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Promotors:
Prof. Dr. Paul Scheunders Antwerpen, 2014
Dr. Rob Heylen



Doctoral committee

Chairman
Prof. Dr. Jacques Tempere (Department of Physics)

Members
Prof. Dr. Paul Scheunders (Department of Physics, Vision Lab)
Prof. Dr. Nick Schryvers (Department of Physics, Electron Microscopy

for Materials Science – EMAT)
Dr. Rob Heylen (Department of Physics, Vision Lab)

External members
Dr. Raul Zurita-Milla (Faculty of Geo-Information Science

and Earth Observation, University of Twente)
Dr. Walter Debruyn (Flemish Institute for Tech. Research – VITO)

Contact information

B Dževdet Burazerović
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INTRODUCTION

Abstract

This chapter explains the domain and scope of our study and introduces
in steps a subtopic this study addresses – unmixing of hyperspectral imagery
acquired by remote-sensing and Earth observation platforms. The almost exclu-
sive concern of our work is image- and data analysis and processing. However,
to offer the reader a broader view, we start by giving a word about the Earth-
observation chain and all its elements. The subsequent section then zooms
onto a modality of interest, which is the hyperspectral imaging. Hyperspectral
image processing differs from standard image processing in that each pixel can
be treated individually and used to identify materials in the imaged scene. So
we spend few words on explaining the relevant definitions and concepts. The
final section is devoted to the mixed-pixel problem and spectral unmixing. This
topic has seen a notable concentration of interest and effort from researchers
over the years. Here, we try to describe it in a way that will provide an insight
into the current state-of-the-art, accentuating those definitions and constructs
that are most relevant for understanding the subsequent chapters.
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1. INTRODUCTION

1.1 Remote sensing and Earth observation

To give a crisp definition of remote sensing is not trivial. Perhaps the most integral
definition speaks of a science of acquiring information about an object or surface
of interest without actually being in contact with it [Lillesand et al., 2008]. Does
this mean that standard photography is also remote sensing? Yes and no. Yes, if the
focus is on a class of photos captured from aircrafts and satellites. In fact, for a long
time aerial photography was a synonymous for remote sensing, until the latter term
was coined in the 1960s in recognition of the proliferation of new modalities (e.g.
radar) recording the electromagnetic (EM) energy outside the range of visible light
[Campbell, 2006]. This historical legacy explains why remote sensing technology and
techniques are mostly discussed in the context of monitoring the Earth’s surface- and
atmospheric processes, or Earth Observation for short [Campbell, 2006; Cracknell
and Hayes, 2007]. At the same time, one ought to acknowledge that the same
sensory and imaging techniques that are used for Earth observation are also used for
various other purposes. Examples include remote sensing (imaging spectrometry)
for pharmaceutical and industrial process and quality control, food safety, and
biometric and forensic applications (see [Bioucas-Dias et al., 2012] and references
therein). There are also examples where remote-sensing modalities are used in a
way that is more attributable to other domains, such as video processing or computer
vision (think e.g. of the use of thermal infrared imaging for enhanced vision or
surveillance). It is thus clear that the rightfulness of calling some process ’remote
sensing’ much depends on the context and specifics of all the elements in the
processing chain: the object, the sensor(s), the method and the application.

Because our algorithms will work with images intended for Earth observation,
we ought to start by introducing the related concepts. A generous amount of detail
on this topic is provided by the above mentioned works and on-line sources (see
[Natural Resources Canada, 2014]), so we constrain ourselves to the essentials. We
start by giving a rough sketch of the Earth-observation process, in Fig. 1.1. There are
several elements that need to be distinguished and understood from this picture:

• Energy source – emits EM energy that is partly absorbed and partly reflected
by objects on the Earth’s surface. Two basic source types are recognized:
naturally available illumination sources, such as the Sun, and transceivers
mounted on board of satellites and aircrafts (or used on the ground), such as
the Synthetic Aperture Radar (SAR), Light Detection And Ranging (LIDAR),
Sound Navigation And Ranging (SONAR), etc. Note that the Earth itself also
acts as a source, as it emits radiation in the form of heat that is detectable in
the thermal infrared (IR) portion of the EM spectrum (see also Fig. 1.2).

2



1.1. Remote sensing and Earth observation

• Radiation transfer – connotes the passing of EM energy through the atmo-
sphere, from its source to the target and backwards. The atmosphere interferes
with the radiation via particle absorption (by gas molecules) and scatter (Mie
and Rayleigh scattering on water droplets, ice crystals and aerosol). Since
these effects depend on the particle size and wavelength of the radiation,
some radiation types (e.g. solar) are affected more than others. Atmospheric
correction models are therefore often used to ’rectify’ the images recorded by
the sensor [Cracknell and Hayes, 2007].

• Interaction with the target – once the radiation reaches the Earth’s surface, it
interacts with its objects: ground covers, water content, man-made structures,
etc. By absorbing and reflecting the incident radiation differently over the
entire EM spectrum, each class of objects creates a distinctive signature.

• Sensor – picks up and records a percentage of the radiation that is reflected
by the imaged surface or target. Two basic types of sensors are distinguished:
passive sensors, which only record energy that is readily available (solar or ther-
mal) and active sensors, which themselves emit and direct radiation towards
the target. Recall also what has been said above the energy sources.

• Transmission, reception and processing – recordings made by the sensor are
transferred as digital data to a receiving and processing station that renders
this data into an image specific for each modality. Depending on the sensors
used, this process may include geometric correction of data acquired by mul-
tiple sensors, or by a single sensor during multiple passes or flight lines of
satellites and aircrafts, and the aforementioned atmospheric correction.

• Interpretation and analysis – refers to visual or computerized processing of
the image with the purpose of inferring information about its content. Some
of the typical themes are classification (grouping of pixels in an image into a
discrete number of categories or classes), fusion (combining images acquired
by multiple sensors at different spatial and/or spectral resolutions), unmixing,
target detection, change detection, etc., [Camps-Valls et al., 2011].

• Application – the information inferred from the image is used to reveal some
property about the imaged scene or target, or to facilitate solving of particular
problem. The applications are numerous and can be categorized from various
angles. One way is to depart from the object and discern applications to the at-
mosphere, geosphere, biosphere and hydrosphere [Cracknell and Hayes, 2007],
or urban analysis [Soergel, 2010]. Within the third category, e.g., one may
further discern applications to forestry, agriculture and land-cover mapping
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1. INTRODUCTION

Figure 1.1: Remote sensing of the Earth’s surface: The passive and active recording
of EM energy yield imagery in multiple modalities: hyperspectral, SAR, thermal, etc.

[Borengasser et al., 2010; Giri, 2012]. Or within the fourth, the oceanography,
observation of ground- and surface waters and river flows, water-quality re-
trieval in inland- and coastal waters, etc. [Robinson, 2010; Su et al., 2011].
Another take is to discern the actual usage scenarios, such as the real-time
or seasonal monitoring and assessment, the provision of thematic maps for
geographic information systems (GIS) [Mesev, 2007], etc.

At this point, it is clear that handling of the entire Earth-observation chain in-
volves multidisciplinary work (we didn’t even mention the aspect of conducting field
studies and in situ measurements needed to calibrate the instruments or construct
reference data for the algorithms) that is typically carried out by nationally and
internationally governed bodies and institutes (NASA, ESA, CSA, JAXA, etc.) While
the separation between many processes in the chain is inherently technical, some is
naturally and historically influenced by legal, policy and economic factors [Johnston
and Cordes, 2003]. This detachability of some processes from the others has also
created much opportunity to develop innovative image- and data processing algo-
rithms, as our later discussion will demonstrate. The downside is that the optimal
design approach, as well as validation and commercialization of various solutions,
become more difficult without access to all relevant data and information, such as a
ground truth or a specification of end-user requirements.

In the sequel, our focus will be exclusively on image analysis. This means that all
other aspects explained above will be treated as being out of scope or given.
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1.2. Hyperspectral imaging

Figure 1.2: Hyperspectral data cube: Each gray-level image corresponds to a different
wavelength, making each pixel a spectrum. Here water and vegetation are shown.

1.2 Hyperspectral imaging

A modality that provides the bulk of data for remote sensing applications, partly
due to its inherent readability by a human user, is optical remote sensing [Prasad
et al., 2011]. This modality records radiation in the visible and reflective infrared (IR)
part of the EM spectrum: 400-2500nm. An electro-optical sensor collects the light
reflected by an illuminated surface in multiple spectral channels or bands, each
corresponding to a certain wavelength. By ’stacking’ the images recorded at different
wavelengths, one forms a data cube in which each pixel becomes a spectrum – the
record of how light is reflected by some part of the surface. See Fig. 1.2. Depending
on the sensor, one gets a multi-spectral image (MSI) containing a small number of
non-uniformly spaced bands, or a hyperspectral image (HSI) having hundreds of
contiguous co-registered bands [Prasad et al., 2011]. Using only 3 bands – one for
the red, the green and the blue region, yields a plain color composite photo.

A spectrum is a plot of a signal versus some property of photons, such as energy,
wavelength, frequency, etc. This signal is produced by the absorption or emission of
a photon from an atom or molecule, which changes their state according to wave-
functions Ball [2001]. One way of recording a spectrum is therefore to observe the
ratio of the power of incident light illuminating the sample and outgoing light re-
flected by that sample. Other types of spectrometers rather observe the polarimetric
properties of light [Schott, 2009]. The acquisition of spectra in all different ranges of
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1. INTRODUCTION

Figure 1.3: Illustration of the instantaneous field of view (IFOV).

the EM spectrum is studied within the field of spectroscopy Ball [2001].
When a spectroscopic device records multiple spectral bands and provides

two-dimensional coverage, it is called an imaging spectrometer, or in the image-
processing jargon simply a multi- or hyperspectral camera [Rees, 1999]. Such devices
typically do not form the image instantaneously but build it up by scanning. This is
achieved by using rotating scan mirrors and other optics and electronic detectors
(e.g. CCD arrays), whose operation is outside the scope of this text. More detail is
found in e.g. [Cracknell and Hayes, 2007].

Several aspects and parameters are important for qualifying the operation and
capabilities of imaging spectrometers used for Earth observation:

• Spatial resolution is principally determined by the instantaneous field of view
(IFOV). This is the area of the imaged surface that is projected through the
sensor’s optics onto a single detector element [Rees, 1999]. It is also defined
as an angular cone of visibility of the sensor, which is converted to a spatial
area via multiplication with the distance from the ground to the sensor [Abid,
2005]. The IFOV normally equals the size of a pixel, although the pixel may be
smaller if the image is over-sampled. Refer also to Fig. 1.3.

• Spectral resolution concerns the ability of a sensor to discern wavelengths
in the recorded signal. The related spectral sensitivity specifies the interval
between two wavelengths within which the sensor’s response drops to one
half of its maximum. This enables to define the spectral resolution as the
narrowest interval or bandwidth resolvable by the sensor [Campbell, 2006].
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1.2. Hyperspectral imaging

• Signal to noise ratio (SNR) measures the change of the recorded brightness or
radiance (angular-area flux density) relative to the noise power in the sensor.
This change is proportional to both the spectral resolution and the square
of spatial resolution [Landgrebe, 2005]. So, for a given SNR, one resolution
cannot be increased without decreasing the other. Another formula proves
the same by showing that the area coverage rate is proportional to the square
of the ground sample area, and inversely proportional to the squares of the
SNR and the number of spectral bands [Shaw and hua K. Burke, 2003].

• Radiometric resolution describes the sensitivity of the sensor to changes
in the magnitude of the reflected radiation (so it is measured in decibels).
Because the recorded power can be increased by letting the radiation be
received from a larger spatial area or a wider spectral bandwidth, radiometric
resolution can be increased at the expense of spatial or spectral resolution.

• Temporal resolution is defined by the time interval between consecutive
observations of a same location. For a spaceborne system, this is determined
by the satellite orbit, the swath width of the instrument, and whether the
instrument has a fixed or variable viewing geometry [Rees, 1999].

One process that is particularly relevant for optically recoded images concerns
their projection onto geographic latitude/longitude or a chosen coordinate grid,
which is known as geometric correction [Toutin, 2004]. This involves removal of both
systematic and random distortions, where the first group is inherent to the imaging
process and includes, e.g., a tilt of the focal plane relative to the aircraft position,
panoramic distortion and misalignment of images acquired from multiple flight
lines, etc. Some of these errors require the use of photo control points connecting
the image pixels with their true geographic location [Morgan and Falkner, 2001].

Yet another important concept is the aforementioned atmospheric correction.
The transmission of EM radiation through the atmosphere is described by the ra-
diative transfer equation, but its parameters are not always precisely estimable, so
empirical methods are often developed that exploit simulations and knowledge
about the type of radiation involved (microwave, thermal, visible light, etc.) [Rees,
1999]. A distinction is also made as to whether a method calibrates with in situ
measurements, uses historical and meteorological data in atmospheric models, or
treats the atmospheric effects on a pixel-by-pixel basis [Cracknell and Hayes, 2007].

Finally, it is worth pointing out that all optical sensors in principle record the
radiance as digital numbers (DN). Since DN obtained from different scenes are not
comparable in the absolute sense, they are converted to radiance in a way that
requires knowledge of calibration specific to each instrument [Campbell, 2006]. A
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1. INTRODUCTION

general formula is: Lλ = g ai n ·DN+bi as. The recorded radiance, in turn, can be
converted to reflectance, which is the relative expression of how incident radiation is
reflected by the target (see Fig. 1.2). This is done by taking into account the solar
irradiance, the solar zenith angle, the bidirectional reflectance distribution function
of a Lambertian surface, etc. [Liou, 2002]. From now onwards, all our mention of
’spectra’ will assume the use of reflectance, unless stated otherwise.

1.3 The spectral mixing problem

Spectral mixing refers to the situation where multiple constituent spectra make up
the spectrum of a single target. While signal mixtures are studied in various scientific
fields and problems, spectral mixing is an underlying limitation of remote sensing.
Because hyperspectral cameras record the radiance in numerous spectral bands,
they do so with constrained spatial resolution (see above). A consequence is that the
recorded imagery will often include mixed pixels displaying a plurality of disparate
materials, each covering the pixel area by a certain fraction.

The unraveling of mixed pixels has been widely studied as spectral unmixing, for
which various linear and nonlinear approaches have been adopted and developed
over the years [Keshava and Mustard, 2002; Bioucas-Dias et al., 2012]. The main
assumption of the prevalent linear unmixing paradigm is that all the materials in
a mixture will contribute to the total reflectance independently, as the incident
photons will interact with each material once before reaching the sensor. This is
viable when the mixing scale is macroscopic and the materials appear in a pixel
mostly as spatially segregated regions (e.g. [Fisher, 1997] distinguishes four such
configurations). On the other hand, the nonlinear models presume non-negligible
multiple reflections of photons between the materials, which may be provoked by
their three-dimensional topography or the intimacy of their mixture. See Fig. 1.4.

1.3.1 Linear unmixing

The linear spectral mixing in remote sensing is commonly presented via the linear
mixing model (LMM). This model expresses the mixed spectrum of a pixel as a
linear sum of spectra of intrinsic or ’pure’ materials, the so-called endmembers,
having weights or abundances that are positive and sum to one [Boardman, 1994].
The two constraints on the abundances tell that only the whole pixel area and no
negative sub-pixels are taken into account, which is sensible to demand from the
physical perspective. The accompanying mathematical formula is given by Eq. (1.1),
where x is a d ×1 vector representing a pixel spectrum, {e i } are the equally sized
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1.3. The spectral mixing problem

(a) Linear mixing (b) Nonlinear mixing

Figure 1.4: A view of spectral mixing: Depending on the viewing scale, different
ground covers (e.g. vegetation and soils) add to the pixel’s reflectance independently
(linearly) as separate regions, or interactively (nonlinearly) via multiple reflections.

spectra of endmembers, and {ai } are the corresponding abundance coefficients.
Furthermore, p is the known or estimated number of endmembers, while n stands
for additive model errors (e.g. due to mis-estimation of {e i }) and noise. In most
practical situations n 6= 0, so one normally hopes to minimize the reconstruction
error, i.e. the difference between an original data point x and its approximation
x̂ = ∑

i ai e i , as measured by its Euclidean norm: ‖x̂ −x‖2 or some other out of
several applicable criteria and scores [Christophe et al., 2005].

More broadly, Eq. (1.1) has been known as the definition of a p–simplex, or a
Euclidean geometric spatial element having the minimum number of boundary
points [Elte, 1912]. This corresponds to a line segment in one-dimensional space
(p = 2), a triangle in two-dim. space (p = 3), a tetrahedron in three-dim. space
(p = 4), etc. See Fig. 1.5. Another general definition destines the {ai } from Eq. (1.1)
as the normalized barycentric coordinates of x with respect to {e i } [Coxeter, 1963].
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1. INTRODUCTION

Figure 1.5: Geometry of Eq. (1.1) for p = 2 and p = 3. When both constraints on {ai }
are obeyed (and n = 0), all data points x reside within a p–simplex defined by {e i }.

x =
p∑

i=1
ai e i +n , ∀i : ai ≥ 0 ,

p∑
i=1

ai = 1 (1.1)

Recently, an exhaustive survey of approaches to solving Eq. (1.1) was given by
[Bioucas-Dias et al., 2012], discerning geometrical, statistical, sparsity-based and
spatial-contextual methods. The first group basically take advantage of the above
explained convex geometry of the LMM equating the endmembers to vertices of a
simplex. Hence, most methods from this group estimate the {e i } from a data through
an independent process of endmember extraction [Veganzones and Graña, 2008], by
searching for purest pixels or the minimum-volume embedded or enclosing simplex
in the data [Plaza et al., 2011]. Once the {e i } are known, the inversion of Eq. (1.1)
needed to determine the {ai } is typically realized through optimization techniques.
We discuss more about this topic in Chapter 3.

The other three mentioned groups all involve approaches that use priors or
impose extra constraints on the solution of Eq. (1.1). For example, statistical ap-
proaches use parametric techniques and estimation frameworks (e.g. Bayesian) to
address the variability in the data implied by its high degree of mixing or the uncer-
tainty of endmembers. These methods often jointly estimate the endmembers and
abundances [Arngren et al., 2011; Dobigeon et al., 2009]. (Note that the variability of
endmembers has also been widely treated outside the statistical framework, by using
the spectral feature extraction, signal transformations, etc. [Somers et al., 2011].)
Another take considers the situation where a mixture is expected to be composed of
few endmembers. Some methods from this group use sparsity-promoting priors to
automatically determine the endmembers, including their number [Zare and Gader,
2007]. Others perform sparse regression, where some endmembers are expected to
be known beforehand (e.g. from in situ or lab measurements), which translates the
problem to that of finding the optimal (small) subset of endmembers in a (large)
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1.3. The spectral mixing problem

spectral library to be used in each pixel [Iordache et al., 2011, 2014]. Finally, the group
of spatial-contextual methods essentially include additional constraints derived
from the assumption about local homogeneity of pixels (or abundances) into the
other frameworks. Many of these works follow the idea originally used for classifica-
tion, where pixels were no longer treated individually but by taking into account the
correlations between spatial and spectral neighbors [Tarabalka et al., 2010]. Much of
the applied methodology also coincides with that used for classification, including
the use of convolution filters, Markov random fields, mathematical morphology, or
spatial transforms [Bioucas-Dias et al., 2012; Camps-Valls et al., 2011].

An important aspect for any of these approaches concerns the determination of
the number of endmembers, p in Eq. (1.1). Many studies fix this number empirically
using prior knowledge about the imaged scene. Others try to estimate it from the
data, which is the same as gauging its intrinsic dimensionality. We have seen that, if
a data is a mixture of p endmembers, then it will reside within a p–simplex, so the
data may be projected onto a (p −1)–dimensional subspace of the original space.
This is why the problem has also been addressed as subspace identification, often
by devising specific criteria or treatments for the eigenvalues of the data-derived
correlation and noise matrices [Chang and Du, 2004; Bioucas-Dias and Nascimento,
2008]. We explain more about dimensionality reduction in Sec. 1.3.3.

Finally, it should be mentioned that solving Eq. (1.1) while in fact disregarding
one of the constraints has also been considered in unmixing-related applications,
such as the sub-pixel target detection [Duran and Petrou, 2009]. Notice that omitting
the positivity ai > 0 positions the data on a hyperplane containing the simplex (in
Fig. 1.5 a line extending the segment e1e2 and the entire plane of 4e1e2e3).

1.3.2 Nonlinear unmixing

The use of nonlinear unmixing in the remote sensing context has been acknowl-
edged in taxonomies, surveys and feasibility studies stemming from more than a
decade ago [Liangrocapart and Petrou, 1999; Keshava et al., 2000]. However, since
recently the subject has received an expanding amount of interest from many au-
thors [Bioucas-Dias et al., 2012]. This is also recognized in the fact that elaborate
surveys are now starting to appear that provide an update on the use of exclusively
nonlinear unmixing techniques [Dobigeon et al., 2014; Heylen et al., 2014].

One way to assort nonlinear unmixing is to discern model-based and data-driven
approaches. While the first group typically tries to understand and describe the
mechanism producing a nonlinearly structured data, the second opts to transform
or learn this structure from the data itself. Typical examples from the first category
are studies that regard the secondary illumination prompted by topography of
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the ground covers such as tree canopy, orchards, low vegetation, etc. [Chen and
Vierling, 2006; Somers et al., 2009]. A model that has been found suitable for this
type of mixing is the bilinear model, which extends the LMM by adding the cross
terms accounting for the (first-order) reflections between the endmembers. This is
described by Eq. (1.2), where ’¯’ takes the Hadamard or entry-wise product of two
vectors. There are several variants of this equation (some are listed in [Halimi et al.,
2011a]), and its extension with quadratic and higher-order powers is in theory also
justified (observe a double reflection on the tree class in Fig. 1.4). However, for the
reflectance data that is by definition confined to interval [0,1], those powers would
have a diminishing contribution. Moreover, the bilinear abundances {bi j } do not
even have a real physical meaning if the sum-to-unity for {ai } is maintained. This
has been addressed by reformulating Eq. (1.2) such to express the {ai } and {bi j } in a
weighted form [Nascimento and Bioucas-Dias, 2009].

x =
p∑

i=1
ai e i +

p−1∑
i=1

P∑
j=i+1

bi j e i ¯e j +n (1.2)

Another class of mixtures allowing a model-based treatment are the so-called
intimate mixtures occurring on a more microscopic scale, e.g. between the mineral
grains in rocks, sands and soils. Refer once more to Fig. 1.4. Here, the Hapke
model from spectroscopy provides a standard equation relating the bidirectional
reflectance of a particle in particulate medium to its single scattering albedo [Hapke,
1981, 2012]. The model has been adapted for use in Earth observation in many
works; however, it is observed that many of its parameters remain dependent on
the experiment [Dobigeon et al., 2014]. Another factor that limits the utility of this
model is the extended spatial scale at which the mixtures are normally viewed in
Earth observation. This has been mitigated by combining the Hapke model with the
LMM in several ways [Broadwater and Banerjee, 2010; Close et al., 2012].

Aside from these modeled cases, situations are conceivable where nonlinear
mixing is likely but perhaps a bit more elusive. One example of this are water-related
applications, since mixing of water masses (bodies, constituents) is more ’intangible’,
but nonetheless makes the radiation transfer nonlinear [Mobley, 1994]. Here, data-
driven approaches such as manifold learning were found to be useful, though
computationally expensive [Bachmann et al., 2005, 2009]. The crux of manifold
learning is to construct a mapping that preserves some global or local relationship
from the (nonlinear) data manifold while projecting it to a lower-dimensional space
(see also Fig. 1.7). In this new space, linear classification or unmixing algorithms
can then be applied. This form of subspace identification has recently received a
lot of interest in different fields of research [Ma et al., 2011]. A counterpart to this
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1.3. The spectral mixing problem

type of processing are the kernel methods that map the input data to a much higher
dimensional space, in which the data becomes linearly separable. The ’kernelization’
of linear algorithms has been explored in both unmixing Broadwater and Banerjee
[2009] and wider signal and pattern analysis [Müller et al., 2013].

We ought to mention that efforts have also been devoted to the logical ’middle
route’, which rather examines (usually via statistical testing) if a hyperspectral data
is structured linearly or nonlinearly [Han and Goodenough, 2008; Altmann et al.,
2013]. For more details about these and several other ways of dealing with nonlinear
unmixing, interested reader is referred to the above mentioned surveys.

1.3.3 Related concepts

Many concepts deserve to be linked to spectral unmixing, as the authors researching
this topic have made good use of the many applicable techniques and angles (see
the aforementioned surveys and references therein). Our aim here is to clarify few
concepts that we will use or refer to more often in the following chapters.

Dimensionality reduction

High dimensionality is inevitably induced in many types of data (multimedia, medi-
cal and remote-sensing data, etc.) recorded with high spectral-, spatial- or temporal
resolution. The goal of dimensionality reduction (DR), ideally, is to trim back the
data to its true or intrinsic dimension. This is defined as the smallest number of
independent parameters that is needed to generate the data [Bennett, 1969].

