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a b s t r a c t 

Diffusion weighted MRI is an indispensable tool for routine patient screening and diagnostics of pathology. Re- 

cently, several deep learning methods have been proposed to quantify diffusion parameters, but poor generalisa- 

tion to new data prevents broader use of these methods, as they require retraining of the neural network for each 

new scan protocol. In this work, we present the dtiRIM, a new deep learning method for Diffusion Tensor Imaging 

(DTI) based on the Recurrent Inference Machines. Thanks to its ability to learn how to solve inverse problems 

and to use the diffusion tensor model to promote data consistency, the dtiRIM can generalise to variations in the 

acquisition settings. This enables a single trained network to produce high quality tensor estimates for a variety 

of cases. We performed extensive validation of our method using simulation and in vivo data, and compared it 

to the Iterated Weighted Linear Least Squares (IWLLS), the approach of the state-of-the-art MRTrix3 software, 

and to an implementation of the Maximum Likelihood Estimator (MLE). Our results show that dtiRIM predictions 

present low dependency on tissue properties, anatomy and scanning parameters, with results comparable to or 

better than both IWLLS and MLE. Further, we demonstrate that a single dtiRIM model can be used for a diver- 

sity of data sets without significant loss in quality, representing, to our knowledge, the first generalisable deep 

learning based solver for DTI. 
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. Introduction 

Diffusion Weighted MRI (DW-MRI) allows us to infer the micro struc-

ure of biological tissues by analysing how water diffuses within and

etween these structures. DW-MRI became an indispensable diagnostic

ool for stroke, ischemia and multiple sclerosis, amongst others ( Drake-

érez et al., 2018 ) and is now part of routine scans in clinical practice. 

Although its popularity enabled extensive research to improve and

peed up DW-MRI scans, it also led to a large number of data sets with

ifferent scan protocols (e.g. echo and repetition times, signal-to-noise

atio, diffusion-weighting strength, and directions). While conventional,

tatistical methods to estimate diffusion parameters are guided by the

ignal model (which encodes scan settings), most deep learning (DL)

ethods are known to generalise poorly to out-of-training-distribution

amples (i.e. when the distribution of testing data differs from that of

he training data). Consequently, each different dataset requires a new

trained) model. 

In Ye (2017) ; Ye et al. (2019) , and Gibbons et al. (2018) , deep

eural networks were applied to estimate neurite parameters from the

ODDI model, with results rivaling current state-of-the-art. However,

ither specific models had to be trained for different scan protocols, or

he training data encoded a large variability of settings, which were

dentical to settings used to acquire the testing data sets. Further, in
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edlar et al. (2021) and Lin et al. (2019) DL was used to estimate the

ber orientation distribution function, and robustness to variation in the

umber of samples in q -space was reported, but other scanning param-

ters of the testing data were kept within the training distribution. The

uthors of Grussu et al. (2020) ; Pirkl et al. (2020) and de Almeida Mar-

ins et al. (2021) used DL to predict parameters of a joint diffusion-

elaxometry model, but, similarly, generalisation to out-of-training-

istribution data sets was not reported. Finally, Aliotta et al. (2020) used

eural networks to estimate Fractional Anisotropy (FA) and Mean Diffu-

ivity (MD) maps, but, with focus on reducing the number of weighted

olumes required for fitting, only robustness to the number of 𝑞-space

amples was demonstrated. 

While these methods showcase important advantages of deep learn-

ng over conventional statistical methods, such as higher robustness to

he angular resolution of the diffusion gradients and more precise esti-

ates thanks to learned spatial priors, they are still highly restricted by

he distribution of the training data. In this work, we present the dtiRIM,

 new deep learning framework based on the Recurrent Inference Ma-

hines (RIMs) ( Putzky and Welling, 2017 ) for estimation of Diffusion

ensor Imaging (DTI) parameters. RIMs are recurrent neural networks

hat learn a regularized solution to a model-based inverse problem. This

nrolled ( Gregor and LeCun, 2010 ) network is a hybrid method that

ses the diffusion signal model to enforce data consistency (via a like-
ry 2023 
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Algorithm 1 dtiRIM framework 𝐻 𝜸 ( ̃𝑺 , 𝜻 , ̂𝜎) . 

Input: �̃� , 𝜻 , ̂𝜎, �̂�0 , 𝒉 0 
Rescale input signal: �̌� = �̃� ∕ ̂𝜎
for 𝑗 = 1 to 𝐽 do 

∇ 𝜽 = 

𝜕 

𝜕 𝜽
𝐿 ( ̂𝜽𝑗−1 ; �̌� , 𝜻) 

{ Δ𝜽𝑗 , 𝒉 𝑗 } = 𝑔 𝜸 ( ̂𝜽𝑗−1 , ∇ 𝜃 , 𝒉 𝑗−1 ) 
�̂�𝑗 = �̂�𝑗−1 + Δ𝜽𝑗 

end for 

Rescale non-DW image: �̆� 0 = �̂��̂� 0 
Return �̆�
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a  
ihood function), in combination with a supervised learning approach,

o learn to predict tissue parameters from DW images. Because RIMs

earn an iterative optimization function and scanning parameters can

e encoded in the signal model, we hypothesized it can generalise well

o out-of-training-distribution testing data. Additionally, the strong data

eneralisation abilities of the RIM permit training with simulation data,

onsequently allowing for broader distribution of training samples than

revious DL methods for DW-MRI. 

We performed extensive evaluation of the proposed method in sim-

lation and in vivo experiments with varying gradient schemes, physi-

logy, noise levels, and noise distribution. We compared our method to

he state-of-the-art IWLLS method ( Veraart et al., 2013 ) from MRTrix3

 Tournier et al., 2019 ), and to a Maximum Likelihood Estimator (MLE)

ethod, in terms of the bias and standard deviation of the Fractional

nistropy (FA) and Mean Diffusivity (MD) values. Further, a critical

actor to consider when using DL for medical imaging is the correct rep-

esentation of the underlying data anatomy. Previous research ( Bhadra

t al., 2021; Kelkar et al., 2021 ) showed that deep generative models

ight hallucinate tissue structures due to instability of learning based

econstruction methods ( Antun et al., 2020 ). To assess this aspect, we

lso evaluated the structural integrity of the estimated maps and under-

ying fiber structure in simulation and in vivo experiments. The dtiRIM

ode, pre-trained model, testing datasets, and routines to simulate the

raining data are available online. 1 

. dtiRIM – diffusion tensor imaging with recurrent inference 

achines 

The Recurrent Inference Machine (RIM) framework ( Putzky and

elling, 2017 ) is an example of an unrolled network that learns an iter-

tive optimization algorithm to estimate parameters of a model. Akin to

onventional iterative gradient-based methods (e.g. gradient descent),

he RIM uses the current estimates and the gradients of a likelihood

unction to predict incremental updates that improve the estimates over

ime. The likelihood function promotes data consistency and allows the

ramework to adapt to variations in the acquisition schemes, lowering

he risk of anatomical hallucinations and leading to better generalisation

o out-of-training-distribution samples. 

