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Abstract

This work describes a new approach for the compu-
tation of 3D Fourier descriptors, which are used for
characterization, classification, and recognition of 3D
objects. The method starts with a polygonized surface
which is mapped onto a unit sphere using an inflation
algorithm, after which the polyhedron is expanded in
spherical harmonic functions. Homogeneous distribu-
tion of the vertices is achieved by applying an iterative
watershed algorithm to the surface graph.

1 Introduction

Characterization or recognition of objects by means
of Fourier descriptors (FDs) has extensively been de-
scribed in the past, especially in two dimensions [10,
5, 4]. From the nineties on, FDs were also employed
for 3D applications, first for 3D curves [3], later for 3D
surfaces as well [6, 2, 8, 9]. FDs are used to characterize
the objects contour in 2D or the objects surface in 3D.
FDs are quite efficient for object parameterization be-
cause of properties such as transformation invariance,
noise robustness, and uniqueness.

1.1 2D Fourier descriptors

For 2D object characterization, the procedure to ob-
tain 2D FDs is well known [5, 4]. They are derived from
the Fourier transform of the contour coordinates:

~an =
1
L

∫ L

0

~xl exp
(

2πinl

L

)
dl (1)

with ~xl the coordinate vector of a point on a contour
with length L. The Fourier coefficients ~an of Eq. (1)
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Figure 1. (a) Contour of a 2D object. (b): Unit
circle as parameter space.

are then appropriately transformed to make them in-
dependent to translation, rotation, scale, and starting
point. As can be seen from Eq. (1), the contour can
adequately be parameterized by the angle θ = 2πl/L,
where the unit circle serves as parameter space (see
Fig. 1). It is important to note that the sampling of
the unit circle must be uniform. If this uniformity is
not met, the orthogonality relation of the Fourier ba-
sis functions evaluated on discrete points on the unit
circle, would not hold, which would result in erroneous
Fourier descriptors. Fortunately, for a 2D contour, uni-
form subdivision of the unit circle along with a one-to-
one mapping of the objects contour is trivial.

1.2 Extension to 3D

Where in 2D the contour is mapped onto a circle, in
3D the surface is mapped onto a sphere (see Fig. 2).
This was already reported in the early nineties, where
the surface of a (simple) 3D object was mapped to a
sphere for posterior expansion in spherical harmonic

1051-4651/02 $17.00 (c)  2002 IEEE



Figure 2. One-to-one mapping between the
(x,y,z)-coordinates of the object to the angle
parameters (θ, φ )

functions [6]. Later, Brechbühler, described a method
to do this for objects that are more complex than con-
vex or star-shaped (for these objects, the radial projec-
tion of the vertices onto the sphere is ambiguous)[2].
Compared to 2D, the mapping from the object space
to the parameter space is far less obvious in 3D be-
cause the surface of a 3D object cannot be traced in an
equally simple manner as can be done for the contour
of a 2D region. During 3D-mapping, one has to pay
attention to connectivity and uniformity:

Connectivity First neighboring nodes on the original
object should also be first neighboring nodes on
the sphere to ensure a unique one-to-one mapping.
If not, spurious discontinuities are introduced in
parameter space.

Uniformity Also, the object surface should be uni-
formly mapped onto the parameter space (i.e., the
object points should be equally distributed onto
the sphere). If not, higher frequencies and hence
more Fourier Descriptors are needed to adequately
describe the object.

The purpose of this paper is to propose a new method
to obtain the uniform and unique mapping of the ob-
ject’s surface points to the parameter space.

2 Method

In this section, the various steps for the computation
of 3D Fourier descriptors are described. Thereby, it is
assumed that the surface of the object under concern is
polygonized (i.e., described by vertices and polygons),
and centered around the origin. Hence, without loss of
generality, it is assumed that

∑N
i=1 ~vi = ~0 with N the

total number of vertices.

2.1 Mapping to a sphere

The first step is to map the polygonized surface onto
a sphere. An interesting approach has been proposed
by Brechbühler et al [1]. In their work, a continuous
one-to-one mapping from the surface of the original
object to the surface of a unit sphere was proposed.
Thereby, two poles were selected on the surface, af-
ter which the vertices were uniformly mapped onto the
sphere by means of a diffusion process. The disad-
vantage of this approach is that the iterative diffusion
process is rather time-consuming, especially for a large
number of vertices (> 5000).
In this section, we will describe a simple alternative ap-
proach for the mapping of a polygonized surface onto
a sphere.

2.1.1 Inflation

The method we use to map the vertices of the original
object to the sphere surface is an iterative blow-up al-
gorithm in which the inflation of a crumpled balloon
is simulated. The position of the center of the target
sphere is chosen to be the center of the object, and
the sphere’s radius rs is fixed at 2 times the maximum
vertex radius of the object:

rs = 2max
i

|~vi| (2)

Each iteration consists of:

• Moving towards a sphere During each itera-
tion, the vertices are non-linearly displaced to-
wards the surface of a sphere. The rate with which
a vertex ~v proceeds depends on the distance of that
vertex to the center of the target sphere. Vertices
that are further away from the sphere surface pro-
ceed faster than vertices close to the sphere:

rnew
i = rold

i + a
|rs − rold

i |
rs

∗ (rs − rold
i ) (3)

with a a regulation constant.

• Area equalization During each iteration, the
spatial coordinates of each vertex are adapted so
as to equalize the areas of the surrounding poly-
gons:

~x =
∑K

k=1 Ak~ck∑K
k=1 Ak

(4)

where ~ck and Ak are the center and area of a poly-
gon having vertex ~vk, respectively, where K de-
notes the number of surrounding polygons.

