
1 

Title: Aortic root sizing for transcatheter aortic valve implantation using a shape model 1 

parameterization 2 

Authors: 3 

Bart Bosmans1,2,3, Toon Huysmans4, Patricia Lopes1,2,4, Eva Verhoelst2, Peter Mortier5, Peter de 4 

Jaegere, Jan Sijbers4, Jos Vander Sloten1, Johan Bosmans35 

Affiliations: 6 

1 KULeuven, Faculty of Engineering Science, Celestijnenlaan 300C, 3001 Leuven, Belgium. Department 7 

of Mechanical Engineering, Biomechanics Section 8 

2 Materialise N.V., Technologielaan 15, 3001 Leuven, Belgium 9 

3 University of Antwerp, Faculty of Medicine and Health Sciences, Universiteitsplein 1, 2610 Antwerp, 10 

Belgium. Department of Translational Pathophysiological Research, Cardiovascular diseases 11 

4 University of Antwerp, iMinds-Vision Lab, Universiteitsplein 1, 2610 Antwerp, Belgium.  12 

5 FEops N.V., Technologiepark-Zwijnaarde 603 Ghent, Belgium 13 

Corresponding author: 14 

Bart Bosmans 15 

KULeuven – Departement of Mechanical Engineering, Biomechanics Section 16 

Technologielaan 15, 17 

3001, Leuven, Belgium. 18 

Tel: +32 16 396 728 19 

Fax: +32 16 396 606 20 

Bart.Bosmans@kuleuven.be 21 

mailto:Bart.Bosmans@kuleuven.be


2 
 

Abstract: 22 

During a transcatheter aortic valve implantation, an axisymmetric implant is placed in an irregularly 23 

shaped aortic root. Implanting an incorrect size can cause complications such as leakage of blood 24 

alongside or through the implant. The aim of this study was to construct a method that determines 25 

the optimal size of the implant based on the 3-dimensional shape of the aortic root. Based on the 26 

pre-interventional computed tomography scan of 89 patients, a statistical shape model (SSM) of their 27 

aortic root was constructed. The weights associated with the principal components of the SSM 28 

served as a parametric description of each aortic root. These weights and the volume of calcification 29 

in the aortic valve were used as parameters in a generalized linear model and a random forest 30 

classifier. Both classification algorithms were trained using the patients with no or mild leakage after 31 

their intervention. Subsequently, the algorithms were applied to the patients with moderate to 32 

severe leakage. The random forest classifier was accurate in 96% of the training cases. 55% of the 33 

patients with moderate to severe leakage were assigned a different size implant, 11 out of those 20 34 

got one size smaller. The proposed method was capable of accurately and semi-automatically 35 

determining an implant size, using a CT scan of the aortic root. Further research is required to assess 36 

whether the different size implants would improve the outcome of those patients.  37 
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Introduction 38 

Aortic valve stenosis is the most commonly acquired valvular heart disease in the elderly. Despite 39 

advances in cardiac surgery and low mortality rates after conventional surgical aortic valve 40 

replacement, up to one third of patients with symptomatic aortic valve stenosis are not considered 41 

for valve replacement, often due to age, frailty or co-morbidities [Bose et al., 2007; Thourani et al., 42 

2011]. Transcatheter aortic valve implantation (TAVI) has been proven to be a reasonable alternative 43 

for the treatment of aortic valve stenosis in elderly (very) high-risk patients [Kodali et al., 2012].  44 

During the TAVI procedure an axisymmetric device is implanted in the patient´s aortic root. In case of 45 

the CoreValve devices (Medtronic Inc., Minneapolis, MN, USA), four sizes are available, they have a 46 

23 mm, 26 mm, 29 mm or 31 mm bottom cross-sectional diameter respectively. The CoreValve size 47 

range is used to treat patients with an annulus diameter between 18 mm and 29 mm [Holmes et al., 48 

2012]. The current planning procedure uses computed tomography (CT) images to size the annulus, 49 

the ring formed by the bottom of each valve leaflet. The annulus diameter can be calculated based 50 

on the perimeter, the cross-sectional surface area or the minimum and maximum diameter [Buzzatti 51 

et al., 2013; Hayashida et al., 2012]. However, the aortic root and the implants are 3-dimensional 52 

structures, the aortic root is rarely cylindrical and a suboptimal implant size can lead to complications 53 

such as aortic regurgitation [AR] [Détaint et al., 2009; Jilaihawi et al., 2012].  54 

