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Nonrigid Coregistration of Diffusion Tensor Images
Using a Viscous Fluid Model and Mutual Information

Wim Van Hecke*, Alexander Leemans, Emiliano D’ Agostino, Steve De Backer, Evert Vandervliet,
Paul M. Parizel, and Jan Sijbers

Abstract—In this paper, a nonrigid coregistration algorithm
based on a viscous fluid model is proposed that has been optimized
for diffusion tensor images (DTI), in which image correspon-
dence is measured by the mutual information criterion. Several
coregistration strategies are introduced and evaluated both on
simulated data and on brain intersubject DTI data. Two tensor
reorientation methods have been incorporated and quantitatively
evaluated. Simulation as well as experimental results show that
the proposed viscous fluid model can provide a high coregistration
accuracy, although the tensor reorientation was observed to be
highly sensitive to the local deformation field. Nevertheless, this
coregistration method has demonstrated to significantly improve
spatial alignment compared to affine image matching.

Index Terms—Coregistration, diffusion tensor imaging, mutual
information, tensor reorientation, viscous fluid model.

1. INTRODUCTION

IFFUSION tensor magnetic resonance imaging (DT-MRI,
Dor DTI) provides a unique way to investigate the mi-
crostructure of biological tissue [1]. Because it can be assumed
that the orientation and magnitude of the local diffusion
process, and thus the resulting local diffusion tensor (DT) field,
is related to the orientation of the underlying fiber network, DTI
can provide an insight into the complex white matter (WM)
architecture [2]. The potential impact of DTI is very high in a
wide range of WM disorders, since it is the main technique that
can model and examine the diffusion process, and thus the brain
connectivity, in an in vivo and noninvasive way [3]-[8]. DTI
has indeed been applied successfully in various neurological
and psychiatric studies, demonstrating WM alterations across
populations [9], [10].

Voxel-based morphometry (VBM) is a whole brain technique
that allows the detection of regionally specific differences in
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brain tissue composition on a voxel-by-voxel basis. An impor-
tant requisite for these VBM studies is the development of a
high-dimensional, nonrigid coregistration technique, which is
able to align both the spatial and the orientation information of
multisubject DT images.

The objective of coregistration is to search for the spatial
transformations that map different images to a common refer-
ence space, in which direct comparison of various image proper-
ties is possible [11], [12]. In neuroscience research, it is common
practice to coregister images from different individuals into this
reference space. In this way, the variability across subjects can
be studied or quantitative image properties can be compared be-
tween normal volunteers and patients. Especially VBM studies,
in which the objective is to quantify various properties of cor-
responding voxels across different subjects, require an accurate
coregistration method for obtaining a robust and reliable out-
come of the statistical analysis.

It is generally assumed that global affine transforma-
tions—consisting of translations, rotations, shearing, and
scaling—are inadequate for intersubject coregistration, since
local morphological differences between different subjects can
not be taken into account [13]. The transformations needed
for intersubject coregistration require to accommodate both
complex and large deformations. Nonrigid coregistration
techniques utilize such local deformation fields for the image
alignment, and are thus, in theory, more adequate to correct for
these intersubject variations.

The coregistration of DT images is particularly challenging
compared to aligning scalar images, since each DTI voxel is rep-
resented by a symmetric second rank tensor, i.e., the six compo-
nents describing the three-dimensional diffusion process. Con-
sequently, scalar coregistration algorithms have to be adapted
so that they can deal with these multicomponent data sets. In
addition, the alignment of the DT field with the underlying mi-
crostructure has to be preserved after the coregistration process.
For the latter, a tensor reorientation (TR) strategy has to be per-
formed [14]. Since Alexander et al. raised the TR problem, their
proposed TR strategies have been applied widely [14], [15]. The
finite strain (FS) method decomposes the transformation matrix
in a deformation and a rotation component, whereafter only the
latter is used to reorient the tensors. However, shearing, nonuni-
form scaling and stretching factors affect the orientation as well.
Together with the rotational component, they are taken into ac-
count in the preservation of principal direction (PPD) strategy.
In this study, the PPD algorithm is implemented as described by
the direct DT reconstruction approach of Leemans et al. [16].

The most trivial approach to coregister DTI data is by regis-
tering scalar images associated with the DTI data sets, such as
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Ts-weighted MR images, fractional anisotropy (FA) maps, or
the nondiffusion weighted (DW) images [17], [18]. Alexander
and Gee proposed a multiresolution elastic matching algorithm
and introduced similarity measures based on the DT data [19].
Ruiz-Alzola et al. optimized affine transformations in certain
restricted windows of the image domain, measuring image cor-
respondence based on DT data [20], [21]. Note that in [19] and
[21], no TR was applied during the optimization.

Park et al. and Guimond et al. extended the demons algorithm
to DTI data and applied an iterative TR strategy [22]-[24]. This
iterative tensor adaptation increases the algorithmic complexity
and computation time drastically. Furthermore, although the DT
information is more exploited compared to [19] and [21], errors
caused by an imperfect TR can affect the alignment at each iter-
ation. In addition, no initial correction is performed for the pres-
ence of voxel intensity differences in corresponding structures
of different data sets or subjects, caused by a different brain mor-
phology. This potentially results in a nonoptimal starting point
of the sum of squared distances (SSD) similarity measurement.
Finally, Zhang et al. proposed a local affine coregistration algo-
rithm using DT data in the similarity measure in order to opti-
mize the tensor reorientation explicitly [25].

In this paper, a nonrigid coregistration algorithm based on
a viscous fluid model is proposed that has been optimized for
DTI images. D’ Agostino ef al. already demonstrated the poten-
tial of this model for the coregistration of scalar MR images
[26]. Since, in contrast to the elastic model, the viscous fluid
approach is not limited to small displacements and small rota-
tion angles of the deformation field, it is very suitable for in-
tersubject coregistration tasks [27]. Multiple DTI information
components, such as the DT elements or the DW images, are in-
tegrated into the coregistration technique. In an attempt to tackle
the aforementioned iterative TR issues, we propose mutual in-
formation (MI) as a criterion for DT image similarity [28]-[30].
MI has been shown to work in many applications, even when the
relationship between the image intensities is complicated or un-
known [30]. In the proposed coregistration technique, no TR is
performed in an iterative way, assuming that M1 is a robust mea-
sure of the image similarity, even when the tensors are not reori-
ented during registration. This reduces the computational com-
plexity drastically. Therefore, in this work, the tensors are only
reoriented after the application of the final deformation field.
In order to evaluate the ability of MI to compare the nonreori-
ented tensor data during the iterative alignment procedure, our
results are compared with an analogous method in which the TR
is applied iteratively. Our coregistration results demonstrate that
the spatial and orientation alignment is significantly improved
compared to an affine image matching. In addition, the tensor
reorientation was observed to be highly sensitive to the local
deformation field.

