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a b s t r a c t

It is important for operators of poly-pipelines in petroleum industry to continuously monitor charac-
teristics of transferred fluid such as its type and amount. To achieve this aim, in this study a dual energy
gamma attenuation technique in combination with artificial neural network (ANN) is proposed to
simultaneously determine type and amount of four different petroleum by-products. The detection
system is composed of a dual energy gamma source, including americium-241 and barium-133 radio-
isotopes, and one 2.54 cm � 2.54 cm sodium iodide detector for recording the transmitted photons. Two
signals recorded in transmission detector, namely the counts under photo peak of Americium-241 with
energy of 59.5 keV and the counts under photo peak of Barium-133 with energy of 356 keV, were applied
to the ANN as the two inputs and volume percentages of petroleum by-products were assigned as the
outputs.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In petrochemical and petroleum industries, a same pipeline, so
called poly-pipelines, is usually implemented for transportingmore
than one product. In such situations, it is important for operators of
pipeline to continuously monitor characteristics of transferred fluid
such as its type, amount, and etc. In poly-pipelines, once for a
defined time interval the piping product changes, the two products
will be in contact with each other and consequently contamination
(mixing) is happened which defines an interface region between
the two products. During the interface, the mixed fluid must be
directed to special tanks or to a separation unit, that leads to
increasing economic costs. This situation highlights the necessity of
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developing nondestructive techniques to precisely identify the
fluid interface regionwith the aim of optimizing transportation in a
poly-pipeline [1].

It has been proved that photon attenuation based techniques
can serve as a potential nondestructive technique for measuring
different properties of fluids in petroleum and petrochemical in-
dustries [2e13]. In regard of using gamma radiation based tech-
niques for monitoring petroleum’s product, some investigations
have been carried out in past years. In 2011, M. Khorsandi et al.,
performed a Monte Carlo simulation based study to evaluate the
sensitivity of two main gamma radiation based techniques, namely
transmission and scattering, for measuring the density of petro-
leum products [14]. They indicated that the sensitivity of gamma
transmission technique is more than scattering one. After that, they
designed an experimental setup, composed of a cesium-137 disk
source with an activity of 1.85 � 106 Bq and one 7.62 cm sodium
iodide crystal detector, to measure density of some oil products
open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Fig. 1. Configuration of simulated detection system and recorded signals from the detector.

Table 1
The calculated constant parameters for GEB option [21].

Parameter a b c

Value (unit) 1.09 � 10�2 (MeV) 6.96 � 10�2 (MeV0.5) 2.26 � 10�2 (MeV�1)
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such as gasoil, gasoline, and etc. using gamma transmission tech-
nique. In 2013, G. H. Roshani et al., proposed an approach to esti-
mate density of some petroleum derivatives independent of pipe’s
diameter [15]. The proposed methodology included combination of
adaptive neuro-fuzzy inference system (ANFIS) technique and a
single gamma-ray densitometer. The detection system was
composed of a polyethylene pipe with a diameter of 10.16 cm, a
cesium-137 radioisotope, and one 7.62 cm sodium iodide crystal
detector. The pipe diameter and registered count in the detector
were assigned as the two inputs of ANFIS and the density was used
as the output. Implementing this technique, they succeeded to
estimate the density independent of pipe’s diameter with an error
of less than 2.64%. In 2016, C. Salgado et al. proposed a method
included combination of a broad beam detection system and arti-
ficial neural network (ANN) for estimating density of petroleum
and derivatives [1]. The detection system included a cesium-137
radioisotope and one sodium iodide crystal detector. Using
MCNPX code, they modelled various petroleum products with
densities in the range of 0.55e1.26 g/cm3. The recorded photon
energy spectrum in the detector was used as input of ANN. Using
this methodology, density of petroleum products was estimated
independent of their material composition. In 2020, W. L. Salgado
et al. established an experimental setup to validate the Monte Carlo
simulation carried out to investigate identifying the interface re-
gion [16]. The experimental setup was composed of a cesium-137
radioisotope, a glass pipe, and one sodium iodide crystal detector.
Inside the pipe, stratified flow regime was modelled. Two liquids,
namely lubricating oil and water, with different percentages were
utilized in the experiments. Applying this method, they succeeded
Table 2
Specifications of four kinds of oil by-products considered as the fluid in the pipe in thi