.1. Diffusion tensor model 

In a DTI experiment, the noiseless magnitude signal in a single voxel

s given by the Stejskal–Tanner Equation ( Stejskal and Tanner, 1965 ): 

 = 𝑆 0 𝑒 
− 𝑏 𝒈 𝑇 𝑫 𝒈 (1) 

here the measured signal 𝑆 depends on the diffusion-encoding gra-

ient vector 𝒈 , of unit length, the diffusion-weighting strength 𝑏 , the

on-diffusion weighted signal 𝑆 0 and the symmetric diffusion tensor

 . Further, we model the acquisition noise following Gudbjartsson and

atz, (1995) , where acquired magnitude signals are Rice distributed,

iven independent Gaussian noise corrupting the real and imaginary

erms of the acquired data. Let �̃� ∼ 𝑅𝑖𝑐 𝑒 ( 𝑆; 𝜎) be a noisy magnitude sig-

al, with 𝜎 the standard deviation of the (independent) complex Gaus-

ian noise. 

.2. RIM framework 

Let 𝜽 = [ 𝑺 0 , 𝑫 11 , 𝑫 12 , 𝑫 13 , 𝑫 22 , 𝑫 23 , 𝑫 33 ] be a vector of parameters

ontaining a non-diffusion weighted image 𝑺 0 and the unique elements

f the diffusion tensor for all voxels of a scan. Additionally, denote 𝜻 as

he collection of gradient vectors 𝒈 and diffusion-weighting strength 𝑏

hat defines the acquisition scheme used to acquire 𝑁 images in a DW-

RI experiment. The dtiRIM framework is defined as �̂� = 𝐻 𝜸 ( ̃𝑺 , 𝜻 , ̂𝜎)
 Fig. 1 , Algorithm 1 ), where �̂� is the estimated parameter vector and
1 https://gitlab.com/radiology/quantitative-mri/emcqmri_dti . 

g  

t  

n

2 
 𝜸 is a model based unrolled Recurrent Neural Network (RNN), with

eights 𝜸, �̃� are noisy images (including �̃� 0 ), and �̂� is an estimate of

he noise level. 

The framework employs the recursive functions 

Δ𝜽𝑗 , 𝒉 𝑗 } = 𝑔 𝜸 ( ̂𝜽𝑗−1 , ∇ 𝜃 , 𝒉 𝑗−1 ) (2) 

̂
𝑗 = �̂�𝑗−1 + Δ𝜽𝑗 (3) 

o update the parameter estimates at each iteration 𝑗 = 1 , … , 𝐽 . The out-

ut of the RNN-cell 𝑔 𝜸 contains the direction and amplitude of the update

which also implicitly encodes the optimization step size) and depends

n the current estimates �̂�𝑗−1 , the gradients of a negative log-likelihood

 𝜃 = 

𝜕 

𝜕 𝜽
𝐿 ( ̂𝜽𝑗−1 ; �̃� , 𝜻) and a vector of hidden states 𝒉 𝑗−1 it can use to reg-

larize the updates over iterations. 

The likelihood 𝐿 ( ̂𝜽𝑗−1 ; �̃� , 𝜻) was set as the sum of the negative log
f the Rice PDF over all images and voxels. This summation causes the

radient of the likelihood to depend on the number of images 𝑁 . Despite

his, initial experiments suggested that training time and generalization

mproved over using the mean of the likelihood across images, which

ould remove the dependency on 𝑁 . 

.2.1. Signal scaling 

In practice, the range of signal amplitudes of �̃� is largely dependent

n the scan protocol, vendor and reconstruction algorithms, and might

ary widely. Consequently, because the dtiRIM framework learns the

tep size implicitly from the data, the amplitude of the updates will be

rong if the signal amplitude is much higher (or lower) than what was

bserved during training. To avoid this issue, we standardize the input

ata with �̌� = �̃� ∕ ̂𝜎. After inference, the estimate of the non-diffusion

eighted image 𝑺 0 is remapped with �̆� 0 = �̂��̂� 0 to recover the original

mplitude range of the signal. We denote �̆� as the set of parameter esti-

ates that include �̆� 0 (instead of 𝑺 0 ). 

.2.2. Training loss 

The dtiRIM was trained through supervised learning, with loss given

y 

 = 

1 
�̂�2 𝐽 

𝐽 ∑
𝑗=1 

‖‖‖𝑺 

𝑔𝑡 − �̆� 𝑗 
‖‖‖2 2 , (4) 

here summations over weighted images and voxels were omitted for

implicity of notation, and 𝑗 iterates over the dtiRIM inference steps.

irst, DW images �̆� 𝑗 were computed for every optimization step with

q. (1) and �̆�𝑗 . Subsequently, the squared residual between noiseless

mages 𝑺 

𝑔𝑡 and the (rescaled) estimated DW images was computed. Fur-

her, to prevent samples with high amplitude signal from (unfairly) hav-

ng more importance than samples with low amplitude while training

he network, we multiply the loss by 1∕ ̂𝜎2 . We train the dtiRIM by min-

mizing  over all training samples. 