Traditionally, DR has been realized through linear techniques, such as factor
analysis, principal component analysis (PCA) or multidimensional scaling (MDS)
[Maaten van der et al., 2008]. These techniques all assume that the data occupies
a space where each point (vector) is a linear combinations of a number of basis
vectors. This makes the intrinsic dimension equal to the smallest number of vectors
in a basis that spans the space [Strang, 2009]. For example, Fig. 1.5 depicts a group
of points residing on a 2-dimensional plane embedded in R3. The job of DR in this
case would be to recognize any two vectors spanning the plane, thereby allowing
each point to be described with those two instead of three components. Most linear
DR techniques derive a basis for such reduced space (a subspace) by performing
the eigen-decomposition of some positive-definite matrix derived from the data.
For such a matrix A, this entails finding the eigenvalues {λi } and the corresponding
eigenvectors {q i } that satisfy: Aq =λq . For some n × l matrix X holding zero-mean
data (n data points with l components), the MDS derives eigenvalues {λi } and
eigenvectors {t i } by decomposing the Gramian matrix: G = X X T. The PCA gets
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Figure 1.6: Illustration of PCA: Most of the data variability is described by few PCs.

its eigenvectors {ui } from the covariance matrix Σ = X T X . Since
√
λi t i = X ui

[Chatfield and Collins, 2000], the two techniques are essentially equal. Moreover,
the PCA has this interpretation: Let {ui } (i = 1, l ) be sorted in descending order –
then each u j+1 represents the direction accounting for as much of the variability

left in the data relative to its projection onto a subspace spanned by {uk } (k = 1, j ).
To demonstrate this, let X be a (zero-mean) data andΣ= X T X its covariance matrix,
and let u be a principal component, i.e. vector derived by solving: Σu = λu. The
projection of X onto u (containing the weight of each data point in X along u) is
X u, making Σu = (X u)T(X u) ≡ uTΣu the covariance of this projection. Moreover,
we know that for any symmetric matrix (whichΣ is), the corresponding eigenvectors
{ui } can be chosen orthonormal, i.e., such that uT

i u j = 0, if i 6= j and uT
i u j = 1, if

i = j [Strang, 2009]. This allows defining a Lagrangian and deriving the condition
for its maximization via partial derivatives, as:

f (u) =uTΣu −λ(uTu −1) (1.3)

∂ f

∂λ
= 0 ⇒ uTu =1 ;

∂ f

∂u
= 0 ⇒Σu =λu (1.4)

The latter equation tells that u that maximizes f (and Σu) is indeed the same u that
is derived by the PCA. Figure 1.6 gives an example: A plot of a high-dimensional
data in its selected three and two dimensions hints at its predominantly directional
structure, while the comparison of eigenvalues confirms that most of the variation
is contained within the initial 2-3 eigenvectors, i.e. principal components.

Outside this classical view, one reckons that data can also display more complex
dependencies that cannot be preserved by projecting the data linearly. In such cases
the task of DR is entrusted to nonlinear techniques. One of those techniques (see
a taxonomy and survey by [Maaten van der et al., 2008]) is the popular manifold
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Figure 1.7: A nonlinear 2-dimensional manifold embedded in R3 (left) and its disen-
tangling produced by one linear (PCA) and two nonlinear DR methods.

learning (ML), which assumes that the data lies on a nonlinear manifold embedded
in the higher-dimensional space. For example, Fig. 1.7 shows a sampling from a helix
curve in R3 perturbed with Gaussian noise [Coifman and Lafon, 2006]. Each data
point is specified by its position on this curve (the value of t in its parametric equa-
tion g (t ) = (x(t ), y(t ), z(t ))) and the noise parameter, so the data is two-dimensional.
Hence, the figure shows reduction of the data to two dimensions by applying the ear-
lier explained PCA and two ML techniques: locally linear embedding (LLE) [Roweis
and Saul, 2000] and ISOMAP [Tenenbaum et al., 2000]. We see that only ISOMAP
was able to fully reveal the data structure (imagine untangling a rubber band).

The exact way these ML techniques operate is for now of no interest, as we will
revisit some of them later. We know that each is designed to preserve specific local
or global properties of the original manifold, which is clearly data dependent. Nev-
ertheless, all ML techniques also share some common characteristics. For one, they
do not provide a parametric mapping between the high- and the low-dimensional
space. Unlike the linear mappings that are fully determined by their projection
matrices (eigenvectors), the ML techniques must specify a mapping for each data
point. Also, they all must optimize one or more free parameters, like e.g. the con-
nectedness of a data point with its neighbors. These and other properties have
several implications, of which one of the most noteworthy is the much increased
computational and memory complexity. This has sometimes been mitigated by
deriving the mapping from only a small subset of the data – the so-called landmark
points [Silva de and Tenenbaum, 2002; Chen et al., 2006])

Classification

Another concept that is closely related to unmixing is pattern recognition or classifi-
cation. Classification connotes assigning an input vector to one of a finite number of
discrete categories or classes. Each such vector will ideally comprise measurements
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Figure 1.8: An RGB view of a hyperspectral image and the output from its clustering
and unmixing, including a scatter plot discerning the pixels from each cluster.

of some distinguishing features that are very similar for objects from the same class,
and very dissimilar for objects from different classes [Duda et al., 2001]. In the case
of hyperspectral imagery, pixels are normally classified based on (dis)similarity of
their spectra [Tso and Mather, 2009]. Still, the maturation of high-spatial-resolution
optical sensing by several platforms (e.g. low-cost Unmanned Aerial Vehicles or
UAVs) has prompted many works that extract additional spatial and contextual
features from individual or grouped pixels (see a taxonomy of some of those works
in [Camps-Valls et al., 2011]). Another relevant distinction concerns supervised
and unsupervised classification. While the former uses training examples of input
vectors along with their class labels, the second discovers groups of similar examples
in the data, which is also referred to as clustering [Bishop, 2007].

With these definitions, it acknowledgeable that the similarity between unmixing
and classification is both conceptual and methodological. This follows directly
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from the translatability between classes and endmembers. Several works have
even assumed a full equivalence, by readily assigning the classes by ranking the
endmember abundances [Adams et al., 1995; Goodwin et al., 2005]. A more indirect
approach has used the abundance comparison to divide the image into segments,
and therefrom extract features for the classification [Luo and Chanussot, 2009;
Dopido et al., 2011]. Another approach has utilized the abundances as a reference
for the sub-pixel mapping, i.e. for predicting the spatial location of the classes
within a coarser or mixed pixel (another reference being a classification obtained
at a higher spatial resolution, typically from a different modality) [Villa et al., 2011;
Mahmood et al., 2013]. Yet another example is the sub-pixel anomaly and target
detection, which has been approached from both the classification and unmixing
perspective (see [Manolakis et al., 2003; Bioucas-Dias et al., 2013] and references
therein) and by combining those two [Glenn et al., 2013]. Also, similar strategies and
ingredients have often been used in composing the classification- and unmixing
algorithms. In Sec. 1.3.1 we already mentioned the coinciding treatments of the
spatial and contextual priors and constraints. Other instances include the use of DR
(which in classification is used to avoid the ’curse of dimensionality’ [Duda et al.,
2001]), the use of kernel methods, Bayesian estimation for dealing with the class- or
endmember variability, etc.

To make some of the above said more tangible, consider an example of unsu-
pervised unmixing and classification depicted in Fig. 1.8. The unmixing was done
with 4 automatically extracted endmembers from the image, while the classification
is essentially a clustering of the image into 5 clusters. The spatially sub-sampled
abundance maps show a linear mapping of {ai } (i = 1,4) from Eq. (1.1) to interval
[0,255], so that brighter pixels indicate larger abundance. We see that the classes
coincide pretty well with the endmembers (water, vegetation, etc.), but the scatter
plot also hints that some pixels from the ’green’ cluster reside on the outskirt of the
data, thereby qualifying as a separate endmember.

1.4 Objectives

The work described in the thesis addresses spectral unmixing from two main ob-
jectives: advancement of unmixing methodology and introduction of spectral un-
mixing in new applications. The first objective, in particular, is concerned with the
development of data-driven algorithms for linear and non-linear spectral unmix-
ing that do not suffer from the dependency on physical parameters and models,
and can mitigate high computational complexity induced by the popular use of
optimization techniques. The second objective is concerned with formulating a
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spectral-unmixing approach that can address practical problems and applications of
remote sensing, in particular where unmixing is not necessarily a method of choice.
The latter is to be done through theoretical and empirical exploration using progres-
sively released new source data and associated results from available algorithms
that we can use as our references.

In order to achieve these objectives, the following research questions are asked:

• Can we reformulate or extend the existing unmixing algorithms and ap-
proaches, in particular the geometric framework induced by the linear mixing
model, to enable alternative ways of processing?

• Can we sensibly exploit, introduce or combine other data-processing tech-
niques with unmixing algorithms to get superior performance in our context?

• Can we theoretically motivate the use of unmixing in studied applications and
formulate it such that we can maintain or reach translatability of the unmixing
result to the inquired (physical) quantities?

1.5 Outline of the thesis

In accordance with the dual objective of our work described in the previous section,
the thesis has been divided into two parts bearing the same distinction in their focus.

PART I

The first part comprises two chapters describing algorithms that address particular
aspects of spectral unmixing. While Chapter 2 is concerned with both the extraction
of unknown endmembers and the computation of their abundances, Chapter 3
focuses on the latter task when the endmembers are fully known. In fact, an imper-
fection of the abundance determination in the first algorithm has partly inspired
the development of the second. Common to both algorithms is that they realize a
notable computational gain compared to their direct alternatives.

Chapter 2 describes a distinctive, data-driven approach to nonlinear unmixing.
The distinctiveness resides in the integration aspect, as the approach adopts the
classical linear, i.e. geometrical framework (see Sec. 1.3.1) but reformulates its
elements using distance geometry, in particular incorporating a nonlinear distance
measure inspired by manifold learning (see Sec. 1.3.3).

Chapter 3 presents a fresh approach and solution for computing the abundances,
i.e. performing the inversion step, in a fully constrained linear unmixing. The

18



1.5. Outline of the thesis

approach exploits the equivalence of solving the fully constrained least-squares
problem and geometric projection of a point onto a simplex. It then introduces
several concepts to accomplish the latter. The result is an analytical solution, which
equally permits to be reformulated using (nonlinear) distance measures.

PART II

The second part comprises two independent chapters, each introducing or elaborat-
ing an unmixing approach in an atypical (for unmixing) application. Accordingly,
each chapter follows a same structure whereby the use of particular mixing model(s)
is motivated, possibly complemented with additional constructs, and compared
with an available reference method.

N.B. Our use of particular methods as references has been prescribed by practical
more than fundamental considerations, which has to do with the (in)accessibility
of tools and algorithms and their results on real datasets that became progressively
available to us during our work and writing. At the same time, all the methods we
adopt as references have been documented and in cases compared against some of
the credited alternatives in recent literature that is also cited in this thesis.

Chapter 4 examines the utility of linear and nonlinear unmixing for the detection
of adjacency effect. This effect is caused by atmospheric scatter inducing path
interference between the solar radiation reflected from different ground surfaces.
Hence, what is investigated is the suitability of the unmixing techniques to separate
the true signature of a pixel from the scatter imparted by its adjacent neighborhood.

Chapter 5 explores the use of unmixing for estimating the water quality in in-
land and coastal waters. The starting point here is a prevalent analytical model
relating the reflectance of water to the inquired concentrations of its impurities or
constituents. The goal, thus, is to invert this model by employing the constructs
from spectral unmixing.
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Abstract

Spectral mixtures observed in hyperspectral images often display nonlinear
mixing effects. Since most traditional unmixing methods are based upon the
linear mixing model, they perform poorly in retrieving the correct endmembers
and their abundances from nonlinear mixtures. This chapter presents an al-
gorithm that is capable of computing both quantities under nonlinear mixing
assumptions. The algorithm adopts the classical simplex-volume maximization,
but reformulates it using distance geometry and in particular geodesic distances.
Besides realizing a data-driven treatment of nonlinear mixtures, this approach
offers notable computational advantage relative to a mere precedence of linear
unmixing by nonlinear dimensionality reduction. The algorithm is evaluated
through comparison with the reference linear method, on both synthetic data
and real hyperspectral images acquired from distinct scenes.

N.B. Most of the content from this chapter coincides with the work de-
scribed in [Heylen et al., 2011b]. The author of the thesis contributed to that
work in relation to its implementation and experimental part. This also inspired
a spin-off, streaming formulation of (linear) endmember extraction, whose
details are omitted in this text but can be found in [Burazerović et al., 2011].
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2. UNMIXING BY GEODESIC SIMPLEX-VOLUME MAXIMIZATION

2.1 Introduction

Spectral unmixing is prevalently done under the assumption of linear mixing; how-
ever, one often encounters intimate mixtures or topographic multi-layering of mate-
rials that induce their non-negligible secondary and higher-order reflections. Un-
mixing in such cases has often been handled by explicit modeling of these effects
[Halimi et al., 2011a; Somers et al., 2009], or by employing more data-driven methods
for dealing with nonlinearity (e.g. kernel-based processing Broadwater and Banerjee
[2009] and artificial neural networks Nascimento and Bioucas-Dias [2009]; Plaza
et al. [2009]; Liu and Wu [2005]; Guilfoyle et al. [2001]). Refer also to Sec. 1.3.2.

Another methodology for treating nonlinearly mixed pixels consists of perform-
ing a nonlinear dimensionality reduction (NLDR), yielding a linear space or reduced
dimension in which traditional (linear) methods can then be applied. Many NLDR
techniques are data-driven and exploit some form of (unsupervised) manifold learn-
ing Gashler et al. [2008]. This connotes construction of a mapping that preserves
some global or local relationship from the manifold constituted by the source data
while projecting it to a lower-dimensional space [Maaten van der et al., 2008]. The
subsequent linear operations may relate to any of the unmixing, classification or
compression techniques. For example, several NLDR methods (Local Linear Em-
bedding [Roweis and Saul, 2000], Laplacian Eigenmaps [Belkin and Niyogi, 2001]
and Local Tangent Space Alignment [Zhang and Zha, 2004]) were compared as a pre-
cursor to a k-nearest neighbor classifier by [Wu et al., 2009]. The Isomap algorithm
[Tenenbaum et al., 2000] was used as a preprocessing for classification [Bachmann
et al., 2005; Yangchi et al., 2005], while its specific implementation using landmark
points was recently also used for subsequent unmixing [Chi and Crawford, 2013].

An impacting disadvantage of most NLDR techniques is their high computa-
tional cost and memory requirements, making then rather impractical for use with
sizable hyperspectral data. This problem was acknowledged in [Bachmann et al.,
2006], where some strategies were proposed for realizing a scalable operation of
Isomap. The scalability was there mostly achieved by aligning parallel executions of
Isomap on image tiles, while streamlining the computation of geodesic distances
and definition of local neighborhoods on the manifold. The idea of tile alignment
was also followed in [He et al., 2009], where Isomap was replaced by a coordinate
representation derived from diffusion maps. Other methods have resorted to explicit
use of supervision by allowing the manifold structure to be used as input in off-line
learning of a classification model or deriving a new distance metric for a classifier
[Wang et al., 2006; Ma et al., 2010]. Despite these improvements, it can be fairly said
that NLDR of large hyperspectral data has usually been considered for applications
where ample nonlinear effects can be expected beforehand (e.g. in bathymetry
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[Bachmann et al., 2009]).
In this work, we propose a different approach to spectral unmixing of nonlinearly

mixed pixels. The central idea is to reformulate a prevalent methodology for linear
unmixing inspired by the original N-findR [Winter, 1999], by expressing its steps in
terms of distance geometry. Under certain curvature conditions, we then introduce
geodesic distances, so that the unmixing is done taking into account the (nonlinear)
structure of the data manifold. This approach enables dealing with nonlinearly
mixed data, while at the same time cutting down the complexity of a two-step
approach where some linear unmixing method is simply preceded by NLDR.

The chapter is organized as follows: Section 2.2 gives a more formal description
linear unmixing and explains our methodology for introducing nonlinearity in all
its stages. These stages are explained in detail in separate subsections, including
a word about complexity. Section 2.3 describes the related experiments. Here,
two subsections are devoted to describing a comparison with the reference linear
approach, first using synthetic data, and then also real hyperspectral images. Section
2.4 closes with conclusions and discussion.

2.2 Methodology

We start from the prevalent linear mixing model (LMM) that we discussed earlier in
Sec. 1.3.1. According to this model, the spectrum of a mixture is represented by a
linear sum of the spectra of its constituents, which is put mathematically as:

x =
p∑

i=1
ai e i +n, ∀i : ai ≥ 0 ,

p∑
i=1

ai = 1 (2.1)

where x = (r1, . . . ,rl ) is an l-dimensional spectrum and e i = (ei 1, . . . ,ei l ) are the
spectra of pure or intrinsic materials, the so-called endmembers, constituting the
mixture. Furthermore, p denotes the known or estimated number of endmembers,
ai is the fractional representation or abundance of endmember e i in the mixture,
while n stands for additive modeling errors and noise. Considering the system of
equations (2.1) in a normal case where l > p and {e i } are independent makes it
solvable with ordinary least-squares; however, physically more meaningful solution
is obtained by forcing the also indicated positivity- and sum-to-one constraints. In
the context of hyperspectral imagery this is simply saying that only the whole pixel
area and no negative sub-pixel contributions are taken into account. A consequence
is that any x expressed by Eq. (2.1), when n = 0, will now reside within a (p −1)–
simplex of which {e i } (i = 1, p) are the vertices or extreme points. Refer also to
Fig. 2.1. This geometrical reading has inspired many methods and algorithms that
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2. UNMIXING BY GEODESIC SIMPLEX-VOLUME MAXIMIZATION

Figure 2.1: A data residing on a nonlinear manifold embedded in R3 (left) and its
linear projection on R2 (right) yielding a data enclosed by a 3–simplex, i.e. a triangle.

effectively search for embedded or enclosing simplices in the data, including the
popular N-findR [Winter, 1999], [Dowler and Andrews, 2011], pixel purity index
(PPI) [Chaudhry, 2005], simplex growing algorithm [Chang et al., 2006], convex
cone analysis [Ifarraguerri and Chang, 1999], vertex component analysis (VCA)
[Nascimento and Bioucas-Dias, 2005b], etc. See also a survey from [Parente and
Plaza, 2010] and other references mentioned in Sec. 1.3.1.

When the endmembers {e i } in Eq. (2.1) are known, the inversion needed to
determine the {ai } is typically attained through constrained least-squares optimiza-
tion (see Sec. 3.1). This makes the search for {e i } treatable as a separate problem,
where different approaches are conceivable depending on the assumptions about
decomposability or sparsity of those endmembers [Bioucas-Dias et al., 2012]. The
assumption that each endmember e i will designate a pure pixel representing a single
surface material has been prevalent (see e.g. [Plaza et al., 2004] for a comparative
study of 6 popular endmember-extraction algorithms where this assumption is
made), but is often not valid in practice. Rather, pixels close to the true endmember
in the spectral space will often be retrieved by the endmember extraction process.

A more impacting limitation of the LMM that is addressed by our work concerns
those situations when the spectral mixing happens non-linearly. This means that
every pixel spectrum in principle becomes a non-linear function of endmembers
and abundances. Without fully knowing this function, we can make assumptions
about continuity. First, a pixel with very large abundance for a given endmember
e i , and almost zero abundances for all {e j }, j 6= i , will have a spectrum that lies
close to e i in the spectral space. Furthermore, when the abundances {ai } (i = 1, p)
vary gradually from one set to another, we can assume that the corresponding pixel
spectrum will vary smoothly from some initial state to a final one. If this were not
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2.2. Methodology

the case, one would observe discrete jumps in the observed spectra at certain sets
of abundances, which does not seem physically plausible. One way to model such
non-linearity is thus to assume a non-linear but continuous bijective mapping F
between the linear space of abundance coefficients and the spectral space:

xk = F

(
p∑

i=1
aki e i

)
(2.2)

where k is the pixel index. This mapping induces a manifold in the spectral space
composed of the continuous projection of a linear simplex. In practice, we consider
this manifold to resemble a non-linearly transformed low-dimensional simplex
embedded in the high-dimensional spectral space, such that the endmembers will
still correspond to vertices of the data manifold. Figure 2.1 illustrates this for artificial
data. In the sequel, we describe an algorithm that realizes data-driven endmember
extraction and abundance estimation taking into account this manifold structure.
The central idea is to express a linear unmixing method in terms of distances in
the spectral space, so that its parameters can be computed using non-Euclidean
distance measures.

2.2.1 Distance based formulations

Many endmember-extraction algorithms exploit the same notion of a minimum-
volume enclosing simplex. A typical way of computing the volume of a simplex
having as vertices {e i } (i = 1, p) is to apply the formula:

V (e1, · · · ,ep ) = 1

(p −1)!
·

∣∣∣∣∣∣∣∣det


eT

1 1
...

...
eT

p 1


∣∣∣∣∣∣∣∣ (2.3)

where |· | takes absolute value of the matrix determinant. One way to understand
this formula is by knowing that the volume of an n-dimensional cube is given
by the absolute value of the determinant of n ×n matrix whose column- or row
vectors represent the cube’s edges [Strang, 2009]. For example, imagine translating
an arbitrary 2-simplex or triangle until one of its 3 vertices, say e1, coincides with
the origin. This will make the area of the triangle expressible as one half of the
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2-dimensional cube (parallelogram) with edges e2 −e1 and e3 −e1, implying:

1

2
|V (e2 −e1,e3 −e1)| =

∣∣∣∣ x2 −x1 y2 − y1

x3 −x1 y3 − y1

∣∣∣∣= ∣∣∣∣ x2 y2

x3 y3

∣∣∣∣− ∣∣∣∣ x2 y2

x1 y1

∣∣∣∣−
∣∣∣∣ x1 y1

x3 y3

∣∣∣∣+ ∣∣∣∣ x1 y1

x1 y1

∣∣∣∣=
∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣= |V (e1,e2,e3)| (2.4)

where we have made use of some basic properties and the co-factor formula for
determinants. The reasoning is easily extended to any (p −1) dimensions, leading to
Eq. (2.3). Because the matrix [E |1] in (2.3) is typically non-square (l > p), dimension-
ality reduction (DR) techniques have commonly been used in the above mentioned
algorithms to reduce the data to dimension p −1. Such DR is justified, because, if
{e i } (i = 1, p) are true endmembers, then all their mixtures will reside within the
(p −1)-simplex even if it is embedded in a higher than (p −1)-dimensional space.

However, the volume V of a simplex also permits to be expressed via inter-vertex
distances that do not depend on the dimensionality of any vertex. Let di j be the
distance between e i and e j ; we can reformulate Eq. (2.3) by exploiting the Cayley-
Menger determinant:

(−1)p 2p−1((p −1)!)2V 2 = det(C 1,2,...,p ) (2.5)

C 1,2,...,p =
[

0 1T

1 D2
1,2,...,p

]
≡

[
C 1,2,...,p−1 d p

d T
p 0

]
(2.6)

where D2
1,2,...,p =

[
d 2

i j

]
(i , j = 1, p) is a p ×p matrix, d 2

p = (1,d 2
1p , . . . ,d 2

(p−1)p ) and 1 is

a p ×1 vector of ones. With these definitions proving the matrix identity from Eq.
(2.6) is straightforward. Deriving Eq. (2.5) requires more steps, but a good sense
can again be obtained by starting from Eq. (2.3) when p = 3. The crux is write out
(1/4)·V 2 = det(E |1)·det((E |1)T) and recognize the invariance of placing this product
as co-factor of the first element in the larger 4×4 determinant, |pi j |, where p1n = 1
for n = 1,2,3,4 and pm1 = 0 for m = 2,3,4. This is then followed up by suitable
scaling and addition of columns of this determinant to yield Eq. (2.5). More theory
about Cayley-Menger determinants is found in [Blumenthal, 1970].

A worthwhile implication of the above formulas is also that we can apply the
well-known Schur complement to the right side of Eq. (2.6), to derive:

det(C 1,2,...,p ) =−
(
d T

pC−1
1,2,...,p−1d p

)
det(C 1,2,...,p−1) (2.7)

Comparing this to Eq. 2.5, we see that the volume of a p–simplex can be expressed
in terms of the volume of a (p−1)-simplex and the projective distance of a new point
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ep from the latter simplex. This property was exploited in [Burazerović et al., 2011]
to extract the endmembers by estimating the largest simplex in a streaming fashion,
i.e. by progressively evaluating one pixel at a time.

2.2.2 Introducing nonlinearity

The distances used in the previous simplex-volume calculations are all Euclidean
distances. However, when replacing them by geodesic distances calculated on the
data manifold, one can think of Eq. (2.5) as providing an estimate for a volume
measured along the manifold itself. This interpretation is justified as long as the data
manifold can be covered by Euclidean space. This is the case when the manifold
is completely flat, i.e., has zero intrinsic or Riemannian curvature in each point.
Intuitively, this corresponds to a situation where the data manifold is created by
embedding a (subset of) low-dimensional Euclidean space into a higher dimensional
space by folding or deforming this low-dimensional space, but without ’stretching’.
In non-artificial data this assumption about continuity, convexity and local linearity
need not always be met. For hyperspectral imagery, this is clearly something that
will depend on the structure of the imaged scene. Generally, it seems reasonable
to assume that data manifolds induced by natural scenes will permit only small
non-zero curvatures and thus the said assumption to hold.