II. MULTICOMPONENT VISCOUS FLUID COREGISTRATION

A. Viscous Fluid Model

The general goal of coregistration is to map a particular
floating image ¢(Z) to a reference image 7(&) in order to align
both. In the following framework, the images are modelled as
a viscous fluid. Such a viscous fluid model, which imposes
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constraints on the local deformation field during coregistration,
can be described by the free-form nonrigid coregistration algo-
rithm of [31], in which a regularization function from elasticity
theory has been applied [26], [31]. D’ Agostino et al. replaced
this elastic model with a viscous fluid regularization model of
Christensen et al., which allows the viscous fluid model to be
described by the following simplified Navier—Stokes equation
[26], [27], [32]:

U2+ (n+ V(Y -9) + F(Z, @) =0 (1
with / the deformation velocity and F the force field, which de-
pends on the local deformation « and the deformation position
Z. The material parameters ;1 and A are set to 1 and 0, respec-
tively [27]. At each iteration k of the gradient descent optimizer
of the coregistration algorithm, the new displacement @(**+1) is
calculated from the previous displacement #(*), taking into ac-
count the perturbation R®) of the deformation field and the time
step parameter At(*)
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In (2), B™® is defined as

(k
R0 _ k) _ Z (*) (5:; )> 3)
z;

with #*) defined as the convolution of the force field F(*) and a
Gaussian spatial smoothing kernel W with a width s [24], [26]

7 = v, @ FF). 4)
The force field ' is defined in such a way that the viscous fluid
deformation strives at maximizing the MI between the deformed
floating image ¢(# — @) and the target image 7(Z). To this
end, the gradient of the MI with respect to an infinitesimally
changed deformation field # is required [31]. The joint inten-
sity distribution pﬁr (i1,12) of the deformed floating image and
the target image is therefore modeled as a continuous function
using Parzen windowing, making it differentiable with respect
to the deformation field. Hereby, 1 and ¢5 represent the intensi-
ties of images ¢ and 7. The M1 between ¢(Z — @) and 7(Z) can
be defined as [30]

=22 r’
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Hereby, p™ and p? represent the marginal intensity distributions
of 7 and ¢, respectively. The gradient of the MI with respect
to a deformation field « that is perturbed into @ + ¢h can be
calculated and simplified to [31]
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Thereby, the joint intensity distribution p'" (i1, %2) of the ref-
erence and deformed floating image is estimated from the region
of overlap v’ (with volume V') using a Parzen window kernel
Q/J}L(il. iz) with width A

pg L17 L2 / l/J}L :E — u) i2 — T(f))df (7)
The force field can now be written as [26], [31]
F(Z,@) =VgMI
1 51/}h — = — e
7 | @ Lal 0t - 0, @) S0t - )
(3)
with
o P57 (i1, 42)
Lz(i1,i2) =1+ log —4 - ®

P (i2)p(ir)
The force field, driving the deformation to maximize MI, is de-
fined as the gradient of MI with respect to (%), and can be
calculated using the intensity gradient of the deformed floating
image ¢(Z — @), weighted by the impact on the M of a voxel in
¢ at  — i being displaced in this direction [26], [31]. This force
field is calculated at each iteration of the gradient-descent opti-
mization procedure, until the MI no longer increases or the Ja-
cobian determinant of the total deformation becomes negative.
In this way, it is ensured that the transformation is homeomor-
phic. At each time step during the deformation, the force field
is constant such that the modified Navier—Stokes equation can
be solved iteratively as a temporal concatenation of linear equa-
tions [26]. A velocity field is obtained by solving the modified
Navier—Stokes (1). This velocity field is computed with (4), as
in Thirion et al. approximating the approach of Bro-Nielsen and
Gramkow [24], [33]. Thereafter, the perturbation to the defor-
mation field is computed (3) and used to obtain the displacement
field at a given iteration (2).

At each iteration, the determinant of the Jacobian is con-
strained to reduce the chance that the underlying anatomical mi-
crostructure is forced in a physical or anatomical nonacceptable
way [34]. When the determinant of the local Jacobian becomes
smaller than 0.5, a regridding of the deformed floating image
is applied to generate a new floating image, setting the incre-
mental displacement field to zero [32]. A width of h = 4 and
s = 3 were used for the Gaussian Parzen windowing kernel 1)y,
and for the spatial smoothing kernel Uy, as described in [26].
The time step parameter At in (2) is adapted each iteration and
set to

At®) = max(||E¥|))Au (10)

with Aw (in voxels) the maximal allowed voxel displacement in
each iteration. D’ Agostino ef al. demonstrated that an optimal
balance between speed of convergence and need for regridding
is obtained for Au = 0.6.

B. Multicomponent Coregistration

In its simplest form, coregistration of DTI data sets is based
on the alignment of two scalar 7T,-weighted images. There-
after, the resulting transformation is applied to the DT images.
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Although T5-weighted images have a higher spatial resolution
compared to DTI, the coregistration result will be strongly
affected by the severe lack of white matter contrast in these
images. Indeed, conventional MR protocols, such as 73- or
Ts>-weighted pulse sequences, represent the white matter as
a rather homogeneous region. Since nonrigid coregistration
algorithms are mainly driven by the contrast of different brain
structures, low contrast regions, such as the white matter on
conventional MR images, will be poorly aligned. As a result,
the structural and particularly the orientation correspondence
will be very low in the white matter after coregistration [23].

In order to provide more structural information to guide the
coregistration in white matter regions, DTI features are used.
For this purpose, the scalar FA map, containing a high white
matter contrast, has demonstrated to be an appropriate feature
[17]. In this context, Guimond et al. introduced a multicompo-
nent normalization method based on the DT eigenvalue images
(A1, A2, A3) [22]. As argued by Alexander ef al. to preserve the
intrinsic information of the tensor, only rigid transformations
should reorient the tensors, independent of the nature of the local
transformation that is applied [14]. The scalar measures, such
as the FA and the eigenvalues, are invariant to rigid transforma-
tions, and, therefore, TR is not required during coregistration.
Park et al. demonstrated that the use of DT elements improved
the coregistration quality significantly [23]. They implemented
the demons algorithm and used the SSD as a similarity criterion
[24].

When the DTT alignment is based on images that contain ori-
entation information, such as the DT components or the DW
images, the coregistration problem becomes more complex. In
contrast to the voxel intensities of the images that are invariant
to rigid transformations, the voxel intensities of the DT compo-
nents or the DW images are dependent on the position of the
subject in the scanner and on the local morphology of the brain.
For example, when a particular white matter tract follows a dif-
ferent path in two subjects, its DT or DW intensity values can
vary significantly in corresponding voxels, whereas the FA can
be similar. Since the intensity variation in corresponding voxels
has a local, spatial-dependent nature, image intensity transfor-
mations, which are often used to deal with multimodal images,
are not applicable under these circumstances. DTI coregistra-
tion, that incorporates orientation information to align the im-
ages, is, therefore, one of the few applications that has to ac-
commodate both the alignment of intersubject images and the
presence of nonlinear intervoxel intensity differences.