Note that, unlike �̃� , the ground-truth images 𝑺 

𝑔𝑡 and predicted im-

ges �̆� 𝑗 are not (directly) corrupted by (Rician) noise. Specifically, re-

ardless of any noise-induced bias present in �̃� , the dtiRIM should be

rained as an unbiased estimator, with �̆� 𝑗 as close as possible to the

oise free 𝑺 

𝑔𝑡 , motivating the choice of loss function in Eq. (4) . 

https://gitlab.com/radiology/quantitative-mri/emcqmri_dti
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Fig. 1. RIM framework ( ̂𝜽 = 𝐻 𝛾 ( ̃𝑺 ; 𝜻 , ̂𝜎) ). At a given optimization step 𝑗 ∈ {1 , … , 𝐽} , the RNN-cell 𝑔 𝜸 receives as input the current estimate of the signal model 

parameters, �̂�𝑗−1 , the gradient of the negative log-likelihood with respect to 𝜽, ∇ 𝜽, and a vector of memory states 𝒉 𝑗−1 the RIM can use to keep track of optimization 

progress and perform more efficient updates. The network outputs an update to the current estimate ( Δ𝜽𝑗 ) and the memory state to be used in the next iteration. 
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Table 1 

Simulation parameters to create the training dataset. 

 ( min , max ) denotes a uniform distribution with samples 

in between min and max . The diffusion tensor 𝑫 at each 

voxel was computed from the FA and MD values and three 

principal fiber directions. MD 𝑖𝑠𝑜 represents the diffusivity 

values in isotropic regions. 

Dataset NFG 

Non-DW intensity ( 𝑆 0 ) ∼  (0 . 1 , 3 . 0) a.u. 

Fractional Anisotropy (FA) ∼  (0 . 05 , 1 . 0) a.u. 

Mean diffusivity (MD) ∼  (0 . 05 , 1 . 0) μm 

2 /ms 

Isotropic mean diffusivity (MD 𝑖𝑠𝑜 ) ∼  (1 . 0 , 3 . 0) μm 

2 /ms 
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. Materials and methods 

.1. Training dataset 

.1.1. Anatomical structure 

The training data was generated with the Numerical Fiber Generator

 Close et al., 2009 ) (NFG). The generator creates numerical fiber struc-

ures aiming to simulate the complex spatial configurations present in

he human brain. The spatial distribution of the fibers is randomly gen-

rated and improved through a sequence of optimization steps, designed

o approximate the complexity of real fiber bundles. Further, to simu-

ate a DW signal that includes partial volume effects, the NFG divides

ach voxel into sub-voxels where a single fiber bundle is assumed to be

resent. The DW signal is simulated using Eq. (1) and the signal of each

ub-voxel is added to produce the noiseless intensity for the voxel. 

To reduce the time required to generate the training dataset, and

nowing the RIM generalises across anatomies ( Sabidussi et al., 2021 ),

e opted to use a single configuration of fibers. We used the NFG to

reate one 3D sphere ( 70 3 voxels) containing regions of anisotropic dif-

usion (fiber bundles), isotropic diffusion (free fluid) and background.

o further accelerate the creation of the dataset, we modified the NFG

o allow the simulation of 2D images. The configuration files used in this

imulation and modified codes are included in the open-source reposi-

ory. 2 

.1.2. Generation of training 𝑞-spaces 

We selected a single gradient table ( 𝜻𝑁𝐹𝐺 , 𝑁 = 128 – provided with

he NFG) from which all training 𝑞-spaces were generated. First, we ex-

racted subsets of sizes ranging from 𝑁 = 7 to 𝑁 = 68 (in steps of 6)

rom 𝜻𝑁𝐹𝐺 . Following Jones et al., (1999) ) we set the number of 𝑏 = 0
mages as 𝑁 𝑏 =0 = ⌈𝑁∕8 ⌉, where ⌈. ⌉ is the ceiling function. To ensure

-spaces with approximately uniform distribution of directions, we ran-

omly sampled 1000 sets of gradient directions of length 𝑁 from the
2 https://gitlab.com/radiology/quantitative-mri/nfg_1.1.dti-rim . 

𝑺  

a  

r

3 
riginal NFG q -space, and selected the 10 (non-identical) sets with the

owest electrostatic repulsion ( Cook et al., 2007 ) per 𝑁 . 

To further increase the dataset variability, we applied random rota-

ions to the selected 𝑞-spaces. To construct the random rotation matrices,

e generated and normalised 4D vectors with uniformly distributed val-

es, then converted their quaternion representation to orthogonal (rota-

ion) matrices ( Kuipers, 2002 ). Fifteen rotated variations were created

er q -space, resulting in a total of 1500 different training 𝑞-spaces (10

alues of 𝑁 × 10 q -spaces × 15 rotations). We specify 𝑏 = 1000 s/mm 

2 

or all samples and denote the set of training q -spaces by 𝜻𝑇 𝑟𝑎𝑖𝑛 . 

.1.3. Simulation of DW images 

Noiseless 2D DW images 𝑺 

𝑔𝑡 were simulated with tissue parameters

rawn from the uniform distributions shown in Table 1 , 𝑞-space 𝜻𝑠𝑎𝑚𝑝𝑙𝑒 ∈
𝑇 𝑟𝑎𝑖𝑛 , and Eq. (1) . The noisy images �̃� were simulated by corrupting 𝑺 

𝑔𝑡 

ith Rician noise, with 𝜎 drawn from a log-uniform distribution with

alues in the range [0 . 002 , 1 . 0] , corresponding to SNR levels in the range

f 50 to 3, respectively (SNR calculated as the ratio between the mean

 0 intensity in fiber regions and 𝜎). The training dataset was further

ugmented by creating 100 independent noise realizations per label,

esulting in a total of 100 × 1500 = 150 , 000 training samples. 

https://gitlab.com/radiology/quantitative-mri/nfg_1.1.dti-rim
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.2. RIM architecture and implementation details 

The architecture of the RNN-cell ( Fig. 1 ) consisted of one input con-

olutional layer that receives 14 features (corresponding to the diffusion

arameters and their gradients), and produces 120 features, followed by

 ReLU activation function and a Gated Recurrent Unit ( Cho et al., 2014 )

GRU), used to process one of the dtiRIM hidden states. This unit is fol-

owed by two hidden convolutional layers, with ReLU activations placed

fter each, and a second GRU. All hidden layers (including GRUs) have

20 features. The last convolutional layer outputs 7 feature maps, corre-

ponding to Δ𝜽𝑗 . Except in the last layer (which has a 1 × 1 convolution

ernel), all convolutions use a 3 × 3 kernel and are zero-padded to re-

ain the original image size. The number of optimization steps was set to

 = 12 . The hyper-parameters values (including number of steps) were

elected so as to minimize the mean training loss over the last 5000 sam-

les. The initial diffusion tensor for all voxels was chosen to be isotropic,

ith �̂� an identity matrix, the initial non-diffusion weighted image �̂� 0 
et as �̌� 0 , and 𝒉 0 = 𝟎 . 

