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Abstract

In this paper, we propose the use of Recurrent Inference Machines (RIMs) to perform T1 and T2 mapping. The RIM is
a neural network framework that learns an iterative inference process based on the signal model, similar to conventional
statistical methods for quantitative MRI (QMRI), such as the Maximum Likelihood Estimator (MLE). This framework
combines the advantages of both data-driven and model-based methods, and, we hypothesize, is a promising tool for
QMRI. Previously, RIMs were used to solve linear inverse reconstruction problems. Here, we show that they can also be
used to optimize non-linear problems and estimate relaxometry maps with high precision and accuracy. The developed
RIM framework is evaluated in terms of accuracy and precision and compared to an MLE method and an implementation
of the ResNet. The results show that the RIM improves the quality of estimates compared to the other techniques in
Monte Carlo experiments with simulated data, test-retest analysis of a system phantom, and in-vivo scans. Additionally,
inference with the RIM is 150 times faster than the MLE, and robustness to (slight) variations of scanning parameters
is demonstrated. Hence, the RIM is a promising and flexible method for QMRI. Coupled with an open-source training
data generation tool, it presents a compelling alternative to previous methods.
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1. Introduction

MR relaxometry is a technique used to measure intrin-
sic tissue properties, such as T1 and T2 relaxation times.
Compared to qualitative weighted images, quantitative T1

and T2 maps are much less dependent on variations of
hardware, acquisition settings, and operator (Cercignani
et al., 2018). Additionally, because measured T1 and T2

maps are more tissue-specific than weighted images, they
are promising biomarkers for a range of diseases (Cheng
et al., 2012; Conlon et al., 1988; Erkinjuntti et al., 1987;
Larsson et al., 1989; Lu, 2019).

Thanks to their low dependence on hardware and scan-
ning parameters, quantitative maps are highly reproducible
across scanners and patients (Weiskopf et al., 2013), pre-
senting variability comparable to test-retest experiments
within a single center (Deoni et al., 2008). The low vari-
ability allows for direct comparison of tissue properties
between patients and across time (Cercignani et al., 2018).
However, to ensure that quantitative maps are reproducible,
mapping methods must produce estimates with low vari-
ance and bias.

Conventionally, quantitative maps are estimated by fit-
ting a known signal model to every voxel of a series of
weighted images with varying contrast settings. The Max-
imum Likelihood Estimator (MLE) is a popular statistical
method used to estimate parameters of a probability den-

sity by maximizing the likelihood that a signal model ex-
plains the observed data and is extensively used in quan-
titative mapping (Ramos-Llorden et al., 2017; Smit et al.,
2013; Sijbers and Dekker, 2004). Usually, MLE methods
estimate parameters independently for each voxel. This
may lead to high variability for low SNR scans. Spatial
regularization can be added to the MLE (referred to as the
Maximum a Posteriori - MAP) to enforce spatial smooth-
ness, but demands high domain expertize. Additionally,
for most signal models, MLE/MAP methods require an
iterative non-linear optimization, which is relatively slow
for clinical applications and might demand complex algo-
rithm development.

Despite the current success of deep learning methods
in the medical field, their application to Quantitative MRI
(QMRI) is still affected by the lack of large in-vivo train-
ing sets. Specifically in MR relaxometry, the use of neural
networks is still limited. Previous works successfully ap-
plied deep learning in cardiac MRI (Jeelani et al., 2020)
and knee (Liu et al., 2019), but they required the scans
of many subjects to train the networks and were depen-
dent on alternative mapping methods to generate training
labels. This limitation was addressed in Cai et al. (2018)
and Shao et al. (2020) by using the Bloch equations to
generate simulated data to train convolutional neural net-
works in T1 and T2 mapping. However, estimation preci-
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sion, a central metric in QMRI, was not reported. It is
unclear, therefore, how well these methods would perform
with noisy in-vivo data.

In this paper, we propose a new framework for MR
relaxometry based on the Recurrent Inference Machines
(RIMs) (Putzky and Welling, 2017). RIMs employs a
recurrent convolutional neural network (CNN) architec-
ture and, unlike most CNNs, learns a parameter infer-
ence method that uses the signal model, rather than a
direct mapping between input signal and estimates. This
hybrid framework combines the advantages of both data-
driven and model-based methods, and, we hypothesize, is
a promising tool for QMRI.

Previously, RIMs were used to solve linear inverse prob-
lems to reconstruct undersampled MR images (Lønning
et al., 2019) and radio astronomy images (Morningstar
et al., 2019). In both works, synthetic, corrupted train-
ing signals (i.e. images) were generated from high-quality
image labels using the forward model.

A significant limitation on the use of deep learning
in MR relaxometry is the lack of large publicly available
datasets. The acquisition of in-vivo data is a costly and
time consuming process, limiting the size of training datasets
and reducing flexibility in terms of the pulse sequence
and scanning parameters. Using model-based strategy for
data generation (in contrast to costly acquisitions) allows
the creation of arbitrarily large training sets, where ob-
servational effects (e.g., acquisition noise, undersampling
masks) and fixed model parameters are drawn from ran-
dom distributions. This represents an essential advantage
over other methods that rely entirely on acquired data.
Yet, the lack of high-quality training labels (i.e. ground-
truth T1 and T2 maps) limits the variability of training
signals. Here, we also generate synthetic training labels to
achieve sufficient variation in the training set.