A well-known procedure for approximating geodesic distances on manifolds
consists of constructing a k nearest-neighbor (kNN) graph from the data points and
measuring the shortest-path distances along this graph [Tenenbaum et al., 2000].
The initial graph is constructed by taking the Euclidean distance between any two
points xm and xn , and connecting every point to its k nearest neighbors, with k
fixed or varying according to specific radius ε. The nearest neighbor property is not
reciprocal, meaning that xm being closest to xn does not guarantee that the opposite
is also true. Hence, a symmetrization applied to the graph to make it undirected.
This step can be formulated as: (G ,W ) 7−→ (G ,W ), where G and W are the graph’s
incidence- and weight matrix. Specifically, W = [wmn] with wmn ≡ dmn = d(xm , xn)
the distance between two points and G = [gmn], where gmn = 1 if dmn(m 6= n)
satisfies the criterion and gmn = 0 otherwise. The criterion in this case tests if
dmn is one of k smallest elements among {dm1, . . . ,dmn , . . .dmN }, or alternatively if
dmn ≤ ε for given m, where N is the number of data points. The matrices W and G
defined in this way are square and the symmetrization is thus achieved by taking
G = [g mn], g mn = max(gmn , gnm) and W =W ◦G , which stands for the Haddamard
or entry-wise product. After this step, the well-known algorithms for calculating
the shortest paths on a graph [Dijkstra, 1959; Floyd, 1962] can be used to find the
shortest distance between any pair of points. The distances computed in this way
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Figure 2.2: Top: "Swiss roll", its 2000-point sampling and embedding of the latter
found by Isomap. Bottom: A kNN graph for the sampling, rolled up and in a plane,
evincing the alikeness of the graph-based and geodesic distances in matching colors.

will approximate the true geodesic distances as would be measured along the surface
of the data manifold. Figure 2.2 gives an illustration.

2.2.3 Endmember extraction

The algorithm for endmember extraction is inspired by the original N-findR but
modifies it by involving the above explained concepts. To find the largest simplex
along the data manifold, the following algorithm is proposed:

1. Construct a weighted, symmetrical and connected kNN graph on the data set.

2. Randomly select {x1, . . . x p } as the initial vertices. Calculate the shortest-path
distances from each of these points to all other points using the Dijkstra’s
algorithm. Use Eq. (2.5) to calculate the simplex volume.

3. Pick a random point x and calculate the simplex volume when each element
from the set {x1, . . . x p } is successively replaced by x . If a larger simplex is
found, keep the new vertex x , calculate its distance to all other points (again
with the Dijkstra’s algorithm) and recalculate the matrix identities in (2.6).
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4. Perform the previous step until no larger simplex is found for any point. The
final vertices {e1, . . .ep }, designating the endmembers, are now known.

At this point two parameters still need to be decided: the number of endmem-
bers, p and the connectivity of the graph, which is governed by k. Choosing p is
essentially equivalent to gauging the intrinsic dimensionality of the data (see in
Sec. 2.2.1), which is known to be a highly non-trivial task. As previously noted,
many seminal algorithms for endmember extraction used linear DR techniques,
such as the principal component analysis (PCA) [Jolliffe, 2002] or minimum noise
fraction (MNF) [Green et al., 1988], to reduce the dimensionality of the data. The
problem of determining the number of endmembers then becomes the problem of
setting an appropriate threshold for selecting p principal eigenvalues obtained from
decomposing some positive-definite matrix derived from the data (see Sec. 1.3.3).
Automatic techniques such as virtual dimensionality (VD) [Harsanyi et al., 1993;
Chang and Du, 2004] and HySime [Bioucas-Dias and Nascimento, 2008] have been
reported to produce more accurate estimates of the number of endmembers needed
to span a given dataset. Still, most of these methods cannot be used straightforwardly
with distance geometry.

One method that can be easily adapted to use distances is to exploit the following
notion about the volumes: If a data lies on a (p −1) dimensional hyperplane (or
any p–simplex residing on it), then any volume computed in one dimension higher
is zero. This entails that plotting the maximum simplex volumes for increasing
values of p should display a sharp drop at some p, indicating the dimensionality
of the data. This technique has several drawbacks. First, it is computationally
intensive. Second, due to noise and numerical sensitivity of the distance matrix, the
simplex volumes will practically be non-zero for any dimension, which obscures the
expected discontinuity. For all these reasons, we go along with a common practice of
choosing a suitable value for p empirically for each dataset. This is justified minding
the objectives of our method and the reference algorithms with which it is to be
compared, which use the same notion.

The second unknown parameter is the number of nearest neighbors, k. This
constant should not be too small, or one ends up with disconnected clusters and
large ’holes’ in the graph. Artificially connecting such clusters usually destroys
information about the manifold structure due to the creation of shortcuts. On the
other hand, a value for k that is too large will smoothen possible fine structures
on manifold, equally causing a loss of information. We observe that setting k = 20
usually yields good results and stability with datasets we used in practice (e.g. space-
and airborne images of natural sites and landscapes).
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Figure 2.3: A point x lies inside a simplex S3 spanned by {e1,e2,e3}. The abundance
coefficient ai equals the volume ratio Vi /V , with V =∑

i Vi .

2.2.4 Abundance estimation

Looking at Eq. (2.1), first without the constraints, it is clear that unique solution for
ai can only be found if n 6= 0 and the vector x lies in the row space of a p × l matrix
whose rows are (independent) e i , that is, if x is an exact combination of {e i } (i = 1, p).
This is normally not the case with every data point, so one tries to minimize the
error between a data point x and some x̂ reconstructed from e i and ai (i = 1, p).
This leads to the ordinary least-squares formulation, or equivalently the projection
onto the row space of the matrix whose rows are {e i }, yielding values for {ai } that
are not necessarily positive or sum up to one. In many unmixing algorithms this
limitation has been addressed by applying constrained least-squares techniques
regarding one or both constraints from Eq. (2.1), depending on the implementation.
If both constraints are taken into account, one finds a fully constrained least-squares
solution (FCLSU) for the unmixing problem [Heinz and Chang, 2001].

However, in the non-linear case, every data point should be viewed in terms of
its distances to the endmembers rather than its coordinates in the spectral space.
Because we assumed that the data manifold is flat, the inter-point distances mea-
sured in a local neighborhood still obey all Euclidean geometric properties. Thus, to
estimate the {ai }, we require a procedure that uses distance geometry, and prefer-
ably maintains both unmixing constraints. One procedure that fulfills this can be
formulated by exploiting the observation that ai from Eq. (2.1) can be written as:

ai =
V (e1, . . . ,e i−1, x ,e i+1, . . . ,ep )

V (e1, . . . ,ep )
(2.8)

where the nominator designates the volume of a simplex obtained by replacing an
i -th vertex of a simplex defined by {e i } (i = 1, p) with x . See Fig. 2.3. This property
follows directly from the fact that {ai } play the role of homogeneous barycentric co-
ordinates in the coordinate system of {e i } and the equivalence between barycentric
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and areal coordinates in simplices [Coxeter, 1963]. The utility of this property in the
unmixing context was also observed in [Honeine and Richard, 2012]. The volumes
V (·) in Eq. (2.8) can be calculated in terms of inter-vertex distances using Eq. (2.5).

2.2.5 Complexity

In several approaches dealing with nonlinearly structured hyperspectral data, one
uses Isomap as a preprocessing step before applying some linear algorithm for
classification or unmixing (see Sec. 2.1). Considering the latter use, if the geodesic
distances in the original spectral space would exactly match the Euclidean distances
in the projected lower-dimensional space, than this two-step approach would be
virtually equivalent to our proposed algorithm.

One large difference, still, concerns the computational complexity: To calculate
the low-dimensional embedding of some data using Isomap, the complete geodesic
distance matrix is required. For N data points this entails N executions of the
Dijkstra’s algorithm (which is a O(N log(N )) algorithm in itself) and a O(N 2) memory
requirement. In addition, one should also count in the last step of Isomap that is the
actual projection onto a low-dimensional space via multi-dimensional scaling (MDS)
[Tenenbaum et al., 2000], or equivalently the PCA (see Sec. 1.3.3). On the other hand,
our algorithm only calculates the distances from the initial p endmember candidates
to all other points, followed by another such calculation every time a larger simplex is
found. Since the number of vertex updates is only a small fraction of N , the number
of executions of the Dijkstra algorithm before terminating the algorithm is much
smaller than N . Moreover, only the distances from the p endmembers to all other
points need to be stored at any point, reducing the memory requirements by a factor
N /p. These observations allow executing the proposed algorithm on large images
without the need for introducing landmarks and divide-conquer-merge strategies.

2.3 Experiments

The experiments are structured in two parts. First, the algorithm is validated on syn-
thetic data. Next, the same is done using two real hyperspectral images. In all cases
the nonlinear algorithm is compared to a linear approach combining the original
N-findR (extracting the endmembers) and FCLSU (computing the abundances).

2.3.1 Synthetic data

We define an artificial dataset by taking random samples from a linear two-
dimensional simplex, transformed into a three-dimensional nonlinear manifold by
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Figure 2.4: The artificial data set for σ= 0.5 (left) and σ=π (right) for 104 randomly
generated abundances ai 1,2.

projection onto a bended surface. Equations (2.10)–(2.11) describe this, where ai j

denote the abundances and σ is a parameter controlling the bending. Figure 2.4
shows an example of this data when ai j are chosen randomly for two different σ.

xi = ai 1 sin(σai 1)+1 (2.9)

yi = ai 1 cos(σai 1)+1 (2.10)

zi = ai 2 +1 (2.11)

The endmembers can be determined analytically from these equations by setting
a single abundance ai j equal to one and all others equal to zero, which yields the
following expressions:

e1 = (sin(σ)+1,cos(σ)+1,1) (2.12)

e2 = (1,1,2) (2.13)

e3 = (1,1,1) (2.14)

We unmix this dataset with two algorithms: The proposed nonlinear algorithm,
and the reference linear approach using N-findR to extract the endmembers and
the FCLSU (see in Sec. 2.2.4) to determine the abundances. This combination will
henceforward be simply referred to as "N-findR".
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Figure 2.5: The averaged minimum spectral angle (left) and absolute error on the
abundances (right) as functions of σ. The solid lines show the results of N-findR
and the circles correspond to the nonlinear algorithm, using k = 20.

In the first experiment, we search for 3 endmembers (p = 3) and for each found
endmember ê i we calculate the minimum of the spectral angles with the true end-
members from Eq. (2.12) – (2.13). This quantity is then averaged over all ê i to yield a
measure for the deviation of the extracted endmembers from the true ones. Equa-
tion (2.15) formally expresses this. This measure is plotted as a function of σ on the
left-hand side in Fig. 2.5. One can see that the non-linear algorithm retrieves all
endmembers exactly for the entire range of σ. The N-findR fails to do this once σ
becomes larger than 2, and the errors quickly increases afterwards.

A = 1

p

p∑
i=1

min
j

(
arccos

(
ê i ·e j

‖ê i‖‖e j ‖
))

(2.15)

As a second experiment, we use the retrieved endmembers to compute the
abundances for all N data points, using FCLSU for the linear case and simplex-
volume ratios for the nonlinear case. We then compare the resulting abundance
maps {âi } to the true abundance maps {ai } using the error measure formulated in
Eq. (2.16). This measure is plotted on the right-hand side of Fig. 2.5, again as a
function of σ. For low σ, the data manifold does not deviate much from a linear
simplex and both algorithms perform well. For higher σ, the abundance maps
obtained with either method start deviating. The non-linear algorithm however still
performs clearly better. For σ> 2, the linear algorithm fails to correctly retrieve all
endmembers and this further exacerbates the deviation of its abundance maps.

E = 1

p

p∑
i=1

min
j

(
1

N

N∑
k=1

|âi k −a j k |
)

(2.16)
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We have rerun the experiments by varying k in the range 3−20. For k > 5, this
variation did not have much impact on either the endmember search or the abun-
dance estimation. The lower values did worsen the performance, as the connectivity
of the kNN graph was apparently too low to approximate the true geodesic distances.

2.3.2 Real images

The experiments from Sec. 2.3.1 demonstrated that the proposed algorithm outper-
forms linear unmixing in case of nonlinearly mixed data, but the used data gives
only an idealized representation of what can be encountered in practice. In this sec-
tion, we conduct similar experiments using real hyperspectral images. One of these
images is the well-known AVIRIS Cuprite dataset of a mining region in Nevada, USA
(see e.g. [Kruse et al., 2003] for a detailed description), which has been widely used
in studies of spectral unmixing. The second example is a proprietary reflectance
image of a heathland area in Belgium.

Cuprite dataset

From the full AVIRIS Cuprite image we take a 350×400×50 excerpt, with the 50
spectral bands in the range 1.99 – 2.48 µm that is the most relevant for discerning
mineral signatures [Clark, 1999; Parente and Zymnis, 2005]. A similar dataset was
used in the original N-findR [Winter, 1999]. This dataset is also available in the ENVI
software under the name "cup95eff" and is illustrated in Fig. (2.6) on the left. A
ground photo from the Cuprite region shown on the right side of the figure gives
some more idea about the terrain in the vicinity of the site.

As a first experiment, we extract endmembers with N-findR and the nonlinear
algorithm, and compare those to the mineral spectra from the freely available USGS
"splib04c" spectral library. For every extracted endmember we assign a unique
match by minimizing the spectral angle. Both algorithms were run with p = 8, . . .16.
The most abundant minerals in the scene [Winter, 1999; Parente and Zymnis, 2005],
such as alunite, kaolinite and calcite, were properly identified for all values of p by
both algorithms. The more scarce minerals, such as buddingtonite, muscovite and
montmorrilonite, where detected for some p but not all. No specific value of p lead
to clearly optimal performance with either of the two algorithms.

Figure 2.7 depicts 3 out of 14 endmembers extracted with N-findR. The others
are not shown for brevity, but include two calcite endmembers, butlerite, gaylussite,
augite, pyrite, ammoniummillsmec, lepidolite, dumotierite and a shade endmember,
although the spectral match with several of the latter is not so good due to noise
present in some endmember pixels. Several of these minerals are known to be
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Figure 2.6: Enhanced false-color image of the AVIRIS Cuprite dataset (R=2.34,
G=2.20, B=2.10µm) and photo of "Kaolinite hill" in Cuprite, Nevada – one of the pre-
mier calibration sites for imaging spectrometers used in mineral mapping (source:
www.usgs.gov). AVIRIS is flown at an altitude of 20km, resulting in approximately
20-m pixels ([Kruse et al., 2003]).

present in the scene and similar results can also be found in [Winter, 1999]. A much
resembling picture to the one shown in Fig. 2.7 was obtained with the nonlinear
algorithm using k = 20 and p = 16. By this we mean that the deviation of the spectral
angle between each of these nonlinear results and the corresponding reference plot
in Fig. 2.7 was less than 3 degrees. Some of the other endmembers found with good
spectral match were calcite, diaspore, lepidolite, vermiculite, rutile and andradite.

Next, we calculated the abundance maps using FCLSU and the simplex-volume
ratios for the geodesic approach. Figure 2.8 gives an illustrative and somewhat typi-
cal comparison for one of the extracted endmembers. The linear abundance map
can be compared to those found in e.g. [Winter, 1999; Parente and Zymnis, 2005] and
shows exact agreement. The nonlinear map however deviates by having more bright
pixels and some salt-and-pepper noise. This deviation could be ascribed to genuine
nonlinear mixing effects, but it could also be due to the violation of the sum-to-one
constraint by the nonlinear unmixing, which produces non-zero abundances where
they should ideally be zero. The lack of ground reference information restricts us
from formulating a more quantitative comparison.

In conclusion, both linear and non-linear unmixing of the Cuprite dataset yield
comparable endmembers, many of which are known to be present in the scene. The
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Figure 2.7: Three (out of p = 14) extracted endmembers with N-findR (dots) and
the best matching library spectra (solid lines), where the quality of a match was
measured as reciprocal of the spectral angle (see Eq. (4.9))). From top downwards:
kaolinite, montmorrilonite and alunite.

Figure 2.8: From left to right: abundance maps for alunite obtained from FCLSU
and the nonlinear unmixing algorithm. The abundances have been mapped to the
intensity value range [0,255] by ordinary linear scaling.
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Figure 2.9: Left: RGB view of the ROI. Right: Scatter plot of band 10 (710 nm) and
band 16 (884 nm) of a part of this ROI showing partly submerged grassland.

abundance maps obtained with the linear unmixing are similar to those reported
in the literature. The abundance maps obtained from nonlinear unmixing have
distinct features, but we cannot properly quantify them due to the lack of ground
truth. It is conceivable that the Cuprite data set can be unmixed well linearly, and
that the nonlinear unmixing algorithm will not bring a worthwhile improvement.

Heathland dataset

The second dataset available to us is a reflectance image acquired over a heathland
area in Belgium called "Kalmthoutse heide". The original spectral information is
given in 63 bands covering the range 0.456 - 2.55 µm, of which we exclude the noisy
ones to retain 52 usable bands. From the original 4509×4359 image we select a
more manageable region of interest (ROI) counting 500×500 pixels. This ROI is
plotted in Fig. 2.9, where one may recognize partly submerged grassland, forest,
heathland, arable land, sand dunes and water bodies. The scatter plot shown in the
same figure belongs to a zoomed part from the ROI image and hints at the presence
of nonlinearity in the data.

There is a ground reference for this dataset: about 2000 pixels had been classified
by field measurements, resulting in 24 classes. From this ground truth, classification
maps were estimated for the entire image [Thoonen et al., 2010]. These maps can
be helpful in identifying some of the endmembers and their abundance maps, but
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Figure 2.10: Classification map for the "grassland" class (left) and abundance maps
obtained from the linear- (center) and nonlinear (right) unmixing.

exact correspondence between endmembers and classes cannot be expected. For
this reason, we do not attempt to identify endmembers by examining their spectra.
Instead, we search for the endmembers in an unsupervised manner (without iden-
tification), generate their abundance maps by unmixing, and study these. We set
the number of endmembers empirically to p = 16 and use this setting with both the
linear and the nonlinear unmixing algorithm.

A typical result is shown in Fig. 2.10: Out of the abundance maps generated for
all 16 endmembers using the two algorithms, we have selected two maps that are
visually similar but also have differences. Both abundance maps show respectable
agreement with the classification map. The map produced by the nonlinear un-
mixing algorithm agrees the most, but once more contains salt-and-pepper noise
due to the violation of the sum-to-one constraint in some pixels. Especially in the
upper-left corner, where mixing of water and grassland is present, one notices that
the nonlinear unmixing produced consistently larger abundance values (brighter
pixels) relative to those obtained from the linear unmixing. This is in accordance
with the suspected presence of nonlinearly mixed pixels in this regions (see the
scatter plot in Fig. 2.9).

2.4 Conclusion

We have described and evaluated a distinctive data-driven and unsupervised ap-
proach that is capable of unmixing sizable hyperspectral data under the assump-
tion of nonlinear mixing. The approach adopts a common methodology based on
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simplex-volume maximization, but reformulates its steps using distance geometry,
in particular incorporating a graph-based approximation of the geodesic distance.

Both aspects of the algorithm – endmember extraction and abundance esti-
mation have been tested using synthetic data and real hyperspectral images. By
examining the spectra and visualizing the abundances, we have witnessed both
compatibility and deviation from the linear reference where these should be the-
oretically expected. A more rigorous assessment would require a dataset with a
ground truth at the pixel level, preferably also discerning the type of mixing (linear
or nonlinear), but such dataset was not available to us at the time of writing.

Besides realizing an extension beyond the prevalent linear unmixing paradigm,
the proposed approach offers practical benefits relative to its direct nonlinear alter-
natives. By merging linear and nonlinear methodology, instead of cascading them,
our approach notably reduces the computational complexity and makes execution
on large data feasible with regular hardware. Similar or larger computational gain
is also observed relative to methods that use explicit (bilinear) model fitting. The
downside of this integration is that it makes the unmixing equation implicit, thereby
disallowing reconstruction of the pixel spectra and enforcement of sum-to-unity
on the abundances. Still, similar limitations are inherent to other methods. One ex-
ample is the ’pre-image problem’ in kernel methods [Kwok and Tsang, 2004], which
has do with the reverse mapping from feature space back to input space, or in this
case the reconstruction of a pixel spectrum. Another example is the ambiguity of
interpreting the abundances associated with products of endmembers in bilinear
mixing equations (see Sec. 1.3.1). Clearly, the hindrance implied by these limitations
will depend on the intended qualitative or more quantitative use for the abundances,
as in e.g. visualization, classification or sub-pixel mapping.

Since recently, there has been a growing interest among researchers to apply
nonlinear techniques for unmixing of hyperspectral imagery. This was recognized
in an extensive survey of unmixing algorithms from [Bioucas-Dias et al., 2012] and
is also exemplified by the recent appearance of surveys that discuss exclusively non-
linear unmixing techniques [Dobigeon et al., 2014; Heylen et al., 2014]. Comparing
our algorithm against all these alternatives would be impractical and pretentious,
but perhaps few words should be added when considering this renewed context.
Conceptually, our algorithm is perhaps best compared with a two-step approach
that lets linear unmixing be preceded by nonlinear dimensionality reduction (DR).
Both the unmixing algorithms and DR techniques are many and have their strengths
and weaknesses, which leaves many worthwhile combinations. Yet, inspired by
the ’No Free Lunch Theorem’ from pattern classification [Duda et al., 2001], we can
safely say that no combination will be optimal outside a specific context, i.e. dataset
or application, that matches its assumptions. The same qualification could be made
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for any other data-driven approach. The model-based approaches, on the other
hand, can be more adequate when specific type of nonlinear mixing is studied or
expected, but they are usually less flexible and prone to over-fitting.

Summarizing, we can say that the described algorithm offers a rather distinctive
and practical compromise between linear and nonlinear unmixing. In the absence
of nonlinearity, the algorithm is expected to perform similar as its linear basis, and
in the presence of nonlinearity to enrich the linear results in a meaningful way, all
without adding objectionable computational complexity.
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FULLY CONSTRAINED UNMIXING BY SIMPLEX

PROJECTION

Abstract

A distinctive algorithm and approach to fully-constrained linear spectral un-
mixing with known endmembers is presented. The algorithm is based upon the
equivalence of solving the fully constrained least-squares problem and geomet-
ric projection of a point onto a simplex. First, several geometrical properties of
simplices are introduced, and then combined to yield a recursive algorithm real-
izing the simplex projection. An implementation for arbitrarily sized datasets is
provided, and the algorithm is benchmarked against the conventional method
employing constrained least-squares optimization. This is done on both ar-
tificial data and a real hyperspectral image. Unlike the preexisting solutions,
the presented algorithm does not employ any optimization steps and is fully
analytical, which enables it to complete the inversion task of unmixing while
severely cutting down the computational load.

N.B. Most of the content from this chapter coincides with the work pub-
lished in [Heylen et al., 2011a]. The contribution of the author of this thesis
to that work is reserved to implementation and elaboration of some building
blocks. A worthwhile update is provided in this chapter via inclusion of supple-
mental and clarifying passages, illustrations and examples.
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3.1 Introduction

The algorithms for spectral unmixing perform at least one of these two tasks: es-
timating the unknown spectra of endmembers, and determining their respective
fractions or abundances in each pixel. Most algorithms do this under the assump-
tion of fully-constrained linear mixing, for which a renewed motivation was given
in a recent survey of unmixing methodology by [Bioucas-Dias et al., 2012]. In our
study covered by this chapter, we are in fact concerned with the second mentioned
task, which is the estimation of abundances. Our main goal is to find an analytical
solution for this problem.

We give a chronological overview of algorithms that preceded ours, starting off
with what we explained in Sec. 2.2.4. Due to the presence of noise in the data and
possible mis-estimation of endmembers, the LMM need not have an exact solution
for each pixel. This problem was originally addressed via the ordinary least-squares,
i.e. linear regression by [Chang et al., 1998], but this could not guarantee abundances
that are positive or sum up to one. Later it proved easy to incorporate the sum-to-
unity constraint, leaving to be solved a non-negatively constrained least-squares
(LS) problem [Heinz and Chang, 2001]. Another take was formulated in [Chang et al.,
1998] making use of orthogonal subspace projection. In [Shimabukuro and Smith,
1991], a weighted least-squares method was described and it was observed that the
fully-constrained unmixing problem would require quadratic programming. None
of these techniques was able to find the optimal solution.