Experiments were performed on an INTEL i7-8650U CPU. The frame-

ork was trained on a NVIDIA P100 GPU, using the Adam optimizer

ith a learning rate of 2 . 5 × 10 −4 . The model was implemented with Py-

orch 1.9.0. The network was trained for 48 h, in a single epoch, going

hrough all training samples in mini-batches of 2. The initial weights

ere set by the Kaiming initialization ( He et al., 2015 ). 

.3. Estimation of noise level �̂�

The specification of the noise level �̂� of the data is an important

and required) step in the dtiRIM framework. In all in vivo experiments,

here the true noise level is unknown, we estimated �̂� using the tech-

ique by St-Jean et al. (2020) , where the noise variance in multi-coil

xperiments is automatically computed via the method of moments. We

sed the default settings. Note that, for training and in simulation ex-

eriments, �̂� is known. 

.4. Reference methods 

We compared the dtiRIM to two reference methods that are com-

only used to estimate diffusion tensors. The first is the Iterated

eighted Linear Least Squares estimator (IWLLS) ( Veraart et al., 2013 )

rom MRTrix3 ( Tournier et al., 2019 ), configured with default settings.

he second reference method was built using the Maximum Likelihood

stimator framework (MLE), where the diffusion parameters were es-

imated by minimizing the sum of the negative log of the Rician like-

ihood. For the (brute force) MLE, we used the ADAM optimizer, with

nitial learning rate of 0.1, and set the number of iterations to 2000, as

t was sufficient for convergence of the loss. 

.5. Experiments 

.5.1. Robustness to anatomy 

We simulated testing datasets with varying FA and MD to assess

ow well the dtiRIM estimates tissues with different properties. First,

e evaluated our method in homogeneous regions, where the FA and

D values are the same for all pixels of a 100 × 100 image. In the exper-

ment FA , we varied the fractional anisotropy from 0.05 to 1 in steps of

.05 while keeping the MD at 0.8 μm 

2 /ms. In the experiment MD , we

aried the mean diffusivity from 0.05 μm 

2 /ms to 1.0 μm 

2 /ms in steps

f 0.05 μm 

2 /ms, while the FA was kept at 0.8. For both experiments,

e set the SNR to 30, the 𝑏 -value to 1000 s/mm 

2 , and 𝑞-space 𝜻 ∈ 𝜻𝑇 𝑟𝑎𝑖𝑛 
 𝑁 = 68 , 𝑁 𝑏 =0 = 9) . We specified 𝑺 0 = 𝟏 and chose the orientation of the

ain eigenvector in all pixels to be parallel to the 𝑥 -axis ( 𝝀 = [1 , 0 , 0] ). 
Then, we performed two simulation experiments in heterogeneous

egions, where (small) structures with different anatomy from the back-

round are present. In the experiment Anatomy , we varied the FA and

D values of small structures ( 1 × 1 , 2 × 2 , and 3 × 3 pixels) placed at the
4 
enter of an otherwise homogeneous 100 × 100 pixels region. We simu-

ated the surrounding with constant FA = 0 . 5 and MD = 0 . 5 μm 

2 /ms,

hile simultaneously varying FA and MD for the central structure – FA

rom 0.05 to 1 in steps of 0.05 and MD from 0.05 μm 

2 /ms to 1.0 μm 

2 /ms

n steps of 0.05 μm 

2 /ms. We set the SNR, 𝑏 -value, 𝜻 , 𝑺 0 and orientation

f the main eigenvector as in the previous experiment. The mean pre-

icted FA and MD values in the central pixel are reported, alongside the

tandard deviation over 100 realizations. 

In the experiment Fiber Orientation , we estimated the orientation

f the main eigenvector of a single pixel in which the ground-truth fiber

irection differed from the homogeneous surrounding. We applied the

ethod described in Section 3.1.2 to create 100 random 3D rotations

hat were used to reorient the eigenvector. We simulated 𝑅 = 100 DW

mage sets per rotation. We specified the FA and MD of all pixels as

.8 and 0.8 μm 

2 /ms, respectively, and the fibers in surrounding pixels

ligned with the 𝑥 -axis. We kept the other acquisition parameters as

n the previous experiments. We report the mean predicted fiber ori-

ntation, calculated per rotation, as the orientation of �̂�Λ, the largest

igenvector of the mean dyadic tensor �̂�, with 

̂ = 

1 
𝑅 

𝑅 ∑
𝑖 =1 

�̂�𝑖 �̂�
𝑇 

𝑖 
(5) 

here �̂�𝑖 is the estimated largest eigenvector for the 𝑖 th sample and

̂ 𝑇 
𝑖 

its transpose. Additionally, we report the standard deviation of the

stimated fiber orientations (per rotation) as 

𝜆 = 

√ √ √ √ √ 

1 
𝑅 

𝑅 ∑
𝑖 =1 

( 

arccos 
�̂�𝑖 ⋅ �̂�Λ|�̂�𝑖 ||�̂�Λ|

) 2 

(6) 

here �̂�𝑖 ⋅ �̂�Λ is the dot product and |. | is the vector norm. 

.5.2. Generalisation to acquisition protocols 

We performed five experiments with simulation data to evaluate the

tiRIM’s robustness to variations in the acquisition settings. In each ex-

eriment, a single setting was varied from its default value and 100 DW

ets were generated. We report the mean and standard deviation of FA

nd MD estimates for the central pixel, and compare it to both reference

ethods. The default 𝑺 0 signal was set to 𝟏 for all experiments. In the

ist of experiments below, the experiment’s name refers to the acquisi-

ion parameter being varied and the default value refers to the value

sed in all other experiments: 

• Experiment SNR : Signal-to-noise ratio varied from 4 to 30 in steps

of 2. The input parameter �̂� was adjusted to match the noise level of

the sample; Default SNR: 30; 
• Experiment 𝑵 : The number of DW images varied from 6 to 126, in

steps of 6, with 1 𝑏 = 0 image for every 8 DW images; Default 𝑁 : 68;
• Experiment b-value : The diffusion-weighting strength varied from

400 s/mm 

2 to 1200 s/mm 

2 in steps of 100 s/mm 

2 ; Default 𝑏 :

