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ABSTRACT

This paper describes two possible points of view on two-
object resolution in the context of model-fitting theory.
Thereby, it is stated that the precision and the accuracy
with which the locations of the objects can be estimated
will determine the attainable resolution.

The first approach describes the probability of
resolution, that is the probability that the estimated
locations will be distinct. The second leads to the
maximally attainable precision. For both approaches, the
special case of gaussian peaks is further investigated. It is
shown that resolution is no longer possible for closely
located peaks.

Keywords- Resolution, Model Fitting, Statistical
Precision, Probability of Resolution.

1. Introduction

Resolution, expressing the ability to separate adjacent
details, is widely used as a performance measure in the
quality assessment of imaging systems. One of the most
famous and widely used criteria is that of Rayleigh [1].
However, this criterion is no longer sufficient since it is
only based on the limitations of the human visual system,
and does not take into account, for example, the presence
of noise. Nowadays, it is generally realized that resolution
is ultimately limited by errors in the observations [2].
Therefore, in this paper, resolution is studied from the
viewpoint of parameter estimation theory.

The studied experiment consists of counting events, for
example, an electron hitting a pixel. The events are
distributed by a probability density function, which
describes the sum of two peak shaped objects. The
locations of the objects under study are the parameters
that have to be estimated from the experimental data. To
which extent a reliable estimate of these parameters can
be obtained will determine the attainable resolution.

In this work, it is shown that the Maximum Likelihood
estimator (ML-estimator), which is known to fully exploit
the knowledge of the probability density function of the
observations, fails for objects relatively close together. It
turns out that the ML-estimator is no longer accurate (i.e.,
a bias is introduced) for closely located objects: the
estimates of the locations can coincide exactly. In this
case we say that the objects are not resolvable. This kind

of behavior of the ML-estimator can be explained with the
aid of Catastrophe Theory [3]. It leads us to an expression
for the probability of resolution, that is, the probability
that the estimates of the objects’ locations will not
coincide. The developed theory is closely related to the
work of Van den Bos and Den Dekker [4][5].

It will also be shown that even if an unbiased estimator
would exist, this estimator would still fail to produce
reliable estimates due to the poor attainable statistical
precision. The attainable precision of an estimator is
limited by the Cramér-Rao Lower Bound (CRLB). This
bound defines the lower limit on the variance of an
unbiased estimator. An easy to calculate expression for
this lower bound will be derived that approximates the
real expression sufficiently accurately.

The outline of this paper is as follows. In the next
section, the used model is briefly described. In section 3,
the behavior of the Maximum Likelihood estimator is
studied. The limits on the attainable statistical precision
are presented in section 4. In section 5, some results of
simulated experiments are given.

2. Model

Consider an experiment that consists of counting events,
for example, an electron hitting a detector. The events are
distributed over a number of intervals, denoted as {xi ;
i=1,…M}, by a discrete density function. The
observations are given by {ni ; i=1,...M}, where ni

describes the number of counts or events in the interval  xi

The total number of counts is defined by N, with  N=�i ni

The probability that an event occurs in the interval  xi will
be denoted by  p(xi;a1,a2 ) , with:

(1)     )()()(),;( 2121 axfI1axIfaaxp iii ���� 

describing the sum of two peak shaped objects, centered
around the locations  a1  and  a2. These locations are the
parameters to be estimated. The factor I denotes the peak
intensity ratio; its value is supposed to be known and lies
between 0 and 1. The observations can be described as:

(2)                  ),;( 21 iii aaxNpn H� 

with ni and Hi stochastic variables; Hi is the deviation from
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the expectation value  E[ni] , which is given by:

(3)                        ),;( ][ 21 aaxNpnE ii  

These E[ni] form the model of the observations: they
describe the expected outcome of the experiment. Model
fitting means that the parameters  a1  and  a2  are to be
estimated such that the model fits the observations as
good as possible in the sense of a suitable criterion of
goodness of fit. If there would be no noise in the
observations, and the model would be correct, the fit
would be perfect and the parameters could be calculated
exactly. However, this is never the case in a real
experiment.

One of the most important estimators is the Maximum
Likelihood estimator (ML-estimator). The likelihood
function L(y;a1,a2) is defined by the joint probability of the
observations y, and this as a function of the parameters.
The ML-estimate of a parameter is then found by
maximizing L with respect to these parameters. One of the
most interesting properties of the ML-estimator is that if
there exists an unbiased estimator that attains the CRLB,
this estimator is given by the ML-estimator [6].

Maximizing the likelihood function L is equivalent to
maximizing ln(L), as the logarithm is a monotonic
increasing function. We have:

which is called the loglikelihood function.