No./Oil by-product Name

1 Ethylene Glycol
2 Crude oil (Heavy, Mexican)
3 Gasoil
4 Gasoline

2

to determine the region interface with an accuracy of 1%.
As pointed out in the literature review, in former studies the

researchers mainly concentrated on measuring of one property of
petroleum products such as density or volume fraction supposing
the type of product is known. But in a real situation, operator of
poly-pipeline doesn’t have any prior knowledge about the type and
amount of transferring product. So, in this study an intelligent and
online system with the ability of detecting type and amount of
transferring fluid is proposed to cover the gap. The proposed
methodology includes a dual energy gamma attenuation technique
in combination with ANN.
2. Methodology

2.1. Monte Carlo simulation

As mentioned previously, the main objective of current work is
online measuring type and amount of fluid in oil industry’s transfer
poly-pipelines. A conventional single energy gamma radiation
based instrument that works based on BeereLambert’s law and
includes one radiation source and one detector, can just measure
the amount of a material located between radiation source and
detector when its type is known, and vice versa. In regards of our
problem in this work, there are two unknown, namely type of fluid
and its amount. So, at least two known signals are required. In this
investigation Monte Carlo N-Particle code version X (MCNP-X) [17]
was used to evaluate the idea of adopting a dual energy gamma
source and one sodium iodide detector for resolving the mentioned
problem. The proposed detection system is composed of a dual
energy gamma source, including americium-241 and barium-133
radioisotopes, and one 25.4 � 25.4 mm sodium iodide crystal de-
tector. The reason for choosing mentioned radioisotopes is that
americium-241 emits low energy photons (59.5 keV)while barium-
133 emits relatively high energy photons (356 keV). The emitted
photons from aforementioned radioisotopes interact with medium
s study.

Chemical formula Density (g/cm3)

C2H6O2 1.114
e 0.975
C12H23 0.826
C8H18 0.721



Fig. 2. The recorded counts under photo peaks of americium-241 and barium-133 as well as density of each simulated mixture for six different possible interface states: 1- Ethylene
Glycol and crude oil, 2- Ethylene Glycol and gasoil, 3- Ethylene Glycol and gasoline, 4- Crude oil and gasoil, 5- Crude oil and gasoline, and 6- Gasoil and gasoline.
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Fig. 3. Architecture of proposed network in order to determine type and amount of petroleum products.
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via two main different mechanism, namely photoelectric and
Campton scattering. Indeed, photoelectric is dominant interaction
mechanism for low energy photons, while Campton scattering is
dominant interaction mechanism for high energy photons. Having
photons with different interaction mechanisms, the recognition of
material’s properties can be determined better. The simulation
configuration is indicated in Fig. 1. It is good to note that the per-
formance of current simulated detection systemwas validatedwith
an established experimental setup proposed in our former works
[18e20].

As it is shown in Fig. 1, the detector was located in front of the
dual energy radiation source at a distance of 30 cm from the pipe.
Pulse height tally (tally type F8) was used to record photon energy
spectrum in the detector. In each simulation, counts under photo
peaks of americium-241 and barium-133 with gamma energies of
59.5 keV and 356 keV were registered to provide sufficient dataset
for training and testing the ANN. Gaussian energy broadening
(GEB) option was also implemented in this work to take the energy
broadening of photon spectrum into account in the simulated so-
dium iodide crystal detector. The required constant parameters for
this optionwere calculated in our former work [21]. The mentioned
parameters (the values are shown in Table 1) were inserted into
“FT8 GEB” card.

In order to decrease the computing time, a collimated dual en-
ergy source was defined instead of an isotropic one. To do this aim,
DIR and VEC options in the source definition (SDEF) card of
MCNPX’s input file were implemented.

A Pyrex-glass pipe with an external diameter and thickness of
10 cm and 0.25 cm was defined in simulations as the main pipe. In
4

this study, four kinds of oil by-products were considered as the fluid
in the pipe. The required information about composition of used
materials were obtained from Refs. [22]. The specifications of
considered fluids are shown in Table 2.

Since in a poly-pipeline two various fluids are in direct contact
with each other, fluid contamination is happened which defines an
interface region. In this work, we modelled the interface region
between each two fluids. In the case of considered four fluids, as
shown in Fig. 2, six possible interface regions can be occurred: 1-
Ethylene Glycol and crude oil, 2- Ethylene Glycol and gasoil, 3-
Ethylene Glycol and gasoline, 4- Crude oil and gasoil, 5- Crude oil
and gasoline, and 6- Gasoil and gasoline. In fact, the interface region
is a mixture of two fluids that are in contact with each other. In this
region, the amount of first fluid is gradually decreased when move
toward the second one. To model interface region, a mixture of two
fluids for six possible states were considered. The mixture includes
5e95% from each fluid as a complementary. The recorded counts
under photo peaks of americium-241 and barium-133 as well as
density of each simulated mixture are shown in Fig. 2 for six
different states. In this investigation, totally 118 simulations were
carried out (6 different interface region � 19 different mixture
combinationsþ4 single fluids ¼ 118).
2.2. Artificial neural network (ANN)