Determining the size of the implant based on the 3-dimensional (3D) shape of the aortic root might 55 

reduce complication and the observer dependency. Therefore, the goal of this research is to 56 

construct a method with which the implant size can be accurately estimated based on a parametric 57 

description of the 3D aortic root. 58 

A statistical shape model (SSM) is a common method to generate a parametric description of a 59 

population of 3D shapes. In this type of model, each shape is described as a deviation from the 60 

average of the population along the principal components of variation. SSMs have multiple 61 

applications in characterizing anatomical variability, for example, investigating the difference 62 
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between the brain anatomy of healthy people versus schizophrenics [Ferrarini et al., 2008] or 63 

Alzheimer patients [Wang et al., 2013]. SSMs are also used to investigate the shape variation in bone 64 

structures such as the human ear canal [Paulsen et al., 2002] and to reconstruct missing, malformed 65 

or fractured bone structures [Ren et al., 2014; Zachow et al., 2005]. In addition, SSMs are used to 66 

model the whole body [Magnenat-thalmann et al., 2004] or a part, such as the scalp [Lacko et al., 67 

2015] to provide a design space for clothing for example.  68 

Materials & method 69 

 89 patients received a contrast enhanced ECG-triggered, end diastolic CT scan prior to the TAVI 70 

procedure in which a CoreValve was implanted. The scans were performed on a 64-slice GE 71 

lightspeed (General Electric Company, Easton Turnpike, Fairfield, CT, USA) with a spatial resolution of 72 

0.6 mm. All patients received an intravenous injection of 80ml of contrast agent at a flow rate of 4 73 

ml/s, followed by 30 ml at 2.5 ml/s. The minimum diameter, the maximum diameter, the diameter 74 

based on the perimeter and the diameter based on the surface area of the aortic annulus were taken 75 

into account to determine the size of the implant [Schultz et al., 2010]. One patient received a 23 mm 76 

implant, 23 patients received a 26 mm implant, 50 patients received a 29 mm implant and 15 77 

received a 31 mm implant. AR was graded immediately after the implantation on the procedural 78 

angiography, as described by Seller et al. [Sellers et al., 1964]. 79 

Image analysis 80 

Segmentation was performed on the pre-operative scans using Mimics 16.0 (Materialise N.V., 81 

Leuven, Belgium) to extract the 3D shape of the aortic root. The left ventricle and aorta were 82 

extracted from the CT images using a threshold on the contrast agent in the blood, as depicted in 83 

figure 1A. The left ventricle and aorta were separated from connected structures and each other 84 

using a graph cut algorithm [Boykov and Kolmogorov, 2004] (figure 1D). 3D triangulated parts of the 85 

blood volume and the separate chambers were created using a marching cubes triangulation (figure 86 

1B and E). Smoothing was performed to remove noise and small substructures. The aortic root was 87 
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cut from the 3D part to create a tubular model using a plane perpendicular to the centerline at the 88 

level of the mitral valve and the aortic arch (figure1C). Three leaflets were created starting from the 89 

left ventricle model by smoothing and disconnecting the valve surface (figure 1E). Finally, the 90 

calcifications were extracted using a threshold of 800 Hounsfield units, which is a consistently higher 91 

intensity compared to the contrast agent in the majority of patients. A region grow was applied to 92 

select the calcifications attached to the aortic valve, followed by a marching cubes triangulation to 93 

convert the pixels into a 3D model. Finally, the internal volume of the calcifications was computed. 94 

 95 

Figure 1: ((A) Coronal view of a computed tomography scan with the left ventricle and aorta blood 96 

pool colored yellow. (B) Three dimensional (3D) reconstruction of the geometry. (C) The tubular aortic 97 

root model. (D) Split of the blood pool in aorta and left ventricle. (E) The 3D reconstruction of the left 98 

ventricle and aortic valve calcifications. (F) The individual leaflets and commissure points used in the 99 

shape model generation. 100 

Generate the shape model 101 

The next step was to establish correspondence in the population of surface models. The tubular 102 

shape of the aortic root and the leaflets were corresponded using two different methods. The 103 

