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Abstract—Hyperspectral unmixing is a crucial technique in
remote sensing data processing that aims to estimate component
information from mixed pixels in hyperspectral images. Most
existing deep learning-based hyperspectral unmixing models em-
ploy autoencoder networks to reconstruct hyperspectral images
and estimate abundance maps. Here, the weight between the
reconstructed and the Softmax layers is used to extract/estimate
endmember signatures. However, autoencoders are heavily de-
pendent on initial weights, which introduces inherent random-
ness, potentially compromising unmixing accuracy. To address
this issue, in this paper we present a new dual-feature fusion
network (DFFN) for enhanced hyperspectral unmixing. Our
DFFN mainly consists of four modules: 1) a feature fusion
module (FFM), 2) an abundance estimation module (AEM), 3) an
endmember estimation module (EEM), and 4) a reconstruction
module (RE). Firstly, FFM calculates spectral and spatial sim-
ilarities and then enhances the hyperspectral image by matrix
multiplications with similarity matrices. Second, AEM takes the
enhanced hyperspectral image as input and uses convolutional
layers to estimate abundances and reconstruct the image. Next,
the reconstructed image is fed into EEM to automatically estimate
endmembers. RE performs the final reconstruction through
matrix multiplication of the estimated endmembers and abun-
dances. Experiments on synthetic and real hyperspectral datasets,
together with a comparison with state-of-the-art techniques,
demonstrate the superiority of our newly proposed DFFN. The
full code is released at https://github.com/xuanwentao for public
evaluation.

Index Terms—Hyperspectral unmixing, dual-feature fusion,
unmixing module, similarity.

I. INTRODUCTION

HYPERSPECTRAL images collect hundreds of wave-
length bands per pixel spanning the entire electromag-

netic spectrum, thus enabling accurate identification or detec-
tion of materials with exceptional detail. This offers enormous
potential and is highly sought after in a variety of applications,
including classification [1]–[3], anomaly detection [4], [5],
super-resolution [6]–[8], and change detection [9], [10].

However, due to limitations inherent in the imaging acqui-
sition equipment, there is an inevitable trade-off between the
acquired spectral and spatial information, limiting the spatial
resolution of hyperspectral sensors. Accordingly, hyperspectral
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images may contain many mixed pixels, which significantly
affects the accuracy of subsequent image processing tasks.
To address this problem, a large number of hyperspectral
unmixing techniques have been developed in the literature
to decompose mixed pixels into a collection of material
spectra (endmember signatures) and their corresponding per-
pixel fractions (abundance maps).

A. Traditional Unmixing Methods

Conventional hyperspectral unmixing approaches are mainly
divided into linear [11]–[15] and nonlinear [16]–[19]. The
linear mixture model (LMM) assumes that incident light
interacts with a single material, leading to the expression of
each pixel spectrum as a linear combination of endmembers
and their respective abundances. In this context, the fully
constrained least squares unmixing algorithm (FCLSU) [20]
estimates the fractional abundances by minimizing the least
squared errors between the actual reflectance spectra and the
ones reconstructed by the LMM, and obeys both the abundance
non-negativity constraint (ANC) and the abundance sum-to-
one constraint (ASC).

Many endmember extraction algorithms have been proposed
in the literature by maximizing the volume of the enclosing
simplex in the hyperspectral dataset [21]–[24], e.g., vertex
component analysis (VCA) and N-FINDR. VCA [22] itera-
tively projects data onto directions orthogonal to the subspace
defined by the endmembers already identified. The signature
of each new endmember is found by locating the extreme point
of this projection. The process repeats until all endmembers
are identified. The famous N-FINDR algorithm [24] is based
on the fact that the simplex formed by the purest pixels has
a larger volume than any other combination of pixels, and
iteratively inflates a simplex to find those purest pixels. When
the endmembers are not available in the hyperspectral image
(no pure pixel-scenario), these can be estimated by finding the
minimum volume linear simplex which encloses all the data
points [25], [26]. Blind unmixing techniques simultaneously
estimate endmembers and abundances [14], [15], [27]–[32].
In [27], Li et al. proposed minimum volume simplex analysis
to fit a minimum volume simplex to hyperspectral data while
enforcing the constraint that the abundance fractions lie within
the probability simplex. In [32], Miao et al. presented a
minimum volume-constrained nonnegative matrix factoriza-
tion method, which incorporates a volume constraint into
the nonnegative matrix factorization framework to perform
unmixing task. In [14], Li et al. developed a gradient-based
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multi-objective method with greedy hash (GMOGH), which
simultaneously addresses the problem of convergence and the
discrete constraints imposed on endmembers to improve the
accuracy of unmixing. These methods formulate the unmixing
problem as a nonconvex optimization problem with respect
to both endmembers and abundances. To deal with highly
mixed scenarios, sparse unmixing techniques have also been
proposed [33]–[35]. These methods are often described as
semi-supervised unmixing methods. Sparse unmixing utilizes
a rich and well-designed library of pure spectra and applies
sparse regression for abundance estimation. A major challenge
is how to correct mismatches between the real reflectance
spectra and the library spectra, caused by differences in the
acquisition conditions of the two data types. Under the overly
simple and unrealistic assumption that photons detected by
the sensor interact with only one material at a macroscopic
level, unmixing methods based on the LMM might not be
appropriate for all applications.