In a study of Park ef al., a TR was applied iteratively during
coregistration using the FS approach [23]. By iteratively
adjusting the tensor orientation, the accuracy of the image
alignment may be increased. However, the necessity for an
iterative tensor adaptation increases the algorithmic complexity
and computation time drastically. Furthermore, errors caused
by an imperfect TR can affect the alignment at each iteration.
Note that, by implementing an iterative TR, no initial correction
is performed for the presence of voxel intensity differences in
corresponding structures, potentially resulting in a nonoptimal
starting point of the SSD similarity measurement. Moreover,
FA or eigenvalue image data are known to be non-Gaussian
distributed, due to the nonlinearity in the calculation of the
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eigenvalue system [35]. Since, the widely used SSD similarity
measure presupposes similar voxel intensity values in various
images that only differ from each other by a Gaussian noise
term, it can, therefore, not be used optimally for this purpose.

In an attempt to mitigate the aforementioned DTI coregistra-
tion issues, we propose to use MI as a criterion for DT image
similarity. By applying MI, the nonlinear intervoxel intensity
differences are taken into account without the need for an ex-
plicit tensor reorientation during the optimization procedure.
Consequently, the tensors are only reoriented after the appli-
cation of the final deformation field. In this study, three dif-
ferent coregistration approaches are evaluated using a different
number of components (L): FA map (L = 1), the DT elements
(L = 6), and the DW images (L = 60).

C. Mutual Information and Force Field Calculation for
Multiple Components

Generally, in the context of coregistration, MI is defined and
studied between two scalar images, measuring their statistical
dependency. The concept of multivariate MI was introduced as
an extension of the bivariate case to multiple scalar images,
thereby constructing a multidimensional histogram [36]. Since
the six DT element images or the 60 DW images form multi-
component data, the alignment of two DTI data sets becomes
a multivariate coregistration problem. In contrast to the general
multivariate problem, the data sets in the multicomponent DTI
coregistration process can be subdivided in two groups ¢; and 7
that represent multicomponent (DT or DWI) images of two dif-
ferentdatasets (! =1,...,Land k =1,..., K). Applying the
general multivariate idea of evaluating statlsucal dependencies
for each image combination to this specific problem, would in-
crease the computation time dramatically. Therefore, some ad-
justments are introduced to adapt the general multivariate space
to the specific multicomponent DTI problem.

First, only images that have the same number of components
are coregistered (L = K). Indeed, DT elements of data set ¢;
are compared with DT elements of data set 7,(L = K = 6),
and the DW images of ¢; are compared with the DW images
of 7.(L = K = 60). Second, only cross-subject statistical de-
pendencies are computed. The different components of data set
¢ are not compared with each other (and analogous for data
set 1), thereby assuming that all image components of a single
subject are aligned. Third, the corresponding components are
evaluated in parallel (I = k). For example, the first DT element
image of data set ¢; (i.e., ¢1) is compared with the first DT el-
ement image of data set 7 (i.e., 71), and never with another
DT element image of data set 7. In this way, the general multi-
variate space is simplified with respect to the specific multicom-
ponent coregistration problem of DT images. Rohde et al. pro-
posed a multivariate correlation approach for the coregistration
of multicomponent images [37]. However, by using correlation
coefficients, the assumption is made that a linear relationship is
present between the intensity values of the different components
of different subjects.

We propose two similarity metrics based on the statistical de-
pendencies of the multicomponent DT images. Both represent
a summary metric on the original multivariate space, based on
MI.

—

Fl(f,u =
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“MI method 1”

In a first approach for the calculation of the multicom-
ponent MI, the bivariate MI is computed for all L corre-
sponding components separately, assuming them to be in-
dependent. A similar approach was adopted in Park et al.
using the sum of squared distances as a similarity metric
[23]. A global measurement of image similarity is pro-
posed by averaging the M I; of the different corresponding
components: M1 = (1/L) Zle M1;. This MI metric is
optimized in the iterative coregistration process. At each
iteration, the force field of (8) is calculated for all corre-
sponding components separately

_,) _ i 61/}h
011

® Lug| (6@ = (@) - Fu( ~ 1)
(1)
with L; z based on the joint intensity histogram of corre-
sponding image component /. In this way, L force fields are
calculated independently, based on the gradient of its cor-
responding floating image component and weighted by the
effect on the MI between the corresponding floating and
reference image component. A final force field is calcu-
lated as an average force field of all corresponding compo-
nents F = (1/L) Zlel F}. This force field F is then used
to calculate the velocity field (4), whereafter the perturba-
tion to the deformation field (3) and the displacement field
(2) are computed at each iteration. This deformation field
is applied to all L components of the floating image, ¢,
which is then used as the floating image in the next itera-
tion.
“MI method 2”
In a second approach, the global MI is calculated from a
histogram that already contains all information of the dif-
ferent components simultaneously. All components of a
data set are concatenated to a single image. Thereafter, the
global joint intensity histogram can be calculated on both
concatenated images ¢ and 7, containing all information
of the L components. The MI is based on this global joint
intensity histogram and can now be written as

o7
Zl Zz 4 ( ) (Lz)
12)
with 7; and ¢, representing the voxel intensities and

_'—o
I(¢,7) =

FE[Tl,...,TL] ¢E[¢1,...,¢L] (13)
denoting the collection of selected components of the
floating image and the reference image, respectively. In
practice, the multicomponent image information is pooled
into a single histogram, by adding the joint histograms of
all image components. This histogram is then less sparse
and contains all information of the histograms of the
corresponding components. The MI of (12), containing
information of all image components, is optimized during
the iterative coregistration process. In (12) p¢ T is the
joint 1nten51ty distribution of the images qS and 7, and p¢
and p” represent the marginal intensity distributions of d)
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and T, respectively. In this approach, they are calculated as
a sum of the histograms of the corresponding components

= 1 Lil
) =5 0
] ) ’L?l
PN =72 ") (14)
i=1

Analogous as in “MI method 1,” the force field of (8) is
calculated for all corresponding segments

R = 3 |52 o La) (4@ - Dmi@) - T2 - 0,
11

15)
In contrast with “MI method 1,” the gg is based on the total
joint intensity histogram of images ¢ and 7. Again, L force
fields are calculated based on the image gradient of each
component. However, the force field weighting factors are
now driven by the global MI of (12). The global force field
is computed as an average of all L component force fields:
F=(1/L) Zle Fy. This force field is then used to calcu-
late the velocity field (4), whereafter the new deformation
field # can be derived with (2) and (3). Finally, all floating
image components are iteratively updated by the applica-

tion of the deformation field.

III. ACQUISITION AND EVALUATION METHODOLOGY

In this section, the DTI acquisition parameters and the evalu-
ation setup are first described (Sections III-A and III-B). Then,
the measures that are used to evaluate the coregistration method
are presented in Section III-C. Finally, the statistical tests are
introduced for the interpretation of the results (Section III-D).

