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TARGET AUDIENCE: Scientist interested in MRI reconstruction and segmentation.   
PURPOSE: In MRI reconstruction, undersampled data sets lead to ill-posed reconstruction problems. To regularize them, prior knowledge is commonly exploited. In 
this work, we introduce a new type of prior knowledge for ill-posed reconstruction problems where part of the image is assumed to be homogeneous (i.e., can be well 
represented by a constant magnitude). Examples of MRI applications where partial discreteness can be exploited are MR implants imaging, CSF in spin echo T2-
weighted images, dental MRI with SWIFT sequences or Multiple Sclerosis plaques imaging with FLAIR sequences.  
METHOD 1) Partially discrete parametric model: Images that follow the partial discreteness assumption are those whose magnitude is composed of a (known) number ܭ	of disjoint classes	ࣛ௞, ݇ ൌ 1,… , ݇ ,representing tissues and background. Some of these classes ܭ ∈ ܫ ⊂  are assumed to have a constant  ,ܭ

magnitude ߩ௞, but no assumptions on the intensity are made for the rest.  An example is shown in Fig. 1, which shows an MRI breast implant 
image that is represented by three classes ሺࣛଵ,ࣛଶ and ࣛଷሻ, of which the background region 	ࣛଵ  and implant region 	ࣛଷ  are assumed to be 
constant. Such images can be written in parametric form as	࢞ௗ௜௦ ൌ ݁௜઴ ∘ ൫∑ ૚ࣛೖ௞	∈	ூ ௞ߩ ൅ ൯, where ઴̅ࣛ࢞ ∈ Թே (ܰ is the number of pixels) is the 
image phase, ૚ࣛೖ ∈ ሼ0,1ሽே is a mask vector for the class	ࣛ௞,	ࣛ ൌ ⋃ ࣛ௞௞	∈	ூ  ࣛ represents the magnitude in classes that do not belong to ̅ࣛ࢞ ,
and	∘ denotes the Hadamard product.   
2)	݈ଶ reconstruction with the partial discreteness prior: We formulate the reconstruction problem following the algebraic linear model in a multi-
coil acquisition system. K-space data are related to the image ࢞ ∈ 	ԧே	as  ࢟௟ ൌ ࢞࡭ ൅ ݈	௟ with࢔ ൌ 1,… , ௟࢔	 ,where  L is the number of coils  ,ܮ ∈ 	ԧெ are mutually uncorrelated complex white Gaussian noise contributions, 	࡭ ∈ 	ԧெ௫ே is the system matrix which encodes the Fourier 

matrix and the coil sensitivities, and ࢒࢟ ∈	ԧெare the k-space data in the ݈-th coil [1]. We search for the reconstruction ࢞ as that minimizes the ݈ଶ  norm ܧሺ࢞ሻ ൌ‖࢟ െ ࢟	with	૛‖࢞࡭ ൌ ሾ࢟ଵ் , ଶ்࢟ , … ,  ௗ௜௦. Because this problem has no closed-form solution, we resort to an iterative algorithm࢞	௅்ሿ், and adheres to the parametric form of࢟
which combines a penalized ݈ଶ reconstruction with an internal Bayesian segmentation using a Gaussian Mixture Model (GMM) [2].   

3) Iterative algorithm: The iterative algorithm is defined as 	࢞ሺ௧ାଵሻ ൌ argmin࢞ ቄܧሺ࢞ሻ ൅	ฮࢃሺ௧ሻ൫࢞ െ ࣪ሺ௧ሻ൛࢞ሺ௧ሻൟ൯ฮ૛ቅ	,	with  ࢞ሺ଴ሻ ൌ argmin࢞ 	 	,	ሻ࢞ሺܧ  ሺ௧ሻ  a weightingࢃ	