1000 s/mm 

2 ; 
• Experiment 𝜻 : four datasets generated with 𝑞-spaces not used during

training, denoted by 𝜻 𝑡 1 ( 𝑁 = 36 ), 𝜻 𝑡 2 ( 𝑁 = 69 ), 𝜻 𝑡 3 ( 𝑁 = 71 ), and

𝜻 𝑡 4 ( 𝑁 = 23 ); Default q -space: 𝜻𝑠 ( 𝑁 = 68) , which was one of the q -

spaces used during training; 
• Experiment 𝜶𝜁 : To evaluate the dependence of the estimated fiber

direction on the orientation of the gradients, we applied 𝑅 = 100 ran-

dom rotations (created as in Section 3,1.2) to the default 𝑞-space to

simulate experiments with rotated gradient directions. The ground-

truth fiber orientation was kept constant, with 𝝀𝑔𝑡 = [1 , 0 , 0] . We

compute the average error in the predicted orientation as the angle

between �̂�Λ and 𝝀𝑔𝑡 , and the standard deviation with Eq. (6) . 

.5.3. Mischaracterization of the data distribution 

We performed two experiments with simulation data to evaluate the

uality of estimates when the data distribution is misspecified, or mis-

haracterized, leading to out-of-training-distribution likelihood values. 
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Fig. 2. Top row: Experiment FA. Estimates of Fractional Anistropy (FA) and 

Mean Diffusivity (MD) as a function of the FA value of the sample. Bottom row: 

Experiment MD . Estimates of FA and MD as a function of the MD value of 

the sample. Solid lines represent the mean predicted value over 100 samples. 

Shaded region represents ± the standard deviation around the mean. Ground- 

truth values are indicated by the black dotted line. 
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• Experiment �̂�: As a key input to the dtiRIM, �̂� influences the am-

plitude of the likelihood gradients, which, as consequence, might

affect the amplitude of the updates produced by the dtiRIM. In this

experiment, we evaluated the robustness of each method to misspec-

ification of the estimated noise level �̂�. We set �̂� = { 1 40 , 
1 
38 , 

1 
36 , … , 

1 
20 }

(i.e. assumed SNR between 40 and 20), and used the default dataset

from the previous experiment, with SNR = 30 ( 𝜎 = 

1 
30 ), 𝑁 = 68 , 𝑏 =

1000 s/mm 

2 , and 𝜻𝑠 . 
• Experiment nc- 𝜒 : In this experiment we evaluated the robustness

of the dtiRIM when the distribution of the input signal departs from

the Rice PDF, which might occur when acquisitions are performed in

multi-coil systems and images reconstructed with GRAPPA, or data

pre-processing is applied. We simulated the noiseless testing data as

in Experiment SNR and corrupted the images with a non-central 𝜒

distributed noise, as proposed by Aja-Fernández et al. (2010) : We

assumed that acquisitions were fully-sampled and that the compos-

ite magnitude image can be obtained with the root-mean-sum-of-

squares (SoS) method using multiple coil images. These images were

created by multiplying each DW image by a normalised set of 8

coil sensitivity maps (available from unrelated phantom experiments

performed in-house), followed by adding complex value noise with

standard deviation 𝜎. We set 𝜎 = { 1 4 , 
1 
6 , 

1 
8 , … , 

1 
30 } and measured the

bias and standard deviation of the FA and MD estimates over 100

realisations per 𝜎 value. The input parameter �̂� was chosen to match

the noise level of the sample. 

.5.4. In vivo experiments 

Repeatability In vivo data was used to evaluate the repeatability of

ur method with real scans and anatomy. We selected one set of DW

mages from one subject from the publicly available dataset AOMIC

 Snoek et al., 2021 ). This DW set contains 66 images (including 6

 = 0 ) and was acquired with a 𝑞-space not used in training, with

 = 1000 s/mm 

2 . The scans were performed with a 32-channel head coil

t a 3 T scanner and images were reconstructed using SENSE. The noise

evel �̂� was estimated at 20.76, with SNR = 28 measured as the ratio

etween the average 𝑺 0 signal (in tissue regions) and �̂�. 

Although this dataset includes repeated scans, quantification of

ixel-level error is not possible since the inter-experiment DWI sets

re not aligned. Image registration is possible, but interpolation and

mall registration errors would still affect the estimates. Therefore, we

hose to emulate repeated scans with sub-sampled 𝑞-spaces from this set.

imilar as described in Section 3.1.2, to extract sub-sampled 𝑞-spaces

 𝜁𝑁 , with 𝑁 ∈ {13 , 19 , 25 , 31} ) we randomly sampled 200 sets of gra-

ient directions of length 𝑁 from the fully-sampled 𝑞-space, and se-

ected the 20 non-identical sets with the lowest electrostatic repulsion

er 𝑁 . 

First, we present a visual comparison of the FA and MD estimates of

ach method for the fully-sampled dataset ( 𝑁 = 66 ). Then, we present

he Root Mean Square Error (RMSE) maps over the 20 repetitions in each

ub-sampled dataset, with ground-truth set independently per method

s the FA and MD predictions from the fully-sampled dataset. Finally,

e show maps with the tensor ellipsoid representation, color encoded

y direction, for a single sample of each dataset. 

White matter hyperintensities A second in vivo dataset was used to

ssess the estimates when tissue abnormalities, such as white matter

yperintensities (WMH), are present. We used a DW set from one sub-

ect of the Rotterdam Study dataset ( Ikram et al., 2011 ), containing 28

mages, including 3 𝑏 = 0 , and acquired with a 𝑞-space not used in train-

ng and 𝑏 = 1000 s/mm 

2 . The scan was performed with a 8-channel head

oil, at 1.5 T, and images were reconstructed using SENSE. Prior to re-

onstruction, the scans, originally acquired on a grid of 64 × 96 voxels,

ere upsampled to 256 × 256 voxels by zero-padding the k -space. Fur-

her, the images were pre-processed to compensate patient motion, to

orrect Eddy current distortions, and to reduce Gibbs ringing. The noise

evel �̂� was estimated at 19.82, with SNR = 33 . We present a visual com-

arison of the FA and MD maps of each method. 
5 
. Results 

.1. Robustness to anatomy 

The top row of Fig. 2 shows the results of experiment FA . The dtiRIM

stimates of FA were similar to both MLE and IWLLS for the entire range.

he MD predictions from dtiRIM showed a small bias compared to the

round-truth, but lower standard deviation than the other methods for

ll MD values. The bottom row of Fig. 2 shows the results of experiment

D . The dtiRIM showed lower standard deviation for FA predictions in

he entire MD range, but elevated FA bias for samples with low MD. The

tiRIM estimates of MD had similar bias to and lower standard deviation

han the references for all ground-truth MD values. 