We compared the proposed framework with an MLE
method and an implementation of the ResNet as a baseline
for conventional deep learning QMRI methods. In contrast
to MLE methods with user-defined prior distribution to
enforce tissue smoothness, the RIM learns the relationship
between neighboring voxels directly from the data, making
no assumptions about the prior distribution of values. This
might improve mapping robustness to acquisition noise.

We evaluated each method in terms of the precision
and accuracy of measurements. First, noise robustness was
assessed via Monte Carlo experiments with a simulated
dataset with varying noise levels. Second, we evaluated
the quantitative maps’ quality concerning each method’s
ability to retain small structures within the brain. Third,
the precision and accuracy in real scans were evaluated
via a test-retest experiment using a hardware phantom.
Lastly, we used in-vivo scans to evaluate precision in a
test-retest experiment with two healthy volunteers.

2. QMRI framework

2.1. Signal modeling

Let κ be the parameter maps to be inferred, such that
κ(x) ∈ RQ is a vector containing Q tissue parameters of
a voxel indexed by the spatial coordinate x ∈ ND. Then,
we assume that the MRI signal in each voxel of a series of
N weighted images S = {S1, ..., SN} follows a parametric
model fn(κ(x)) : RQ 7→ R so

Sn(x) = fn(κ(x)) + ε(x), (1)

where ε(x) is the noise at position x.
For images with signal-to-noise ratio (SNR) larger than

three, the acquired signal at position x can be well de-
scribed by a Gaussian distribution (Sijbers et al., 1998;
Gudbjartsson and Patz, 1995), with probability density
function denoted by p(Sn(xm) | fn(κ(xm)), σ), where
m ∈ {1, ...,M} is the voxel index, M the number of voxels
within the MR field-of-view and σ is the standard devia-
tion of the noise.

2.2. Quantitative mapping

2.2.1. Regularized Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) is a sta-
tistical method that infers parameters of a model by maxi-
mizing the likelihood that the model explains the observed
data. Because the MLE is asymptotically unbiased and ef-
ficient (it reaches the Cramér-Rao lower bound for a large
number of weighted images) (Swamy, 1971), it was chosen
as the reference method for this study.

Assume P (S|f(κ), σ) is the joint PDF of all indepen-
dent voxels in S from which a negative log-likelihood func-
tion L(κ, σ|S) is defined. Additionally, let Ψ(κ) be the
log of a prior probability distribution over κ, introduced
to enforce map smoothness. Then the ML estimates κ̂ are
found by solving

κ̂ = arg min
κ
L(κ, σ|S) + Ψ(κ), (2)

in which we assume that σ can be estimated by alternative
methods and is, therefore, not optimized.

Note that, although Eq.2 strictly defines an MAP es-
timator, we choose to use the term regularized MLE to
emphasize that Ψ(κ) is only applied to promote maps that
vary slowly in space. In this work, regularization is used
to encourage spatial smoothness of the inversion efficiency
map (i.e. B1 inhomogeneity), while maps linked to pro-
ton density and tissue relaxation times are not regularized
and their estimation occurs exclusively at the voxel level.
Herein, we refer to this method simply as MLE.

2.2.2. ResNet

The Residual Neural Network (ResNet) is a type of
feed-forward network that learns to directly map input
data to training labels using a concatenation of convolu-
tional layers. It was developed by He et al. (2016) as a
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solution to the degradation problem that emerges when
building deep models (He and Sun, 2014). Skip connec-
tions between layers of the network allow the ResNet to
fit to the residual of the signal, rather than to the original
input, making identity learning simpler, and ensuring that
a deeper network will not perform worse than its shallower
counterpart in terms of training accuracy (He et al., 2016).
For that reason, and because it was shown to be a suitable
method for QMRI (Cai et al., 2018), we chose the ResNet
as the reference deep learning method for this study.

Let Λφ : RN 7→ RQ represent a ResNet model for
QMRI, parameterized by φ, that maps the acquired sig-
nal S to tissue parameters κ, specifically κ̂ = Λφ(S). The
learning task is to find a model Λφ̂ such that the difference
between κ̂ and κ is minimal in the training set, that is

φ̂ = arg min
φ
‖κ− Λφ(S)‖22 . (3)

3. The Recurrent Inference Machine: a new frame-
work for QMRI

In the context of inference learning (Chen et al., 2015;
Zheng et al., 2015), the Recurrent Inference Machine (RIM)
(Putzky and Welling, 2017) framework was conceived to
mitigate limitations linked to the choice of priors and op-
timization strategy. By making them implicit within the
network parameters, the RIM jointly learns a prior distri-
bution of parameters and the inference model, unburden-
ing us from selecting them among a myriad of choices.

With this framework, Eq.2 is solved iteratively, in an
analogous way to a regularized gradient-based optimiza-
tion method. The RIM uses the gradients of the likelihood
function to enforce the consistency of the data and to plan
efficient parameter updates, speeding up the inference pro-
cess. Additionally, because this framework is based on a
convolutional neural network, it learns and exploits the
neighborhood context, providing an advantage over voxel-
wise methods. Note that, rather than explicitly evaluating
Ψ(κ), the RIM learns it implicitly from the labels in the
training dataset.