A. Acquisition

DTI measurements of the human brain were performed with
a 1.5 T MR scanner on 40 healthy subjects (16 males and 24 fe-
males), with a mean age of 28 years (19-55 years). An informed
consent was signed by all participants. Axial DT images were
obtained using a SE-EPI sequence with the following acquisi-
tion parameters: TR = 10.4 s; TE = 100 ms; diffusion gra-
dient= 40 mT-m~!; FOV = 256 x 256 mm?; number of slices
= 60; image resolution = 2 x 2 x 2 mm3; b =700 s - mm~2;
acquisition time = 12 min 18 s. Diffusion measurements were
performed along 60 directions for a robust estimation of FA,
tensor orientation, and MD [38]. All DTI post processing, such
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tensor
reorientation '

Fig. 1. DW images of a DTI data set (a) are deformed with a known deforma-
tion field (b), resulting in a set of deformed DW images (c). DT elements are
calculated from these deformed DW images (d). Thereafter, a tensor reorien-
tation is performed to realign the deformed tensors with their underlying mi-
crostructure (e). Finally, the DW images are recalculated from the realigned DT
elements (f) to construct the deformed DT data set that is used as a floating image
in the coregistration algorithm. The DT maps are color encoded according to the
diffusion direction.

as calculation of the eigenvalue system and the visualization,
was performed with the diffusion toolbox “ExploreDTT”! [39].

B. General Setup

All images are first coregistered to a randomly chosen single
subject image with an affine coregistration algorithm that is
designed for DTI, thereby using the MIRIT (multimodality
image registration using information theory) method [16], [30].
In order to evaluate our proposed viscous fluid coregistration
method, two approaches are followed.

* The first evaluation approach, using 15 different nonrigid,
predefined deformation fields, can be summarized as fol-
lows (see Fig. 1).

— A predefined deformation field is applied to the DW
images of an original DTI data set. This original DTI
data set is referred to as the reference image [see
Fig. 1(a) and (b)].

— The DT field is calculated from the deformed DW im-
ages [see Fig. 1(c) and (d)].

— The DT are reoriented to preserve the alignment with
the underlying, deformed microstructure [Fig. 1(e)].

— The DW images are recalculated from the reoriented DT
field, resulting in the deformed data set, also referred to
as the deformed data or floating image [Fig. 1(f)].

Thttp://www.dti.ua.ac.be
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— The deformed data set [Fig. 1(f)] is coregistered spa-
tially to the reference data set [Fig. 1(a)], followed by a
TR of the DT field and a recalculation of the DW im-
ages. Since the difference between the deformed and
the reference image is predefined, it can be regarded as
ground-truth to evaluate the subsequent coregistration.

* To examine the applicability of our coregistration tech-

nique for VBM studies or the formation of a connectivity

atlas, DT images of 40 different persons are normalized,
and an arbitrary chosen data set is used as a reference
image.

Multiple DTI components and MI calculation methods are
used in both coregistration evaluation approaches, and are num-
bered as follows.

I Affine coregistration.
Viscous fluid coregistration using the
II FA maps;
III DT elements and “MI method 1;”
IV DT elements and “MI method 2;”
V DWI elements and “MI method 1;”
VI DWI elements and “MI method 2.”

C. Evaluation Measures

Only voxels with an FA value larger than 0.4 are considered
in the quantitative analysis. Although these selected voxels do
not strictly form a WM segmentation, they are referred to as the
WM mask in the remainder of this paper. Both the spatial coreg-
istration result and the orientation correspondence are evaluated
as follows.

* When the theoretical deformation field is known, a quanti-
tative value can be assigned, comparing the final transfor-
mation after coregistration with the ground-truth deforma-
tion for each voxel B

= M_ (16)
1581 + 1|55l

Here, 5 and s p represent the theoretical and final de-
formation field, respectively. The median of C'p of all se-
lected voxels, referred to as C, can then be interpreted as
an overall measure of the transformation field correspon-
dence. When C' is 0, the final deformation field exactly
equals the theoretical deformation field, representing a per-
fect spatial alignment. On the other hand, when C'is 1, the
final deformation field is the opposite of the theoretical de-
formation field, resulting in the worst alignment.

* In order to evaluate the coregistration technique with re-
spect to the orientation information, the angle a g between
the first eigenvector of the reference image 7#ip and the
transformed floating image n B can be calculated for each
WM voxel B

ﬁBﬂﬂ
ap = 1 — (17)
[0 sl l7is]]
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The median a of all selected voxels B is a measurement of
the preservation of orientation information after coregistra-
tion, since it represents a general value of the first eigen-
vector alignment. The smaller this first eigenvector angle
difference, the better the orientation alignment between the
images involved. Another measure which we will apply in
our evaluation method is the overlap of eigenvalue-eigen-
vector pairs between tensors [40]

ZAX(

(18)

OVL:gﬁ—E: -
BB SN
=1

with Np the total number of selected WM voxels, and \;,
\;, and i i, €; eigenvalues and eigenvectors of the deformed
floating image and the reference image, respectively. The
minimum value 0 indicates no overlap and the maximum
value 1 represents complete overlap of the principal axes
of the DT field.

D. Statistics

The nonparametric Wilcoxon matched-pairs signed-rank test
is applied to find the potential statistical significant difference
between the coregistration results. On the other hand, a paired
t-test is used to interpret the intersubject alignment results.

IV. RESULTS

In Section IV-A, the orientation of the DT field after deforma-
tion of the DTT data set is evaluated on synthetic DTI phantoms
[41]. Next, Section IV-B presents the viscous fluid coregistra-
tion results with respect to accuracy and as a function of the
amount of image noise. Additionally, a qualitative example is
provided. In order to investigate the effect of nonrigid defor-
mation fields on the subsequent TR, different TR methodolo-
gies, applied after the viscous fluid coregistration, are evaluated
(Section IV-C). In Section IV-D, the methodology without an
iterative TR is compared with a method that performs an iter-
ative TR. Finally, the effect of different thresholds for defining
the white matter masks for quantitative evaluation will be ex-
amined in Section IV-E.

A. TR Evaluation Using Synthetic DTI Data Sets

In this section, the TR approaches are evaluated for the non-
rigid coregistration using a synthetic DTI phantom [41]. An es-
timation of the error caused by the TR itself is important for the
interpretation of the tensor correspondence after coregistration.
The synthetic DTI data experiments for the evaluation of the
TR techniques can be summarized as follows.
 The DW images of a straight, synthetic fiber bundle
dy were deformed with different nonrigid, sinusoidally
shaped deformation fields, resulting in a deformed bundle
ds [analogous as in Fig. 1(a)—(c)].

* The DT field was calculated from the deformed DW im-
ages of dy [analogous as in Fig. 1(d)].
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Fig. 2. First, a straight, synthetic fiber bundle is deformed with a nonrigid, si-
nusoidally shaped deformation field. A TR is subsequently performed, using the
FS (a) and the PPD (c) approach. Second, a sinusoidally shaped, synthetic fiber
bundle with exactly the same frequency and amplitude as the aforementioned
deformation field is defined (b). The orientation of these diffusion tensors can be
regarded as ground-truth. The white ellipsoids represent the ground-truth ten-
sors and the first eigenvectors after FS and PPD tensor reorientation are super-
imposed in green and red, respectively. The first eigenvector angle difference
between the ground-truth and the TR result is displayed in (d) for the FS TR,
and in (e) for the PPD TR.

e In order to realign the DT field with the deformed mi-
crostructure, a TR was performed with the FS and the PPD
method [see Fig. 2(a) and (c), respectively].