Figure 3 presents the results for experiment Anatomy . We observe

hat all methods overestimated FA values when the FA and MD of

he central pixel are low. For structures of size 1 × 1 and 2 × 2 pixels,

he dtiRIM overestimated MD when the central pixel has FA and MD

ower than its surrounding, and underestimated it when FA and MD are

igher, indicating blur. The bias of dtiRIM decreased for the 3 × 3 pixels

tructure, approximating the baseline. The estimates from the MLE and

WLLS were similar. 

Figure 4 presents the results for experiment Fiber Orientation . The

tiRIM estimates had an average bias of 0 . 25 ◦ (over all orientations and

ealisations) and average standard deviation of 1 . 04 ◦, compared to 0 . 13 ◦
ias and 1 . 07 ◦ standard deviation from the MLE, and 0 . 12 ◦ and 1 . 06 ◦
rom IWLLS, respectively. Note that, for one orientation, the MLE pro-

uced outliers that increased the standard deviation of the predictions.

e see no other dependencies on the fiber direction. 

.2. Generalisation to acquisition protocols 

Experiment SNR Figure 5 shows the FA and MD estimates for various

alues of noise level (SNR). For SNR > 8 , all methods predicted FA and

D with comparable bias and standard deviation. For noisier samples,

he dtiRIM had lower standard deviation than both references. 
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Fig. 3. Experiment Anatomy. Estimates of FA and MD as a function of FA and 

MD values of the central structure. Three structure sizes were evaluated: 1 × 1 , 
2 × 2 , and 3 × 3 pixels. The FA and MD values of surrounding pixels are indicated 

by the dotted vertical line. Solid lines represent the mean predicted value over 

100 samples. Shaded region represents ± the standard deviation around the 

mean. Ground-truth values are indicated by the black dotted line. 

Fig. 4. Experiment Fiber Orientation. Estimated orientation of the main eigen- 

vector in the central pixel of the sample. Orientations shown in the Mollweide 

projection. The blue x indicates the ground-truth orientation of the eigenvec- 

tor. The radius of the shaded areas shows 3 times the standard deviation over 

100 repeated experiments per orientation, with center given by the mean fiber 

orientation. The fibers in the background were aligned with the x axis (blue tri- 

angle) in all experiments. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Experiment SNR. Estimates of FA and MD as a function of the SNR of 

the sample. Solid lines represent the mean predicted value over 100 samples. 

Shaded region represents ± the standard deviation around the mean. Ground- 

truth values are indicated by the black dotted line. 

Fig. 6. Experiment 𝑵 . Estimates of FA and MD as a function of the number 

of Diffusion Weighted Images. Solid lines represent the mean predicted value 

over 100 samples. Shaded region represents ± the standard deviation around 

the mean. Ground-truth values are indicated by the black dotted line. 

Fig. 7. Experiment 𝒃 . Estimates of FA and MD as a function of the diffusion- 

weighting strength. Solid lines represent the mean predicted value over 100 

samples. Shaded region represents ± the standard deviation around the mean. 

Ground-truth values are indicated by the black dotted line. 

Fig. 8. Experiment 𝜶𝜻 . Crosses represent the mean predicted value over 100 

random rotations applied to the acquisition gradients. Vertical lines extend ± the 

standard deviation around the mean. 
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Experiment 𝑵 Figure 6 shows the FA and MD estimates for datasets

reated with varying number of samples in 𝑞-space. All methods pre-

icted FA and MD values with similar bias and standard deviation for

ost 𝑁 . For 𝑁 = 7 , both dtiRIM and MLE produced estimates with lower

rror than IWLLS. 

Experiment 𝒃 Figure 7 shows the FA and MD estimates for datasets

reated with different values of diffusion-weighting strength 𝑏 . The

tiRIM had lower standard deviation than the reference methods for

ost of the 𝑏 -values, for both FA and MD estimates, but the bias de-

ended slightly on the 𝑏 -value (bias < 0 . 012 for FA and < 0 . 025 μm 

2 ∕ 𝑚𝑠
or MD on 𝑏 = 400 s/mm 

2 ). Neither MLE’s or IWLLS’s estimates were

ependent on the diffusion-weighting strength. 

Experiment 𝜶𝜁 Figure 8 presents the bias and standard deviation of

he estimated fiber orientation across 100 random rotations applied to
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Fig. 9. Experiment 𝜻 . Estimates of FA and MD for datasets created with 𝑞-spaces 

not used during training of the dtiRIM. Crosses represent the mean predicted 

value over 100 samples. Vertical lines extend ± the standard deviation around 

the mean. Ground-truth values are indicated by the black dotted line. 

Fig. 10. Experiment �̂�. Estimates of FA and MD as a function of the input noise 

level ̂𝜎. Solid lines represent the mean predicted value over 100 samples. Shaded 

region represents ± the standard deviation around the mean. Ground-truth val- 

ues are indicated by the horizontal black dotted line, and the correct ̂𝜎 value for 

this dataset ( ̂𝜎 = 1∕30) is indicated by the vertical black dotted line. 
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Fig. 11. Experiment nc- 𝜒 . Estimates of FA and MD as a function of the SNR for 

non-central 𝜒 distributed data. Solid lines represent the mean predicted value 

over 100 samples. Shaded region represents ± the standard deviation around 

the mean. Ground-truth values are indicated by the black dotted line. 
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he simulation 𝑞-space. The dtiRIM had bias of 0.64 ◦ and standard devia-

ion of 2.13 ◦, the MLE had 0.58 ◦ of bias and 1.73 ◦ of standard deviation,

hile IWLLS’s were 0.31 ◦ and 2.12 ◦, respectively. 

Experiment 𝜻 Figure 9 shows the FA and MD estimates for 4 datasets

imulated with gradient directions not used during training. The dtiRIM

roduced estimates with low bias ( < 0 . 003 for FA, < 0 . 006 μm 

2 /ms for

D), comparable to the reference results. The dtiRIM standard deviation

as lower than both references for all datasets in this experiment. 