construction of the correspondence for tubular surfaces was described in detail in [Huysmans et al., 104 
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2010]. Briefly, first the tubular part of each aortic root was mapped to an open-ended cylinder. Next, 105 

the shapes were aligned using their principal axes, then the alignment of the parameterization was 106 

determined by minimizing the description length of the SSM [Davies et al., 2002]. Finally, both the 107 

spatial alignment and the parameterization were optimized simultaneously with respect to the 108 

minimum description length. 109 

The correspondence in the leaflets was determined using a mapping of each leaflet on a disk with 110 

diameter one. The mapping was determined by representing each point on the surface as a linear 111 

combination of its neighbors. This resulted in a system of linear equations that has a unique solution, 112 

given that the points on the boundary that were positioned on the disk boundary at a relative 113 

distance equivalent to the distance along the boundary of the leaflet. The disks were aligned along 114 

the section of the boundary between the leaflet commissures which denotes the attachment to the 115 

aortic wall. Next, a Laplacian smoothing was performed on the first instance of each of the three 116 

leaflets, in order to generate a more uniform mesh for all the leaflets. The smoothing substitutes 117 

each point with the average of its neighbors, constructing the master parameterization. 118 

Subsequently, the points of this master parameterization were transformed to each patients’ 119 

leaflets. The transformation is determined by describing the coordinates of the master in function of 120 

the triangles of the target leaflet using the disk parameterization of both the target and the master. 121 
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 122 

Figure 2: (A) parameterization of the master leaflet on a disk with diameter 1. (B) Parameterization of 123 

a sample leaflet on a disk. (C) Registration of the master parameterization on the sample using the 124 

commissure points. (D) Transformation of the corresponding points of the master parameterization to 125 

the sample leaflet. 126 

Next, the SSM is built, first the spatial registration derived from the aortic root parameterization was 127 

applied to the leaflets to position them correctly inside each shape. The shapes are represented as a 128 

vector 𝒙𝒙𝒊𝒊 =  �𝑥𝑥𝑖𝑖,1,𝑦𝑦𝑖𝑖,1 , 𝑧𝑧𝑖𝑖,1, … , 𝑥𝑥𝑖𝑖,𝑛𝑛,𝑦𝑦𝑖𝑖,𝑛𝑛, 𝑧𝑧𝑖𝑖,𝑛𝑛 � and put into a matrix as columns. After subtracting the 129 

mean shape 𝒙𝒙�, 130 

𝑨𝑨 =  �𝒙𝒙𝟏𝟏𝑻𝑻 −  𝒙𝒙�𝑻𝑻 … 𝒙𝒙𝒎𝒎𝑻𝑻 −  𝒙𝒙�𝑻𝑻� 131 

a principal component was applied. Each aortic root could then be represented as a sum of the mean 132 

and the weighted principal components: 133 

𝒙𝒙 =  𝒙𝒙� +𝑼𝑼𝑼𝑼 134 

where 𝒙𝒙 is a new shape, 𝑼𝑼 a matrix with the principal components as columns and 𝒃𝒃 a column vector 135 

of the weights of the principal components.  136 
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The quality of the SSM was characterized using the compactness, generalization ability and specificity 137 

[Huysmans et al., 2010; Styner et al., 2003]. The compactness was calculated as the percentage of 138 

the total variance present in the first 𝑛𝑛 principal components:  139 

𝐶𝐶(𝑛𝑛) =  
∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝜆𝜆𝑖𝑖𝑚𝑚
𝑖𝑖=1

 140 

where 𝜆𝜆𝑖𝑖 is the variance of the 𝑖𝑖th principal component and m the total number of principal 141 

components. The generalization ability is a measure for the ability of the SSM to approximate a 142 

shape which is not in the model and was calculated using a leave-one-out experiment. The specificity 143 

measures how close random samples, generated by the model are to the shapes in the population. 144 