At a given optimization step j ∈ {0, ..., J−1}, the RIM
receives as input the current estimate of parameters, κ̂j ,
the gradient of the negative log-likelihood L with respect
to κ, ∇κ, and a vector of memory states hj the RIM can
use to keep track of optimization progress and perform
more efficient updates. The network outputs an update to
the current estimate and the memory state to be used in
the next iteration. The update equations for this method
are given by

{∆κ̂j+1,hj+1} = gγ(κ̂j , ∇κ, hj), (4)

κ̂j+1 = κ̂j + ∆κ̂j+1, (5)

where ∆κ̂j+1 is the output of the network and denotes the
incremental update to the estimated maps at optimization
step j + 1 and gγ represents the neural network portion

of the framework, called RNNCell, parameterized by γ. A
diagram of the RIM is shown on the left of Fig. 1a.

Predictions are compared to a known ground-truth and
losses are accumulated at each step, with total loss given
by

γ̂ = arg min
γ

1

J

J−1∑
j=0

‖κ− κ̂j+1‖22 (6)

where J is the total number of optimization steps and γ̂
is the optimal inference model given the training data.
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Figure 1: a) The RIM architecture in detail. The general RIM frame-
work is shown on the left. Dashed lines indicate information passed
through iterations. The RNNCell detail is shown on the right of
a). Memory states h∗j+1 are passed to the next iteration step and

used within the Gated Recurrent Units (GRU) to control the rele-
vant information to be used from previous iterations. b) The ResNet
architecture is composed of a concatenation of G residual blocks.

It is important to notice that the RIM uses two distinct
loss functions. The likelihood function L(κ|S, σ) is used to
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provide the gradient ∇κ to the network and is evaluated in
the data input domain (i.e. weighted images). In contrast,
Eq.6 is used to update the network parameters γ, and is
evaluated in the parametric map domain (e.g. T1 or T2

relaxation maps).
A relevant feature of this framework is that the archi-

tecture of the RNNCell, more specifically, the number of
input features in the first convolutional layer, only depends
on Q, and not on N . This means the RIM can process se-
ries of weighted images [Sn] for ∀N > 0.

4. Methods

4.1. Sequences and parametric models

The choice of parameters κ and the form of the para-
metric model fn depend on the pulse sequence used for
acquisition.

For the T1 mapping task in this work, we used the
CINE sequence (Atkinson and Edelman, 1991), based on a
(popular) fast T1 quantification method (Look and Locker,
1970). It uses a non-selective adiabatic inversion pulse,
applied after the cardiac trigger, with zero delay, and sim-
ulated at a constant rate of 100 beats per minute using
a pulse generator developed in-house. For this sequence,
a common parametric model is given by fn(κ(xm)) =∣∣∣A(1−Be−

τn
T1

)∣∣∣, where τn is the nth inversion time and

κ(xm) = (A,B, T1)T is the tissue parameter vector at po-
sition xm, in which A is a quantity proportional to the
proton density and receiver gain, B is linked to the ef-
ficiency of the inversion pulse and T1 is the longitudinal
relaxation time. The operator | · | represents the element-
wise modulus.

For T2 experiments and quantification, we used the
3D CUBE Fast Spin-Echo sequence (Mugler, 2014) with

model given by fn(κ(xm)) =
∣∣∣Ae− τn

T2

∣∣∣, where τn is the nth

echo time and κ(xm) = (A, T2)T , with A proportional to
the proton density and receiver gain and T2 the transverse
relaxation time.

4.2. Generation of simulated data for training

In this work, we opted to generate training data via
model-based simulation pipeline. Training samples are
composed of ground truth tissue parameters κ and their
corresponding set of simulated weighted images S. To gen-
erate training samples with a spatial distribution that re-
sembles the human brain, ten 3D virtual brain models from
the BrainWeb project (Cocosco et al., 1997) were selected.
We randomly extract 2D patches from the brain models
during training, with patch centers drawn uniformly from
the model’s brain mask. To introduce the notion of uni-
form tissue properties within subjects but distinct between
subjects, for each patch and tissue separately, the param-
eters in κ were drawn from a normal distribution with
values given in Table 1. To enable recovery of intra-tissue

variation, voxel-wise Gaussian noise was added to each pa-
rameter in κ, except for B. Because the B value is related
to the efficiency of the inversion pulse in IR sequences,
it is not tissue-specific, and as such, cannot be modeled
as above. Its value was simulated as 2 − Γ, where Γ is
independently sampled, per patch, from the half-normal
distribution (Leone et al., 1961) with standard deviation
σΓ = 0.2.

Using κ, S was simulated via Eq. (1), with ε(x) an
independent zero mean Gaussian noise where, for each
patch, standard deviation σacquisition was drawn from a
log-uniform distribution with values in the range [0.0065,
0.255], corresponding to SNR levels in the range of 100 to
3, respectively.

Table 1: Distribution of parameters per tissue and tissue property.
T1 and T2 values in milliseconds. Values for A are chosen as a fraction
of the concentration of protons in the CSF.