.3. Mischaracterization of the data distribution 

Experiment �̂� Figure 10 shows the results of the experiment that eval-

ated the robustness of each method to misspecification of the noise

evel. We observe that predictions from both dtiRIM and MLE were de-

endent on the specified noise level, notably when �̂� is assumed to be

arger than the real noise level of the sample. For FA, the dtiRIM esti-

ates were susceptible to misspecification of �̂�, but the bias was smaller

han 1% for a �̂� 50% larger than the correct value. For MD, the dtiRIM

stimates were more accurate than MLE’s for the entire range. Note that

he IWLLS doesn’t depend on the estimate of the noise level, hence the

eported mean and standard deviation of the predictions are the same

or all �̂�. The dtiRIM had lower standard deviation than both references.

Experiment nc- 𝜒 Figure 11 shows the FA and MD estimates for a

ataset corrupted by non-central 𝜒 distributed noise. All methods pro-

uced biased FA and MD estimates in the entire 𝜎 range. For FA, the

tiRIM predictions had lower bias and standard deviation than the ref-

rences, independently of the noise level. For MD, the dtiRIM had larger

ias than references for 𝜎 > 1 
12 , but comparable estimates for lower noise

evels. The predictions of all methods tended to the ground-truth FA/MD

alues for low noise cases. 
7 
.4. In vivo experiments 

.4.1. Repeatability 

Figure 12 presents the predicted FA and MD maps for the fully-

ampled ( 𝑁 = 66 directions) repeatability dataset. We observe that the

tiRIM’s estimate contained less outliers than both MLE and IWLLS pre-

ictions, while retaining similar anatomy and FA values for all struc-

ures. Similar behavior was observed in the MD estimates, where the

tiRIM prediction was less noisy than the references, with visible differ-

nces around the ventricles. 

Figure 13 shows the results of the FA and MD repeatability experi-

ent. The first three rows show the RMSE maps of the FA predictions for

ll methods and sub-sampled datasets 𝜻31 , 𝜻25 , 𝜻19 , and 𝜻13 . The dtiRIM

resented lower RMSE compared to both references for all cases, notably

or dataset 𝜻13 . The three bottom rows show the RMSE maps of the MD

redictions for the same datasets. The dtiRIM estimates had lower RMSE

or all cases, most notably within the ventricles and for dataset 𝜻13 . 

Figure 14 shows the tensor ellipsoid representation of one DW set of

ach sub-sampled dataset, color encoded by direction, overlaid on the

redicted FA map. For clarity, only a portion of each map is shown. The

irection of the tensors were largely in agreement between methods for

ataset 𝜻31 , with less outliers in the dtiRIM estimates. For datasets with

ower number of images, it is clear that dtiRIM produced more consistent

redictions than the reference methods. 

.4.2. White matter hyperintensities 

Figure 15 shows the FA and MD maps of each method for the dataset

ontaining WMH regions, alongside a FLAIR scan of the same slice. We

bserve that all methods predicted maps with similar FA and MD values

nd anatomical structure, with hyperintense areas visible in all predic-

ions. 

. Discussion 

Variations in the dataset (number of weighted images, gradient di-

ections, b -value, etc.) hinder the broader use of deep learning in DW-

RI, since current neural networks for estimation of diffusion parame-

ers do not generalise well to out-of-training-distribution samples, and

ew network models have to be trained if the testing dataset changes

ignificantly from the training data. 

In this work we presented the dtiRIM, a new method to estimate

iffusion tensor parameters from DW images. We demonstrated that

he diffusion tensor estimates from dtiRIM have low dependency on

he physiology, anatomy and acquisition settings (e.g. direction and

trength of diffusion gradients), with similar bias to and lower stan-

ard deviation than a Maximum Likelihood Estimator (MLE), and IWLLS

MRTrix3), a widely used method for DTI. Our results indicate that a

ingle dtiRIM model can predict the diffusion parameters from various
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Fig. 12. In vivo experiment. Scan from the AOMIC dataset. The SNR was measured at 26 and the dataset contained 66 images ( 𝑁 = 66 ). Figures a ), b ) and c ) show 

the FA maps produced with the MLE, IWLLS and dtiRIM, respectively. A zoomed detail is shown in the red box. Figures d ), e ) and f ) show the MD maps from each 

method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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atasets, without need to retrain the network. To our knowledge, the

tiRIM is the first generalisable deep learning based estimator for DTI. 

We showed in simulation experiments that the dtiRIM is robust to

ariations in the anatomy and physiology. Our method was able to infer

 wide range of FA and MD values normally seen in brain tissues. In

omogeneous regions (that is, regions with uniform FA and MD), the

tiRIM had lower standard deviation than and comparable bias to other

ethods, suggesting an effective spatial regularization of the estimates.

oreover, the test data had radically different structures than the train-

ng data, indicating that dtiRIM generalises well to unseen anatomies. 

Experiments with non-homogeneous images (when one or more pix-

ls of the testing image has parameters different than the surrounding)

howed that the proposed method introduces blur to very small struc-

ures (1 or 2 pixels wide) in MD maps. This effect, however, largely dis-

ppeared for bigger structures. Further, the blurring of small structures

id not seem to affect the estimates of the fiber orientation, whose bias

nd standard deviation were comparable to both the MLE and IWLLS.

dditionally, we observed no dependence on the true orientation of the

ber, as the dtiRIM correctly predicted the fiber orientation for a range

f directions, in structures as small as 1 pixel. These results indicate that

he dtiRIM is robust to anatomical variations in the data. 

We also demonstrated that the dtiRIM has low dependency on ac-

uisition settings. We evaluated our method with variations in the SNR,

umber of diffusion-weighted images, the strength of the diffusion gra-

ients, and random rotations of the 𝑞-space. Our results evidenced that

he FA and MD estimates from dtiRIM had low standard deviation and

ow bias, independently of the dataset used during testing. Additionally,

s most of the scenarios evaluated fell outside the training distribution

e.g. only 𝑏 = 1000 s ∕ mm 

2 was used during training), we showed that the

roposed network also generalises well to out-of-training-distribution

ata, and can, therefore, be applied to datasets with different charac-
8 
eristics than the training data. Further, results with rotated gradients

ndicated that the dtiRIM is insensitive to the orientation of the dif-

usion gradients. Note, however, that the dataset used in this exper-

ment had a high number of images ( 𝑁 = 68 ) and results might dif-

er for low 𝑁 due to the reduced angular resolution of the gradient

et. 