This procedure is iterated until the object becomes a
star-shaped object, after which a final projection onto
a unit sphere is performed.
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2.1.2 Watershed transformation

The result of the previous phase is a mapping of the
object’s vertices onto the surface of a unit sphere.
Thereby, topology is preserved, i.e., neighboring ver-
tices on the original object are also neighboring ver-
tices on the sphere surface. However, the polygons may
not be distributed homogeneously over the sphere. As
mentioned above, it is important for posterior compu-
tation of the Fourier Descriptors that the polygons are
distributed as homogeneously as possible.
To obtain a homogeneous distribution, polygons with
small areas should move towards parts on the sphere
where the polygon-distribution is less dense. Moving
one polygon, however, influences all neighboring poly-
gons, because the polyhedron is in fact one large cou-
pled system. Hence, global directions need to be found
for each polygon to move to. This can be done by com-
puting the watershed transform on the area graph of
the spherical polyhedron. The procedure is summa-
rized as follows:

• The polyhedron is transformed into a graph, where
the value of each node of the graph corresponds to
the area of a polygon.

• The local minima and maxima corresponding to
each node are computed using the efficient immer-
sion based watershed transformation proposed by
Vincent and Soille [7]. Hence, for each polygon,
we have the centers of those polygons that have
locally maximal and minimal areas.

• The vertices of each polygon are then moved to-
wards the local maximum and away from the local
minimum polygon center, where the displacement
vector is weighted by the area mean of the faces
surrounding the extremum.

• Each vertex is then recomputed according to Eq.
(4) to equalize the areas of the polygons it belongs
to.

The above procedure is iterated until the difference be-
tween the maximum and minimum area is smaller than
a certain threshold.

2.2 3D Fourier descriptors

The final step is the computation of the Fourier
descriptors. Assume a spherical field S(~n), where
~n = (cos φ cos θ, cos φ sin θ, sinφ) is a vector, denoting
a location on the unit sphere. In our application, S is
a vector field denoting the spatial coordinates of a sur-
face point on the original object. Furthermore, assume
that there are N observations Si available at locations

~ni. Then, the field S at a new location ~n can be approx-
imated from the observations using spherical harmonic
functions Y m

l :

Ŝ(~n) = a.y(~n) =
L∑

l=0

l∑
m=−l

am
l Y m

l (~n) (5)

where the Fourier coefficients am
l are the inner product

of the field S with the spherical harmonics Y :

am
l =

∫ π

0

∫ 2π

0

S(θ, φ)Y m
l (θ, φ)dφ sin θdθ (6)

In practical applications, these coefficients are found,
for example, by least squares estimation of the spheri-
cal harmonics from the discrete observations:

a =
N∑

i=1

S(~ni)y(~ni)
H(YHY)−1 (7)

where y(~n) = [Y 0
0 (~n), Y −1

1 (~n), Y 0
1 (~n), ..., Y L

L (~n)]T and
Y = [y(~n1), ...,y(~nN )]T and H denotes the Hermitian
transpose. Note that the above equation simplifies sig-
nificantly in case the orthogonality relation∫ π

0

∫ 1

−1

Y m′

l′
∗
(θ, φ)Y m

l (θ, φ)dφ sin θdθ = δl′,lδm′,m

(8)
holds (i.e., for regularly spaced observations). Finally,
the coefficients of Eq. (6) are made independent with
respect to translation, rotation, and scale to obtain the
Fourier descriptors [1].

3 Results and discussion

Fourier descriptors from various objects were com-
puted using the above method. As an example, a three-
dimensional ‘E’-object is shown in Fig. (3a), which
is non-convex. After polygonization, the object was
mapped onto a unit sphere using the proposed infla-
tion algorithm. Several steps of this phase are shown
in Fig. (3).

One can easily observe that the vertices of the origi-
nal object are mapped onto the unit sphere while con-
nectivity is preserved. The number of iterations re-
quired for the mapping , strongly depends on the ob-
ject form. Convex objects in principle do not need this
preprocessing step as direct radial projection of the ver-
tices onto the sphere would correctly map the mesh
onto the sphere surface. Non-convex objects, however,
require the inflation step. For the E-object, for exam-
ple, about 100 iterations were required for the mapping.
Another 100 iterations were used to make the polygon
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Figure 3. Inflation-algorithm. (a) Original ob-
ject ; (b) N = 1 ; (c) N = 2 ; (d) N = 12 ; (e)
N = 30 ; (f) N = 100 with N the number of
iterations.

distribution uniform. The results for this object are
summarized in Table 1. Finally, Fig. 4 shows two re-
constructions of the E-object: the first and the eight
order reconstruction.

# vertices # iterations time (s)

5000 100 26
20000 100 112
50000 100 306

Table 1. Experimental results for the E-object

3.1 Limitations of the method

The proposed method is generally applicable to var-
ious object forms, which may be non-star-shaped or
non-convex. However, objects containing holes, or of
which the spatial mean of the vertices does not lie
within the object (i.e., in the background) are not
suited for this mapping as the inflation phase would
not work. The solution for this might be to choose
one or more points within the object from which the
inflation is started.

4 Conclusions

In this paper, a new approach was discussed to map
a polygonized 3D object to a unit sphere, which is a
necessary step for the computation of 3D Fourier de-
scriptors. An inflation algorithm was proposed which

First order Eighth order

Figure 4. First and eighth order reconstruc-
tion of the E-object.

efficiently maps the vertices of the original object to
the sphere. A uniform distribution was obtained using
the watershed transform.
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