3. Probability of resolution

Simulation results show that beyond a certain degree of
overlap of the object functions, the ML-estimates of the
locations of the objects will coincide exactly for a
considerable amount of the experiments. This remarkable
result can be explained with the aid of Catastrophe theory
[3]. A complete description of all the steps involved in the
analysis of the problem is outside the scope of this paper.
For this, we refer to [3] and [4]. The main results are
sketched below.

Suppose that a one-component function, f(xi-a), is fitted to
the observations, with respect to the location parameter a,
by maximizing the one-component loglikelihood function,
and that â is the corresponding solution. Then, it can be
shown that (â,â), in the two-dimensional parameter space,
is a stationary point of the two-component loglikelihood
function, considering the same observations. This
stationary point is crucial, since the structure of the
loglikelihood function at this point will decide on whether
two distinct locations will be found, or, only one. From
Catastrophe theory we learn that it is useful to transform
the parameters a1 and a2 into a new set of parameters,
defined by: A1=Ia1+(1-I)a2 and A2=a1-a2, where A1 is
related to the center of mass of the peaks, and A2 to the
distance between the peaks. Now, only one of these two
parameters is essential, that is, A2. This means that the
structure of the loglikelihood function can only change in
the direction of A2, and not in the direction of A1. It can be

shown that, in the direction of A1, the loglikelihood
function has always a maximum, in the one-component
stationary stationary point (2â,0) , expressed in terms of A1

and A2. In the direction of A2, (2â,0) can be a maximum as
well as a minimum. The possible structures of the
loglikelihood function, as a function of A2 , around this
stationary point, can be described by
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The possible situations in the direction of A2  are given by:
x if b>0: the loglikelihood function has a minimum in

A2=0 and two further stationary points being maxima.
x if b<0 and  9c2-32bd > 0, the loglikelihood function

has a maximum in A2=0 and two other stationary
points. However, it can be shown that the maximum
in A2=0 is very likely to be the absolute maximum.
Also, the stationary points are so close that they are
almost inseparable.

x if b<0 and 9c2-32bd <0, the loglikelihood function
has only a maximum in A2=0.

From these observations it can be concluded that the
factor b indicates whether or not the ML-estimate of the
parameter A2 will be zero, or thus, whether or not the
estimates of the locations of the peaks will coincide. If
b>0 the peaks can be resolved, if b<0 they can not. This
coefficient b depends completely on the observations,
given a certain model. This means that b can be
considered as a stochastic variable, having a certain
probability density function. If this probability density
function is known, the probability of finding b>0, denoted
by P(b>0), can be derived. This probability is given by:
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which is called the probability of resolution. If the total
number of counts, N, is large enough, the number of
counts in different intervals can be considered as being
independent. In this case, the Central Limit Theorem can
be applied, so that distribution of the factor b can be
considered as being a normal distribution. If the mean
value of this distribution is given by E[b], that is, the
expectation value of Eq.(5), and the variance is given by
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i

i { �



281-009                                                                                      3

Vb

2, the probability of having b>0 is given by:
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where the stochastic variable X has a standard normal
distribution. It is clear that the ratio between E[b] and Vb

plays a crucial role in determining the probability of
resolution.

It will be assumed that the intervals are small enough so
that the sum in Eq.(5) can be replaced by an integral. For
gaussian peaks this leads to:
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with Vo the width of the gaussian. The variance is found to
be equal to:
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For closely located peaks, the second term in Eq.(9) can
be neglected, so that:
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The larger this ratio, that is, the larger N and/or the larger
the ratio (A2 /Vo )

2, the larger the probability of separating
the peaks, as could be expected. We also see that if the
difference between the peak heights becomes larger, i.e.,
if the value of  I  goes from 0.5 towards 0 or towards 1, the
probability of resolution decreases.

4. Statistical Precision

In the previous section, it was shown that the ML-
estimator is not really suited to determine the locations of
severely overlapping objects.
 The next question that arises is whether an unbiased
estimator, if one could find one, would do better. The
maximal statistical precision an unbiased estimator can
achieve is limited by the Cramér-Rao Lower Bound. The
minimal variance of the estimator of the distance
parameter A2, i.e., Varcr(A2), is given by:
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o and a2

o are the true values of the location parameters.
This expression for the CRLB is rather complicated and
not very easy to use. Therefore, a more simple and useful
expression is derived, which will approximate the real
values of CRLB sufficiently well. It will be assumed that
A2 is very small, as compared to the width of the objects,

so that
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Under this assumption, M11+M22+2M12 can be
approximated by
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with fak

(1)(xi) a short notation for the first order derivative
of f(xi-ak) with respect to ak. The partial derivatives will
now be Taylor expanded about A2=0:
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If the objects are supposed to be gaussian peaks, we find
for Eq.(16):
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If the higher order terms in A2

2/Vo

4 are neglected, the
variance, see Eq.(11), is finally found to be:
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Eq.(20) gives an approximation of the Cramér-Rao
variance for the distance parameter, or, in other words, the
ultimate precision any unbiased estimator of the distance
can achieve. This variance is a function of the same
factors that appeared in Eq.(10).