Sizing classification 145 

The principal component analysis aggregates the total shape variation in a limited number of 146 

independent principal components. Therefore, a good approximation of a shape can be obtained 147 

using only a limited number of the principal components. In the aortic root model 95% of all variation 148 

was described by the first 20 principal components.   149 

The patients were divided in two subgroups: the first group had AR grade 0 – 1, the second group 150 

had an AR grade ≥ 2. The first group was used to train two different classification algorithms, a 151 

generalized linear model and a random forest classifier of 10 trees with a maximum depth of 5 152 

branch points [Pedregosa et al., 2011]. The weights of the first 20 principal components and the 153 

aortic valve calcification volume were used as parameters to describe each patient. In a first step, 154 

these parameters were ranked using an analysis of variance to determine which parameters 155 

discriminated most between the size groups. Next, both classification algorithms were trained 156 

incrementally including additional parameters. Each instance of the models was cross-validated by 157 

dividing the training set in 8 subgroups, then the model was trained excluding one group. The sizes of 158 

this remaining groups of patients were fitted and compared to their true size. When performed for 159 

each subgroup this resulted in a mean accuracy score and a standard error.  160 
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Finally, the best scoring classifier of each type was applied to the patients with an AR grade ≥ 2. A chi-161 

squared test was used to test whether the classification of the patients with an AR grade ≥ 2 was 162 

significantly different from the training set.  163 

The analysis was performed in python 3.5 using the scikit-learn 0.17 machine learning module 164 

[Pedregosa et al., 2011].  165 

Results 166 

Of the 89 patients, 2 parameterizations failed and 2 did not receive an angiographic AR evaluation 167 

immediately after implantation. The remaining 85 patients were included in the analysis, 48 (57%) 168 

patients had an AR grade 0 or 1, 37 (43%) had an AR grade ≥ 2. Table 1 gives an overview of the 169 

distribution of the implant sizes in the population divided according to the severity of AR. The median 170 

aortic valve calcification volume was 195.8 mm3, with the 25% quartile at 83.3 mm3 and the 75% 171 

quartile at 335.7 mm3.  172 

Table 1: Implant sizes distribution in the patient population 173 

CoreValve size [mm] AR grade 0-1 (n = 48) AR grade ≥ 2 (n = 37) 
23  1 
26 12 (25%) 9 (24%) 
29 30 (62.5%) 18 (49%) 
31 6 (12.5%) 9 (24%) 

 174 

Statistical shape model 175 
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 176 

Figure 3: A visualization of the first 3 principal components (PC) of the statistical shape model, the 177 

anterior, cranial and lateral view of the average ± 3 standard deviations are shown. At the bottom, 178 

the model characteristics are shown, from left to right, the compactness, generalization ability ± 1 179 

standard deviation and specificity ± 1 standard deviation. 180 

Figure 3 depicts first 3 principal components and the compactness, generalization ability and 181 

specificity of the SSM. The principal components have no intuitive, single physical interpretation such 182 

as volume, size or angular deformation for example. The compactness analysis shows that 48% of all 183 

shape variation is combined in the first two principal components, 87% of the variation is in the first 184 
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10 principal components and 95% of the variation is in the 20 first principal components. The 185 

generalization ability shows that using the first 20 principal components, a new shape can be 186 

approximated with a mean absolute distance of 1 mm. Finally, randomly generated shapes are at a 187 

mean absolute distance of approximately 3 mm from the closest shape in the training population.  188 

Sizing algorithm 189 

Figure 4 depicts the result of the parameter selection analysis, both classification algorithms perform 190 

best using the 20% most discriminating features. These features are principal component 1, 10, 7 and 191 

2 respectively. Figure 5 depicts principal components 7 and 10, principal components 1 and 2 are 192 

shown in figure 3.  193 

 194 

Figure 4: the result of the 8-fold cross-valdition and standard error for both classification algorithms 195 

as a function of the percentile of parameters included in the model 196 

The linear model assigns 69% of the included patients the same size as they had implanted, the 197 

random forest classifier assigns the same size to 96% of the patients included in the model. Table 2 198 

gives an overview of the cross-validation results for both models. It shows that both models do not 199 

assign a 31 mm implant to any of the patients in the cross-validation.  200 

Table 2: Cross-validation of the training set, showing the number of correctly assigned sizes 201 

CoreValve size [mm] Linear model (60%) Random forest classifier (65%) 
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26 (n = 12) 4 (33%) 7 (58.3%) 
29 (n = 30) 25 (83%) 24 (80%) 
31 (n = 6) 0 0 