* The DW images were recalculated from the reoriented DT
field [analogous as in Fig. 1(f)].

* In order to evaluate the TR approaches, a ground-truth is
necessary. Therefore, a new synthetic fiber bundle d3 was
simulated [see Fig. 2(b)]. This bundle exhibits a sine func-
tion trajectory with exactly the same frequency and am-
plitude as the aforementioned deformation fields that were
used to deform the first straight bundle. The DT field of d3
was regarded as ground-truth, since it exactly follows the
spatial pattern of the defined white matter fiber bundle.

e The DT field of ds after TR was then compared with the
ground-truth DT field of d3, as displayed in Fig. 2.

In order to quantify the tensor difference, the angle between
the first eigenvectors of the deformed and the ground-truth ten-
sors was calculated in each selected WM voxel. For the FS
tensor reorientation method, the median angle was 7°+4°. Since
the PPD TR technique clearly outperforms the FS method, with
a median angle of 1.6° £+ 1.5°, it was implemented to reorient
the tensors a priori with a predefined deformation field resulting
in the ground truth data sets.
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floating image

reference image coregistered image

Fig. 3. Qualitative coregistration result of a synthetic DTI data set. The refer-
ence DT image, given in (b), is deformed with a predefined deformation field
[see ()], resulting in the image as displayed in (a). For the following coregistra-
tion analysis, this deformed data set is used as the floating image, whereas the
data set in (b) is used as the reference image. The coregistered image is shown
in (c). In order to evaluate the image correspondence visually, the FA intensity
map of the reference image is given a red color, whereas the FA intensities of the
floating and coregistered images are given a green color. Consequently, when
the reference and floating image are overlapping, a yellow color is indicated
(d). Therefore, this can be used to visually detect the correspondence quality of
the coregistration. An analogous image is composed for the reference and the
coregistered images (e), demonstrating a better image alignment after coregis-
tration. In order to get a more detailed view of the alignment, the different vector
fields are displayed in (f)—(h). In (f), the predefined, ground-truth deformation
field used to deform the reference image (b) to the floating image (a) is shown.
The final deformation field after coregistration of the floating image (a) to the
reference image is displayed in (g). After subtraction of these vector fields, the
spatial coregistration error can be visualized in (h).

These deformed data sets are used in Section V as the floating
images that are coregistered to the reference DTI data set. In
order to align the DT field with the underlying microstructure
after coregistration to the reference image, both FS and PPD
strategies were applied. In this way, the effect of local coregis-
tration inaccuracies on the TR result is studied.

B. Multicomponent Viscous Fluid Coregistration

1) Qualitative Coregistration Results: An example of the
alignment of a DTI data set, deformed with a predefined de-
formation field, to the reference image is shown in Fig. 3. In
Fig. 3(a)—(c), the deformed data set, the ground-truth DT image,
and the coregistered image are displayed, respectively. In order
to evaluate the image correspondence before coregistration, the
FA map of the reference image is given a red color, and the FA
map of the (deformed) floating image is given a green color.
Therefore, when both images are overlayed [see Fig. 3(d)],
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reference image

|| __affine coregistration | _nonrigid coregistration |

Fig. 4. At the top of this figure, an axial, coronal, and sagittal slice of the ref-
erence data set are shown. The color is encoded according to the diffusion di-
rection. In the bottom part of this figure, seven arbitrarily chosen images of
different subjects are shown after affine (left column) and a subsequent viscous
fluid model based (right column) coregistration with the reference image. In
each column, the diffusion direction encoded axial slices of the coregistered
data set are shown on the left. The other images are composed of the red col-
ored FA intensity values of the reference image on the one hand, and the green
colored FA intensity values of the coregistered image on the other hand. The
yellow color indicates that similar FA intensities are present in corresponding
voxels.

corresponding voxels that contain similar intensity values in
the reference and floating image will appear yellow after over-
laying both images. Similar maps are shown after viscous fluid
coregistration [see Fig. 3(e)]. The theoretical deformation field
[between Fig. 3(a) and (b)] and the obtained deformation field
after coregistration [between Fig. 3(a) and (c)] are displayed
in Fig. 3(f) and (g), respectively. The difference between these
deformation fields is presented in Fig. 3(h), demonstrating a
high vector field correspondence and a subvoxel mean vector
field error.

An axial, coronal, and sagittal representation of the intersub-
ject coregistration result is given in Fig. 4. Again, the FA map of
the reference image was given a red color, whereas the FA map
of the affine and nonrigid coregistration result were both given
a green color. Consequently, the overlay of the reference image
(red) with the affine and nonrigid coregistration maps (green)
will display a yellow color when correspondence is high, and a
red or green color when the correspondence is low.

2) Evaluation Measures of the Coregistration: Quantitative
coregistration results of DTI data sets deformed with prede-
fined deformations are shown in Fig. 5(a)—(c). The FS approach
was applied to reorient the DT field after coregistration. In
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Fig. 5. Quantitative coregistration results of deformed data sets with known
deformation fields and intersubject data are shown on the left and right, respec-
tively. The different coregistration methods are grouped on the horizontal axis.
(I) represents the affine result, (II) is the FA based coregistration, (IIT) uses DT
components and iteratively averages the mutual information during coregistra-
tion, and (IV) uses DT components and calculates the global histogram from all
DT elements. Method (V) and (VI) are analogous to (III) and (IV), respectively,
but use the DW images as information components. Parameter C' calculates the
correspondence of the final deformation field after coregistration with the prede-
fined deformation field (a). The angle difference a between the first eigenvectors
of corresponding voxels of different data-sets is displayed in the middle row for
the deformed (b), and intersubject (e) DTI data. In (c), and (f) the OVL, mea-
suring the eigenvalue-eigenvector overlap of tensors in corresponding voxels, is
given for the deformed, and intersubject data, respectively. Finally, in (d), the
p-values between the coregistration methods are shown for the quantitative pa-
rameters.

Fig. 5(e) and (f), the first eigenvector angle difference a and
OVL are displayed for intersubject data. The quantitative
results, displayed in Fig. 5, demonstrate that the nonrigid
coregistration method clearly outperforms the affine alignment
results. In addition, the use of multiple components (methods
III-VI) always resulted in an improved alignment, compared
to the FA coregistration. This amelioration is furthermore
statistically significant in the case of deformed data with a
predefined deformation field and in the case for intersubject
data (see Fig. 5(d): II versus III). In Fig. 5(d) (IIT versus V),
it is demonstrated that the coregistration based on the DT
elements outperformed the DWI coregistration outcome. It is
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Fig. 6. Different levels of Rician noise, represented by o are added to the DW
images. A visual presentation of the noise DTI data is given at the top. The
color is hereby encoded according to the predominant diffusion direction. At the
bottom of the figure, the spatial and orientation correspondence are given using
the FA map (method (II) of Fig. 5), the DT elements (method (IIT) of Fig. 5),
and the DW images (method (V) of Fig. 5) as coregistration components. C, a,
and OVL represent the deformation field correspondence, the first eigenvector
angle difference, and the eigenvalue-eigenvector overlap, respectively.

furthermore shown that the calculation of the global MI on
one histogram, containing all components, does not result in
a better alignment, compared to the iterative averaging of all
component MIs. Especially in the case of intersubject data, the
latter difference is statistically significant, whereas this is not
always the case for the deformed data (see Fig. 5(d): II versus
V).