Todaymulti-layer perceptron (MLP) is still the most popular and
the most widespread kind of neural network. MLP is a strong tool
for modeling different problems and it has very good and proofed
approximation capabilities. In this kind of neural network there are



Fig. 4. Regression diagrams of actual and estimated results for a) train data - Ethylene Glycol b) test data - Ethylene Glycol c) train data e Crude oil d) test data e Crude oil e) train
data - Gasoil f) test data - Gasoil.
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several methods for finding the weighs and biases. Levenberg
Marquardt (LM) algorithm has been implemented for training the
presented network. The LM algorithm which is the most widely
used optimization algorithm is a combination of Gauss-Newton
method and gradient descent [22].

In this study, a MLP-LM network with two inputs and three
outputs was considered. Two features were extracted from de-
tectors output signals and were regarded as MLP-LM inputs. The
Architecture of proposed network in order to determine type and
amount of petroleum products was illustrated in Fig. 3. The trained
network can meter the percentages of Ethylene Glycol, Crude oil
and gasoil based on input signals, precisely. The percentage of
remainedmaterial (gasoline) can be obtained simply by subtracting
other percentages from 100.

In the Monte Carlo simulations, 108 various cases were
modelled. 83 cases were implemented for training and 35 cases
5

were utilized for testing the efficiency of presented network. To
find the optimized architecture of MLP-LM network, several
different architectures were examined in several loops based on
presented algorithm. The presented algorithm is:

1) The data set including train and test data was defined.
2) The data set was normalized.
3) The counters were defined.
4) The initial values for different parameters were set.
5) Several nested loops were created in order to optimize the

structure.
6) The error was defined.
7) Different number of hidden layers, different number of neurons

in each layer, different epochs and different activation functions
for several times were tested using the defined counters and
parameters initial values.



Table 3
The test data with predicted values.

Test Data

Data
No.

Counts under photo
peak of Americium-
241

Counts under
photo peak of
Barium-133

Actual
Percentage of
Ethylene Glycol

Actual
Percentage of
Crude oil

Actual
Percentage
of Gasoil

Actual
Percentage
of Gasoline

Predicted
Percentage of
Ethylene Glycol

Predicted
Percentage of
Crude oil

Predicted
Percentage of
Gasoil

Predicted
Percentage of
Gasoline

1 9.64E-02 5.31E-02 0 0 0 100 �1.4 �0.41 3.48 98.40
2 5.87E-02 4.07E-02 15 85 0 0 12.90 85.75 1.97 �0.63
3 5.68E-02 3.98E-02 30 70 0 0 36.43 65.07 2.26 �3.77
4 5.48E-02 3.91E-02 45 55 0 0 48.22 51.81 0.71 �0.75
5 5.23E-02 3.82E-02 65 35 0 0 61.09 40.18 3.18 �4.46
6 5.02E-02 3.73E-02 85 15 0 0 86.14 13.32 �0.95 1.48
7 7.95E-02 4.73E-02 5 0 95 0 1.90 3.74 101.10 �6.74
8 7.54E-02 4.58E-02 15 0 85 0 15.86 �2.68 89.61 �2.79
9 6.99E-02 4.39E-02 30 0 70 0 32.65 1.47 65.87 0.00
10 6.32E-02 4.15E-02 50 0 50 0 43.61 2.26 49.54 4.57
11 5.86E-02 3.98E-02 65 0 35 0 62.56 �0.95 37.25 1.13
12 5.25E-02 3.79E-02 85 0 15 0 87.47 3.25 13.80 �4.53
13 9.00E-02 5.13E-02 10 0 0 90 8.84 3.23 2.83 85.09
14 8.11E-02 4.85E-02 25 0 0 75 18.17 0.10 0.01 81.69
15 7.08E-02 4.47E-02 45 0 0 55 45.41 1.70 0.89 51.98
16 6.20E-02 4.13E-02 65 0 0 35 61.06 �0.68 4.51 35.10
17 5.59E-02 3.90E-02 80 0 0 20 77.07 �1.48 3.05 21.35
18 8.03E-02 4.78E-02 0 5 95 0 �0.01 3.09 88.79 8.12
19 7.56E-02 4.62E-02 0 25 75 0 1.75 26.08 69.57 2.58
20 7.24E-02 4.52E-02 0 40 60 0 0.14 40.13 60.21 �0.49
21 6.92E-02 4.43E-02 0 55 45 0 �1.33 56.03 40.76 4.53
22 6.62E-02 4.35E-02 0 70 30 0 �1.96 71.72 32.44 �2.20
23 6.23E-02 4.22E-02 0 90 10 0 �0.27 91.86 5.81 2.58
24 9.17E-02 5.20E-02 0 10 0 90 3.96 10.93 �4.88 89.99
25 8.36E-02 4.96E-02 0 30 0 70 �4.27 35.89 2.58 65.79
26 7.79E-02 4.79E-02 0 45 0 55 �7.54 45.42 2.26 59.85
27 7.27E-02 4.60E-02 0 60 0 40 �0.24 60.35 �3.70 43.60
28 6.64E-02 4.38E-02 0 80 0 20 2.86 76.02 4.02 17.08
29 6.19E-02 4.21E-02 0 95 0 5 0.18 93.97 1.741 4.09
30 9.30E-02 5.20E-02 0 0 20 80 �0.41 0.28 22.96 77.16
31 9.09E-02 5.15E-02 0 0 35 65 4.36 1.62 30.58 63.42
32 8.80E-02 5.03E-02 0 0 55 45 0.52 0.53 54.47 44.46
33 8.59E-02 4.96E-02 0 0 70 30 0.75 �0.35 64.79 34.80
34 8.29E-02 4.86E-02 0 0 90 10 �0.82 �1.29 86.42 15.69
35 8.23E-02 4.83E-02 0 0 95 5 �0.57 0.31 94.68 5.57