Then, Heinz and Chang [2001] turned the fully-constrained unmixing into a non-
negatively constrained least-squares problem by introducing a Lagrangian, after
which the solution was found using the non-negatively constrained LS techniques
(NNLS) described in Lawson and Hanson [1974]. This was the first algorithm to
find the LS solution that obeys both the positivity and sum-to-one constraint on the
abundances, which became known as the fully-constrained least-squares unmix-
ing (FCLSU). Soon after, other methods followed that found the solution via other
routes. For example, [Bajorski, 2004] noted the equivalence between the FCLSU
and simplex projection and used a quadratic programming to solve the latter in the
context of spectral unmixing. In [Velez-Reyes and Rosario, 2004], the authors trans-
formed the least-squares into a least-distance formulation and subsequently solved
the latter via the aforementioned NNLS techniques. In [Heinz and Chang, 2001;
Chang et al., 2004], a combined method was proposed to simultaneously perform
the FCLSU and endmember extraction by minimizing reconstruction errors. More
recently, [Dobigeon et al., 2008, 2009] described a hierarchical Bayesian model that
similarly realizes a ’joint’ solution. Another take described by [S. and Qian, 2009]
treats the FCLSU as a blind source separation problem, using non-negative matrix
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factorization to find the endmembers and abundances. (We should say that blind
unmixing of hyperspectral data via basic independent component analysis (ICA) –
which seeks to linearly decompose data into statistically independent sources, was
largely refuted in [Nascimento and Bioucas-Dias, 2005a] due to the fact the abun-
dances of endmembers are not independent but cohere via the mixing constraints.)
Yet another distinctive approach by [Miao et al., 2007] uses a maximum-entropy
principle to improve the LMM inversion when encountering strong noise or mutual
proximity of endmembers.

Most approaches that provide the exact FCLSU solution use an optimization
or maximization procedure, gradient or steepest-descent methods, or require a
random sampler from some distribution. For example, the Lawson-Hanson NNLS
algorithm and quadratic programming are both optimization techniques that re-
quire appropriate initial vectors and step sizes. The Bayesian techniques depend on
random samplers. Although the results obtained with these algorithms can be made
arbitrarily accurate by modifying the algorithmic parameters, they do not provide
an exact analytical solution.

In our approach, we take the linear algebra view of the FCLSU problem. The
central idea is to exploit the equivalence between the FCLSU and simplex projection.
This equality was also observed in Bajorski [2004]; Gillis et al. [2002], but to our
knowledge all preexisting algorithms for simplex projection either employ quadratic
programming Michelot [1986]; Bajorski [2004] or project only on canonical simplices
Tuenter [2001]. Hence, we introduce some properties inspired by convex geometry
in lower dimensions and extend these to any p–simplex. This yields a recursive
algorithm that reduces the dimensionality of the problem by one with each step, until
a proper abundance vector is found. The algorithm achieves this by successively
performing orthogonal projections onto sub-simplices in lower dimensions. Such
operation makes the algorithm fully analytical and gives it a high computationally
efficiency. What’s more, this analytical nature of the algorithm should in principle
allow a reformulation of its steps in terms of (nonlinear) distance geometry, making
it a proper alternative for the nonlinear abundance computation from Sec. 2.2.4.

The remainder of this chapter is structured as follows: In Sec. 3.2, we explain the
equivalence between the FCLSU and the simplex projection. Section 3.3 describes
the reasoning that led to the algorithm, the required mathematical concepts and
the algorithm’s steps. Separate subsections are devoted to implementation for large
data, complexity and exception handling. Section 3.4 verifies the algorithm via a
comparison with the established FCLSU. This is done, again in separate subsections,
on synthetic data and a real hyperspectral image. Finally, Section 3.5 closes with
conclusions and remarks.
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Figure 3.1: Geometry of linear unmixing for p = 3. Without the unmixing constraints,
a point x is orthogonally projected onto the simplex plane, yielding x ′

p . With the
constraints, the projection is onto the simplex (triangle) defined by {e i }, yielding x ′

s .

3.2 Methodology

Once again our starting point is the fully-constrained LMM, which we now also write
in its equivalent matrix form:

x =
p∑

i=1
ai e i +n ⇔ E a = x̂ , ∀i : ai ≥ 0 ,

p∑
i=1

ai = 1 (3.1)

where x is a d ×1 vector (spectrum of a pixel), a is a p ×1 vector of abundances and
E is a d ×p matrix containing endmembers {e i } as its columns, i.e. E = [e1 e2 . . . ep ].
Furthermore, n stands for additive model errors and noise. From now on, we take
x̂ = x and tacitly understand that any x may not be exactly reconstructible from
given {e i }. The unmixing, or the inversion of the LMM, is about solving this problem:
Given some {e i }, find {ai j } in each pixel j so that Eq. (3.1) holds. We start by leaving
out the constraints from Eq. (3.1) and then gradually explain the fully-constrained
situation as an equivalent problem of projecting a point onto a simplex.

Consider the system E a = x for given E and x . In the hyperspectral context it is
typical that d > p and that {e i } are independent, which translates to a ’full-column-
rank case’ of solving a system of linear equations [Strang, 2009]. Accordingly, E a = x
can have exactly one solution a, if and only if x ∈C (E ), where C (E ) is the column
space of matrix E . This is another way of saying that x must be an exact combination
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of the columns of E , {e i }(i = 1, p). Since this is not met for any x , such x needs to
be projected onto the C (E ), yielding a projected point x ′ ∈C (E ) that does become
a combination of {e i }(i = 1, p). The best choice is clearly to perform orthogonal
projection that minimizes the L2-distance from x to x ′, which is described as:

x ′ = E â, â = (E TE )−1E Tx (3.2)

â = argmin
{â}k

∆, ∆= ∥∥x ′−x
∥∥

2 (3.3)

where ∆ is the distance, or the reconstruction error. Thus, the solution to the linear
unmixing without constraints is given by the projection matrix P LSU = E (E TE )−1E T

and we can write x ′ = P LSUx , where LSU stands for least-squares unmixing. It is
interesting that the complement of LSU dubbed orthogonal subspace projection
(OSP), which is realized via the matrix P⊥LSU = I −P LSU, has also been explored in
studies of unmixing and related problems (e.g. target detection) [Chang, 2005].

For the following explanation we refer to the sketch from Fig. 3.1. As a start,
consider the plane of the 3–simplex, which is the plane going through all its defining
points, {e1,e2,e3}. A vector-space equivalent for the plane is obtained if the plane will
also contain the origin (o). For example, having the origin at e1 makes {e2−e1,e3−e1}
a basis, as all vectors in the plane become expressible as combinations of those two
independent vectors. This by definition turns the plane into the column space C (Ê )
of matrix Ê = [(e2−e1) (e3−e1)]. From this and what we have explained above, we see
that the solution to Ê a = x is essentially the projection of x onto the simplex plane.
In Fig. 3.1 this projection is depicted as x ′

p (and x ′
op is its orthogonal complement).

By analogy with Eq. (3.2), the projection onto the plane of an arbitrary p–simplex is
given by:

x ′ = Ê (Ê
T

Ê )−1Ê
T

(x −e1)+e1 (3.4)

Ê = [(e2 −e1) (e3 −e1) . . . (ep −e1)] (3.5)

where the addition of e1 accounts for the plane translation, i.e. making e1 the origin.
With this interpretation, it is now clear that placing extra constraints on a in

E a = x means restricting the projection of x (i.e. x ′) to some portion of the simplex
plane. If both constraints from Eq. (3.1) are met, this portion will be the convex
hull of {e i }(i = 1, p), or equivalently the p–simplex defined by those points. This
follows directly from the fact that the two constraints by definition render the {ai } as
normalized barycentric coordinates with respect to the e i (see Sec. 1.3.1, yielding
a simplex lying on a (p −1)-dimensional plane in the d–dimensional space (since
e i ∈Rd ). The sketch from Fig. 3.1 shows an example of a 2-dimensional simplex in
’R3’, where x ′

s is the projection of x onto the simplex.
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If we define a p–simplex, S as:

x ∈ S ⇐⇒ ∃a1, . . . , ap ∈ [0,1] :

{
x =∑p

i=1 ai e i , e i ∈Rd∑p
i=1 ai = 1

(3.6)

then we can introduce an operator P projecting a point x onto the closest point x ′
on this simplex, as:

x ′ ∈ S : x ′ = P (x) ⇐⇒ ∀y ∈ S : ‖x − y‖2 ≥ ‖x −x ′‖2 (3.7)

The operator P is idempotent (∀x : P (P (x)) = P (x)), so it is a projection. By its
construction, the projected point x ′ belongs to S and by solving E â = x ′, which is
now exactly solvable since x ′ ∈C (Ê ), we can find the abundances â. This shows the
equivalence between approaching the FCLSU problem via optimization (which is
about minimizing the reconstruction error) and by projecting a point onto a simplex.
In the sequel, we shall refer to the latter as simplex projection unmixing (SPU).

3.3 Simplex projection algorithm

The SPU algorithm for projecting a point onto a simplex and finding the corre-
sponding abundances rests on several observations. We first list these observations,
together with a proof, which will clarify the reasoning that led to the algorithm.
This will include some exception handling. We then describe the algorithm’s steps,
devoting separate sections to implementation for large datasets and complexity.

3.3.1 Prerequisites

Our first observation is inspired by Fig. 3.1 and states that one can arrive from x to
x ′

s by first going from x to x ′
p and then from x ′

p to x ′
s . This effectively means that we

can consider a (p −1)–dimensional simplex plane, instead of the full d-dimensional
spectral space, by orthogonally projecting all data onto this plane. The projected
points (vectors) however retain d components (unless we choose to reduce them to
p −1 components via the PCA or some other DR technique).

Lemma 1. Orthogonal projection onto the hyperplane supported by the endmembers
leaves the simplex projection invariant.

Proof. Consider a p–simplex S defined by endmembers {e1, . . . ,ep }. Let y be the
orthogonal projection of a point x onto the plane going through the endmember
points {e1, . . . ,ep }. Choose any v ∈ S. We then have that ‖x−v‖2

2 = ‖x−y‖2
2+‖y−v‖2

2
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3.3. Simplex projection algorithm

Figure 3.2: An arbitrary 2-dim. simplex, with the incenter and the three bisective
cones indicated. A point in a cone Zi will have a simplex projection with âi = 0.

(Pythagoras), because x − y and y −v are orthogonal. Since ‖x − y‖2 is constant, the
v that minimizes ‖x − v‖2 will also minimize ‖y − v‖2. Hence, P (x) = P (y) for the
simplex projection operator P .

The next observation, again referring to Fig. 3.1, is that the minimum-distance
projection of x ′

p onto a simplex renders a point x ′
s on some face of this simplex

(rather than its interior). This point must therefore have at least one abundance
coefficient zero.

Lemma 2. Consider a p–simplex S determined by endmembers {e1, . . . ,ep }, and a
point x that lies in the plane of this simplex, yet such that x ∉ S. The projection
x ′ = P (x) lies on some face of S and therefore, ∃As ⊂ {â1, . . . âp } : âi = 0,∀âi ∈ As .

Proof. The convex hull of a subset of size q from the p defining points of S, with
q < p, is a q–face of S and a simplex itself: Sq ⊂ S. If x ′ ∈ Sq , then x ′ ∈ Sp and by

definition
∑q

i=1 âi = 1 and
∑p

i=1 âi = 1. This implies ∃I = {i1, . . . ip−q } ⊂ {1,2, . . . p} :
âi = 0,∀i ∈ I . Now suppose that âi 6= 0,∀i ∈ {1,2, . . . p}. Then x ∈ int(S). The line
connecting x ′ with x ∉ S will intersect the surface of S in a point y between x ′ and
x . This means that ‖x − y‖2 < ‖x − x ′‖2, proving that x ′ cannot be the minimum-
distance (orthogonal) projection of x onto S.

The aim is next to identify the abundance coefficient that has to be zero. For this,
we first introduce the incenter of a simplex.

Definition 1. The incenter c of a simplex S spanned by {e1, . . . ,ep } is the intersection
of all (p −2)-dimensional planes that bisect the dihedral angles between the faces of
S. This is also the center of the largest hyper-sphere one can inscribe in S. See Fig. 3.2.
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3. FULLY CONSTRAINED UNMIXING BY SIMPLEX PROJECTION

The coordinates of the incenter c are found via the (p −2)-dimensional volumes
of the p faces of the simplex. Let Vi be the volume of the sub-simplex omitting e i ,
i.e. spanned by {e1, . . . ,e i−1,e i+1, . . . ,ep }. We then have (see in Lin [2008]) that:

ac
i =

Vi∑p
i=1 Vi

, c = E ac (3.8)

where the vector ac contains the barycentric coordinates of the incenter and c its
Euclidean coordinates. Once more, E is the matrix whose columns are {e i }.

Consider a point x lying in the simplex plane. The ray starting from the incenter
c and going through x will intersect some face of the simplex. We define the set of
all points giving intersections with a given face as the bisective cone of that face.

Definition 2. The bisective cone Zi of a p–simplex S spanned by {e1, . . . ,ep }, (e i ∈
Rp−1,∀i = 1, . . . p), is the set of points defined by:

x ∈ Zi ⇔∃b1, . . . ,bp ≥ 0 :

{
x = c +∑p

j=1 b j (e j −c)

bi = 0
(3.9)

with c the incenter of S.

In Fig. 3.2 the concept of bisective cones is illustrated for p = 3. It is clear that
these cones form a partitioning of the (p −1)-dimensional space spanned by the
endmembers, i.e. the column space C (E ) of the endmember matrix E :⋃

i
Zi =Rp−1 (3.10)

These bisective cones allow us to determine the abundance coefficient that has to
be zero. To do this, we need the following theorem, which is a special case of the
more general conjecture that follows.

Theorem 3. Consider the canonical p–simplex, Sc = {(v1, . . . vp+1) :
∑

i vi = 1, ∀i :
vi ≥ 0}, and a point x in the simplex plane, such that x ∉ S. The projection of x on Sc

is x ′ = P (x) with barycentric coordinates (abundances): â1, . . . , âp . We then have:

x ∈ Zi ⇒ âi = 0; (3.11)

Proof. To start with, observe that barycentric- and Euclidean coordinates are identi-
cal in case of canonical simplex. To prove the theorem, we use the following lemma
proven in Shwartz et al. [2006] and also used in Duchi et al. [2008]:
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x

y

z

1

1

10

Figure 3.3: The canonical, standard or unit 3–simplex spanned by the three end-
members {(1,0,0), (0,1,0), (0,0,1)}, effectively corresponding to the 2-dim. triangle.
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z>y>x z>x>y

x>z>y

Figure 3.4: Two-dimensional plane of the canonical 3–simplex Sc , where the incenter
coincides with the origin. The six options for the coordinates of a point x in this
plane, and such that x ∉ Sc , are indicated.
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3. FULLY CONSTRAINED UNMIXING BY SIMPLEX PROJECTION

Consider the canonical p–simplex, Sc . Let y ∈ Sc be the vector (point) that
minimizes ‖y − x‖2 for a given x , i.e. y = P (x). Let i and j be two coordinates of x
such that xi > x j . We then have that yi = 0 ⇒ y j = 0.

When projecting onto a simplex, we know (see Lemma 1) that any point x can be
replaced with its orthogonal projection on the simplex plane without affecting the
projection onto the simplex. So we can restrict ourselves to points {x} in the simplex
plane. We also know that, if a point x is in the simplex plane but outside the simplex
Sc itself, at least one its barycentric coordinate or abundance coefficient has to be
zero (see Lemma 2). A corollary of above lemma is then that the smallest xi certainly
corresponds to a zero barycentric coordinate, i.e.

x ∉ Sc , xi = min(x1, . . . , xp ) ⇒ yi = 0 (3.12)

See Fig. 3.3 and 3.4 for an illustration. Now the bisective cones Zi correspond exactly
to those subsets where a given coordinate xi becomes minimal. A consequence of
this corollary is that, at least for the canonical simplex, every point x ∉ Sc , x ∈ Zi ,
will have its corresponding barycentric coordinate âi = 0.

Next, we postulate that the above explained construct for determining abun-
dance coefficients that have to be zero also works for general simplices. We base this
supposition on extensive numerical testing.

Conjecture 4. Consider a p–simplex S defined by endmembers {e1, . . . ,ep }, and a
point x ∉ S. The projection of x is x ′ = P (x), with barycentric coordinates â1, . . . , âp

(abundances). We then have:

x ∈ Zi ⇒ âi = 0; (3.13)

Since this property allows us to determine which abundance coefficient has to be
zero, we can construct a recursive algorithm: Suppose that x ∉ S, but x ∈C (Ê ) (see
Eq. (3.5)). We know that orthogonally projecting x onto the S will yield a projection
point x ′ residing on some face of S, i.e. the sub-simplex Sk defined by {e i }\ek , where
ek is a vertex of S opposite to this face. Thus, projecting onto Sk instead of S does
not change the abundance coefficients for those endmembers that are defining Sk .
Orthogonal projection onto the plane of Sk reduces the implicit dimensionality of
the problem by one, so we can continue recursively until we find a projected point
inside the simplex, or we end up with a trivial one-dimensional problem. In the
sequel we detail this algorithm, but first we give a word about some special cases.
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3.3. Simplex projection algorithm

3.3.2 Exception handling

We ought to recognize that Conjecture 4 is not always true, as counterexamples are
findable for p ≥ 3. The refutation examples all concern simplices that are highly
skewed: their volume is very low compared to the smallest inter-vertex distance, and
some dihedral angles are very obtuse. The configuration sketched in Fig. 3.5 hints at
such a situation. The problem here is that the incenter will come close to e1 and e4,
causing the point x to end up inside a wrong bisective cone and be projected onto e2

instead of e3 – the closest point to x on the simplex. We ought to remark that in our
experience with real hyperspectral data such configurations have not manifested
themselves often. One should also realize that an excessive mutual proximity of
endmembers is likely to connote their mis-estimation, while the remoteness of data
points from the simplex is proportional to noise.

Surely, to safeguard against any unfavorable situation, it is conceivable to run
some simple checks. A first logical check can be to compare the mutual distances of
the endmembers. In case of a suspected oblique simplex, one may choose to apply
other methods (e.g. FCLSU) or use the SPU and reassert its result. The latter can
be done efficiently via the Kolmogorov criterion that examines if some point is the
closest-point projection [Bauschke and Borwein, 1993]:

y = PC (x) ⇔∀z ∈C : (z − y)T(x − y) ≤ 0 (3.14)

where PC (x) is the projection of x onto a convex set C . Because a simplex S is a
polyhedral set spanned by the endmembers, we only have to check whether the
criterion is true for each endmember, i.e. for z ∈ {e i }, (i = 1, p). Notice that inequality
(3.14) follows directly from the cosine formula and a demand that the angle between
x y and y z on the right-hand side of Fig. 3.5 is not smaller than 90◦.

3.3.3 The algorithm

We start by describing the algorithm for projecting a single data point. Later, we
extend this to arbitrary datasets. Suppose one wants to project a point x ∈Rd onto
a p–simplex S I defined by I = {e1, . . . ,ep } and find the corresponding abundances.
One can do so by following these steps:

1. Orthogonally project x onto the (p −1)–dimensional plane containing I , yield-
ing a projection point y .

2. Check if y ∈ S I . If yes, go to Step 4, else go to Step 3.
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e1

e2

e3

e4

x

  

x

y

C z

Figure 3.5: Left: A problematic configuration for the SPU (e1 and e4 must be very
close). Right: Closest-point projection (y) of a point (x) onto the convex set C .

3. Determine the cone Zi : y ∈ Zi . Remove e i from I , yielding I ′ = I \{e i } and a
new sub-simplex S I ′ of one dimension less. Set âi = 0. Orthogonally project y
onto the plane spanned by I ′. Set I = I ′ and go to Step 2.

4. Determine the abundance coefficients by writing y as a linear combination of
the endmembers in I . This is now an exactly solvable system (since y is in the
plane of S I ) respecting the constraints on the abundances.

The first step of the algorithm is to find the orthogonal projection y of a point
x on the plane of S I . This is done via Eq. (3.4). The same equation also allows to
determine whether a point lies inside a simplex, which is needed for Step 2, as well
as to find the abundances of an interior point, which is needed in Step 4. From this
equation, we first define the partial abundance coefficients v , as:

v = (Ê
T

Ê )−1Ê
T

(x −e1) (3.15)

If all vi , i = 1, . . . , p −1 are positive and
∑

i vi ≤ 1, the orthogonal projection y of the
point x lies in the simplex, and the corresponding abundance coefficients, â are
given by concatenating â1 = 1−∑

i vi and the vector v :

â = [1−∑
i

vi , v ] (3.16)

The third step requires two main operations: Determining the cone Zi that con-
tains x (Zi : x ∈ Zi ), and projecting a point onto a simplex plane. The latter is once
more accomplished via Eq. (3.4). To determine the cone, one must first calculate
the incenter c via Eq. (3.8). Next, one must also compute the volumes of the p
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3.3. Simplex projection algorithm

sub-simplices, where the vertices are vectors in Rl (vectors with l components). One
method to do this independently of l is to use the same Cayley-Menger determinant
that we introduced in Sec. 2.2.1. In fact, the same equations (2.5) and (2.6) can be
used, with di j now being the Euclidean distance between points e i and e j .

After finding the incenter c , one can identify the cone Zi : x ∈ Zi . If we define:

xc ≡ x −c (3.17)

ec
i ≡ e i −c (3.18)

E c
i ≡ [ec

1, . . . ,ec
i−1,ec

i+1, . . . ,ec
p ] (3.19)

then the linear system of equations:

xc = E c
i bi (3.20)

will have a solution for every index i ∈ {1, . . . , p}. Because of the definition of bisective
cone (3.9), we find that:

x ∈ Zi ⇔∀ j : bi
j ≥ 0 (3.21)

This observation enable the following algorithm for identifying the cone Zi : x ∈ Zi ,

1. Calculate the incenter c and the entities (3.17)-(3.19).

2. Solve Eq. (3.20) for every i , yielding a set of vectors {bi }(i = 1, p).

3. The set bi with only positive entries identifies the cone that contains x .

To solve Eq. (3.20) for bi , it suffices to consider a (p−1)×(p−1) linearly independent
sub-matrix of E c

i instead of the full l × (p −1) matrix, and use matrix inversion.

3.3.4 Implementation for large data sets

So far we have described the SPU algorithm dealing with a single point. In practice
however, one normally needs to project a large number of data points corresponding
to image pixels. Since several steps of the algorithm involve operations that take
only the endmembers, a large performance boost can be gained by applying these
operations to all points simultaneously. For example, the simplex-plane projection
according to Eq. (3.4) can be done for an entire d ×N data matrix, etc.

Consider a dataset {xn ∈ Rd ,n = 1, N } and a set of endmembers {e i ∈ Rd , i =
1, p}. The goal is to project all {xn} onto the simplex spanned by {e i }, yielding the
projected (or reconstructed) points {x ′

n} and corresponding abundance vectors ân =
(ân1, . . . , ânp ). A pseudo-code that describes the recursive implementation is shown
below. After finding the ân , the projected points are determined via x ′

n = E ân .
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3. FULLY CONSTRAINED UNMIXING BY SIMPLEX PROJECTION

Algorithm 1: simplex_project

input : x ,E
x : d ×N (N data points)
E : d ×p (p endmembers)
output : a
a : p ×N (N abundance vectors)

begin
if p = 1 then

a = 1;
return;

I = { };
for ∀n ∈ [1, . . . , N ] do

Calculate partial abundance v n with (3.15);
if ∀ j : vn

j ≥ 0 and
∑

j vn
j ≤ 1 then

an = [1−∑
j vn

j , v n];

else
Project xn onto simplex plane with (3.4);
I := I ∪ {n} ;

Calculate endmember distance matrix D ;
for ∀i ∈ [1, . . . , p] do

Calc. vol. Vi of sub-simplex Ei = [e1, . . . ,e i−1,e i+1, . . . ,ep ] with (2.5);

Calculate the incenter c with (3.8);
for ∀i ∈ [1, . . . , p] do

Ii = { };
for ∀ j ∈ I do

Solve x j = E c
i bi for bi ;

if ∀k : bi
k ≥ 0 then

Ii := Ii ∪ { j };

if Ii 6= { } then
ar = simplex_project(x Ii ,Ei );
a([1, . . . , i −1, i +1, . . . , p], Ii ) = ar ;
a(i , Ii ) = 0;
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3.3.5 Complexity

The algorithm is designed to finish in a finite number of recursions, where every
recursion consists of a finite number of steps. The number of recursions that are
necessary depends on the data. In the worst-case scenario, this number equals
min(N (p −1),2p −2), where N is the count of data points and 2p −2 is the count
of sub-simplices in a p–simplex. With real hyperspectral imagery, most pixels are
likely to reside inside or close to the minimum-volume enclosing simplex and this
number is expected to be much lower.

Within a single recursion, the highest computational cost is ascribed to:

• Projection onto the simplex plane: Involves the computation of a p ×d projec-
tor matrix and its multiplication with a d ×N data matrix.

• Determining the location of the incenter: Involves the computation of p
determinants of symmetric and positive definite matrices with (p −1) rows.

• Determining the vectors bi for a given cone Zi : Involves a single inversion of
a (p −1)× (p −1) matrix, and a matrix multiplication of a (p −1)× (p −1) and a
(p −1)×N matrix. This has to be executed p times.

All other steps concern index management or have negligible complexity. Note that
the list does not include the computation of inter-vertex distances for the simplices
at each stage, because one can compute the inter-point distances for the entire data
once at the start, and then pass them between the calls. This does implicate that
one must keep extra storage for N (N −1)/2 values. Even by this simply aspect, it is
clear that the cost of the algorithm depends on the implementation details and used
optimizations and is hard to exactly pinpoint. Therefore, we choose to examine this
cost practically, by running the algorithm on simulated and real data using different
settings and counting the runtime and recursive calls.