Nonlinear spectral unmixing is based on the assumption
that materials undergo multiple scattering. To address complex
nonlinear higher order scattering effects and improve the
accuracy of unmixing results, many nonlinear unmixing meth-
ods have been proposed in the literature. Nonlinear models
include bilinear ones, such as the generalized bilinear model
(GBM) [36], which assumes that the incident light interacts
with a maximum of two pure materials before reaching
the sensor. Various nonlinear mixing models exist that aim
to capture higher-order interactions of incident light before
reaching the sensor, including the multilinear mixing model
(MLM) [37] and the p-linear (p > 2) mixture model (pLMM)
[38]–[40]). Other approaches include semi-nonnegative matrix
factorization [41] and robust NMF (rNMF) [42]. However,
if the selected model does not match the characteristics of
the real scene, it will significantly reduce the accuracy of
the endmember and abundance estimation. Hence, there is
an urgent need for a more universally applicable method for
hyperspectral unmixing purposes.

B. Deep Learning-based Unmixing Methods
Due to the success of deep learning-based networks [43],

[44] in machine learning and computer vision, deep neural net-
works have recently been proposed for hyperspectral unmixing
[45]–[52]. Most available techniques are based on autoencoder
networks, which can automatically learn low-dimensional em-
beddings and reconstruct the original data. An autoencoder
contains an encoder and a decoder. The encoder transforms
the input spectra into fractional abundances, and the decoder
transforms the abundances into reconstructed spectra using
linear layers and the endmembers as weights. When building a
network for hyperspectral unmixing, researchers initially used
fully connected layers to capture spectral information. In [53],
Qi et al. first used deep learning techniques for hyperspectral
unmixing. Their approach combined a marginalized denoising
autoencoder with a non-negative sparse autoencoder to im-
plicitly denoise the observed data and apply adaptive sparsity
constraints, respectively. To consider physically meaningful
endmember information, Han et al. proposed a deep half-
siamese network that uses sharing weights to introduce the

prior knowledge of endmembers extracted from hyperspectral
images to further guide the unmixing network for improved
abundance estimation [54]. In [55], Su et al. introduced a
multitask bilinear unmixing framework which used a deep au-
toencoder to linearly estimate endmember signatures and their
respective abundance fractions. Additionally, they used another
autoencoder to model second-order scattering interactions via
a bilinear model.