3) Effect of Noise: In order to study the effect of noise on
the coregistration outcome, the reference and the DW images,
deformed with a known deformation field, were corrupted with
different levels of Rician distributed noise (represented by o).
Next, all DTT features were calculated from the noisy DW im-
ages. After coregistration, a transformation is found for each
voxel from the floating image to the reference image. Instead of
applying this deformation field to the noisy floating image, it is
used to transform the floating image without noise. In this way,
quantitative values described in Section III-C, give insight into
the effect of noise on the alignment error itself.

In Fig. 6(a)—(c), the alignment results are displayed in the
presence of different levels of noise. Notice that, even when
very high noise levels are added, the image alignment, and es-
pecially the orientation correspondence, is still preserved. The
upper part of Fig. 6 displays an axial DTI slice, corrupted with
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Fig. 7. In (a) and (b), a part of the corpus callosum as seen on an axial slice is
shown. The white ellipsoids represent the ground-truth tensors of the reference
image. The FS (in green) and PPD (in red) TR result after nonrigid coregistra-
tion are superimposed by means of the first eigenvector in (a) and (b), respec-
tively. The first eigenvector correspondence with the ground-truth @ and OVL
of the the tensor reorientation approaches are presented in (c), and (d), respec-
tively. These results originate from the coregistration of deformed data with a
predefined deformation field, based on the FA maps, but are similar when other
components are used. Note the higher tensor correspondence, when no tensor
reorientation (in grey) is performed [(c) and (d)].

different levels of noise. The SNR measure is defined as the av-
erage intensity value of all diffusion weighted images divided
by the level o of the Rician distributed noise that is added.

C. Tensor Reorientation After Nonrigid Coregistration

1) Comparison of FS and PPD Tensor Reorientation
Methods: In paragraph Section IV-A, we demonstrated that the
PPD method outperformed the FS approach when applied after
the deformation with a smooth, known deformation field. In
contrast to what was expected, the FS technique outperformed
the PPD approach when applied after coregistration, as can
be seen in Fig. 7. Furthermore, this difference is statistically
significant (p < 0.001). These results are obtained from the FA
image coregistration of 10 data sets that were first deformed
with a predefined deformation field. Equivalently, these findings
were analogous to the other methods, in which other compo-
nents were used for the coregistration. In Fig. 7(a) and (b), a
part of the corpus callosum is displayed on an axial slice. Here,
the white ellipsoids represent the ground-truth tensors of the
reference image. The first eigenvector, as obtained after FS
and PPD reorientation are superimposed in Fig. 7(a) and (b),
respectively. In Fig. 7(c) and (d), the first eigenvector angle dif-
ference a and OVL are compared between both TR techniques.
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Another remarkable result was observed when no TR was
performed after coregistration. This method outperformed the
FS and PPD tensor reorientation methodologies with respect
to the tensor alignment, as described by a and OVL [see
Fig. 7(c) and (d)]. For the intersubject coregistration, the fol-
lowing results were derived for the FS approach, PPD method,
and without TR, respectively (for a random group of 15 per-
sons, using the FA maps): a = 26.3° + 1.2°, 29.4° + 1.3°,
and 23.6° + 1.2°; OVL = 0.66 £ 0.01, 0.63 £ 0.02, and
0.68 £ 0.01. Similar results were found when other DTI infor-
mation components were used for the coregistration.

2) Effect of the Coregistration Inaccuracies on the Tensor Re-
orientation: Although, in theory, the PPD method outperforms
the FS approach (see paragraph Section IV-A), results turn out
to be worse than the results of the FS approach when applied
after the nonrigid viscous fluid deformation field (see Fig. 7).
In addition, tensors are better aligned when no TR is applied.
These unexpected results can be explained by the fact that, be-
cause there are less constraints on the local level of coregistra-
tion, small coregistration inaccuracies, which hardly affect the
spatial alignment result, can occur, having a severe impact on
the subsequent tensor reorientation. We hypothesize that these
alignment errors contain more skewness and scaling than rota-
tional components, thereby having a larger effect on the PPD
than on the FS TR approach. The latter is verified by decom-
posing the Jacobian of the coregistration inaccuracies into a ro-
tation component on the one hand, and a deformation compo-
nent—containing scaling- and skewness factors—on the other
hand.

The error Jacobian is constructed from the vector field differ-
ence between the theoretical and the obtained deformation field
after coregistration. The rotation and the deformation compo-
nent are calculated from the error Jacobian as follows:

R, = (U.un) VU, S, =U.R: (19)
with R, the rotation and S, the deformation component, and
U. = I + J., where [ is the identity matrix and .J, is the Ja-
cobian, calculated on the error field [14], [42]. Note that U,,
R., and S, are 3 x 3 matrices that are attributed to each voxel,
describing the local transformation, rotation, and deformation,
respectively. In order to study the presence of rotation and defor-
mation components in the error Jacobian, the magnitude of U,,
R, and S, is calculated. This is done by taking the following
Frobenius matrix norms Ny = ||U. — I||?, Nr = ||R. — I?,
and Ns = ||S. — I||? for each WM voxel.

For the deformed data with known deformation fields, the
aforementioned matrix norms averaged over all voxels within
the WM mask, are Ny = 0.55 £ 0.05, Ng = 0.22 4+ 0.03, and
Ns = 0.42 £ 0.05, for the transformation, rotation, and defor-
mation, respectively. These results indicate that the contribution
of rotations is much smaller compared to the contribution of the
skewness and scaling factors in the Jacobian of the alignment
inaccuracies. Furthermore, they confirm the hypothesis that the
PPD is more affected by local, small coregistration errors com-
pared to the FS approach, resulting in a worse first eigenvector
correspondence.
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3) Deformation Field Regularization: In order to improve
the TR, an isotropic Gaussian smoothing of the obtained de-
formation field is performed. This regularization is performed
after the coregistration process and is only used to improve the
accuracy of the Jacobian matrices of the global deformation. It
will, therefore, not affect the spatial alignment of the images.
The results after deformation field regularization are presented
in Fig. 8 both for the deformed data with a known deformation
field, and intersubject data. It is clear that especially the PPD
results are improved by this regularization. In Fig. 8(a) and (b),
the quantitative results for the regularization procedure of the
data deformed with a predefined deformation field are presented
for both TR methods and different deformation field smoothing
kernel widths, represented by s. In Fig. 8(d) and (e), the final
vector field and the error field before smoothing are displayed.
The same vector fields are presented in Fig. 8(h) and (i), after a
Gaussian smoothing of the final deformation field with a kernel
width of three voxels. In Fig. 8(f) and (g), a small part of the
corpus callosum, similar to that in Fig. 7, is displayed. Here,
the white ellipsoids represent the ground truth of the reference
image and the first eigenvectors of the FS and PPD method after
coregistration are superimposed in green and red, respectively.
The large first eigenvector difference of the PPD approach with
the ground-truth in Fig. 8(g) is decreased when the final defor-
mation field is regularized, as can be seen in Fig. 8(k). In con-
trast to this, the FS result does not show a visual improvement in
this restricted part of the corpus callosum after deformation field
regularization [see Fig. 8(j)]. A similar analysis is performed
with 15 randomly chosen intersubject data [Fig. 8 (1) and (m)].
These quantitative and visual results confirm the hypothesis that
especially the skewness, and scaling factors will be regularized,
thus particularly improving the PPD results. Above a specific
kernel smoothing width, the PPD method outperforms the FS
approach. The Frobenius norms of the Jacobian, rotation, and
deformation matrices of the error field further validate this hy-
pothesis. As can be seen in Fig. 8(c), Ng is reduced up to the
level of Nr during deformation field regularization with dif-
ferent kernel widths.