3.4 Experiments

3.4.1 Execution on synthetic data

As a first experiment, we test the SPU algorithm on synthetic data produced as linear
mixtures with known abundances and endmembers. The data is constructed for a
chosen count of data points N , the number of endmembers p, the dimensionality
of the data d and a signal-to-noise ratio (SNR) in the following way. First, the d ×p
matrix E containing the endmembers as its columns is generated as a matrix of
random numbers in the interval [0,1]. The p ×N abundance matrix A is produced
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3. FULLY CONSTRAINED UNMIXING BY SIMPLEX PROJECTION

by taking each column as a random sampling from the canonical simplex. For each
column a of A, this is done by sampling variables {ai } (i = 1, p) independently and
uniformly in [0,1], returning − log(ai ) (yielding an exponential distribution), and
normalizing. An efficient algorithm for generating random samples from canonical
simplex is also found in [Onn and Weissman, 2011]. Finally, a d ×N noise matrix
η is constructed by taking random numbers from a Gaussian distribution with a
given SNR. According to [Harsanyi and Chang, 1994], the SNR is defined as half the
reflectance divided by the standard deviation of the noise. The data set x is then
given as: x = E A +η.

For testing the accuracy and runtime, we compare the SPU algorithm with the
FCLSU from Heinz and Chang [2001]. The techniques employed by the FCLSU
were mentioned in Sec. 3.1 and it can be fairly said that this implementation has
become a de-facto standard for computing the abundances of linear mixtures with
known endmembers. Both algorithms were implemented in MATLAB on a standard
Intel Core 2 Quad 3.0 GHz desktop computer with 4Gb of RAM. No specific effort
was done to parallelize the execution of the FCLSU (which treats every data point
sequentially and independently from previous runs), while the SPU algorithm could
benefit from the simultaneous treatment of the entire dataset by design.

First, we tested the numerical accuracy by calculating the abundance coefficients
for several parameter sets with both algorithms and comparing them one by one. We
found that, in a typical setting (p = 5, N = 105, d = 4, SN R = 10), about 99.7% of the
abundances retrieved by the SPU differed by less than 10−7 from those obtained by
the FCLSU (averaged over 100 runs). In the other 0.3% the errors can be attributed
to the breakdown of the assumption used in the SPU algorithm, but even then most
errors stayed very low. Similar results were gotten for higher values of p, although
for any p > 3 data configurations yielding significant errors could be artificially
induced (recall Sec. 3.3.2). Because of this practical compatibility between the two
algorithms, the rest of the experiment was focused on charting the runtime.

Figure 3.6 shows several plots comparing the runtime of both algorithms when
changing one of the data parameters while fixing the others. The details of these
settings are found in the figure’s caption. Starting from the top-left, one sees the
dependence of the runtime on the SNR. The first thing to notice is that the runtime
of the SPU scales linearly with the number of recursions (as could be expected).
The second fact is that the SPU displays much shorter runtime than the FCLSU,
which difference increases once the very low SNR values are passed. Within the
most practical range, we see that the SPU outperforms the FCLSU by a factor 10-50.

The next plot to the right shows the runtime as a function of the number of
endmembers p, on logarithmic scale. It can be observed that the runtime increases
exponentially for both algorithms with an increasing p. The SPU once more per-
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Figure 3.6: Runtime of the SPU (solid lines) and FCLSU (dashed lines) as a function
of SNR (p = 15, d = 50, N = 104), the number of endmembers p (N = 104, SNR = 10,
d = 50), dimensionality d (N = 104, SNR = 10, p = 10) and the number of data points
N (SNR = 10, p = 10, d = 50). The circles in the top-left plot indicate the number of
recursions in the SPU algorithm.
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forms much better, but the slightly larger slope of the SPU’s curve indicates that for
very large p this can be reversed in favor of the FCLSU. Still, such high values of p
are rarely encountered in practice.

In turn, the plot at the bottom left shows the runtime as a function of the di-
mensionality of the data d . One sees that the runtime of the FCLSU increases
quasi-linearly with increasing d , whereas the curve of the SPU is mostly constant.
The latter can be explained by the fact that the most intensive steps of the SPU
algorithm involve the calculation of matrix inverses, where the size of these matrices
depends only on the number of endmembers p. The overall conclusion is once
more that it takes drastically shorter times to complete the SPU.

Finally, the bottom-right plot shows the dependence on the number of data
points N . We see that the curve of the FCLSU is linear, as could be expected from the
fact that the FCLSU processes data sequentially. The runtime of the SPU algorithm
appears quasi-linear, although the exact relation is not so clear from the plot. The
runtime of the SPU are again notably lower than those of the FCLSU. Moreover, the
slope of the SPU curve is smaller, indicating that the gap would become even larger
for very large datasets.

Execution of both algorithms with a profiler show that the FCLSU uses 75% of the
runtime for calculating matrix pseudo-inverses. The other 25% is mainly used for
memory management and other matrix manipulations. The SPU algorithm virtually
spends all the time on matrix manipulations. This suggests that careful profiling
and optimization could be instructive in realizing even larger performance gains.

3.4.2 Execution on a hyperspectral image

As we have seen, the SPU offers significantly lower runtime than the FCLSU when
using random data. Such large gain clearly deserves to be asserted on real hyper-
spectral data as well. The dataset we consider here is an excerpt from the infamous
AVIRIS Cuprite image that we also used earlier in Sec. 2.3.2. In this case, we select
the entire "f970619t01p02_r02_sc04.a.rfl" file, yielding a 512×614×224 data cube.
After eliminating several low-SNR bands, we keep the same 188 bands as specified
in [Chang and Wang, 2006]. An RGB view of this image is shown in Fig. 3.7.

Since both the FCLSU and SPU assume that the endmembers are known, the first
thing to do was to select some endmember-extraction method to identify them. In
this case we choose the N-findR algorithm that had been proven to perform well on
this data set (see in Sec. 2.3.1). The next question was how to select an appropriate
number of endmembers p. Taking into account various studies and results from
the literature, and minding that very accurate endmember spotting was no longer
our priority, we used all values of p in the range [8,15]. For every value of p, the
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Figure 3.7: Left: An RGB view of the used excerpt from the Cuprite image (R=731,
G=557, B=458nm). Right: The runtime for the SPU (solid line) and the FCLSU
(dashed line) as a function of the number of endmembers p (N = 314368, d = 188).

extracted set included those endmembers that should be expected (see Sec. 2.3.1),
so we settled with simply executing the SPU and FCLSU with different subsets of
{p : 8 ≤ p ≤ 15}. The runtime as a function of p is shown in Fig. 3.7. From this result,
we can fairly say that the SPU once more shows superior performance relative to the
FCLSU (at least for this image and p ∈ [8,15]).

3.5 Conclusion

We have presented a distinctive approach and solution for fully-constrained lin-
ear unmixing with known endmembers. The approach is inspired by the known
equivalence between least-squares optimization and subspace projection, but takes
this further, by involving the unmixing constraints to restrict the target subspace
for the projection. The result is a simplex-projection unmixing (SPU) algorithm,
which recursively projects the data onto sub-simplices of lower dimensions, thereby
decreasing the dimensionality of the problem by one with each step. The algorithm
is well suited for large data, because many of its operations depend solely on the
endmembers and can be executed simultaneously for all data points. An implemen-
tation of the algorithm in pseudo-code is given, along with a motivation and proof
of each step. While noncomplying cases are feasible, they concern highly skewed
geometries that are less common in practice. An efficient procedure for detecting
such cases has also been presented.
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We have validated the SPU algorithm on random data and an excerpt from the
AVIRIS Cuprite image, by comparing it with the benchmark FCLSU method. The
SPU and the FCLSU yield almost identical results, except for negligible percentage
of pixels. The runtimes of the SPU, however, are drastically lower for most prac-
tical settings. Only for very high numbers of endmembers does the SPU become
computationally inefficient relative to the FCLSU.

One of the original motives for seeking an analytical solution to the FCLSU
problem, which the SPU provides, was the prospect of reformulating such solution
in terms of distance geometry. This would in turn allow incorporating the geodesic
distances, thereby yielding a more proper nonlinear computation of abundances
(relative to the one from Sec. 2.2.4) that would obey both unmixing constraints. A
full implementation of this idea is described in a follow-up work by [Heylen and
Scheunders, 2011].
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UNMIXING FOR DETECTION OF ADJACENCY

EFFECT

Abstract

The adjacency effect is an interesting phenomenon characterized by path
interference between the reflectances coming from different ground covers. The
effect is caused by atmospheric scatter, so a typical way to detect and correct
it has been to model the radiation transfer and spectral correspondence at
specific wavelengths. In our approach, we investigate the adjacency effect as
being a spectral unmixing problem. This means that we opt to use unmixing
to separate the true signature of a pixel from the background scatter reflected
from its adjacent neighborhood. To account for different types of scatter, we
consider both linear and nonlinear mixing models. We evaluate these models
by comparison with a specialized method for detecting the adjacency effect in
turbid waters surrounded by vegetated land. This is done both theoretically and
on hyperspectral images acquired under varying atmospheric conditions.

N.B. Most of the content from this chapter coincides with the work pub-
lished in [Burazerović et al., 2013]. In the chapter, the author of the thesis also
provides a worthwhile update by giving a more formal (mathematical) backing
for the case of unsupervised and fully-constrained linear unmixing.
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4.1 Introduction

Spectral interference is an inherent property of reflectance data obtained by remotely
sensing the Earth’s surface. It refers to the situation where the spectra of multiple
ground-cover materials contribute to the spectrum that is observed for a single
pixel. One cause of this interference is related to the interaction of the incident and
reflected solar radiation at the surface level. The other has to do with backscattering
of this radiation in the atmosphere.

At the surface level, the limitations of the remote optical sensor entail that a
single pixel will often be recorded as a mixture of disparate materials. The unraveling
of such mixed pixels has been widely addressed as spectral unmixing, and some
ways of approaching it have been discussed in our previous chapters.

Unlike the mixing that plays out at the surface of interest, another form of spec-
tral interference is caused by atmospheric scattering (Mie and Raleigh scattering
on water droplets, mixed gases and aerosol particles) changing the path of photons
reflecting outside this surface. This is referred to as the background-, environment-
or adjacency effect, and can be clarified by considering the sketch from Fig. 4.1. Most
of the photons reaching the sensor’s field of view (FOV) of the target surface will
normally have reflected on this surface (path 1). However, due to the atmospheric
(back)scatter, also photons that have dispersed in the air (path 2), or have reflected
on the adjacent surfaces (paths 3, 4 and 5), may deflect into the same FOV. The
adjacency effect is practically ascribed to the latter components, as these are re-
sponsible for the spectral pollution of the target by its surroundings. Detection and
subsequent removal/correction of the adjacency effect can therefore be important
for obtaining faithful information about a ground surface. (Think e.g. of retrieving
concentrations of non-water constituents in water – see Chapter 5.)

For over three decades, the adjacency effect as described above has been studied
(see e.g. [Richter et al., 2006] and its references) and different methods and tools for
its detection and correction have since been developed. A longstanding and still
popular methodology is to take the adjacency effect into account in atmospheric
correction models like FLAASH [Anderson et al., 1999], ATCOR [Richter, 2008] and
others [Kayadibi, 2011] by accounting for the surrounding average reflectance. Much
effort has been made to investigate the adjacency effect through a model-driven
approach, by determining the point spread function for a pixel and/or simulating
the effect with Monte Carlo algorithms. Some representative algorithms from this
category are found in e.g. [Semenov et al., 2011; Arai, 2002]. Recently, an image based
approach for detection of adjacency effects has been proposed [Sterckx et al., 2011]
that proved to be effective on MERIS (Medium Resolution Imaging Spectrometer)
images over inland waters. The crux of this method is to exploit the knowledge
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1 2 3 4 5 

target surface
background

Figure 4.1: Reflectance and (back)scatter of solar radiation. The adjacency effect
is ascribed to the reflectance coming from surfaces adjacent to the target surface
(background), but deflecting into the FOV of the target (paths: 3, 4 and 5).

about the shape of the water spectrum in the NIR (near infrared) range, which is
derived from a theoretical study of the water-leaving reflectance in turbid water in
combination with seaborne measurements [Ruddick et al., 2006].

The purpose of our study presented here is to assess the spectral unmixing
as a means of detecting and qualifying the adjacency effect. The main benefit
of unmixing should reside in its data-oriented operation, and thus avoidance of
extensive modeling or inquiry of physical parameters that are typical of specialized
treatments (see above). Moreover, while such specialized treatments are mostly
concerned with the adjacency effect in its totality, unmixing could effectively qualify
its different parts, i.e. the types of reflectance and (back)scatter from Fig. 4.1. This
could inadvertently provide extra knowledge about, e.g., the atmospheric conditions.
Hence, we investigate unmixing on the basis of linear and nonlinear mixing models,
and compare those with the aforementioned method for detecting the adjacency
effect in turbid waters that was available to us as the reference.

The remainder of this chapter is organized as follows. Section 4.2 explains the
essence of reference NIR spectral-similarity method. Section 4.3 brings in linear
and nonlinear mixing models, and derives a mathematical relation between the
linear unmixing and the mentioned reference. Section 4.4 describes comparison
between the unmixing models, and with the reference, using real images. Section
4.4 summarizes with some general remarks and conclusions.
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4.2 The NIR spectral similarity method

Recently, an image-based approach for detection of adjacency effects was described
[Sterckx et al., 2011] based on the correspondence with the Near Infrared Similarity
spectrum defined in [Ruddick et al., 2006]. The approach was originally developed
for high resolution airborne imaging spectroscopy data, but later some successful
applications were demonstrated with MERIS imagery. Since then, the approach has
been referred to as SIMEC (SIMilarity Environment Correction) [Knaeps et al., 2010]
and its essence can be explained as follows.

Based on a theoretical study of the water-leaving reflectance (visible and near-
infrared light leaving the water column) in turbid water in combination with
seaborne measurements, it was found that all water-leaving reflectance spectra
are similarly shaped in the NIR, i.e. 700-900nm range. This spectral shape can
be defined entirely by normalization at a single wavelength: 780nm, where water
absorption is almost temperature independent, yielding a ’similarity’ spectrum. This
normalized water spectrum, rw 780 (λ) = rw (λ)/rw (780) is referred to as the ’Near in-
frared similarity spectrum’ (NIR-ss) and is tabulated in [Ruddick et al., 2006]. SIMEC
exploits it by investigating the deviation from its shape to quantify the adjacency
effect (above water). The magnitude of the adjacency effect at wavelength λ is then
effectively computed as:

E (λ) = x (780)− x (λ)

rw 780 (λ)

(
rw 780 (λ) = rw (λ)

rw (780)

)
(4.1)

where x(λ) is the observed water-leaving reflectance. Hence, when x ≡ rw , we have
E = 0. In the case of water surrounded by vegetated land, henceforth ’vegetation’, E
will be largest at wavelengths where the vegetation reflectance is low compared to
the reflectance at 780nm. In practice, λ should be chosen near the red edge, around
700nm. Such fixing of λ implies that E becomes wavelength independent.

Figure 4.2 further illustrates the central idea the SIMEC approach. The water
spectrum has a fixed shape at 780nm, as specified by the NIR-ss, but this gets altered
when water reflectance is mixed with that of vegetation due to the adjacency effect.
The amount of alteration, ranging from 0 for pure water to some maximum value for
pure vegetation, is taken as a measure of the adjacency effect.

It is worthwhile noticing that the SIMEC approach in principle enables a broader
distinction between two features: water and ’other’ that sufficiently differs from
water (in the NIR range). This is seen from the use of the NIR-ss water spectrum
Rw 780 in Eq. (4.1), where x(λ) can be any water-leaving spectrum. When x(λ)
corresponds to a water spectrum affected by adjacency effects coming from nearby
vegetated land, the maximum for E (λ) will be observed for λ close to 700nm, but for
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Figure 4.2: Error E computed according to Eq. (4.1) (left) using typical vegetation-
and water spectra (right) and a real water spectrum taken from the test data.

water bordering with other ground-cover types this wavelength could be different.
The situation of water being surrounded by vegetated land occurs frequently in
nature, and as such it was the main focus in developing SIMEC.

4.3 Unmixing approach

In Sec. 4.1 we suggested that spectral unmixing can be utilized for detecting the
adjacency effect, as well as qualification of its different components. This premise
can be clarified by revisiting Fig. 4.1. The first thing we notice is that, in the absence
of backscatter (paths 4, 5), both the target and the background contribute to the total
reflectance independently. Such summation essentially connotes mixing according
to the linear mixing model (LMM). The remaining secondary- (path 4) and higher-
order interactions (path 5) should thus be expressible via extension to suitable
nonlinear models.

4.3.1 Linear unmixing

Looking at Eq. (1.1) and Fig. 4.1, we see that the interaction between paths 1 and 3
can be described adequately by taking p = 2 and some e1, e2 as the spectra of the
’target’ and ’background’. There is also a clear physical motivation for insisting on the
positivity: ai > 0 (i = 1,2), but less so for the additivity: a1 +a2 = 1. This is because a
target pixel could in theory contain other contributions but the ones coming from
the two depicted surfaces. The insistence on the latter can be practical, though, for
obtaining more quantitative interpretations (when dealing with reflectance data and
neglecting the higher-order reflections).
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Interestingly, it turns that we can also derive a mathematical relation between the
LMM and the earlier explained SIMEC. Let w and v designate the two endmembers,
i.e. the spectra of water and vegetation, and let w correspond to a pure water
spectrum. Thus, w(λ)/w(780) = rw780 (see above). Assume that the reflectance of a
pixel x is a linear mixture of w and v . Writing out Eq. (1.1) and (4.1) then yields:

x(λp ) = a1w(λp )+a2v(λp ) (4.2)

E = E(λp ) = x(780)− w(780)

w(λp )
x(λp ) (4.3)

where ai (i = 1,2) are the abundances obtained from linear unmixing and λp is the
particular λ that was chosen to make E wavelength independent, i.e. λp ≈ 700nm.
Substituting x(λp ) into E(λp ) in Eq. (4.3) leads to:

E = a2 ·
[

v(780)− w(780)

w(λp )
v(λp )

]
∝ a2 (4.4)

since v and w are both known. In other words, the magnitude of the adjacency
effect computed by SIMEC is proportional to the abundance of vegetation in water,
as determined by linear unmixing. This unmixing in particular requires solving two
equations in the form given by Eq. (4.2), since λ is taken at 700nm and 780nm and
no further constraints are imposed.

Despite the mathematical resemblance, the two methods operate from two
completely different angles. While SIMEC exploits prior model information in the
form of carefully chosen wavelengths and the NIR-ss, the unmixing is data driven.
Another difference is given by the constraints. Although SIMEC does not explicitly
assume any constraints, the specific choice of the NIR-ss and the wavelength of λp '
700nm implies that E will be positive, since x(λp ) ' w(λp ) (see also Fig. 4.2). When
approaching the adjacency effect as a mixing problem, it is clear that the abundances
should be positive. The sum-to-one constraint does not seem mandatory (see above),
but with standard linear unmixing this constraint is normally also enforced.

Fully constrained unmixing

Equation (4.4) has shown that the unconstrained linear unmixing yields abundance
a2 that is up to a scaling factor equal to E obtained from SIMEC, where the choice of
the vegetation endmember determines the scaling. This proportionality stays valid
when imposing the sum-to-unity constraint. Namely, the derivation of Eq. (4.4)
was made for any a1 and a2, so it also true when a1 + a2 = 1. However, when the
knowledge about the two spectral bands used by SIMEC is not accounted for, the
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fully constrained unmixing can also be performed unsupervised using all available
spectral bands. For this, a water- and a vegetation endmember are obtained from
the reflectance image (e.g. using some endmember-extraction algorithm) and the
abundances are computed using the FCLSU. While such blind unmixing is beneficial
in that it eliminates the need for any prior information, intuitively we expect that it
will still yield results comparable to those produced by SIMEC.

The latter premise can be investigated more formally knowing that the fully
constrained linear unmixing can be effectively performed after reducing the data
to a subspace of dimension p −1, where p is the number of endmembers. This is
typically realized via the PCA or some other linear DR technique (see in Sec. 1.3.3).
The idea is now that the unmixing will implicitly emphasize the most telling spectral
bands, which SIMEC uses by design. To examine this, assume once more that
spectrum x is a linear combination of w and v , but now also obeying the additivity:

x = a1w +a2v = a2(v −w )+w (4.5)

a1, a2 > 0, a1 +a2 = 1

From earlier explained theory, we know that such x will reside on a 1-dimensional
simplex, i.e. the line segment delimited by w (e1) and v (e2). See Fig. 1.5. Moreover,
we know that the PCA computes a new orthonormal basis Q = {q 1 , q 2 , . . . , q m} for
data X T = [x1 x2 . . . xn] in such a way that the first vector or principal component q 1
maximizes the variance of the data projected onto it (see Sec. 1.3.3): y = X q1, where
x i and q i are m ×1 vectors and n > m. For X ≡ x from Eq. (4.5), q 1 will point in the
direction of v −w , because the only change happens along that direction (via a2).
Hence, we can express the projection xT(v −w ) using Eq. (4.5), to yield:

a2 = (x −w )T(v −w )

(v −w )T(v −w )
= 1

‖v −w‖2

m∑
j=1

[x(λ j )−w(λ j ] · [v(λ j )−w(λ j )] (4.6)

We see that the terms with λ j for which v and w differ the most will also contribute
the most. In fact, with the adjacency effect being small (x ≈ w ), v and w having the
shapes from Fig. 4.2 and a sparse sampling of λ, only few λ j > 700nm will really
count. So, there is a resemblance between a2 and E from Eq. (4.3). In Sec. 4.4.3 we
investigate this resemblance experimentally.

4.3.2 Generalized bilinear model

An extension to the LMM that also accounts for second-order interactions between
the endmembers is the bilinear mixing model (see Sec. 1.3.3). A convenient form
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4. UNMIXING FOR DETECTION OF ADJACENCY EFFECT

called the generalized bilinear model (GBM) was recently studied in [Halimi et al.,
2011a], which for a given pixel x is formulated as:

x =
p∑

i=1
âi e i +

p−1∑
i=1

p∑
j=i+1

γi j âi â j e i ¯e j +n (4.7)

0 ≤ γi j ≤ 1 ∀i ∈ [
1, p −1

]
, ∀ j ∈ [

1, p
]

We see that the main difference between the GBM and LMM is the summation of
the interaction terms for endmembers taken by their Hadamard product: e j ¯ek =
[e j 1ek1, . . . ,e j LekL]T. The convenience of the form given by Eq. (4.7) arises when
examining the role and constraints on the coefficient γi j . (The constraints on ai

from Eq. (1.1) remain valid but now apply to âi .) When γi j = 0, GBM reduces to
LMM and âi becomes equal to ai . This practically tells that γi j controls the amount
of interaction between endmembers e i and e j in pixel x , and thereby the degree of
nonlinearity in the mixture. An implication of having such pixel-dependent γi j is in
that it enables a highly flexible fitting of a bilinear model (one could argue that even
more flexibility can be achieved by dropping any constraints on γi j ).

The utility of GBM for detecting the adjacency effect can be understood directly
by considering how it extends the LMM. In the case of two endmembers, e1 and
e2, the GBM introduces an additional multiplicative term e1 ¯ e2. Looking at Fig.
4.1, this term can be associated with the interaction between the ’target’ (e1) and
’background’ (e2) according to path 4. This reading also suggests that the remain-
ing multiple backscattering (path 5) could be tackled by extending Eq. (4.7) with
quadratic and higher-order powers; yet, such extensions are normally considered
impractical and are therefore avoided (see [Somers et al., 2009] and Sec. 1.3.2).

The determination of the unknown parameters of the GBM: the abundances
âi , the nonlinearity-coefficients γi j and the noise variance σ2

n was implemented
in [Halimi et al., 2011a] using a hierarchical Bayesian estimator. The benefit of this
approach resides in its ability to converge and fit Eq. (4.7) to particular data, but this
comes at the cost of notable computational complexity. Therefore, an alternative
implementation from [Halimi et al., 2011b] opts to estimate the mentioned parame-
ters by resorting to some common optimization strategies (e.g. gradient descent),
and it is also the implementation we adopt for our experiments.

4.3.3 Data-driven nonlinear unmixing

One way to address multiple interactions between the endmembers but avoid exten-
sive model fitting is to consider a data-driven approach. Here, we take as suitable
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our algorithm described in Sec. 2, which we shall henceforth refer to as the ’non-
linear unmixing’ (NLU). Because Eq. (2.2) does not presume an explicit F , it could
cover both linear and bilinear data dependencies and beyond. This is what makes
it attractive as an integral method for addressing all different interference paths
depicted in Fig. 4.1. One may simply take two endmembers for the ’target’ and
’background’ (same as with the LMM and GBM) and use the fractional volumes from
Eq. (2.5)–(2.8) with geodesic distances to determine their ’nonlinear abundances’.
However, due the uninspiring geometry of having only 2 endmembers, using multi-
ple (non-water) endmembers seems advisable for this method. Another aspect is
that the implicitness of Eq. (2.2) disallows reconstructing the pixels spectra x , which
makes the NLU less suitable for quantitative comparisons.