Table 4
Performance of the developed model.

Output MRE RMSE MAE

Train Test Train Test Train Test

1 0.09 1.60 1.98 3.14 1.62 2.38
2 0.12 0.20 1.87 2.33 1.49 1.78
3 0.76 1.72 2.60 3.38 2.19 2.90
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8) The efficiency of network was checked for each architecture
using the defined error.

9) The best network with lowest error was saved.

The best structure has two hidden layers; 9 neurons in first
hidden layer and 14 neurons in second hidden layer. The activation
function of input and output layers was “purelin” and the activation
function of both hidden layers was “tansig”. The number of epochs
was 800.
Fig. 5. The difference between actual and predicted values for test data.

6



M. Roshani, G. Phan, R.H. Faraj et al. Nuclear Engineering and Technology xxx (xxxx) xxx
3. Results and discussions

Regression diagrams of actual data defined in simulations and
estimated data using presentedMLP-LMmodel have been shown in
Fig. 4. The good agreement between actual and predicted data is
found clearly from this figure. In Table 3, the inputs, actual outputs
and predicted outputs for test data have been tabulated. It should
be noted that since the calculations in MCNP code are done per one
particle emerged from the radiation source, the registered counts in
the detector (as shown in 2nd and 3rd column in Table 3) are re-
ported in decimal fractions (less than 1), whereas in real mea-
surements they are integers. The difference between actual and
predicted values for test data and for each output was shown in
Fig. 5.

Mean Absolute Error (MAE), Mean Relative Error percentage
(MRE %) and RootMean Square Error (RMSE) of presentedmetering
system are calculated by Equations (1)e(3).

MAE¼ 1
N

XZ

i¼1

jXiðActualÞ�XiðMeasuredÞj (1)

MRE%¼100� 1
N

XN

i¼1

����
XiðActualÞ � XiðMeasuredÞ

XiðActualÞ
���� (2)

RMSE¼

2
6664

PN
i¼1

XiActual
�
� XiðMeasuredÞÞ2

N

3
7775

0:5

(3)

Performance of the developed model are indicated in Table 4
using Equations (1)e(3).
4. Conclusions

Information about the contents of transmission lines in oil,
chemical and petrochemical industries especially in upstream oil
industries is very important. Transmission of different fluids with
different densities in a common line is often occurred. In this study,
onlinemonitoring of fluidswas performed by determining type and
amount of petroleum by-products. The proposed monitoring sys-
tem was created by combination of dual energy densitometer and
artificial intelligence. All of the simulations were performed using
MATLAB software and MCNP code. A MLP-LM network with two
inputs and three outputs was optimized using presented algorithm.
Two features were extracted from detectors output signals and
were considered as MLP-LM inputs. The trained network could
meter the percentages of Ethylene Glycol, Crude oil, gasoil and
gasoline based on input signals, precisely. The maximum RMSE of
outputs was less than 3.4.
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
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