 202 

Table 3 contains the results of both classification algorithms on the patients with AR ≥ 2. The average 203 

difference between the predicted size and the implanted size is -0.14 ± 2.04 mm for the random 204 

forest classifier and -0.19 ± 1.90 mm for the linear model classifier. The random forest classifier 205 

assigned the same size to 16 out of 36 patients with AR ≥ 2, 10 patients got one size larger, 1 got two 206 

sizes larger and 9 got one size smaller. The generalized linear model assigned the same size to 18 207 

patients, one size larger to 12 patients and one size smaller to 6 patients. In 72% of the patients both 208 

models assigned the same size. However, the classification of the patients with AR ≥ 2 is not 209 

significantly different from the cross-validation of the training set (random forest classifier: p = 0.28). 210 

Also, specifically for the 29 mm size subgroups there is no statistical significant difference (random 211 

forest classifier: p = 0.33). 212 

Table 3: Implant sizes assigned to patients with AR ≥ 2 213 

CoreValve size [mm] Linear model (46%) Random forest classifier (43%) 
26 (n = 9) 2 (22%) 3 (33%) 

29 (n = 18) 14 (78%) 11 (61%) 
31 (n = 9) 1 (11%) 2 (22%) 

 214 
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 215 

Figure 5: A visualization of principal components (PC) 7 and 10 of the statistical shape model, the 216 

anterior, cranial and lateral view of the average ± 3 standard deviations are show.   217 

Discussion 218 

The Goal of this research was to construct a method to base the sizing of the aortic root for implant 219 

selection on its 3D shape. The method described in this research used the weights associated with 220 

the principal components of a SSM as a parametric description of the 3D shapes in the population. 221 

The weights and the volume of calcification of the aortic valve were used as parameters in two 222 

classification algorithms: a generalized linear model and a random forest classifier. The classification 223 

algorithms were trained using the patients who did not suffer from AR or only suffered from mild AR 224 

(grade 1) after implantation of the device, assuming that those patients received the optimal implant 225 

size. Especially, the random forest classifier performed well, assigning the correct size to 96% of the 226 

patients included in the training set. Cross-validation showed that the subgroup of patients with a 31 227 

mm implant did not contain enough patients to robustly train the algorithm when some were left 228 

out. Applying the trained algorithms to the patients with moderate to severe AR showed a lower 229 
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amount of patients being assigned the same size as was implanted, however the difference was not 230 

statistically significant.  231 

Since the ideal implant size for each patient was in fact unknown it was impossible to determine 232 

whether the assigned sizes would improve the amount of regurgitation after the implantation. A 233 

potential method to compare the amount of AR with the implanted size versus the assigned size 234 

would be to simulate the implantation of both and virtually evaluate the amount of AR that would 235 

occur as described by [de Jaegere et al., 2016; Schultz et al., 2016]. 236 

The inclusion of the leaflets caused some artifacts in the SSM, as can be seen in principal component 237 

3 in figure 3 where the leaflets protrude through the aortic wall in the -3 standard deviation extreme. 238 

This is most likely due to the separate registration and parameterization of both leaflets and the 239 

aortic root. Therefore, there is no physical connection in the model, nor correspondence, between 240 

the leaflet border and the aortic root. This can only be solved by constructing the correspondences of 241 

the leaflets and the wall as a whole. 242 

The principal components describing the shape variation that were used in the classification 243 

algorithms had no straightforward physical interpretation. The first principal component contains a 244 

general size variation as can be seen in figure 3 and principal component 7 shows a local variation of 245 

the size of the left ventricular outflow. A potential method to make the model more intuitive is to 246 

associate interpretable morphological measures with the principal components through correlation 247 

as described by [Lacko et al., 2015]. 248 

In order to determine the size of a new patient’s valve, the shape model needs to be fitted on the 249 

aortic root of that patient. The fit results in the weights associated with the principal components 250 

describing the new patient, these weights are then used in the classification algorithm. Two 251 

approaches can be devised to perform the fitting, either based on the displacement of corresponding 252 

points, therefore, the surface model of the aortic root needs to be corresponded with the SSM, or 253 

based on a fit of the surface using a non-rigid registration algorithm. 254 
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In conclusion, the proposed method was capable of accurately and semi-automatically assigning an 255 

implant size, using a CT scan of the aortic root. Additional data of patients in the less prevalent 256 

implant sizes is needed to make the algorithm more robust. In addition, the alternative sizes assigned 257 

to patients with moderate to severe AR need to be assessed to determine whether the occurrence of 258 

regurgitation diminishes. 259 
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