While initially the results without TR were better compared
to the results after TR, the tensor reorientation methods outper-
form the approach without the TR when a deformation field reg-
ularization is applied (see Figs. 7(c) and (d) and 8(a) and (b) for
the simulated data results). For the intersubject coregistration
without TR, @ and OVL were 23.4° 4+ 1.1° and 0.680 £ 0.014,
respectively. Results after final deformation field smoothing are
better compared with these results [see Fig. 8 (1) and (m)]. Fur-
thermore, the Wilcoxon matched-pairs signed-rank test demon-
strates that the difference between results with TR and without
TR are statistically significant for both the simulated and the in-
tersubject data (p < 0.05).

A similar deformation field regularization is performed on
data sets containing different levels of Rician noise. It is clear
that the FS method outperforms the PPD when no smoothing of
the final deformation field is performed [Fig. 9 (a) and (b)]. For
an arbitrary noise level of o = 6, the effect of the proposed reg-
ularization method is shown in Fig. 9(c) and (d). If the kernel
width is larger than two voxels, the PPD method outperforms
the FS approach. In Fig. 9 (e) and (f), the coregistration results
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Fig. 8. The first eigenvector angle difference and OVL are given in (a) and (b), respectively, for both the FS and PPD method, using different Gaussian smoothing
kernels for the deformation field regularization. In (c), the transformation N ;, rotation N, and deformation Ng of the error field are displayed for different
smoothing kernel widths. The obtained deformation field before and after smoothing is given in (d) and (h), respectively. The error field before and after filtering
is displayed in (e) and (i), respectively. The first eigenvector alignment for a part of the corpus callosum after FS and PPD TR are shown in (f) and (g) before
smoothing, and in (j) and (k) after smoothing. The white ellipsoids represent the ground-truth orientations of the reference image. These results are obtained from
data deformed with predefined deformation fields. The first eigenvector correspondence @ and the tensor overlap with the ground-truth are given in (1) and (m),

respectively, for the intersubject results.

as a function of different levels of Rician distributed noise are
displayed, in which deformation field smoothing has been per-
formed with a kernel width of three voxels.

D. Iterative Tensor Reorientation

When the DTI alignment is based on images that contain
orientation information, like the DT components or the DWIs,
voxel intensities of various data sets can have different values
in corresponding structures. Therefore, MI was used as an

image similarity metric to take into account the potential non-
linear intervoxel intensity relationship. In this context, no TR
was applied during the iterative optimization process, which
results in a reduced computational time. In order to evaluate
the ability of MI to compare the nonreoriented tensor data,
the results are compared with a similar method in which the
TR is applied iteratively. In Fig. 10, the first eigenvector angle
difference a, the OVL, and the computation time are shown
for the method without an iterative TR [Fig. 10(a) and (b)], a
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Fig. 9. Different levels of Rician noise, represented by o are added to the DW
images. The orientation correspondence after coregistration is calculated for
both TR methods as a function of these different noise levels [(a) and (b)]. At an
arbitrary noise level of o = 6, the effect of deformation field regularization is
shown [(c) and (d)]. In (e) and (f), the same noise study is performed, but now
the deformation field, as obtained after coregistration, is smoothed with a kernel
width of three voxels.

method with an iterative FS based TR [Fig. 10(c) and (d)], and
a method using an iterative PPD based TR [Fig. 10(e) and (f)].
Fig. 10 (a), (¢), and (e) represents the coregistration results of 10
deformed images with a predefined deformation field, whereas
Fig. 10 (b), (d), and (f) shows the results of the 10 intersubject
coregistrations. All results of Fig. 10 are derived after DT based
coregistration, in which the MI and force field are calculated
with “MI method 1.” Furthermore, for all approaches, the
FS method was used for the tensor reorientation on the final
deformation field without applying a Gaussian smoothing on
the final deformation field.

E. Use of Different WM Masks

All previous results are obtained by only selecting FA mask
voxels with an FA value above 0.4. In Fig. 11(a) and (b), the
first eigenvector angle difference a, and the OVL, respectively,
are displayed as a function of the FA mask threshold. The blue
line represents the results without a final deformation field reg-
ularization. The results derived after Gaussian smoothing of the
final deformation field with a kernel width of three voxels are
displayed in purple. In Fig. 11(c), a scatter plot of the FA value
and the first eigenvector angle difference is shown. The scatter
plot of the FA value and the OVL is displayed in Fig. 11(d).
The voxels used for this analysis were obtained from a specific
region around the corpus callosum within the coregistered data
set. Analogous scatter plots of the same data sets are displayed
in Fig. 11(e) and (f), in which a deformation field regularization
is applied with a kernel width of three voxels.
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V. DISCUSSION

The aim of this paper was to explore the feasibility of a non-
rigid viscous fluid model for the alignment of intersubject DTI
data sets. First, we investigated the use of multiple DTI infor-
mation components with respect to the coregistration accuracy.
Second, different measures were introduced to calculate the M1
and the viscous fluid force field. Finally, a thorough investi-
gation of the diffusion tensor reorientation methods was per-
formed.

A. TR Evaluation Using Synthetic DTI Data Sets

The errors that are found between the reoriented and the
ground-truth tensors in the synthetic DTI data analysis (see
Fig. 2) are not affected by noise factors or coregistration in-
accuracies, since the deformation fields are perfectly known
and the sinusoidal fiber bundle matches the deformed straight
bundle exactly. Alexander et al. demonstrated that PPD tensor
reorientation after application of a known, affine deformation
field to synthetic data, resulted in a mean angle difference of
0° 4+ 0° when compared with the ground-truth data set [14]. In
contrast with these results, we observed a small, but significant
tensor difference. Therefore, even if two images are spatially
aligned in a theoretically perfect way, tensor orientation errors
will occur. These errors originate from the nonrigid nature
of the deformation fields and the accompanying interpolation
artifacts. Note that the use of Log-Euclidean metrics can further
minimize these interpolation errors and potentially improve the
image similarity [43].

