, in 6th International Conference on Image Formation in X-Ray Computed Tomography, 2020.
T. Nath, G.Liu,, Weyn, B., Hassan, B., De Backer, S., and Scheunders, P., Automated Social behaviour Recognition At Low Resolution, in 22nd IEEE - International Conference of Pattern Recognition (ICPR), 2014.
T. Nath, Liu, G., Weyn, B., Hassan, B., De Backer, S., and Scheunders, P., Tracking for Quantifying Social Network of Drosophila Melanogaster, in 15th Computer Analysis of Images and Patterns (CAIP), 2013, vol. 8048, pp. 539–545.
J. Nam, Mysore, G. J., Ganseman, J., Lee, K., and Abel, J. S., A super-resolution spectrogram using coupled PLCA, in INTERSPEECH, Makuhari, Japan, 2010, pp. 1696-1699.
G. Nagels, Vandervliet, E., Van Hecke, W., Engelborghs, S., hooghe, M. B. D., Cras, P., Parizel, P. M., and De Deyn, P. P., fMRI during PASAT and PVSAT in mild MS, moderate MS and normal volunteers., in 22nd Congress of the European Committee for, Madrid, Spain, 2006.
M. Naeyaert, Roose, D., Mai, Z., Keliris, A. J., Sijbers, J., Van Der Linden, A., and Verhoye, M., Normalized Averaged Range (nAR), a Robust Quantification Method for MPIO-content, Journal of Magnetic Resonance, vol. 300, pp. 18-27, 2019.
M. Naeyaert, Aelterman, J., Van Audekerke, J., Claes, K., Van Der Linden, A., Sijbers, J., and Verhoye, M., Optimization of Compressed Sensing/RARE Combining Acquisition Schemes, European Society for Magnetic Resonance in Medicine and Biology, vol. 25, no. 1. pp. 513-514, 2012.