Tissue µ
T1
tissue σ

T1
tissue µ

T2
tissue σ

T2
tissue

µAtissue σAtissue

CSF 3500 300 2000 300 1.0

0.3

GM 1400 300 110 30 0.85

WM 780 250 80 20 0.65

Fat 420 100 70 20 0.9

Muscle 1200 300 50 20 0.7

Muscle
skin

1230 300 50 20 0.7

Skull 400 100 30 10 0.9

Vessels 1980 300 275 70 1.0

Connect. 900 250 80 20 0.7

Dura
Mater

900 250 70 20 0.7

Marrow 580 100 50 20 0.8

4.3. Evaluation datasets

We performed all scans on a 3T General Electric Dis-
covery MR750 clinical scanner (General Electric Medical
Systems, Waukesha, Wisconsin) with a 32-channel head
coil.

4.3.1. Hardware phantom

Phantom scans were carried out using the NIST/ISMRM
system phantom (Keenan et al., 2017) with parameters
for the acquisition of T1 weighted (T1w) and T2 weighted
(T2w) images presented in Table 2 (datasets HPT1 and
HPT2

, respectively). The FOV contained the phantom’s
T1 array for T1w scans and the T2 array for T2w scans.
To evaluate the repeatability of each mapping method,
C = 4 consecutive acquisitions were performed without
moving the phantom and with minimal time interval be-
tween scans.

4.3.2. In-vivo

Our Institutional Review Board approved the volunteer
study and informed consent was obtained from 2 healthy
adults. C = 2 repeated scans per volunteer were acquired
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Table 2: Acquisition settings for the evaluation datasets. HP denotes the phantom scans while IV are the in-vivo scans.

Dataset HPT1
IVT1

IVnoisy
T1

HPT2
IVT2

FOV (pixel) 210x210x15 210x210x10 210x210x1 210x210x15 210x210x10

Slice thickness (mm) 1.5 3.0 1.5 1.5 3.0

Spacing (mm) 1.5 1.5 - 1.5 1.5

In-plane voxel size (mm) 0.82

Repetition Time (ms) 8192 2010, 2020, 2040, 2080, 2160, 2320

τ (Echo Times) (ms) 4 10, 20, 40, 80, 160, 320

τ (Inversion Times) (ms)

23 TIs: 172,
204, 237, 270,
303, 335, 368,
401, 434, 467,
499, 532, 565,
598, 630, 663,
696, 729, 761,
794, 827, 860,

893

31 TIs: 139,
166, 193, 219,
246, 272, 299,
325, 352, 379,
405, 432, 458,
485, 511, 538,
565, 591, 618,
644, 671, 697,
724, 751, 777,
804, 838, 857,
883, 915, 937

25 TIs: 172,
204, 237, 270,
303, 335, 368,
401, 434, 467,
499, 532, 565,
598, 630, 663,
696, 729, 761,
794, 827, 860,
893, 925, 958

-

Flip Angle (º) 10 -

Acceleration factor 2

C (nr. of repeated scans) 4 2 2 4 2

Acq. time/scan (min) 4.3 7.5 1.6 3.2 3.2

for both T1 and T2 experiments to evaluate repeatability
with in-vivo data. The FOV used was similar for T1 and
T2 experiments and was oriented in the axial direction,
with the middle slice positioned at the level of the body
of the corpus callosum. These datasets, acquired with a
slice thickness of 3mm, are referred to as IVT1

and IVT2
,

respectively. Details on acquisition settings are given in
Table 2. Finally, to evaluate the performance of the es-
timators under low SNR conditions, we repeated the T1w
acquisition using a slice thickness of 1.5mm (dataset called

IV noisy
T1

), in which a single slice, positioned above the cor-
pus callosum, was acquired. Again, C = 2 repeated scans
were acquired for each volunteer to assess each method’s
repeatability.

4.4. Implementation details

The codes for all methods, trained models and the data
used in the experiments are available online 1.

4.4.1. MLE

In the experiments in this study, Ψ(κ) is set as the sum
over voxels of the voxel-wise square of the (spatial) Lapla-
cian of B. A weighting term λB is introduced to control
the strength of the regularization and was empirically set
to 500 to reduce the variability of the T1 estimates. The
remaining maps in the T1 and T2 mapping tasks are not
regularized.

1https://gitlab.com/e.ribeirosabidussi/qmri-t1-t2mapping-rim

To prevent the estimator from getting stuck in a lo-
cal minimum far from the optimal target, we initialize κ
via an iterative linear search within a pre-specified range
of values per parameter. Following initialization, parame-
ters are estimated with a non-linear trust region optimiza-
tion method. The estimation pipeline was implemented in
MATLAB with in-house custom routines (Poot and Klein,
2015).

4.4.2. Network training

To train both neural networks, 7200 2D patches of size
40 × 40 per brain model were generated during training
and arranged in mini-batches of 24 samples, for a total of
3000 training iterations.

We used the ADAM optimizer with an initial learning
rate of 0.001 and set the initial network weights with the
Kaiming initialization (He et al., 2015). PyTorch 1.3.1 was
used to implement and train the models. The networks
were trained on a GPU Nvidia P100, and all experiments
(including timing) were performed on an Intel Core i5 2.7
GHz CPU.