B. Multicomponent Viscous Fluid Coregistration

Overall, the results of Figs. 3 and 4 indicate the potential
of our proposed coregistration technique to coregister intersub-
ject DTT data. In these figures, it can clearly be observed that
the alignment errors can be minimized using the viscous fluid
coregistration method as compared to the affine DT image align-
ment. These coregistration results are confirmed by the quanti-
tative analysis, as can be seen in Figs. 5 and 8. Both for the syn-
thetic data and the multisubject brain DTI data sets, the average
angle between the first eigenvectors of the coregistered and the
reference image is relatively small. In addition, the DT corre-
spondence, as measured with the OVL, is relatively large, com-
pared to the results of Park et al. [23]. It should be mentioned,
however, since they used a WM mask derived from SPM on
MR-images, in contrast to our FA value based WM mask, this
comparison should be considered with great caution.

Although all available information is present in the DWIs, the
DT elements demonstrated to provide the best result for inter-
subject coregistration. In our opinion, this can be explained by
the reduction in dimensionality through the fitting of a DT to
the DW data. The DT data are more compact and still contain
the orientational diffusion information. In addition, coregistra-
tion using the DT data is less sensitive to noise than using the
DW data.

Two image similarity measures, based on MI, are proposed
that represent a summary metric on the multivariate space. The
general multivariate space is simplified to two multicomponent
data sets with the same length, whereby only corresponding
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Fig. 10. First eigenvector angle difference a [(a) and (b)], the OVL [(c) and (d)], and the computation time [(e) and (f)] are displayed for different iterative tensor
reorientation approaches. Images (a), (c), and (e) result from a coregistration of 10 deformed DTI data sets with a predefined deformation field, whereas images

(b), (d), and (f) result from an intersubject coregistration of 10 DTI data sets.

components of different data sets are compared, assuming align-
ment of the components of each data set a priori. The first
image similarity metric averages the MI of the different com-
ponents, which is done in a similar way with the SSD measure
as described in the work of Park et al. [23]. The second image
similarity metric pools all data into a single histogram, where-
after the MI is calculated on this histogram. This methodology
can be seen as the histogram and M/ computation on two im-
ages that are composed of a concatenation of all components in
each data set. Since M1 is a statistical measure, it can be biased
by a lack of data in the histogram. This bias of a sparse his-
togram is minimized by pooling all multicomponent image in-
formation into this single histogram. Our results demonstrated
that this methodology does not outperform the method of aver-
aging the MI of all components. However, when only a small
number of data is available for the histogram calculation, as in
a window based coregistration of for example Ruiz—Alzola et
al., the methodology using the pooled histogram would be fa-
vorable [21].

Since both proposed similarity metrics in the simplified mul-
tivariate space remain ad-hoc, more research is planned to im-
prove the similarity metric based on M/ for the multicomponent
DTI problem.

When noise was added to the DW images, image alignment
worsened. Note that large noise levels were added, resulting in a
small SNR. The DT based coregistration outperformed the DWI
based alignment after the addition of Rician noise to the DWIs.

C. Tensor Reorientation After Nonrigid Coregistration

Alexander et al. studied the behavior of both TR methods
under affine and nonrigid conditions [14], [15]. When three dif-
ferent DTI data sets of a same person were aligned affinely, both
TR strategies showed almost identical results, since the trans-
formation mainly contained rigid components [14]. The PPD
method just outperformed the result without TR and the FS
method, when two DTI data sets were aligned with a nonrigid
elastic matching algorithm [15]. In contrast to this elastic model,
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Fig. 11. In (a) and (b), the first eigenvector angle difference @, and OVL are displayed as a function of the threshold that defines the FA mask. To this end, a
random subgroup of 10 data sets of different subjects are coregistered based on the FA maps. The FA mask refers to the minimum FA value in a voxel to be
included in the quantitative analysis. In blue, the results without smoothing are shown, whereas the purple lines represent the results after a Gaussian smoothing of
the deformation field with a kernel width of three voxels. In (c)—(f), scatter plots are displayed. They are obtained from an intersubject coregistration of two DTI
data sets. Scatter plots of the FA and a (c) and of the FA and OVL (d) are depicted, containing values of all voxels in a predefined region (a total of 1400 voxels).
In (e) and (f), the same scatter plots are displayed, but now after the regularization of the deformation field with a kernel width of three voxels.

the viscous fluid force field relaxes over time. Therefore, the vis-
cous fluid model is a very appropriate regularization method that
can correct for the large variations that occur during intersubject
coregistration.

Since there are less constraints on a local coregistration level,
the Jacobian of the viscous fluid coregistration will be overes-
timated, resulting in relatively large deformation components.
Several results in this paper indicate that small coregistration
inaccuracies can result in relatively large tensor orientational
differences. We hypothesized that the local coregistration errors
will especially contain a deformation component, rather than a
rotation factor, resulting in a worse PPD outcome compared to
the FS tensor reorientation results. Note that, due to the high
correspondence already existing after affine coregistration, the
tensor correspondence was still very high when no tensor reori-
entation was performed after nonrigid alignment. These results
appeared to be better than the FS and PPD tensor reorientation
results.

In order to tackle this problem and to reduce the effect of
local alignment errors on the TR result, a Gaussian regulariza-
tion procedure was incorporated. As a result, the local align-
ment inaccuracies were diminished, and the tensor reorienta-
tion methods outperformed the approach without a reorienta-
tion. Furthermore, since especially the deformation component

of the error field has been regularized, the PPD method outper-
formed the FS approach. In future work, anisotropic filtering
methods will be applied to the final deformation field, to inves-
tigate the potential improvement of the TR results. Another ap-
proach, which will be subject of further research, is to make the
TR approach dependent on the local Jacobian.

D. [Iterative Tensor Reorientation

The results in Fig. 10 demonstrate that the use of MI without
an iterative TR is an effective method. Indeed, similar coreg-
istration methodologies, in which an iterative TR was applied,
resulted in a worse tensor correspondence. These results agree
with the findings of Fig. 7, demonstrating that the tensor corre-
spondence is higher when no TR is performed after coregistra-
tion. The tensor differences after FS or PPD reorientation are ex-
plained by the effect of small alignment errors on the local Jaco-
bian. In this context, the application of an iterative TR increases
the computation time drastically and decreases the tensor corre-
spondence after coregistration.

VI. CONCLUSION

In this paper, we presented a multicomponent viscous fluid
model for the intersubject coregistration of DT images. In the
proposed coregistration technique, MI was implemented as an
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image similarity criterion. Our results demonstrated that the
use of orientation information during the coregistration signif-
icantly improved the alignment results, compared to the FA
based coregistration. A drawback of the local image alignment
was that small coregistration inaccuracies can have a relatively
large impact on the TR result. In an attempt to minimize these
local reorientation errors, we provided a regularization method
based on a Gaussian smoothing.
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