If this variance becomes too large, the peaks can no
longer be located in an adequate way, making resolution
no longer possible. Important is the ratio of the standard
deviation of the estimated distance to the distance itself,
which we define as the resolution factor R. Using Eq.(20),
R is found to be given by
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An, intuitive, obvious resolution criterion is that R must
be smaller than 1, that is,
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which is a simple and useful rule of thumb.

5. Simulation Experiments

Table 1 lists the results of 3 experiments. Each
experiment consisted in generating different sets of
observations. The underlying model in all 3 experiments
is the sum of two normalized gaussian functions, with as
width Vo=30, total number of counts N=5000 and I=0.3.
However, for each experiment a different distance
between the peaks was chosen. In each experiment, 10000
sets of observations were simulated. For each of these sets
of observations, the b-coefficient, see Eq.(5), as well as
the estimate of the distance parameter A2 were calculated.
The values of E[b], Vb and P(b>0), as predicted by Eq.(8),
Eq.(9) and Eq.(7) respectively, are listed in the table.
Also, the experimental values for the expectation value of
b, <b>, the standard deviation of b, sb, and the number of
negative b-values, #b>0, are listed. It is concluded that
there is a close agreement between the predicted values
and the experimental values. The 95% confidence
intervals of the found percentages contain the predicted
values of the probabilities.

Fig.(1) shows the histogram of the estimated distances, of
one of the experiments described above, that is, the one
where the real distance was 10. It can be observed that a
large number of the estimates are exactly zero. We
observed also that, with decreasing distance, the mean
value of the non-zero estimates will deviate more and
more from the true value. This implies that the Maximum
Likelihood fails for locating closely located objects.

As a second example, the CRLB of the distance
parameter, Eq.(11), and its approximation, Eq.(20), will
be investigated for gaussian peaks.. The resolution factor
R, see Eq.(21), is the most interesting quantity to
investigate. We define  Rexact as the non-approximated
factor R, i.e., the root of Eq.(11) divided by  A2.
Fig.2 shows Rexact and R as a function of the ratio  A2 /Vo,
for I=0.1 and I=0.5, with N=5000 for both situations.
From this figure, it is concluded that the approximations
predict the exact values sufficiently accurately.

Conclusion

If the Maximum Likelihood estimator is used to resolve
two overlapping objects, the objects may collapse, in the
sense that their estimated locations may coincide exactly.
The probability that this happens can be calculated and
depends only on a factor that is function of the distance of
the objects, their widths, the number of counts and the
intensity ratio of the objects. If this probability differs
from zero, a bias is introduced. The attainable precision of
an unbiased estimator, if one exists, depends on the same
factor that determines the probability of resolution of the
Maximum Likelihood estimator.
This implies that for severely overlapping objects,
resolution is impossible in any way. In this paper, only the
one-dimensional case was described, however, the
developed theory can be extended to higher dimensions.

A2 E[b] <b> Vb
sb P(b>0) #b>0

6 0.0049 0.0048 0.012 0.012 66.28% 6563

10 0.014 0.013 0.012 0.012 87.90% 8798

14 0.028 0.026 0.012 0.012 98.84% 9860

TABLE 1: FOR EACH DISTANCE A2, 10000 SETS OF OBSERVATIONS WERE
GENERATED, THE VALUES E[b], Vb AND P(b>0) ARE GIVEN. THE
CORRESPONDING EXPERIMENTAL VALUES <b>,sb AND #b>0 ARE ALSO
LISTED



281-009                                                                                      5

References

[1] Lord Rayleigh, Philosophical Magazine, 47, 1874, 81-
93, 193-205.
[2] A.J. den Dekker and A. van den Bos, Resolution: a
survey, Journal of the Optical Society of America, A14
(3), 1997, 547-557.
[3] T. Poston, I.N. Stewart, Catastrophe Theory and its
Applications (London, Pitman, 1978)
[4] A. van den Bos, Journal of the Optical Society of
America, Optical Resolution: an analysis based on
catastrophe theory, A4, 1987, 1402-1406.
[5] A.J. den Dekker, Model-Based Optical Resolution,
IEEE Transactions on Instrumentation and Measurement,
46 (3), 1997, 798-802.
[6] A. van den Bos, Parameter Estimation, Chapter 8 in
Handbook of Measurement Science, (Chichester, Wiley,
1982).

FIG.1: HISTOGRAM OF ESTIMATIONS OF A2, TRUE
VALUE OF A2=10, VVo =30, N=5000, I=0.3.

FIG.2: THE FACTOR Rexact AND ITS APPROXIMATION R,
AS A FUNCTION OF A2/VVO, WITH N=5000, in case of I=0.1 AND
I=0.5.
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