diagonal matrix and 	࣪ሺ௧ሻሼ. ሽ is a Bayesian segmentation operator, which for each input image constructs its 
partially discrete version. The solution ࢞ሺ௧ାଵሻ  balances minimizing ܧሺ࢞ሻ	and being close to	࣪ሺ௧ሻ൛࢞ሺ௧ሻൟ.  The 
penalty term added to the common ݈ଶ  reconstruction, controlled by 	ࢃሺ௧ሻ	  and termed discreteness error, 
progressively imposes the partial discreteness structure in the solution. The Bayesian segmentation operator 	࣪ሺ௧ሻሼ. ሽ  is constructed by fitting a ܭcomponents GMM to the magnitude of 	࢞ሺ௧ሻ, and then applying Otsu’s 
thresholding algorithm on the probabilistic image defined as ࢞௣௥௢௕=∑ ூ	∈	௞ሺ௧ሻ௞࢖ ො௞ߩ ൅ ∑ ௞ሺ௧ሻ࢖ ∘௞∉	ூ  ௞ሺ௧ሻare࢖ ሺ௧ሻ, where࢞
the temporally regularized probability maps and ߩො௞ are the means of the classes, both obtained from the GMM. 
To create  ࢞௣௥௢௕  , it is assumed that classes that belong to ܫ  can be identified. The weighting matrix 	ࢃሺ௧ሻ  
determines the discreteness error probability in different regions. During initial iterations, we set the diagonal 
entries of 	ࢃሺ௧ሻ equal to the probability map of the class with the lowest mean (background), because initially our 
belief of a good classification for the rest of the classes is doubtful. Therefore, the discreteness error should not have influence outside of the background.  As the 
algorithm evolves, 	ࢃሺ௧ሻ could be redefined by including probability maps of the other classes. The algorithm stops when the Frobenius norm of 	ࢃሺ௧ାଵሻ െ	  ሺ௧ሻ isࢃ	
below a certain tolerance level. A schematic diagram of the Bayesian segmentation operator is shown in Fig.2. We have tested the partial discreteness prior and the 
iterative algorithm using MRI breast implant simulated data (Fig.1), which shows the implant rupture. A smoothly varying phase was added to the image and the k space 
data was synthetized using an equiangular radial scheme with ௦ܰ௣௢௞௘௦  spokes and 256 samples per spoke. Single-coil acquisition was considered. Complex white 
Gaussian noise was added leading to an SNR=100 defined as in Sutton et al. [1]. The proposed algorithm was run with ܭ ൌ 3 and  ܫ ൌ ሼ1,3ሽ, where ݇ ൌ 1 and ݇ ൌ 3 
represent the classes with highest (breast implant) and lowest (background) mean, respectively. The phase was fixed after its estimation from	࢞ሺ଴ሻ.  After five iterations, 
the probability maps of breast implant and breast tissue were used to update the weighting matrix. Our method was compared to the conjugate gradient (CG) method 
with smoothness and Total Variation (TV) priors, both implemented with the Impatient Toolbox [3]. After reconstruction, implant contour detection was accomplished 
on the extracted implant. For the images obtained with the CG method, the implant was extracted after applying Otsu’s method. Segmentation based metrics such as the 
relative number of misclassified pixels (rNMP) [4] and the Dice coefficient [5] were calculated for the implant class and for ௦ܰ௣௢௞௘௦ between 20 and 95. 
RESULTS: As can be observed from Fig. 3, our proposed algorithm (Fig. 3(c)) allows for substantially better reconstruction and consequently a more accurate contour 
detection of implant rupture, compared to the other methods (see Fig.3(a) and Fig.3(b)). Moreover, Fig. 4 shows substantially better quantitative results for both metrics 
and for the complete regime of selected ௦ܰ௣௢௞௘௦ values. 

 
CONCLUSIONS: When the conditions for the partial discreteness assumption hold, the inclusion of the proposed prior in undersampled data scenarios produces more 
detailedly restored images compared to state-of-the-art methods, and consequently more accurate segmentation is achieved. 
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