4.4 Experiments

In this section we give an empirical assessment of our considered mixing models as
a means detecting and qualifying the adjacency effect. This is done on real images
via comparison with the adopted reference method: SIMEC, as well as by cross
comparing the mixing models among themselves.

4.4.1 The dataset

The test data consists of two different sets of MERIS-FR images that were available
to us from a VITO archive. The images had been acquired above coastal and inland
waters under varying atmospheric conditions. The first set corresponds to a moni-
toring of the artificial Lake Manantali in Mali, Africa, while the second presents an
extended view of the Belgian coastline. Both scenes had been judged suitable for
studying adjacency effect, in that none was expected to include substantial degree
of mixing on the surface of interest (water). In the case of the Belgian coastline, we
additionally confined the view to a region-of-interest (ROI) starting at around 700m
from the coast and ending at several kilometers into the open sea. This was done
to exclude the likely stretches of shallow water (under normal tide), as well as the
far-away stretches where the adjacency effect is anyhow not likely to occur. All this
was to ensure that any impurity in the observed water-leaving reflectance could be
fairly interpreted as a predominant manifestation of the adjacency effect.

The actual image selections are shown in Fig. 4.3 and 4.5, and are henceforth
referred to as set 1 and set 2. The mentioned ROIs used with set 2 are also shown.
Figure 4.4 furthermore shows some additional and freely available images that give
more idea about the imaged site in set 1. All the hyperspectral images designate
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Figure 4.3: An RGB view (R=680, G=560, B=412nm) of the images constituting set 1,
referred to as 1.1 (left), 1.2 (middle) and 1.3 (right).

Figure 4.4: An areal photo of the Manantali Dam and lake (source: Wikipedia)
and an image of the lake acquired by NASA Landsat 7 satellite, in 2003 (source:
www.earthobservatory.nasa.gov).

Figure 4.5: A RGB view of the images from set 2, denoted as 2.1 (left) and 2.2 (right).
The quadrilaterals depicted in red designate the ROIs used for the actual assessment.
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Table 4.1: Atmospheric parameters and meta-data (AOT = Aerosol Optical Thickness)

Image Date AOT AOT Water vapor

at 675nm at 440nm (cm)

1.1 16/09/05 0.3398 0.3844 3.4344

1.2 09/11/05 0.1743 0.2036 1.6362

1.3 25/08/05 0.3839 0.4097 3.9198

2.1 27/09/11 0.2254 0.4386 1.3740

2.2 10/08/11 0.0925 0.1197 1.4807

a same (roughly linear but not uniform) 15-band sampling of the reflectance in
the 412-885nm range, having a slightly varying spatial scale and sub-setting within
each set. The image size amounts around 145x155 pixels for set 1 and for set 2 this
is 250x420 pixels. In both sets full resolution MERIS data with a resolution at sub-
satellite point 300m was used. Furthermore, all the images were atmospherically
corrected using the same Modtran-based technique described in [Haan de and
Kokke, 1996], but no specific adjacency correction was applied. The accompanying
atmospheric parameters, as measured by the nearest AERONET station, are listed in
Table 4.1.

4.4.2 Experimental setup

The main purpose was to compare unmixing and SIMEC using a same set of well-
defined classes characterizing the target – water and its adjacent surroundings. In
our imagery these classes were reasonably expected to include few endmembers
abundantly represented as pure pixels. This is why we could afford to extract them
in a supervised and largely manual fashion. Once known, these endmembers were
usable according to Sec. 4.3 to unambiguously solve each of the unmixing equations.

In the case of set 1, two endmembers – one for water and one for vegetation were
obtained by selecting or averaging representative pixels from the lake’s center and
surroundings. The spectral variability of set 2 was larger, so the endmembers for
this set were obtained via a two-step process: automatic extraction via algorithms
such as N-findR (see Sec. 2.1) and SMACC [ENVI, 2009], followed by manual refine-
ment. The latter step basically refers to discarding of endmembers based on our
visual inspection of their spectra and unmixing results (notice e.g. the cloud-like
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Figure 4.6: Endmembers extracted from set 2. The water endmembers have been
named by interpreting their spatial location in the image.

content in image 1.3). This process resulted in 1-2 endmembers for ’water’ and
2-3 endmembers for ’non-water’, which were then used to yield representative end-
member(s) for each class. The water endmembers differed between the coastal
and ’open-sea’ regions, so the former was logically selected for unmixing the ROIs.
The non-water endmember pixels were used in conjunction, selectively (minding
their spatial proximity to the ROIs) or simply averaged. Figure 4.6 illustrates some
of this. Note that we employed multiple non-water endmembers also as a way of
inducing more complex data manifolds and thereby accommodating some of the
mixing models, in particular the NLU from Sec. 4.3.3.

The endmembers were used in the mixing models according to Sec. 4.3 to
generate three sets of abundance-maps: ai

(
x, y

)
, âi

(
x, y

)
and ãi

(
x, y

)
, and in the

case of GBM also the ’gamma-maps’ γ12
(
x, y

)
. In turn, the output of SIMEC was

molded into an ’adjacency-map’ by relating 1−∥∥E
(
x, y

)∥∥ to the intensity of pixel(
x, y

)
, with E given by Eq. (4.1) and ‖.‖ a normalization confining it to interval [0,1].

(While Eq. (4.1) does not impose explicit limits on E , typical water- and vegetation
shapes will ensure that E does not exceed [0,1] by much. See also Fig. 4.2.) This
transformation of E was done for the convenience of obtaining a same range and
suitable visual interpretation for all the maps. This connotes that darker pixels
are associated with larger deviations from ’pure’ water, i.e. a stronger adjacency
effect. The mapping of γ12 in its unaltered form means that brighter pixels in a
’gamma-map’ will correspond to more nonlinearly mixed pixels.

Lacking a ground truth for our images, i.e. a reference information about the
magnitude of adjacency effect playing in each pixel, a direct way to obtain qualitative
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comparisons was to visually interpret the different maps over the regions-of-interest
(ROIs). With set 1, the ROIs covered the entire water surface (the lake), while with
set 2 they were confined to the quadrilaterals depicted in Fig. 4.5 and motivated
above. To isolate the ROIs, each map was multiplied with a matching and manually
constructed binary mask. While such masking was already useful in accentuating the
relevant detail in each map, further contrast enhancement was achieved via classical
histogram manipulation [Gonzalez et al., 2003]. In particular, the abundance- and
adjacency-maps were effectively transformed by translating their input range to
a same new range, typically [0,255], using linear scaling. The gamma-maps gave
more skewed histograms and had to be treated using both linear and nonlinear
contrast-stretching transformations.

4.4.3 The comparison

The LMM case

In Sec. 4.3.1 we established the equivalence between SIMEC and LMM, given that
the latter is applied without unmixing constraints and using the specifications of
SIMEC: the NIR-ss and the two spectral bands. This theory was confirmed by our
computations, where the difference between a1 and 1−‖E‖ indeed consisted only of
a largely constant scaling factor specific for each image (as it depends on the shape
of the non-water endmembers). The question was, then, if notable resemblance
with SIMEC would also follow for the fully-constrained LMM (FCLSU) using all
spectral bands, as we anticipated in Sec. 4.3.2.

We show this comparison in Fig. 4.7, for brevity only for selected images from
Fig. 4.3–4.5. Overall, we see an impacting symmetry between the results of FCLSU
and SIMEC. The same picture was obtained with the remaining images and when
using more than two endmembers. While these qualification concerns the contrast-
stretched maps, the histograms of the un-stretched data (shown for the image with
the most deviating results) give an idea about the scale. The same scale can be used
to derive a sense about the magnitude of the adjacency effect, which is in essence
proportional to the count of values deviating from 1 (pure water). Recall from Sec.
4.4.1 that no mixing was expected on the water itself, making all deviations from it
mostly imputable to the adjacency effect.

Summarizing, we can say that, while there was some difference between FCLSU
and SIMEC, it was showing mostly in the scale and not so much the spatial distribu-
tion of the affected pixels. It is worthwhile to point out that the largest differences
were observed with the images from set 2, which can be partly attributed to a greater
spatial scale and larger spectral variability of those data. This created more freedom
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Figure 4.7: Contrast-stretched maps showing the adjacency-effect detection for
images 1.2, 1.3 and 2.1. Top: Inverted spectral error (1−‖E‖) obtained from SIMEC.
Bottom: Abundance-map for water (a1) computed by FCLSU.

in selecting the endmembers and thus a larger chance for disagreement with the
preset information used by SIMEC.

The GBM case

A meaningful exercise for the GBM was to examine the difference between its linear
abundances â1 and their counterparts a1 produced by the LMM, and how it would
relate to γ12. Since the role of γ12 is to promote flexibility of fitting a bilinear mixing
model (other models are mentioned in, e.g. [Halimi et al., 2011a]), the question was
whether the GBM would yield a worthwhile distinction with the LMM. Figures 4.9
and 4.10 show the results of applying the GBM using two endmembers and the ROI
images from set 1 and set 2. One sees that there is a general resemblance between
the abundance-maps produced by the GBM and their counterparts obtained by
applying the LMM under the same conditions (see Fig. 4.7). For all images but 1.3
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Figure 4.8: The un-stretched histograms of 1−‖E‖ (left) and a1 (right) corresponding
to the two images from the far right column in Fig. 4.7.

and 2.1, there is a non-trivial picture of γ12 6= 0 largely complementing that of â1. By
non-trivial we mean other than the typical picture of γi j 6= 0 being concentrated at
the spatial boundary between classes i and j [Halimi et al., 2011a]. Furthermore, we
can say that all the gamma-maps appear ’logical’, in the sense that γ12 6= 0 are mostly
confined to the coastal regions where one should also expect the largest chance for
secondary reflections (between water and vegetated land).

The next step was to evaluate the unmixing results by computing some com-
monly used error measures [Keshava and Mustard, 2002]. One of the most prevalent
such measures is the RMSE, which calculates the average difference between the
original N pixels x and their reconstructions x̂ obtained from particular model, as:

RMSE =
(

1

N L

N∑
i=1

‖x(i )− x̂(i )‖2

)1/2

(4.8)

where L is the number of spectral bands. Because the RMSE is often explicitly
minimized when estimating parameters of unmixing models (as is the case with e.g.
FCLSU), it is often prudent to consider additional measures, like the spectral angle:

S A = 1

N

N∑
i=1

arccos

( 〈x(i )x̂(i )〉
‖x(i )‖‖x̂(i )‖

)
(4.9)

A worthwhile distinction in assessing these measures was to be made between
pixels with small and large γ12. The motivation for this discernment is a premise
that a larger γ12 should be justified by a better fit of the GBM compared to the LMM;
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Figure 4.9: Contrast-enhanced results of GBM using two endmembers and images
from set 1. Top: abundance-maps for water (â1). Bottom: gamma-maps showing the
nonlinearity coefficient between water and non-water (γ12).

else, one can argue that it is always possible to enlarge γ12 at the expense of â1

while maintaining the same RMSE. A fair complementarity of â1 and γ12 is in fact
already seen from Fig. 4.9 and 4.10. Thus, we subdivided γ12 into 2 subsets: a set
of pixels with negligible values of γ12 (the dark-grey pixels in a gamma-map) and a
set of pixels with values of γ12 that significantly differ from 0. Table 4.2 shows this
assessment for the relevant images and the situation with two endmembers. We
see that the subsets with large γ12 indeed consistently induced error decrements
for the GBM relative to the LMM, an effect which is best visible in images from set
1. This suggests that, at least in some pixels, there was a genuine play of secondary
reflections.

Notice that none of the above error measures was usable with SIMEC, due to the
lack of an upper limit and thus absolute scale for E from Eq. (4.1). Another reason
for not bringing in SIMEC is that we already established its resemblance to the LMM.
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Figure 4.10: Contrast-enhanced results of GBM using two endmembers and images
from set 2. The reading is the same as in Fig. 4.9. To place the γ12 for image 2.1 on
the left, the non-water (coast) is also shown by its (attenuated) abundance, â2.

Table 4.2: Errors of (bi-)linear unmixing with 2 endmembers

RMSE (×10−2) SA (×10−2)

LMM GBM LMM GBM

Img. 1.1
a: γ12 ' 0 3.83 3.82 9.53 9.54

b: γ12 > 0 2.00 1.82 6.10 5.57

Img. 1.2
a 1.07 0.98 3.86 3.87

b 2.32 2.17 9.05 8.6

Img. 1.3
a 1.18 1.17 6.65 6.4

b 2.62 2.56 12.22 12.03

Img. 2.2
a 4.88 4.88 7.20 7.14

b 5.17 5.15 9.33 9.14
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The NLU case

As explained previously, a suitable way to assess the NLU was to compute its abun-
dance maps ãi (x, y) and compare them visually with their counterparts produced by
the GBM (âi ) and LMM (ai ). We can be brief about this by saying ãi much resembled
âi and ai . A more rigorous comparison would examine the histograms. Ideally, the
difference between ai and ãi would be equal to or larger than the difference between
ai and âi , since the NLU is seen as a model that can theoretically encompass both
the linear terms and nonlinearities beyond the bilinear multiplication.

Experimentally, we found that the difference between ãi and â was insignificant.
This may be ascribed to both the absence of nonlinearity in the data and the NLU
model itself. From the theoretical point of view, one should realize that the diver-
gence of ãi from their (bi-)linear counterparts depends on the curvature of the data
manifold. Suppose that the nonlinear embedding in Fig. 2.1 was formed by slight
bending the sheet of paper in-between the corners of the 2D triangle (which is well
describable by a bilinear model). In this case, it would not make much difference if
the volume ratios with geodesic distances – determining the ãi (see Sec. 2.2.4), were
measured along the bent surface or its 2D projection. At the same time, we have
seen that even the GBM produced only a slight difference with the LMM.

Relation to atmospheric parameters

Besides comparing the unmixing results, one may wonder about their possible
relation with the atmospheric data. Looking at Table 4.1, an intuitive interpretation
of each parameter is that its increment should lead to a larger adjacency effect.
Such correlation is indeed observed for some of our images; however, we can also
find image pairs (e.g. images 2.1 and 1.2) with comparable atmospheric data but
different relative amounts of non-pure water pixels. Actually, this is not so strange
if we realize that Table 4.1 shows only some of the possible atmospheric variables.
In practice, such variables are likely to exhibit interdependence and more than just
straightforward linear relation with the adjacency effect.

4.5 Conclusion

We have investigated the utility of spectral unmixing as a means of detecting and
qualifying the adjacency effect. A distinctiveness of this approach resides in that a
data-driven unmixing, which is normally used for unraveling of mixed pixels on the
ground, is now engaged for treating an atmospheric effect, which is also typically
treated in model-oriented fashion. We have implemented the said unmixing by three
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different models, grading from the explicit linear and bilinear, to a more implicit
nonlinear model. Each model has been motivated by its theoretical fit to a specific
configuration regarding the solar reflection and atmospheric scatter composing
the overall adjacency effect. As a reference, we have used a specialized adjacency-
detection method that equally operates on a pixel basis but requires prior knowledge
(model) about the reflectance of the target (water).

Our theoretical analysis and experiments with diverse imagery show that unmix-
ing can indeed yield similar results as the model-oriented treatment. In this case,
linear unmixing proved to be ample, but its bilinear extension was also useful in that
it provided a meaningful enrichment of the linear results. Since our images included
relatively few and uncorrelated (sparsely sampled) spectral bands, more general
multivariate analysis could be instructive in forming additional judgment about the
presence of nonlinearity in the data.
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UNMIXING FOR WATER-QUALITY RETRIEVAL

Abstract

Estimation of water quality in inland and coastal waters is a vital part of
hydrological observation. In this chapter, we study this estimation as a spectral
unmixing problem. Our starting point is the provision of an analytical model
relating the reflectance of water to its impurities or constituents, as specified by
their inherent optical properties (SIOP) and concentrations. To gauge these con-
centrations via unmixing, we explore a methodology that combines common
unmixing with a suitable definition of endmembers exploiting the knowledge
of the water-reflectance model. To mitigate the dependence on off-line defi-
nitions, we explore the extractability of the endmembers from the reflectance
data by analyzing a dataset we construct using the water-reflectance model.
Subsequently, we test the derived techniques with real water content, and we
use the unmixing abundances to produce the actual concentration maps and
compare those with the available reference. This is done for a hyperspectral
image acquired over coastal waters of a shallow sea.

N.B. Most of the work described in this chapter has been published in
[Burazerović et al., 2014]. In the chapter, the author of the thesis also gives
additional clarification and illustrations for several of the used concepts, as well
as a mention of their feasible elaboration.

85



5. UNMIXING FOR WATER-QUALITY RETRIEVAL

5.1 Introduction

Monitoring of water quality in inland and coastal waters is a vital study area within
the all-important field of hydrological observation and water-resource management.
Traditionally, the composition and dynamics of water have been gauged via in situ
measurements that essentially offer a point-based sampling of the water surface
[Su et al., 2011]. However, due to the cost and limitations of this methodology in
providing extensive spatial and temporal coverage, the use of remote sensing has
been proliferating in recent years. The different modalities and techniques are here
considered mostly in conjunction with strategic in situ sampling, which then serves
to derive model parameters or establish a ground reference [Su et al., 2011].

The basic idea upon which rest all water-quality retrieval algorithms is that the
water-leaving reflectance (visible and near-infrared light leaving the water column)
is largely shaped by the identity and concentration of in-water substances (masses,
bodies) or constituents. The exact definition of a water constituent can vary (see e.g.
[Hommersom et al., 2011] and references therein), but in coastal and inland waters
those that are optically active are: colored dissolved organic matter (CDOM), totally
suspended materials (TSM), or equivalently suspended particulate material – SPM
or total suspended sediment/solids – TSS, and chlorophyll-a (CHL). Furthermore,
most inland and coastal waters can be classified as ’case 2’, which means that
all the constituents vary independently from each other [Su et al., 2011]. These
observances have inspired many works in which the water-leaving reflectance is
essentially inverted to obtain the unknown concentrations. This naturally assumes
that all sources which, in addition to the water-leaving reflectance, contribute to the
observed signal should be modeled and removed. Examples of these influences are
sun- or sky glint Kay et al. [2009], atmospheric effects Salama et al. [2004] (see also
our Chapter 4), etc. Figure 5.1 provides an illustration.

One of the prerequisites for inverting the water-leaving reflectance is to express
it in terms of the total absorption and backscatter, or the inherent optical properties
(IOP) of each water constituent. There exist several models that do so analytically
using rational functions [Maul and Gordon, 1975] or more complex extensions
thereof [Albert and Mobley, 2003]. The second element is to write IOP as products
of concentration-specific IOP, or SIOP, and the respective concentrations. When
the SIOP are known, e.g. from in situ or lab measurements, this enables to esti-
mate the concentrations directly from the observed reflectance. One common way
of doing so has been to apply the ordinary least squares (OLS), i.e. linear regres-
sion Hakvoort et al. [2002]. Another approach has used training of artificial neural
networks [Schiller and Doerffer, 2005]. Yet another route has been to invert the
spectrum indirectly, by comparing it with a spectral library constructed by substi-
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Figure 5.1: Water-quality retrieval via remote sensing. Aside from the interfering
signals, the main object of analysis is the water-leaving reflectance shaped by the
concentration-specific absorption and backscatter of water bodies, i.e. constituents.

tuting known concentrations into some water-reflectance model [Woerd van der
and Pasterkamp, 2008]. A worthwhile study from the latter category, albeit with a
different focus – mapping of microphytobenthos biomass, is also found in [Combe
et al., 2005]. In general, the main limitation of all model-based methodology is its
sensitivity to variations in the reflectance signal, which can be due to sensor noise,
variation of SIOP, or inadequate estimation and correction of atmospheric effects.

A different take on the estimation of water-mass concentrations in coastal and
inland waters was recently elaborated by [Hommersom et al., 2011] that makes
use of spectral unmixing. The central idea was to employ the conventional linear
mixing model (LMM), as we explained it in Sec. 1.3.1, wherein the endmembers
are suitably defined as representations of different water types dominated by one or
more constituents. Each endmember was then in effect to be calculated by substi-
tuting the known (in situ measured) SIOP and in turn utmost concentrations of each
constituent into an adopted water-reflectance model. Despite the demonstrated
ability of this approach to yield good reconstruction of the water spectra, its only
qualitative translation of the unmixing result to concentrations and extensive refer-
ence to in situ measured data remain a limitation. We mitigate this by introducing
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several add-ons. To start with, we explore extractability of the endmembers from the
data. With the predefined endmembers, and those extracted from the real image,
we then perform unmixing and use available ground-truth pixels to derive a model
translating the unmixing abundances to actual concentration maps. We compare
those with maps precomputed by a curve-matching method that were available to
us as a reference. Through all this, we also give a more theoretical assessment of the
unmixing approach in relation to the water-reflectance model.

The remainder of this chapter is organized as follows. Section 5.2 explains our
framework and the core components in our approach. This includes a prevalent
water-reflectance model and a derived endmember model that links the former to
spectral unmixing, which we describe in detail in two separate subsection. Section
5.2 discusses our assessment of this endmember model and our method for end-
member extraction. Section 5.5 validates the entire unmixing approach on a real
hyperspectral data, by comparing its results with the available reference. Section 5.6
closes with conclusions and discussion.

5.2 Methodology

5.2.1 Water reflectance modeling

A common way to analytically relate reflectance of water to its constituents (see e.g.
Hommersom et al. [2011], Knaeps et al. [2010], Hakvoort et al. [2002]) is to use the
model formulated by Maul and Gordon [1975]:

R̂(0−,λ) = f · b(λ)

a(λ)+b(λ)
(5.1)

where R(0−) is the subsurface irradiance reflectance (depth = 0–) and we use the
accent to distinguish the modeled reflectance from the observed (e.g. ship-based or
airborne) one. Furthermore, a and b denote the total absorption and backscattering
coefficients, and f is a parameter that is specifically related to illumination and
viewing conditions but is usually assumed constant for particular water surface (e.g.
Dekker [1993] found that for typical Dutch inland waters 0.2 ≤ f ≤ 0.59 ). While
other models certainly exist, it is fair to say that most connote some variation of
Eq. (5.1) obtained by using more elaborate definitions of f , or using b/(a +b) as a
factor in more complex formulas including e.g. higher-order polynomials Albert
and Mobley [2003]. We leave aside these elaborations and concentrate on Eq. (5.1),
where we shall hence omit f and suppress the wavelength dependency to yield
simplified notations. We shall bring this dependence up again wherever required by
the context.
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A typical assumption in the above analysis is that a(m−1) and b(m−1) can be
decomposed as linear sums of contributions from pure water (seawater) and the
other mentioned constituents: CDOM, TSM and CHL. The constituent terms can
in turn be written as products of concentration-specific IOP or SIOP (a∗ and b∗)
and corresponding concentrations, so that aCHL = a∗

CHLCHL, aTSM = a∗
TSMTSM and

aCDOM = a∗
CDOMCDOM. Another convention decomposes the IOP into water, dissolved

and particulate fractions Lee [2006]. This dictates splitting the absorption of TSM
into its particulate (phytoplankton or algae) and the Non-Algae-Particles (NAP) part,
i.e., aTSM = aph +aNAP [Babin et al., 2003]. As still the NAP are dominant in complex
waters under consideration, the NAP and TSM concentrations can be assumed to
be equal and we can write aNAP = a∗

NAPTSM Nechad et al. [2010]. Due to negligible
(back)scatter for dissolved matter, one derives the following expressions for the IOP:

a = aw +a∗
NAPTSM+a∗

CHLCHL+a∗
CDOMCDOM

b = bw +b∗
NAPTSM (5.2)

where aw and bw are the absorption and backscatter of clean water, a∗
i , b∗

i are the
SIOP and TSM (g/m3) and CHL (mg/m3) are concentrations. Concentration of CDOM
is measured by its absorption [Kirk, 1994; Babin et al., 2003]:

aCDOM(λ) = aCDOM(λr )e−S(λr −λ) (5.3)

where aCDOM(λr ) is the absorption (m−1) at a reference wavelength, typically 440nm.
Minding the above notation we define CDOM≡ aCDOM(λr ) and a∗

CDOM ≡ exp(−S(λr −λ)).
A similar formula as given by Eq. (5.3) is also used for aNAP(λ), and since absorptions
of NAP and CDOM are difficult to distinguish, ocean color algorithms typically
retrieve their sum [Aurin and Dierssen, 2012; Lee, 2006]. Inserting a and b from
above into Eq. (5.1) that omits the wavelength dependency then yields:

R̂ = bw +b∗
NAPTSM

aw +bw + (a∗
NAP +b∗

NAP)TSM+a∗
CHLCHL+a∗

CDOMCDOM
(5.4)

or equivalently:

(a∗
NAP +b∗

NAPR̃)TSM+a∗
CHLCHL+a∗

CDOMCDOM=−aw −bw R̃ , (5.5)

R̃ = (R̂
−1 −1)

These formulas now permit to clarify some of the approaches for inverting R̂ that
we mentioned above. Specifically, one way to estimate the concentrations ci ∈
{TSM,CHL,CDOM} is to take R̂ and {ai , bi } in Eq. (5.5) at n ≥ 3 wavelengths, yielding
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a full-column-rank system Ac = y that can be solved by OLS. The solution is then
given as ĉ = (AT A)−1 AT y , where c = (TSM ,CHL ,CDOM) is the vector of concentrations,

A =

 a∗
NAP(λ1)+b∗

NAP(λ1)R̃(λ1) a∗
CHL(λ1) a∗

CDOM(λ1)
...