Further, we showed that the misspecification of the data distribution

i.e. when the noise distribution of the testing data does not follow that

f the training data) has limited impact on the dtiRIM performance. Our

ramework is robust to over/underestimation of the noise level, with

ias lower than 1% for all cases studied. Thus indicating that the margin

f error for noise level estimates is sufficiently broad for practical use,

nd that the dtiRIM generalises to variations in amplitude of the likeli-

ood gradients. In addition, we demonstrated that the dtiRIM estimates

re comparable to the MLE’s and IWLLS’s even when the data does not

ollow a Rice distribution, producing estimates comparable to the refer-

nce methods. The large bias present on all methods is, in part, caused

y the substantially higher noise floor of the non-central 𝜒 distribution

ompared to the Rice PDF. This demonstrates the importance of assum-

ng the correct noise distribution, and how estimates of widely used DTI

ethods can be affected by the image reconstruction algorithm. In con-

rast to the SENSE reconstruction, in which weighted images remain

ice distributed ( Aja-Fernández et al., 2014 ), GRAPPA alters the noise

istribution of the data. In these cases, the modification of the likelihood

unction within the MLE or dtiRIM methods (e.g. using the non-central

PDF) is required to reduce estimation bias. We don’t recommend the

se of IWLLS with GRAPPA-reconstructed data. 

Finally, we validated our method with two in vivo experiments. We

emonstrated that the dtiRIM generalises to real data, with higher qual-

ty estimates than MLE and IWLLS in repeated experiments. Thanks to

fficient spatial regularization, the dtiRIM estimates had less outliers



E.R. Sabidussi, S. Klein, B. Jeurissen et al. NeuroImage 269 (2023) 119900 

Fig. 13. Repeatability experiment with the in vivo dataset AOMIC. Repeated experiments were emulated by sub-sampling the gradient directions of the original 

data. Ground-truth was set as the FA or MD map computed by each method with the original DWI set ( 𝑁 = 66 ). The columns indicate the sub-sampled data sets 𝜻31 
( 𝑁 = 31 ), 𝜻25 ( 𝑁 = 25 ), 𝜻19 ( 𝑁 = 19 ), and 𝜻13 ( 𝑁 = 13 ). The root-mean-squared-error (RMSE) of FA maps of each method are shown in rows 1 to 3; the RMSE MD 

maps are shown in rows 4 to 6. 
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r  
nd were more precise, especially for data sets with low number of im-

ges. Moreover, we showed that the underlying fiber structure predicted

y the dtiRIM was consistent with the references, and was more robust

o low number of gradient directions. These results further suggest that

he dtiRIM generalises well to unseen structures and acquisition set-

ings. Furthermore, the dtiRIM correctly predicted the FA and MD val-
9 
es in abnormal tissues, with estimates similar to both MLE and IWLLS

n regions with white matter hyperintensities. Notice that a number of

re-processing steps were applied to this dataset, such as upsampling

nd correction of Eddy current distortions. It is likely, therefore, that

he noise distribution was altered, and the noise became spatially cor-

elated. Even with this deviation from the assumptions during training,
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Fig. 14. Representation of the tensor ellipsoid of all voxels color encoded by 

direction. A single sample per dataset is shown. The ellipsoid shape is given 

by the eigenvectors and eigenvalues of the estimated tensor at each voxel. The 

patch is located in the anterior region of the brain, with the corpus callosum 

shown at the bottom right of each image. Rows indicate the sub-sampled data 

sets 𝜻31 ( 𝑁 = 31 ), 𝜻25 ( 𝑁 = 25 ), 𝜻19 ( 𝑁 = 19 ), and 𝜻13 ( 𝑁 = 13 ). 
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Fig. 15. FA and MD estimates using in vivo dataset with white matter hyperintensit

by the red arrows. On the right, the top row shows the FA maps for each method. B

position in all figures. (For interpretation of the references to color in this figure lege

10 
imilar FA and MD predictions were obtained across methods, further

ttesting to the dtiRIM’s robustness. 

Throughout this paper, we demonstrated the robustness and consis-

ency of the dtiRIM estimates in several experiments, with simulation

nd in vivo data sets. Our deep learning method is able to learn a gener-

lisable model that only needs to be trained once, with simulated data.

espite the predictions of the dtiRIM being similar to both MLE and

WLLS, our method consistently produces parameter maps with lower

tandard deviation, with up to 15 % improvement in some experiments,

hanks to the efficient priors learned by the dtiRIM. This aspect is partic-

larly interesting for future research in DWI-MRI, where fitting of more

omplex diffusion models ( Alexander et al., 2017 ) could benefit from

earned constrains and learned priors. 

. Conclusion 

We proposed the dtiRIM, a new method for estimating the diffu-

ion tensors from diffusion-weighted images. We demonstrated that our

ethod has similar bias to and lower standard deviation than state-of-

he-art DTI methods, independently of the physiology, anatomy, and ac-

uisition schemes. With our approach, a single dtiRIM model is able to

redict the diffusion tensors for datasets acquired with diverse settings,

aking it the first generalisable deep learning method for DTI. 
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• The core code for the method presented in this paper is

publicly available under the Apache 2.0 license, available at

https://gitlab.com/radiology/quantitative-mri/emcqmri_dti . 
• A modified version of the code of the Numerical Fiber Gener-

ator ( Close et al., 2009 ) was used to generate training data.

The modified version is made available in the open reposi-

tory https://gitlab.com/radiology/quantitative-mri/nfg_1.1.dti-rim

distributed under the GPL license. 
• Data from the AOMIC: Amsterdam Open MRI Collection, dataset

AOMIC-ID1000, version 1.2.1 ( Snoek et al., 2021 ) is used in this

paper. The full dataset and documentation can be downloaded from
doi:10.18112/openneuro.ds003097.v1.2.1 . 

ies (WMH). The left-most figure presents the FLAIR scan, with WMH indicated 

ottom row shows the MD maps. The red arrows indicate the same anatomical 

nd, the reader is referred to the web version of this article.) 
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