4.4.3. ResNet architecture

Our implementation of the ResNet is a modified ver-
sion of He et al. (2016). Pooling layers were removed to en-
sure limited influence between distant regions of the brain,
effectively enforcing the use of local spatial context dur-
ing inference. Additionally, our ResNet does not contain
fully connected layers to adapt the network for a voxel-
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wise regression problem. All convolutions are zero-padded
to maintain the patch size.

The first convolutional layer has a 1 × 1 filter, and it
is used to increase the number of features from N (the
number of weighted images) to 40. This layer is followed
by a batch normalization (BatchNorm) layer and a ReLu
activation function. The core component of the network,
denoted as the residual block (RB), comprises two 3 × 3
convolutional layers, two BatchNorm layers, and two ReLu
activations, arranged as depicted on the right of Fig. 1b.
Within a given RB, the number of features in each con-
volutional layer is the same. The skip connection is char-
acterized by the element-wise addition between the input
and the output of the second BatchNorm layer. In total,
G = 12 residual blocks are sequentially linked, with num-
ber of feature channels in each block empirically chosen as
[40, 40, 80, 80, 160, 320, 160, 80, 80, 40, 6]. The network ar-
chitecture is completed by one 1 × 1 convolutional filter,
used to reduce the number of features to Q. Details on the
general architecture are presented on the left of Fig. 1b.

Note that, due to differences in the inversion times
used for the acquisition of T1 weighted datasets (Table
2), we trained three ResNet models for the T1 mapping
task: (1) Training dataset generated with N = 23 in-
version times (ResNetT1:23), (2) with N = 25 inversion
times (ResNetT1:25), and (3) with N = 31 inversion times
(ResNetT1:31). Finally, a fourth model was trained on the
T2 mapping task, denoted as ResNetT2 , with N = 6 echo
times.

4.4.4. RIM architecture

In this work, the RNNCell (shown in detail on the
right of Fig. 1a) is composed of four convolutional lay-
ers and 2 GRUs. The first 3 × 3 convolutional layer is
followed by a hyperbolic tangent (tanh) link function, and
its output, with 36 feature channels, is passed to the first
GRU, which produces 36 output channels. The output
of this unit (h1

j+1), also used as the first memory state,
goes through two 3 × 3 convolutional layers with 36 out-
put features, each followed by a tanh activation. The data
then passes through a second GRU, which generates the
second memory state h2

j+1. The last layer is a 1 × 1 con-
volutional layer used to reduce the dimensionality of the
feature channels, and it outputs Q features, corresponding
to the number of tissue parameters in κ. All convolutional
layers are zero-padded to retain the original image size.

The parameter vector κ̂ was initialized as A = MIP(S),
B = 2, T1 = 1000 ms and T2 = 100 ms, where MIP is the
Maximum Intensity Projection per voxel over all weighted
images in the set. We used J = 6 optimization steps for
all RIM models.

Similarly to the ResNet, we trained three RIM models
on the T1 mapping (RIMT1:23, RIMT1:25, and RIMT1:31)
and one model on the T2 task (RIMT2). Notice that, while
all T1 datasets could be processed by a single RIM model,
as the number of input features in the first convolutional
layer does not depend on N , slight variations in inversion

times might affect estimation error. This aspect will be
assessed in Section 5, as it supplies information on the
RIM’s generalizability.

4.5. Quantitative evaluation

The prediction accuracy was evaluated in terms of the
Relative Bias between the reference parameter values κ
and the estimated parameters κ̂c ∈ {κ̂1, ..., κ̂C} for each
repeated experiment c, defined as

Relative Bias [%] =
1

C

C∑
c=1

[(κ̂c − κ)� κ]× 100%, (7)

where C is the number of repeated experiments and � de-
notes the element-wise division. The Coefficient of Vari-
ation (CV) was used to measure the repeatability of the
predictions, and it is given by

CV [%] =

(
SDc (κ̂c)� 1

C

C∑
c=1

κ̂c

)
× 100%, (8)

where SDc denotes the standard deviation over C esti-
mates κ̂.

5. Experiments

5.1. Simulated dataset

5.1.1. Noise robustness

To assess each method’s robustness to noise and map-
ping quality, we generated the simulated T1w data with
the process described in Section 4.2 using a 2D slice of a
virtual brain model not included in the training, matrix
size 256× 256 and inversion times of dataset IVT1

.
For the same ground-truth T1, A and B maps, C =

100 realisations of acquisition noise were simulated per
SNR ∈ [3, 5, 10, 30, 60, 100]. The Relative Bias and CV
were computed per pixel and their distribution over all
pixels within a brain mask is shown. The models RIMT1:31

and ResNetT1:31 were used in this experiment.

5.1.2. Blurriness analysis

We assessed the quality of the quantitative maps in
terms of blurriness. Here, we defined blurriness as the
amount of error introduced to a pixel, in terms of Relative
Bias and CV, due to the influence of its neighbors and
vice-versa. In this experiment, our interest lies on how
well each mapping method can preserve the true T1 value
in small structures (e.g., one pixel), specifically hypo and
hyper-intense regions that are at risk of being blurred away
by the neural networks.