...
...

a∗
NAP(λn)+b∗

NAP(λn)R̃(λn) a∗
CHL(λn) a∗

CDOM(λn)


and y = (−aw (λ1)−bw (λ1)R̃(λ1) , . . . ,−aw (λn)−bw (λn)R̃(λn)). Note that the inverse
(AT A)−1 must be computed for each data point, due to the dependence of both A
and y on the input reflectance, via R̃. In the literature, authors have often rightfully
remarked that the said OLS solution will not guarantee all positive concentrations
Knaeps et al. [2010]. This has sometimes been circumvented by fixing one of those,
such as CDOM in Hakvoort et al. [2002], which also seems justified considering the
aforementioned indistinguishably of a∗

CDOM and a∗
NAP. We ought to add that non-

negativity of c as a solution to Ac = y should in principle be attainable by applying
the NNLS algorithm by Lawson and Hanson [1974]. See also Sec. 3.1.

A popular alternative to this matrix inversion has been to avoid it altogether
and construct a library of spectra {R̃i } to be matched the observed spectrum, R̂.
These library spectra are then obtained by inserting the known SIOP (a∗

i ,b∗
i ) and

concentrations (ci ∈ {TSM,CHL,CDOM}) into the reflectance model; particularly, the
model from Eq. (5.4) allows reading out directly the {ci } that produced some R̂.
There exist many approaches that use this basic curve matching idea and they differ
mostly in how they assess the difference between R̃i and R̂. A recent study from
Knaeps et al. [2010] does this by looking at both the classical root-mean-squared
error, RMSE= E [(R̃i − R̂)2] and a difference between specific wavelet features from
the two spectra. Another approach from Kempeneers et al. [2005] uses simulated
annealing to optimize the RMSE over all spectra. In the sequel, we shall use the term
’curve-matching’ to refer to a combination of these two methods, as this had been
used to produce results that we take as reference in our experiments.

We should remark that different treatments of the ocean color data certainly
exist, where the above described methods belong to the prevalent group of semi-
analytical algorithms. This term tells that the bio-optical stages of the radiative
transfer equation are expressed by empirical relationships Ufermann [2003].

5.2.2 Unmixing approach

When aiming to reformulate the water-quality retrieval as an unmixing prob-
lem, one possibility is to take the mathematical view and examine the express-
ibility of Eq. (5.4) as an unmixing equation. For fixed SIOP, this may connote
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Table 5.1: Combinations of ci ,low and ci ,high defining the endmembers via Eq. (5.4).

Endmember TSM (g/m3) CHL (mg/m3) aCDOM(440) (1/m)

e1 0 0 0

e2 1 1 0.2

e3 1 1 3

e4 1 60 0.2

e5 1 60 3

e6 100 1 0.2

e7 100 1 3

e8 100 60 0.2

e9 100 60 3

seeking a multi-univariate decomposition [Gutierrez et al., 2002] of Eq. (5.4) as:
R̂ = g (h1(c1),h2(c2),h3(c3)), with ci ∈ {CHL,TSM,CDOM}. The derived g (·) would ide-
ally stage some known mixing function, giving the univariates {hi (ci )} the role of
independent endmembers. By inverting this g ({hi }), and in turn each of the {hi (·)},
one could then directly translate the endmember abundances to wanted concen-
trations: {ci }. Unfortunately, a clear obstacle for decomposing Eq. (5.4) is its low
polynomial order. We could try using more complex water-reflectance models, but
even then it is unsure what form of g (·), if any, we could obtain.

An alternative, thus, is to start with an mixing model we know how to invert
and invoke Eq. (5.4) in contemplating a suitable definition of endmembers. This
approach was recently worked out by Hommersom et al. [2011], whom proposed
to use the standard fully-constrained linear unmixing (LMM), while defining the
endmembers as representations of water types dominated by one or more water
constituents. The latter was practically attained by inserting into Eq. (5.4) the SIOP,
and in turn extreme concentrations of each constituent, as acquired from in situ
measurements. In mathematical terms, this unmixing is expressed as given by
Eq. (1.1) with the endmembers specified by Table 5.1. The table shows the possible
combinations of ci ,low = min{ci (x, y)} and ci ,high = max{ci (x, y)}, with (x, y) denoting
the pixel coordinates. The values of {ci ,high} were derived from a study area similar
to ours (see Sec. 5.5.2), while {ci ,low} were chosen different from 0, because pixels
with 100% concentrations are unfeasible in water solutions. The e1 thus represents
the spectrum of pure water, as characterized by e.g. [Pope and Fry, 1997].

At this point we ought to recognize some viable alternatives to this LMM-based
approach. One is to apply nonlinear (e.g. bilinear) mixing models, using the same or
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different definition of endmembers. The use of nonlinear unmixing seems justified
by an intuitive notion that a sample of water comprises an ’intimate’ mixture (see
Sec. 1.3.2) of pure water and other substances. Yet, the endmembers from Table 5.1
already incorporate mixing, since several of them permit high concentrations for
more than one constituent. This entails that writing out Eq. (1.1) with x = R̂ , while
inserting the {e i }(i = 1,9) from Table 5.1, will yield an elaborate expression for R
featuring non-negligible cross products of powers of {ci }. Hence a nonlinear relation
between R and {ci } that determine its shape. Another distinctive take on unmixing
may consist of storing the signatures of water endmembers in a dictionary and
applying (sparse) regression [Iordache et al., 2011]. One counterargument for using
this approach is that it principally resembles the aforementioned curve matching,
whereby the water spectra are also matched with a library, only directly.

The ability of the described endmember model to reconstruct the water spectra
was already demonstrated in [Hommersom et al., 2011]. Our goal next is to provide
a more formal analysis and case for using this model, by considering additional
actions, like extraction of the {e i }(i = 1,9) from the data and quantitative translation
of their abundances {ai } to actual concentrations. If linearly combining the {e i } can
describe any water spectrum, then getting the concentrations by combining the {ai }
should also be feasible. To explore the reach of the endmember model, we construct
and analyze a representative test data using our knowledge of Eq. (5.4) and Table 5.1.
From this, we design a specific endmember-extraction (EE) strategy. We then use
the predetermined and extracted {e i } to unmix a real image via the FCLSU (see Sec.
3.1), to obtain the abundances {ai }. Finally, we use the available ground-truth pixels
to derive a model that will translate these {ai } to full concentration maps.

5.3 Endmember extraction

When considering automatic extraction of our water endmembers, it is clear that
reference to Eq. (5.4) and Table 5.1 cannot be avoided if we are to identify the
extracted {e i } and thereby enable interpretation of the unmixing result. So we could
take this knowledge upfront into the extraction process. Nevertheless, posterior
matching of the pre-specified {e i }(i = 1,9) to a small subset of candidates extracted
in a data-driven fashion can be a convenient way of dealing with the expected
homogeneity of water spectra. Therefore, we opt for the use of unsupervised (data-
exploratory) extraction techniques.

We ought to point out that, in all our further discussion, we will assume that the
SIOP are known. These SIOP will in effect correspond to data obtained from in situ
measurements, as detailed in Sec. 5.6.
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Figure 5.2: The effect of varying ci ∈ {TSM,CHL,CDOM} within its range defined by
Table 5.1 while keeping c j , j 6= i constant (at their range average)

5.3.1 Assessment of the endmember model

The first question to ask is whether the {e i }, (i = 1,9) from Table 5.1 do in fact rep-
resent true (geometric) endmembers. A direct way to ascertain these {e i } as the
extremes of R̂ from Eq. (5.4) is to study this as a trivariate function of {TSM,CHL,CDOM}.
However, the fact that R̂ is at the same time a function of the SIOP (which themselves
depend on λ) makes this impractical. Still, by varying each ci while fixing the others,
we learn that different ranges of {ci } affect mostly distinct parts of R̂, which in turn
implies that discerning not only the shape of a water spectrum but also its scale is
relevant. Figure 5.2 gives an illustration. Notice that the visible wavelengths are also
the most discerning, as all water spectra tend to converge in the NIR range Ruddick
et al. [2006].
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Figure 5.3: Endmembers yielded by the Gordon model when using values from Table
5.1 and in situ measured SIOP for our test image (e1 is out of range and omitted).

Another and more empirical way to ascertain the {e i } is to affirm them as being
the vertices of a data-enclosing simplex. This is even more interesting since knowing
Eq. (5.4) allows us to construct a perfectly representative test data. Namely, if Eq.
(5.4) describes any water spectrum, and the SIOP and {ci ,low, ci ,high} from Table 5.1
are known, then all possible spectra can be obtained by inserting into Eq. (5.4)
random, uniformly distributed ci ∼U (ci ,low,ci ,high). We use this notion to construct
several sets counting from 103 to 203 samples, which practically corresponds to
varying each ci with steps between 5−10 %. In addition, we account for perturbation
in some of the SIOP (a∗

CHL, a∗
TSM, b∗

TSM) by shifting each randomly within a certain
margin. We take these margins to be equal to the standard deviation (σ) from the
mentioned in situ measurements, where the signal-to-noise ratio for the different
SIOP (averaged over all wavelengths and computed as SN R = 20log10(µ/σ), with µ
being the signal average) was found to reside between 10dB and 16dB.

To assess the {e i }(i = 1,9) as endmembers in this constructed data, several
options can be pursued. One is to test the inwardness of the data relative to the
p–simplex defined by {e i }. For this, we may compute the abundances {aki } via the
fractional volumes from Eq. (2.5)–(2.8) and check their additivity

∑
i aki = 1, after

first projecting all k data points onto the simplex plane (see Sec. 3.2). Another
possibility is to see which {e i } can be identified by EE algorithms. One account we
make from this testing is that most {e i } were rightfully designated as endmembers,
while e3, e4 and e5 gave more inconclusive results. Figure 5.3 shows these spectra,
where we see that the three elusive endmembers are condensed at the lower end of
the amplitude range and fairly resemble each other. It is now not difficult to imagine
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Figure 5.4: Reconstruction error for the endmember model on 1000 samples of the
constructed (simulated) data.

how this could impede their discernment, depending on the order and depth to
which they are sought as extremes in the data. One conclusion we draw from all this
is that several e i are likely to be indiscernible to typical unsupervised (geometric)
EE algorithms when operating on real water content.

To examine the coverage of the endmember model, we unmix the constructed
data using FCLSU and {e i } from Table 5.1, and compute two common error mea-
sures – root-mean-square error (RMSE) and spectral angle Keshava and Mustard
[2002], between the original and reconstructed spectra: {ai e i }. Figure 5.4 shows this
result. We infer that the majority of possible combinations of ci ∈ {TSM,CHL,CDOM} in
Eq. (5.4)) is well reconstructed, with few apparently being ’out of reach’ of the end-
member model. This may in part be attributed to the use of unmixing constraints.

5.3.2 Feature extraction and clustering

Unlike with the simulated data, an indiscriminate use of unsupervised EE algorithms
may yield poor detection of {e i } in real (and large) water content, due to greater
homogeneity of those spectra. We will alleviate this problem by reducing the search
space for the EE algorithms. Inspired by our analysis from the previous section, we
reckon that all water spectra exhibit limited shape variation that can be accommo-
dated by grouping them into several clusters. One effect we expect from clustering is
that it can set apart some {e i } by making them appear at the boundaries of clusters.

Clustering of water spectra has been explored before for both classification
and to define endmembers – as being the cluster centroids, where the input to this
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clustering were typically the full spectra in their original, differentiated or normalized
form (see Hommersom et al. [2011] and references therein). Similar use of clustering
has been reported outside the water-retrieval context Dopido et al. [2011]; Glenn
et al. [2013]. However, to us the main goal of clustering is different, namely to reduce
the search space prior to EE.

We consider common clustering methods, such as k-means and others [Jain et al.,
1999]. Instead of using the entire spectra, we will describe their shapes by extracting
some fast-computable, and even more importantly, scale-invariant features. The
shape invariance means that the features should reflect a spectral shape faithfully
even if the spectra are offset, e.g. due to miscalculation of factor f from Eq. (5.1).

The first set of features we consider are the Fourier Descriptors:

r [k] =
N∑

n=1
R[n]e

−i 2π
N (k−1)(n−1) , (k = 1, N ) ; fi =

∣∣∣∣ r [i +1]

r [1]

∣∣∣∣ , (i = 1,2,3) (5.6)

where R[n] ≡ R̂(λn) is a water spectrum (water-leaving reflectance) and N is the
number of wavelengths. The left-hand formula basically describes the discrete
Fourier transform producing a signal r of the same length as the input signal R;
yet, for meaningful discrimination of our spectra, and to be independent on the
signal level, we take as features, { fi }, the absolute values of few initial coefficients
normalized by the first one. Another variable we consider is the unsigned curvature:

κ[n] = |R̈|
(1+ Ṙ2)3/2

, f4 = 1

N −1

N∑
n=1

(κ[n]−κ)2 (5.7)

of which we take as feature its standard deviation as shown (the symbols Ṙ and R̈
stand for the first- and second derivative of R , and κ is the average of κ[n]). This way,
we get a total of 4 features, which we take in their normalized form: ‖ fi‖ = fi /max( fi )
to give each feature an equal weight.

We should say that this choice of features is certainly not exclusive, as other signal
transforms, like wavelets, have been found useful in characterizing the water spectra
Ampe et al. [2014]. However, where wavelets can be effective in capturing local
shape variations Knaeps et al. [2010], our { fi }, (i = 1,4) are adequate for discerning
the entire spectra.

To test these features and clustering, we compute them from our constructed
dataset described above. We validate the clustering using some common measures.
One of those is the silhouette index, which measures heterogeneity and isolation
of clusters by averaging a confidence score on the membership of each sample
in particular cluster. Another is Davies-Bouldin (DB) index that identifies sets of
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Figure 5.5: Feature extraction and clustering. Left: Cluster validation with simulated
153 spectra. Right: Features extracted for endmembers e3, e4 and e5.

compact and well-separated clusters by looking at intra- and inter-cluster distances.
The exact mathematical formulation is found in e.g. [Bolshakova and Azuaje, 2002].
We compute these measures on the basis of multiple runs, with each run set up to
use a same clustering algorithm (k-means) but a different number of clusters. The
left-hand plot in Fig. 5.5 shows a typical result obtained when using all 4 features.
We see that the iteration with 4 clusters produced a clear optimum: low DB- and
high silhouette index [Bolshakova and Azuaje, 2002]. This tells us that the features
are indeed capable of producing well-separated clusters.

An additional confirmation of this performance is given by Fig. 5.6, which shows
random spectra from each cluster along with some of the target {e i }. Starting from
the top, we see the 4 clusters obtained when using all 4 features. The bottom row
shows another layer of clustering, i.e. two extra clusters obtained by subdividing
two of the initial 4 clusters based on single features: f1 and f5 = f1/ f2. Specifically,
the cluster from sub-figure indexed ’31’ (bottom left) is derived from the cluster
’11’ (top left) and the sub-cluster ’32’ from the cluster ’21’. We see that several
{e i } are identifiable at the boundaries of these clusters, as we had also anticipated.
Unfortunately, a comparison with the right-hand plot in Fig. 5.3 reveals that e3 and
e4 remain fairly elusive. A comparison of their feature vectors at the right-hand side
of Fig.5.5 give a more positive outlook, since at least e3 seems discernible from e5.

It is now clear that the result of this clustering – the cluster centroids (and
the feature scaling factors { fi ,max}) could be reused with other data, if that data
will originate from water content with SIOP and {ci ,low,ci ,high} residing in similar
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Figure 5.6: A result of multi-level clustering of 103 simulated spectra using the pro-
posed feature-based representation. The bottom row shows two sub-clusters and the
matching endmembers from Table 5.1. All spectra are slightly horizontally stretched
due to alignment with indices of (non-uniform) spectral bands, i.e. wavelengths.
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ranges. The benefit of such use is that each new pixel can be assigned to a cluster
by minimum-distance comparison with few readily available points (the centroids),
leading to fast, sequential processing.

5.3.3 Endmember extraction

For the actual endmember extraction, two strategies can be followed. Either we
perform EE on each of the found clusters separately (cluster-level search), or alter-
natively we apply EE on the entire image, without using the clustering (image-level
search). Doing both at the same time will yield an extended set of candidate end-
members that can be coalesced and sorted using several criteria. One of those
criteria can be the ability of a subset of candidate endmembers to maximize the sum
of their pairwise distances, as an indication of the largest simplex. Another can be
the proximity of each candidate endmember to one of the predetermined cluster
centroids or feature-based representations of {e i }(i = 1,9).

In our analysis of the simulated dataset in Sec. 5.3.1, we saw that the geometrical
EE methods that search for extremes in the data were successful in detecting most
of the {e i }, (i = 1,9). We also know that these {e i } have been defined using the same
Gordon model that is used to describe any other pixel. Therefore, for the EE step,
we adopt some prevalent and accessible geometrical algorithms, such as N-findR
Winter [1999], VCA Nascimento and Bioucas-Dias [2005b] and SMACC from ENVI
[ENVI, 2009]. The imperfection of these algorithms in detecting some of the {e i }
should then be compensated by the clustering step.

It is worth noticing that, while we have intended the feature vectors as input
for clustering, the same input could be used for the EE algorithms, now searching
for fewer endmembers within the separate clusters. Going from spectra to features
in a way realizes (nonlinear) dimensionality reduction, which could benefit the EE
search. Still, one reason for keeping different input forms for the two operations
(clustering and EE) is to promote the complementarity between them.

5.4 Translation of unmixing results

We consider unmixing of an image via FCLSU, with endmembers {e i } specified by
Table 5.1 or extracted from the image. This unmixing will yield abundances {aki } for
each water pixel k. Our goal is to translate the {aki } to concentrations {ck j }; however,
to do this exactly (analytically) is far from trivial. Once more, this is seen when
attempting to equate R̂ expressed via Eq. (5.4) to x written out via Eq. (1.1), where
the {e i } are in turn also expressed via Eq. (5.4) using the same SIOP and some known
values for c j ∈ {CHL,TSM,CDOM}, like those from Table 5.1.

99



5. UNMIXING FOR WATER-QUALITY RETRIEVAL

In Hommersom et al. [2011], a qualitative approach puts side-by-side the {aki }
and some {ck j } representing the in situ measured concentrations from a number
of pixels. We propose a more quantitative approach and use the in situ measured
values to derive a rule that will translate {ai } to {c j }, then extrapolate this to the
entire image. In other words, we seek a suitable combination of abundances that
can yield a good fit to the ground truth, while also safeguarding generalization. We
derive this combination by employing the classical linear regression.

Since not many ground-truth values are likely to be available, it is prudent to
keep the model simple. For this, we make use of an intuitive reasoning that c j should
relate the most to {ai } from those {e i } that include c j ,high in their definition. We write:
TSM∼ f (a j ) , j ∈ {6,7,8,9}, CHL∼ g (ak ) ,k ∈ {4,5,8,9} and CDOM∼ h(al ) , l ∈ {3,5,7,9},
where f , g and h are some functions. The exact form of these functions is unknown,
but since we are not using all {ai } (i = 1,9), we can reasonably demand it to connote
more than a linear combination. Hence, we consider bilinear models, i.e. regression
with the interaction terms:

TSM =β1,0 +
∑

k∈{6,7,8,9}
β1,k ak +

∑
k,l∈{6,7,8,9}

k 6=l

β1,kl ak a l (5.8)

CHL =β2,0 +
∑

k∈{4,5,8,9}
β2,k ak +

∑
k,l∈{4,5,8,9}

k 6=l

β2,kl ak a l (5.9)

where c i = (c11, . . .c1n) ∈ {TSM,CHL} has the in situ measured ci from n ground-truth
pixels, {ai } are the n ×1 vectors of abundances ai from each of those pixels, and
β1,{.} are to be determined weights or regression coefficients. The same is applicable
to CDOM after replacing a4 with a3 and a8 with a7 in Eq. (5.9).

It is worth pointing out that the whole exercise has more of approximation than
of learning from data an entirely unknown target function [Abu-Mostafa et al., 2012].
The reason for this is that we’ve been able to reasonably stipulate the target and
our hypothesis in Eq. (5.8)-(5.9) using our knowledge and comparison of the water-
reflectance and endmember models. Hence, if the endmember model can yield
good reconstruction of spectra for most pixels, and we get a low in-sample error
by fitting Eq. (5.8)-(5.9) on a number of those, then by induction we should expect
a low out-of-sample error from applying that fit to the rest of the image. This is
also why we foresee a limited role for some practices from machine learning, like
regularization – which we could use to constrain {β(·)}, or cross-validation – which
we could use to select one from multiple sets of {β(·)} trained of different subsets of
the ground truth (as generated by e.g. the ’leave-one-out’ method).
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5.5 Experiments

This section describes our experiments with real hyperspectral data. To keep our
objectives straight, we structure these experiments in two parts. After describing the
image, we first discuss its unmixing with the prespecified endmembers from Table
5.1. This will include the step of translating the abundances to actual concentration
maps and comparing those with a reference obtained from curve matching. In the
second part, we test the ability of our EE approach to extract matching endmembers
from the image and to produce similar result.

5.5.1 Description of the hyperspectral data

We consider an APEX image acquired over the Wadden Sea area in the Netherlands,
in June, 2011. APEX is developed by a Swiss-Belgian consortium on behalf of ESA
and is intended as a simulation, calibration and validation device for spaceborne
imagers. The APEX sensors record data in about 300 (non-uniformly spaced) bands
covering the range of 380-2500 nm Itten et al. [2008]. The radiometric, spectral and
geometric calibration is performed by the Calibration Home Base (CHB) hosted
at DLR Oberpfaffenhofen, Germany Gege et al. [2009]. The atmospheric and air-
interface correction of the acquired data was in this case done with the MODTRAN-4
radiative transfer code following the algorithms and their implementation described
in Haan de and Kokke [1996], Sterckx et al. [2011]. Residual sky glint was corrected
by subtracting the reflectance remaining at 1203 nm.

The Wadden Sea area is regarded as suitable for studying water composition,
because it includes coastal and shallow waters that are known to be subject to
land, oceanic and human influences Hommersom et al. [2011]. The Marsdiep, the
westermost tidal inlet of the Wadden Sea, is particularly suited for our purpose,
because it contains different water types at short distance. Here, marine waters from
the open sea in the west mix with freshwater originating from a channel in the south
and a highly productive freshwater lake in the east. Figure 5.7 shows an extended
view of the scene, where it is seen that the image is registered as a mosaic of multiple
flight lines. Next to this image is a zoomed-in picture of a region of interest (ROI)
that we select for unmixing.

The ROI was selected mostly to get a more workable image size, while including
all the pixels bearing the results from in situ measurements. Another concern was to
include both the deep main channel as well as the shallow waters near the coast, as a
way to increase the chance of finding most of the {e i }, i.e. pixels with concentrations
approaching those from Table 5.1. The spatial size of the ROI amounts around
1000×1000 pixels, with the pixel size 5.4m, while the spectral information has been
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Figure 5.7: RGB view of the test data: an extended view of the scene (left) and the
ROI used for unmixing (right).

confined to 65 bands in the 410-750nm range. Notice that the ROI image includes
surfaces other than water, which we used as an extra reference for masking out
non-water-like pixels.

The SIOP and concentrations were measured for TSM, CHL and CDOM from
water samples collected at the pontoon of NIOZ. From the water samples, TSM
concentration was determined by filtering the water on Whatman GF/F glass fiber
filters according to the European reference method E N 872(2005). Pigment analysis,
including CHL-a concentrations were determined via HPLC. The measured values
resided in the following ranges: TSM (gm−3) ∈ [5.3,10.2], CHL (mgm−3) ∈ [5.1,10.4].

The specific absorption spectra of non-algae particles and Chlorophyll were
measured using the filter pad method using a LICOR integrating sphere attached to
an ASD spectrometer following the methods described by [Tassan and Ferrari, 1995]
and REVAMP protocols [Tilstone et al., 2003]. For the CDOM absorption, the water
samples from the field campaign were temporarily stored in a cooled chamber and
filtered through 0.2µm pore size filters. To retrieve the CDOM absorption coefficient
of the water samples, the beam attenuation of the filtered water was measured with
Ocean Optics equipment in a transparent cuvet. As the data from the ocean optics
equipment are noisy for wavelengths < 400nm and > 950nm the exponential shape
of the CDOM absorption was fitted based on the 420−750nm range. More details
about the concentration and SIOP measurement is given in [Knaeps et al., 2012].
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Figure 5.8: Reconstruction error of unmixing (FCLSU) the water spectra in the ROI
image using the preset {e i }(i = 1,9) (left) and the extracted {e j } from Fig. 5.13 (right)

Overall, there was a satisfactory resemblance between the in situ measured
spectra and those read from the corresponding pixels in the APEX image. The mean
and standard deviation (µx±σ2

x ) of two prevalent error measures – RMSE and spectral
angle computed between these spectra for 10 reference pixels were, respectively,
0.0059±0.0028 and 10.7±2.7 degrees. The same comparison between the in situ
spectra and those obtained by inserting the in situ measured concentrations and
SIOP into Eq. (5.4) were 0.0054±0.0034 and 10.5±3.8. We should say that few relative
outliers were responsible for most of the deviation. The factor f required by Eq. (5.1)
was also used and estimated at f = 0.55.