To simulate the presence of these small anatomical
structures, we changed the T1 value of selected pixels in
a ground-truth T1 map (Fig. 3a), described as follows:

Ωhypo
point is a hypo-intense pixel (T1 = 400ms) within the gray

mater of this map (shown in detail in Fig. 3b); Ωhyper
point is a
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hyper-intense pixel (T1 = 1200ms) within the white mater
(WM); Ωvert

line is a hyper-intense vertical line (T1 = 1200ms)
in the WM; and Ωhorz

line is a hyper-intense horizontal line
(T1 = 1200ms) also in the WM.

We measured the Relative Bias and CV per pixel in a
Monte Carlo experiment with C = 100 noise realizations
(SNR=10). Each metric’s median and standard deviation
are reported for two disjoint regions in the estimated T1

map, referred to as Structure and Neighborhood (Fig. 3c).
This scenario, containing simulated structures is called E2,
and was compared to the baseline error in the same regions
in the original T1 map (scenario E1). An independent t-
test was applied to identify significant differences between
E1 and E2. The models RIMT1:31 and ResNetT1:31 were
used in this experiment.

5.2. Evaluation with hardware phantom

We manually drew ROIs within every sphere in the
phantom and calculated the Relative Bias and CV per
pixel within each ROI for T1 and T2 tasks.

Since nominal parameter values within the spheres, as
reported in Keenan et al. (2017) and used as the reference
κ, include relaxation times shorter and longer than the
τ used for training (Table 2), we calculated the overall
accuracy and repeatability as the average Relative Bias
and CV over all pixels in spheres with parameter value in
between the lowest and highest τ . Because this dataset
was acquired with 23 inversion times, models RIMT1:23

and ResNetT1:23 were used.

5.3. Evaluation with In-vivo scans

To evaluate the precision of estimates from in-vivo data,
we compared T1 and T2 maps from all methods in terms
of pixel-wise CV for all in-vivo scans. We also performed
a visual comparison of the maps.

We evaluated the mapping quality in in-vivo scans re-
garding the sharpness of the boundary between gray mater
and white mater. Twenty lines perpendicular to the tissue
interface (Fig. 7a) were manually drawn in the measured
quantitative maps. For each line, linear interpolation was
used to reconstruct the T1 values along them and a sigmoid
model, given by y(x) = V/(1+e−υ(x−x0))+b, was fit using
the MSE as objective function. The parameter υ denotes
the slope of the fitted sigmoid and was used as a measure
of boundary sharpness. A paired t-test was performed to
evaluate significant differences between mapping methods.

5.4. Model generalizability

In this experiment, we evaluated how well the RIM
can generalize to datasets with different acquisition set-
tings, specifically, the variation of the inversion times in
the three T1w datasets. In contrast to the ResNet archi-
tecture, which depends on the number of weighted images
in the series, the RIM can process inputs of any length.

We used the three RIMT1
models (RIMT1:23, RIMT1:25

and RIMT1:31) to infer T1 maps from each T1w dataset,

and computed the CV for the repeated experiments in
each. The results were compared to the MLE and dataset-
specific ResNet models.
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Figure 2: Results of the Monte Carlo experiment with a T1w simu-
lated dataset for varying SNR levels. a), b) and c) show the Relative
Bias for the estimated A, B, and T1 maps compared to simulated
ground-truth. Figures d), e) and f) shows the Coefficient of Varia-
tion for the same maps. The boxplot represents the distribution of
the metric over all pixels in the brain mask. The box extends from
the lower to upper quartile values of this data, with a line at the
median. The whiskers extend from the box to show the minimum
and maximum values for each metric within the brain mask.

6. Results

6.1. Simulated dataset

Figures 2(a)-(c) show the Relative Bias measured for A,
B and T1 maps in the experiment with simulated T1w data.
For most cases where SNR > 3, all methods produced
quantitative maps with comparable median Relative Bias,
but both neural networks displayed a larger range of values
than the MLE. The CV for all SNR levels is shown in Figs.
2(d)-(f) for the same data. The RIM presented lower CV
than the other methods for all SNRs. In comparison, the
MLE displayed significantly higher CV compared to RIM
and ResNet, accentuated in low SNR. The results of the
experiments with simulated T2w data were similar and are
shown in Fig. A1 of the Supplementary Results.

Figures 3(d)-(g) show the results of the blurriness anal-
ysis. Specifically, Figs. 3(d) and 3(f) depict the Relative
Bias and CV measured per pixel within the Structure area.
We observe that both neural networks presented increased
Relative Bias compared to scenario E1. For the RIM, the
highest increase occurred for Ωhypo

point, with Relative Bias
going from 0.68% to 3.43%. This difference represents
an average error of 11ms over the ground-truth T1 value
of 400ms, or a loss of 0.81% in T1 contrast between the
pixel and its neighbors, with average T1 of 1350ms. The
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Figure 3: Evaluation of image blurriness in terms of Relative Bias and CV. a) Ground-truth T1 map used to generate the weighted images S.
The red box indicates the position of the simulated artefacts. b) The four simulated structures. c) Representation of the areas of interest.
The blue areas are the structures, and red areas are their immediate neighborhood. d) Relative Bias over one hundred repetitions within the
Structure region. e) Relative Bias over one hundred repetitions within the Neighborhood region. f) CV over one hundred repetitions within
the Structure region. g) CV over one hundred repetitions within the Neighborhood region. In all plots, the box extends from the lower to
upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. The vertical
black lines at the top of the bars (plots f) and g)) show the standard deviation over the data. Significant differences between scenarios E1
and E2 are indicated by ∗ and ∗∗, representing p < 0.05 and p < 0.01, respectively.

ResNet showed considerably higher bias than RIM when
small structures were added, while for the MLE, the differ-
ence between scenarios E1 and E2 is not significant (with
exception for Ωhorz

line ). The RIM showed increased CV for all
structures compared to the baseline, but values were still
lower than the MLE’s and comparable to the ResNet’s.
Figures 3(e) and 3(g) show the Relative Bias and CV for
the Neighborhood region. We observe higher Relative Bias
for RIM and ResNet than the MLE, with a wider range of
values, but we found no significant differences between E1
and E2 for any of the cases.

The average computing time to produce κ̂ from N = 31
weighted images (with size 256 × 256 pixels) was measured
as 3.8s for the RIMT1:31, 27s for ResNetT1:31 and 575s for
the MLE.

6.2. Evaluation with hardware phantom

The T1 quantification results are shown in Fig. 4.
In Fig. 4(a) we present the Relative Bias for the differ-
ent spheres in the phantom. The average Relative Bias
was computed over the spheres in the restricted τ do-
main (full-color lines), in which the RIMT1:23 model shows
lower error (1.34%) compared to the MLE (1.71%) and
ResNetT1:23 (31.06%). The CV as a function of T1 values
is shown in Fig. 4(b). The average CV over the restricted
τ domain was measured as 3.21% for RIMT1:23, 7.56% for
MLE and 7.5% for ResNetT1:23.

The results for the T2 mapping task with the hard-
ware phantom are shown in Fig. A2 of the Supplementary
Results, where we observed larger Relative Bias for all
methods.
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Figure 4: Estimation of T1 values in the ISMRM/NIST phantom.
a) Distribution of Relative Bias over all pixels within a ROI versus
nominal T1 values in the phantom. b) Box plot of the CV in the
different spheres/ROIs of the phantom, plotted as a function of their
nominal T1 value. In both figures, the fully-coloured strokes indicate
the spheres with T1 values within the range of inversion times.

Figure 5: T1 maps estimated from the IVT1 dataset. Scan 1 of vol-
unteer 1 is shown. a-c) T1 maps generated by each mapping method
and the detail (blue box) shown in figures d-e). The white arrows
indicate estimation outliers. g) Agreement between the ResNet and
MLE and h) RIM and MLE.

6.3. Evaluation with In-vivo scans

The T1 maps generated by each method for volunteer
1 in the low noise dataset IVT1

are shown in Figs. 5(a)-
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Figure 6: T1 maps estimated from the IV noisy
T1

dataset a) T1 maps

estimated from volunteer 1 for repeated scans 1 and 2. b) Their
respective pixel-wise CV map.

(c). We observe the presence of outliers in the MLE and
ResNetT1:31 (white arrows in Figs. 5(d)-(f)), while the
RIMT1:31 produced a clean T1 map. The scatter plot in
Fig. 5(h) shows that the RIM estimate is nearly unbiased
when compared to the MLE’s, while the ResNet presented
overestimated T1 values (Fig. 5(g)).

T1 maps inferred from the noisier dataset IV noisy
T1

are
shown in Fig. 6(a). The RIMT1:25 showed increased noise
robustness compared to the MLE and ResNetT1:25, clearly
outperforming these methods in terms of outliers. The
CV maps, computed per pixel, are presented in Fig. 6(b)
and shows that the RIMT1:25 model produces low-variance
quantitative maps, with average CV over all pixels equal
to 6.4%, compared to 17.1% from the MLE and 11.06%
from the ResNetT1:25.

Figure 7(c) shows the result of the image quality anal-
ysis for in-vivo scans. The figure depicts the distribution
of the sigmoid slope k for each method across all 20 lines.
The whiskers indicate the minimum and maximum k val-
ues, the boxes show the lower and upper quartiles and the
solid horizontal line their median. The paired t-test shows
no significant differences between methods.

Figures 8(a)-(c) show the T2 maps generated by each
mapping method. The RIMT2 predicted T2 values that
are similar to the reference MLE, with average difference
in T2 of −1.13ms across all pixels in the brain, while
the ResNetT2 again showed overestimated relaxation times
compared to the MLE, with an average difference of 26.2ms.
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Difference maps between the MLE and both neural net-
works are shown in Figs. 8(d) and 8(e). The scatter plots
in Figs. 8(f) and 8(g) depict the agreement between the
neural network estimates and the reference MLE.