5.5.2 Unmixing with predefined endmembers

We start by unmixing the ROI image using FCLSU with all {e i }, (i = 1,9) from Ta-
ble 5.1. This yields abundances {aki } for each pixel k. First, we test the ability of
the endmember model to represent the water spectra, which is verified by a low
reconstruction error as shown in Fig. 5.8 on the left.

Our main goal is to derive concentration maps, and since we are most interested
in CHL and TSM, we leave CDOM (for which no reference, curve-matching map was
also available) out of the analysis. Figure 5.9 shows the six abundances of interest
and the question is thus what models according to Eq. (5.8)-(5.9) should combine
them. Since in our case n = 10, finding those models is prone to over-fitting. After
some trials we retained these reduced sets of weights:
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Figure 5.9: From left to right and top to bottom: abundance maps a4, a5, . . . a8, a9

obtained from unmixing the ROI image with {e i }, (i = 1, . . .9) from Table 5.1.

β1 = (β1,0,β1,6,β1,7,β1,8,β1,{6,7},β1,{6,8})

β2 = (β2,0,β2,5,β2,8,β2,{5,8},β2,{5,9}) (5.10)

where in the case of TSM we got a high coefficient of determination, R2 = 0.85. This
was notably lower with CHL (R2 = 0.6), which can be ascribed to the fact that in
all the ground-truth pixels there was a limited representation from a5 and none
from a4. As for the generalization ability of these models, some idea is gotten from
the unmixing statistics depicted on the right-hand side of Fig. 5.12, where we see
that it took 5-6 endmembers to reconstruct most pixels, with {e3, e6} being most
underrepresented. Refer also to what was explained at the end of Sec. 5.4.

Figures 5.10 – 5.11 show the obtained concentration maps. As a comparison,
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Figure 5.10: Concentrations TSM (g/m3) obtained by combining the abundances {ai }
from unmixing (left), and by the curve matching (right).

maps produced by the curve-matching method are shown as well. It is worthwhile
pointing out that the number of ground-truth pixels can be artificially increased,
by taking the values of the curve-matching method from their neighborhood and
assuming those to be equal to the in-situ measured values. When doing so, similar
maps were obtained. While it is clear that we had to be restrained with this ground-
truth extension (or we would be fitting our results to the reference), the truth is that
exaggerating it could provide an extra support for our argument about the coverage
by the endmember model. We saw that combining the {e i } (i = 1,9) linearly could
well reconstruct most of the possible water spectra; now, we would see that a properly
derived (still simple, bilinear) combination of the corresponding abundances could
retrieve most of the possible concentrations.

5.5.3 Endmember extraction and unmixing

When extracting the {e i } (i = 1,9) from real water content, one has to count in the
likely event that not all of them will actually be present. As a sanity check, we perform
an exhaustive search for these {e i } in our image using full spectra and two error
measures that we used previously. The left-hand side of Fig. 5.12 shows this result,
from which we see that pure water was practically absent, while e2 and e6 give an
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Figure 5.11: The same comparison as in Fig. 5.10 for CHL (mg/m3).

inconclusive picture. It is interesting that a single pixel gave the lowest RMSE for
both e4 and e5. To get additional hints, we also look at the previously mentioned
usage statistics of these {e i }, as shown in Fig. 5.12 on the right.

The goal of the proposed clustering was to make a distinction between spectral
shapes that may relate to the target endmembers. Instead of clustering the real
dataset, we re-used the cluster centroids obtained from clustering the simulated
dataset. After computing the features, the assignment of pixels to these centroids
did not produce the anticipated 4 clusters; in fact, only 3 properly filled clusters were
obtained. This suggests that the water spectra constituting the image did not exhibit
all possible variety that we could theoretically expect based on our sampling of the
Gordon model. Still, the second level of clustering did prove useful in spotting e6

and e5 at the sub-cluster boundaries, the same way this was illustrated in Fig. 5.6.

For the EE-step, two strategies explained in Sec. 5.3.3 were followed: cluster-
based EE and an image-level search in which no clustering is applied prior the
EE-step. At the image level, we settled with searching for 7-8 endmembers. Per
cluster, we set the target number of endmembers between 2 and 4. The entire
process was then generating up to 19 endmember candidates, which we sorted as
explained in Sec. 5.3.3.

The final result is depicted in Fig. 5.13. Note that e2 is merely shown and not
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Figure 5.12: Endmember identifiability: deviation of {e i } from Table 5.1 from their
closest match found by a full search (left) and statistics of unmixing with these {e i }.

used in analysis afterwards, while e4 was not extracted, which would influence
the derivation of a concentration map for CHL. While the plots show mostly the
results of the combined cluster- and image-level search, we should say that good
approximations for e2, e8 and e9 were also obtained from the image-level search
alone. This was not true for e7 whose proper match was only found thanks to the
use of clustering. By the look of Fig. 5.13, the best estimates for e5 and e6 – in terms
of lowering the RMSE and spectral angle, are likely gotten by averaging the output
from the cluster- and image-level search. While one may argue that the extracted e5

deviates intolerably from the tabulated one, assigning it was necessary to derive a
decent-looking map for CHL following Eq. (5.9)-(5.10).

Finally, we derive the concentrations with the extracted {e i } and compare them
with those we had derived earlier with the preset {e i }(i = 1,9). First, we compare the
reconstruction errors obtained with the two sets of endmembers, which are shown
in Fig. 5.8 on the right. We see that the RMSE of the extracted {e i } is lower, which
can be explained by the relative homogeneity of the image spectra that was already
evident after the clustering step. Figure 5.14 shows the resulting concentration maps.
The maps are somewhat different from those in Fig. 5.10–5.11 but the global trends
remain largely similar. Because of the lack of e4 in the analysis, the map obtained
for CHL deviates more from the curve-matching reference.
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Figure 5.13: Results of EE. The full lines depict {ei } from Table 5.1 and the dashed
lines the matching spectra extracted from the image. For e5 and e6, the dotted lines
show the results from the image-level search.

Figure 5.14: The counterparts to TSM from Fig. 5.10 (left) and CHL from Fig. 5.11
(right) obtained with extracted endmembers.
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5.6 Conclusion

We have described a method for studying the water quality by means of spectral un-
mixing. One of the main goals of our investigation has been to reaffirm unmixing as
a viable method of estimating the water composition when the endmembers, speci-
fying different water types, are known. To this end, we have designed and performed
an extensive analysis of simulated spectra, and conducted a comparison on real
hyperspectral image using as reference a state-of-the-art, curve-matching method.
One of our important conclusions is that linear unmixing with compounded end-
members defined from the water-reflectance model can amply cover the variability
of water spectra, thus making it less pressing to use nonlinear unmixing models.

To further advance the unmixing take, we have proposed methods to extract the
endmembers from the reflectance image and translate the endmember abundances
to actual concentrations. The viability of this route has been confirmed by an
acceptable resemblance between the unmixing-derived and reference concentration
maps, as well as by impacting similarity between the extracted and prespecified
endmembers. The proposed method for endmember extraction (EE) exploits a
feature-based representation of the water spectra in combination with common
data clustering and EE techniques. Several of these components by design exploit
knowledge of the water-reflectance model and values of its parameters, such as the
extreme concentrations of water constituents and their SIOP, while allowing some
perturbation in those. This means that extendibility of the used methodology to
other water content will depend on the properties and ranges of the said parameters.
The regression model used to translate the abundances to concentrations has been
derived from a limited ground truth, yet, the reasoning that led to its build up is also
generally valid.
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SUMMARY

Remote sensing technology has advanced tremendously in recent decades. An
important economic and strategic driver for this development has been the offering
of wide spatial and temporal coverage by space- and airborne platforms, as well
as the ever-increasing ability of sensors to record images with high spatial and
spectral resolution. This has made remote sensing an attractive tool for collecting
and interpreting data from the Earth’s surface and atmosphere for various uses.

A modality that provides a bulk of data for remote sensing applications is hyper-
spectral imaging. This modality records the reflected solar radiation in contiguous
and often numerous wavelengths or spectral bands. It thereby extends the standard
photography, by enabling to treat each pixel individually as a spectrum discernible
for each class of materials. One of the limitations of such imaging, where the spatial
and spectral resolution are inescapably traded against one another, is the occurrence
of mixed pixels and spectral mixing. Hence, the unraveling of spectral mixtures has
been widely studied as spectral unmixing, where two main aspects are of interest:
the estimation of the constituent spectra or endmembers, and the determination of
their proportions or abundances, in the mixture. The work described in this thesis
regards spectral unmixing from two objectives: advancement of unmixing method-
ology, and introduction of unmixing in new applications. This has motivated the
structuring of the theses into two parts, each focusing on one of these two aspects.
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Their common perspective has been to opt for data-driven approaches that can
mitigate the dependency on physical parameters and models.

Part I describes two distinctive approaches and algorithms for unmixing with a
given number of endmembers. The central theme here has been reformulation of the
prevalent geometric and optimization-based treatments of the linear mixture model
(LMM), by introducing distance-based and analytical formulations. Experiments
with synthetic and real hyperspectral data indicate that both algorithms can notably
improve the time- and memory efficiency compared to benchmark methods, as well
as enable alternative (nonlinear) treatments of mixtures – by incorporating non-
Euclidean distance measures. Another alternative treatment connoting a streaming
implementation of endmember extraction has resulted from the same framework
and is cited but not detailed in the thesis. This work should encourage investigation
of a similar streaming-based computation of abundances, such that entire unmixing
may be done in single pass and without pre-loading the image. This could involve the
use of online optimization and statistical techniques, or more supervised unmixing
methods, like e.g. (sparse) regression.

Chapter 2 describes a data-driven algorithm that estimates endmembers and
their abundances under the nonlinear mixing assumption. The algorithm does so
by searching for the largest data-enclosing simplex and subsequently computing
the volumes of fractional sub-simplices for each data point, while expressing the
volumes in terms of inter-point geodesic distances approximated by the shortest
paths on a kNN graph constructed from the data. This approach virtually presents
a computationally efficient equivalent to letting the linear unmixing be preceded
by nonlinear (geodesic-based) dimensionality reduction. The main drawback is
that the quasi-abundances derived from the ’geodesic volumes’ lose their direct
interpretatability as physical quantities, i.e. fractions of endmembers in a pixel. On
the upside, they are not restricted to particular type of (nonlinear) surface. Future
research should explore whether some relation can still be established between these
quasi-abundances and those from a more explicit, e.g. bilinear, model. Another
extension can be to also try other distance measures that may better reflect the data
dependencies than the geodesic distance in particular situation (e.g. scene type).

Chapter 3 describes an algorithm that substitutes the conventional optimization-
based computation of abundances with known endmembers (FCLSU) by an an-
alytical solution. This is achieved by exploiting the demonstrated equivalence of
solving the fully constrained least-squares problem and geometric projection of a
point onto a simplex. The SPU algorithm introduces several geometrical properties
for simplices to accomplish the latter. While these properties are not universally
valid, the counterexamples typically concern skewed geometries induced by strong
mutual proximity of vertices of a simplex, i.e. endmembers (which may imply their
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mis-estimation). At the same time, the analytical nature of the SPU algorithm allows
computing the abundances in a severely shortened amount of time. Investigating
potential uses for the SPU algorithm outside the spectral-unmixing context may
therefore be an interesting option.

Part II discusses unmixing in the context of two atypical applications: the detec-
tion of adjacency effect and the estimation of water quality in inland- and coastal
waters. To introduce an unmixing approach in these applications, a same formula is
followed whereby the use of particular mixing model(s) is theoretically motivated,
possibly complemented with additional constructs and validated, through compari-
son with an available reference method. This includes quantitative comparisons on
real hyperspectral images. An overall conclusion from all the comparisons is that
the results of the said reference methods can be amply approached by those from
the proposed unmixing-based treatments.

Chapter 4 describes an unmixing approach to detect the adjacency effect, which
occurs when reflectances from a surface of interest (target) and its adjacent neighbor-
hood superimpose on their path to the sensor due to atmospheric (back)scatter. The
central idea of the approach is then to use unmixing to separate the true signature of
a pixel on a target from the polluting scatter reflected from its larger neighborhood.
As the test case, the often impacting adjacency effect in turbid waters surrounded by
vegetated land has been studied. It has been demonstrated that a reference detec-
tion by a spectral-index ratio designed specifically to exploit a prior knowledge about
the target (water) can be equally formulated as a case of supervised, unconstrained
linear unmixing. It has also been shown that an unsupervised and fully constrained
unmixing can produce a roughly scaled version of these results, if proper water
and vegetation endmembers are applied. Unfortunately, the scaling also means
the unsupervised use of unmixing is less suitable for the actual correction of the
effect. Since the adjacency effect occurs mostly when the target pixel reflectance is
lower that of its surroundings, it would be interesting to see whether unsupervised
unmixing (using data dimensionality reduction) could still be useful for detection
on other types of dark surfaces with relatively bright surroundings.

Chapter 5 elaborates and extends a recently introduced unmixing approach for
estimating the quality of inland- and coastal waters. The basic of this estimation is
the inversion of the imaged water spectrum via some model, as a way of retrieving
the unknown concentrations of optically active impurities or constituents: CDOM,
TSM and chlorophyll-a. A typical way of doing this and the reference to the study
is curve matching, which compares each water spectrum to a library of spectra
constructed by inserting the known (e.g. in situ measured) concentrations of each
constituent into some water-reflectance model. The unmixing approach replaces
this by performing fully-constrained linear unmixing of endmembers defined by
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inserting into the water-reflectance model extreme concentrations of each con-
stituent – in a way, this connotes linear unmixing with ’nonlinear endmembers’. To
translate the endmember abundances to actual concentrations, a suitable model
has been proposed and derived by regression on a limited number of ground-truth
pixels. To further advance the unmixing take, a method has been proposed to ex-
tract the endmembers from the image by combining common data clustering and
endmember-extraction techniques. An important conclusion that emerges from the
experiments is that the adopted endmember model can amply cover the variability
of water spectra, making it less pressing to use nonlinear unmixing models. Still,
one fundamental questions that can be asked is whether mathematically more elab-
orate water-reflectance models can be decomposed as a mixing equation, such that
abundances and concentrations can be related more directly. Another aspect is that
images with ample numbers of ground-truth pixels are much desired prerequisite
for proper use of machine-learning techniques and explicit optimization towards
out-of-sample performance.
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SAMENVATTING

Remote sensing technologie heeft in de afgelopen decennia enorm gevorderd. Een
belangrijke economische en strategische drijfveer voor deze ontwikkeling is het
aanbieden van uitgebreide ruimtelijke en temporele dekking door satellieten en
vliegtuigen, evenals het steeds toenemende vermogen van sensoren om beelden met
een hoge spectrale en spatiële resolutie op te nemen. Hierdoor is remote sensing een
aantrekkelijk middel geworden voor het verzamelen en interpreteren van gegevens
van het oppervlak en de atmosfeer van de Aarde voor verschillende doeleinden.

Een modaliteit die een grote hoeveelheid gegevens voor remote sensing aanlevert
is hyperspectrale beeldvorming. Deze modaliteit registreert de gereflecteerde zon-
nestraling in aaneengesloten en vaak talrijke golflengten, oftewel spectrale banden.
Door tevens een spatiële dekking te realiseren, breidt het standaard fotografie uit,
door elke pixel individueel behandelbaar te maken als een gedetailleerd spectrum
dat onderscheidend is voor ieder type materiaal in het beeld. Een van de beperkin-
gen van dergelijk beeld, waarbij de spatiële en spectrale resolutie onontkoombaar
tegen elkaar worden uitgeruild, is het optreden van gemengde pixels en spectrale
menging. Vandaar dat het ontrafelen van spectrale mengsels uitgebreid is bestu-
deerd als spectrale ontmenging, waarbij vooral twee aspecten van belang zijn: de
schatting van de samenstellende spectra oftewel endmembers, en de bepaling van
hun fracties oftewel abundanties, in het mengsel. Het in dit proefschrift beschreven
onderzoek benadert spectrale ontmenging vanuit twee doelstellingen: bevorderen
van methodologie en de invoering van ontmenging in nieuwe toepassingen. Dit
verklaart de indeling van de tekst in twee delen, waarbij elk gericht is op een van
deeze twee aspecten. Hun gemeenschappelijke perspectief is om data gedreven
verwerking te bevorderen die de afhankelijkheid van fysische modellen, of anders
het typische gebruik van optimalisatietechnieken, kan beperken.

Deel I beschrijft twee verschillende algoritmen voor ontmenging met een gekend
aantal endmembers. Het centrale thema is herformulering van de heersende geo-
metrische en optimalisatie-gerichte behandeling van het lineaire mengingsmodel
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(LMM), door de invoering van afstands-gerelateerde en analytische uitdrukkingen.
Experimenten met synthetische en echte hyperspectrale beelden laten zien dat
beide algoritmen computationeel veel efficiënter kunnen werken dan de referentie-
methoden, terwijl ze ook alternatieve (niet-lineaire) behandelingen van spectrale
mengsels mogelijk maken – door de opname van niet-euclidische afstandsmaten.
Een andere alternatieve benadering die uit hetzelfde aanpak is ontstaan, die de
schatting van endmembers via een sequentiële eerder dan een batch verwerking
realiseert, wordt in het proefschrift aangehaald maar niet gedetailleerd. Dit werk
zou verder onderzoek moeten inspireren naar een vergelijkbare sequentiële schat-
ting van abundanties, zodanig dat volledige ontmenging in real-time en zonder
het vooraf inladen van het hele beeld kan geschieden. Het is hierbij denkbaar om
gebruik te maken van online-optimalisatie technieken, of voorkeur te geven aan de
meer gesuperviseerde methodes voor ontmenging, zoals bv. de recent ontwikkelde
’schaarse regressie’.

Hoofdstuk 2 beschrijft een data gedreven algoritme dat endmembers en hun
abundanties schat onder de veronderstelling dat spectrale menging niet-lineair is.
Het algoritme zoekt effectievelijk naar de grootste data omsluitende simplex en bere-
kent de volumes van deelsimplexen voor elk datapunt, waarbij de volumes worden
uitgedrukt in geodetische afstanden benaderd door de kortste paden op een uit de
data opgebouwde kNN graaf. Dit aanpak presenteert vrijwel een computationeel
efficiënt equivalent van het laten voorafgaan van lineaire ontmenging door niet-
lineaire dimensionaliteitsreductie (gebruikmakend van dezelfde afstandsmaat). Het
grootste nadeel van dit aanpak is dat de quasi-abundanties die via de ’geodetische
volumes’ worden berekend hun uitdrukkelijke interpreteerbaarheid als fracties van
endmembers in een pixel verliezen. Aan de andere kant hebben zij het voordeel
om niet beperkt te zijn tot een bepaald soort (niet-lineair) oppervlak. Toekomstig
onderzoek moet nagegaan of er een relatie kan worden gelegd tussen deze quasi-
abundanties en parameters van een explicieter, bv. bilineair, ontmengingsmodel.
Nog een uitbreiding kan zijn om ook andere afstandsmaten toe te passen die de data
afhankelijkheden en mogelijke correlaties in bepaalde typen beelden beter dan de
geodeten kunnen weerspiegelen.

Hoofdstuk 3 beschrijft een algoritme dat de heersende optimalisatie-gebaseerde
berekening van abundanties in een mengsel met gekende endmembers vervangt
door een analytische oplossing. Deze oplossing wordt behaald door de gelijkwaardig-
heid te benutten tussen het oplossen van het volledig beperkte kleinste-kwadraten
probleem en geometrische projectie van een datapunt op een simplex. De SPU
algoritme introduceert enkele geometrische eigenschappen voor simplexen om
het laatstgenoemde te bewerkstelligen. Hoewel deze eigenschappen niet univer-
seel geldig zijn, betreffen de tegenvoorbeelden in de regel afwijkende geometrieën,

118



waarbij de hoekpunten van de simplex, i.e. de endmembers, erg dicht bij elkaar
liggen (wat op hun foutieve schatting kan duiden). Anderzijds maakt de analytische
aard van het SPU algoritme dat de berekening van abundanties veel sneller wordt.
Deze snelheid rechtvaardigt een zoektocht naar andere potentiële toepassingen voor
het SPU algoritme buiten de spectrale ontmengingscontext, die eveneens beroep
zouden kunnen doen op simplex projectie.

Deel II bespreekt spectrale ontmenging in het kader van twee atypische toe-
passingen: de detectie van nabijheids-effect en de schatting van kwaliteit oftewel
samenstelling van binnenlandse en kustwateren. Om spectrale ontmenging in deze
toepassingen te introduceren is dezelfde procedure gevolgd, waarbij een of meerdere
ontmengingsmodellen theoretisch gemotiveerd zijn en vervolgens, eventueel aan-
gevuld met extra constructies, vergeleken met gegeven referentiemethodes. Deze
vergelijking omvat experimenten uitgevoerd op echte hyperspectrale beelden. Een
algemene conclusie die uit dit werk naar voren is gekomen is dat de prestaties van
de vastgestelde referentiemethoden ruimschoots benaderd kunnen worden door
die van de voorgestelde, op ontmenging gebaseerde methoden.

Hoofdstuk 4 beschrijft een inzet van spectrale ontmenging voor het opsporen
van nabijheids-effect. Dit effect treedt op wanneer de reflecties van een doelopper-
vlak en haar aangrenzende omgeving superponeren binnen het gezichtsveld van de
sensor als gevolg van atmosferische verstrooiing. De kerngedachte van het voorge-
stelde aanpak is dan om ontmenging te gebruiken om de ware spectrale signatuur
van een doelpixel te scheiden van de component die afkomstig is van haar bredere
omgeving. Als een proefproces is de nabijheids-effect in troebele wateren omgeven
door begroeide land onderzocht. Er is aangetoond dat een spectraal indexverhou-
ding, dat specifiek is ontworpen om een voorkennis over het doeloppervlak (water)
te benutten, eveneens kan worden uitgedrukt als geval van een gesuperviseerde,
niet beperkte lineaire ontmenging. Ook is aangetoond dat een ongesuperviseerde
en volledig beperkte lineaire ontmenging een ongeveer geschaalde versie van deze
resultaten kan geven, als de juiste water en vegetatie endmembers worden toe-
gepast. Aangezien de nabijheids-effect optreedt wanneer de reflectantie van een
doeloppervlak lager is dan die van haar omgeving, zal het interessant zijn om te
onderzoeken of het ontmengingsaanpak (gebruikmakend van dimensionaliteits-
reductie) ook toegepast kan worden op andere donkere oppervlakken met relatief
lichte omgeving.

Hoofdstuk 5 bestudeert en breidt uit een onlangs geïntroduceerde ontmengings-
benadering voor de bepaling van kwaliteit van binnenlandse en kustwateren. De
hoofdgedachte is om water spectra te relateren aan concentraties van enkele optisch
actieve onzuiverheden of bestanddelen: CDOM, TSM en chlorofyl-a, die de reflectan-
tie van water (mede) bepalen. Een typische en tevens de referentiemethode om dit
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te doen is curve benadering, dat elk water spectrum rechtstreeks vergelijkt met een
bibliotheek van spectra die zijn verkregen door gekende (bv. in situ gemeten) con-
centraties van elk bestanddeel in een heersend water-reflectantie model in te steken.
De ontmengingsaanpak vervangt dit door een lineaire ontmenging toe te passen,
waarbij de endmembers gedefinieerd zijn door in hetzelfde water-reflectantie model
de extreme concentraties van elk bestanddeel in te voegen – in zekere zin betekent
dit een lineaire unmixing met ’niet-lineaire endmembers’. Om de endmember abun-
danties naar feitelijke concentraties te vertalen is een model voorgesteld waarvan
de parameters zijn afgeleid door regressie op een beperkt aantal referentiewaarden
die verkregen zijn uit in situ metingen. Om de ontmengingsbehandeling verder
te bevorderen, is een methode voorgesteld om de voorgedefinieerde endmembers
uit het beeld te halen door pure extractietechnieken met data clustering te com-
bineren. De experimenten laten zien dat het vastgestelde endmember model de
variabiliteit van alle water spectra ruimschoots kan beschrjven, waardoor het ge-
bruik van niet-lineaire ontmengingsmodellen minder relevant wordt. Tegelijkertijd
blijt er een fundamentele vraag over of er een complexer water-reflectantie model
bestaat dat als een (niet-lineair) ontmengingsvergelijking ontleend kan worden,
zodanig dat de abundanties en concentraties rechtstreekser aan elkaar kunnen
worden gerelateerd. Een ander aspect is dat het beschikken over een dataset met
voldoende referentiewaarden een voorwaarde blijft om goed gebruik te kunnen ma-
ken van machine-learning technieken die de out-of-sample prestatie (generalisatie
vermogen) kunnen optimaliseren.
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video coding integrating MPEG-2 and picture-rate conversion. IEEE Trans.
Consumer Electron., 48(3):688–693
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