6.4. Model generalizability

Fig. 9 illustrates the CV of the different models evalu-
ated on all T1w datasets. The graph shows that the RIM
produces estimates with lower variance than the MLE and
ResNet, regardless of the number of inversion times used to
create the training set. Note that, in every case, the RIM
trained for the specific data performs slightly better than
the other RIM models. However, we found no significant
differences in repeatability between these models.
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Figure 7: Evaluation of the integrity of the GM/WM boundaries.
a) Detail on the twenty lines were manually drawn perpendicular to
the GM/WM interface indicated by the red lines. b) An example
of the sigmoid fitting for one of the lines. c) The box plot depicts
distribution of the absolute sigmoid slope (υ) for all 20 lines for each
mapping method. We found no significant differences between the
methods.

7. Discussion

This work presented a novel approach for MR relaxom-
etry using Recurrent Inference Machines. Previous works
showed that RIMs produce state-of-the-art predictions solv-
ing linear reconstruction problems. Here, we expanded the
framework and demonstrated that it could be successfully
applied to non-linear inference problems, outperforming
a state-of-the-art Maximum Likelihood Estimator and a
ResNet model in T1 and T2 mapping tasks.

In simulated experiments, we observed that the RIM
reduces the variance of estimates without compromising
accuracy, suggesting higher robustness to acquisition noise
than the MLE, and attesting to the advantages of using
the neighborhood context in the inference process. In ad-
dition, for low SNR, the RIM had lower variance than the
ResNet, suggesting that the neighborhood context alone
is not the sole responsible for the increased quality, and
that the data consistency term (likelihood function) in the
RIM framework helps to produce more reliable estimates.

Figure 8: T2 estimation. a-c) (left to right) T2 maps from dataset
IVT2

for the MLE, ResNet and RIM. d) Difference map between the
ResNet and MLE and e) RIM and MLE. f-g) Scatter plots showing
the agreement between each neural network and the reference MLE.

a) b) c) d) e)
0

5

10

15

20

CV
 [%

]

MLE
ResNetT1 : x

RIMT1 : 23
RIMT1 : 25
RIMT1 : 31

Figure 9: Results of the model generalisability experiment. The 3
RIM models (RIMT1:23, RIMT1:25 and RIMT1:31) for T1 mapping
were used to estimate data from all datasets and compared to the
results from MLE and ResNet. a) Dataset HPT1 (23 TIs), b) dataset

IV noisy
T1

: V olunt.1 (25 TIs) c) dataset IV noisy
T1

: V olunt.2 (25

TIs) d) dataset IVT1 : V olunt.1 (31 TIs) e) IVT1 : V olunt.2 (31
TIs). The median CV over all pixels containing tissues of interest
(phantom spheres or brain tissue) is shown.

This showcases a major advantage of the RIM framework
over current conventional and deep learning methods for
QMRI.

The phantom experiments performed to assess the Rel-
ative Bias and CV in real, controlled scans showed that
the RIM has the lowest Relative Bias among the evalu-
ated methods. The ResNet presented significantly higher
error, which indicates that the ResNet does not generalize
well to unseen structures, and the use of simulated train-
ing data with this model should be carefully considered.
Because the RIM can generalize well, using simulated data
for training represents a significant advantage over mod-
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els trained with real-data when considering dataset flexi-
bility, since any combination of parameter values can be
simulated and the training dataset can be arbitrarily large.

In all in-vivo scans, the RIM produces quantitative
maps similar to those from the MLE, with higher robust-
ness to noise. Although the ResNet estimates parametric
maps consistent with reported T1 and T2 relaxation times
of brain tissues, they are often overestimated compared
to the MLE. In terms of coefficient of variation, the RIM
results are superior compared to the other methods, inde-
pendently of the dataset.

The anatomical integrity of quantitative maps is an es-
sential factor when evaluating the quality of a mapping
method. The RIM and the ResNet use the pixel neighbor-
hood’s information to infer the parameter value at that
pixel, which creates valid concern regarding the amount of
blur introduced by the convolutional kernels. We demon-
strated in simulation experiments that, although the RIM
does introduce a limited amount of blur to the quantita-
tive maps, small structures are still confidently retained,
and the error introduced by the pixel neighborhood does
not represent a significant change in the relaxation time
of those structures. Additionally, in in-vivo experiments,
both deep learning methods produce relaxation maps with
similar structural characteristics to the maps inferred by
the MLE. More concretely, the T1 relaxation times in the
interface between gray and white mater follow a similar
transition pattern to the MLE, further suggesting that the
RIM does not introduce sufficient blur to alter brain struc-
tures, even in in-vivo scans.

8. Conclusion

We proposed a new method for T1 and T2 mapping
based on the Recurrent Inference Machines framework.
We demonstrated that our method has higher precision
than, and similar accuracy levels as an Maximum Likeli-
hood Estimator and higher precision and higher accuracy
than an implementation of the ResNet. The experimental
results show that the proposed RIM can generalize well to
unseen data, even when acquisition settings vary slightly.
This allows the use of simulated data for training, rep-
resenting a substantial improvement over previously pro-
posed QMRI methods that depend on alternative mapping
methods to generate ground-truth labels. Lastly, the RIM
dramatically reduces the time required to infer quantita-
tive maps by 150-fold compared to our implementation of
the MLE, showing that our proposed method can be used
in large studies with modest computing costs.
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