Nevertheless, the aforementioned methods operate on a
pixel-by-pixel basis and fail to fully learn the spatial and
spectral features inherent in hyperspectral images. Considering
the promising performance of generative adversarial networks
(GANs) and convolutional neural networks (CNNs) and in
image processing tasks, several unmixing methods have been
developed using CNNs to effectively capture spectral-spatial
information, thereby improving unmixing performance. In
[56], Gao et al. proposed a reversible generative network
(Rev-Net), which includes a flow-based endmember learning
module, and provided a theoretical proof for the reversibility
of the endmember generation process to address the spectral
variability challenge. The motivation behind Rev-Net is that if
the endmember distribution can be represented by an explicit
mathematical expression and that expression is reversible, the
generation process will become more stable and reliable. In
[51], Xu et al. proposed a multiscale convolutional mask
network (MsCM-Net) for hyperspectral unmixing. MsCM-
Net introduced a mixed region mask strategy specifically
designed for hyperspectral unmixing tasks. It utilized a multi-
scale convolutional autoencoder (AE) as the baseline network
to implement this mask strategy, enhancing the method’s
robustness in addressing ill-posed unmixing problems. In
[57], Gao et al. trained two cascaded autoencoders in an
end-to-end manner to create a cycle-consistency unmixing
network (Cycu-Net) for hyperspectral unmixing. By switch-
ing from the initial pixel-level reconstruction assumption to
cycle consistency dominated by the cascaded autoencoders,
Cycu-Net limited the loss of specific and precise information
during reconstruction. In [58], Yu et al. devised a multi-
stage convolutional autoencoder network aimed at capturing
broad contextual information while preserving detailed fea-
tures through a gradual multi-stage unmixing network. Zhao et
al. [59] introduced an autoencoder network with regularization
by denoising (AE-RED) which divided the unmixing task into
two sub-tasks. One task involved the use of deep autoencoders
to implicitly regularize the estimates and model the mixing
mechanism, while the other task used a denoiser to incorporate
explicit information. This approach combined the strengths
of deep autoencoder-based unmixing methods with additional
priors offered by denoisers, thereby enhancing the overall
performance. However, both of the above methods require end-
member signatures acquired from other techniques –such as
the well-known vertex component analysis (VCA) algorithm
[22]– to serve as initial weights for optimizing the proposed
network. As a consequence, the randomness inherent in VCA
is inevitably transmitted to the network, thereby affecting the
accuracy of the unmixing process. Recently, the minimum
simplex convolutional network (MiSiCNet) [60] was proposed
to incorporate both the spatial correlation between adjacent
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pixels and the geometrical properties of the linear simplex
in order to tackle the randomness inherent to endmember
initialization techniques such as VCA.

Very recently, the transformer was introduced as a new
model [61] that employs a self-attention mechanism to capture
global contextual information and shows promising results
in the image processing domain. The transformer model
has been applied to hyperspectral image processing [62]–
[64]. In [65], a convolutional autoencoder was combined
with a transformer for unmixing, using a multihead self-
attention mechanism to identify non-local contextual feature
dependencies by exploring long-range relations between image
patches. Tao et al. [66] designed an abundance-guided spectral
and spatial attention network (A2SAN) that aims at directly
exploiting the attention mechanism rather than using it solely
as a processing module for capturing information within other
networks. Although A2SAN solves the issue encountered by
most unmixing methods that rely on VCA initialization (that
introduces randomness in the network), it still is not able to
directly estimate endmember signatures via the network itself.

C. Motivations

Most existing unmixing networks exploit autoencoder
frameworks to estimate abundances and reconstruct the im-
ages. The weights between the reconstructed and the Softmax
layers are extracted as endmember signatures, and are often
initialized using VCA to enhance the performance of the
unmixing. In this sense, they mainly face two challenges:
(1) they do not allow a direct estimation of the endmembers
from the network, making it difficult to extend the method
to nonlinear unmixing; (2) VCA produces different results
on different runs. This randomness is passed on to the
corresponding network and affects the final performance of
the unmixing. Nevertheless, the deep learning approach is a
workable and feasible way to address the latent hyperspectral
unmixing challenges. This motivated us to develop a universal
deep learning-based framework that provides direction for
addressing nonlinear unmixing problems and that estimates
endmembers directly instead of weights, while avoiding the
randomness typically introduced by existing methods.

D. Contributions

To achieve the above-mentioned goals, we introduce a
novel dual-feature fusion network, called DFFN, to reconstruct
hyperspectral images and estimate endmembers and abun-
dances effectively and directly. More specifically, the main
contributions of the proposed DFFN can be summarized as
follows:

• We introduce a novel DFFN network that directly es-
timates endmembers rather than weights, distinguishing
itself from other deep learning-based unmixing frame-
works. Our innovative approach not only avoids intro-
ducing randomness from other methods into the network,
but is also the first one to estimate endmember signatures
directly within the network.

• In our FFM, we introduce a new strategy for com-
puting both spectral and spatial similarities to enhance

hyperspectral images. This operation not only performs
denoising by using the neighboring pixels to weight
the noise pixels, but also improves the final unmixing
accuracy.

• We devise a novel loss function that contains a recon-
struction error, a correction error, an abundance sum-
to-one error, and an abundance non-negativity error to
train the proposed network in an end-to-end manner.
These components guarantee improved image reconstruc-
tion and better endmember and abundance estimation
performance.

The remaining of this article is organized as follows. In
section II, the proposed DFFN is described in detail. Section
III presents the experimental results obtained using synthetic
and real datasets. Section IV discusses the impact of VCA and
FFM as initialization on the unmixing performance. Section V
concludes the paper with some remarks and outlines potential
avenues for future research.

II. PROPOSED METHOD

In this section, we provide a detailed explanation of the
proposed DFFN, outlining how it estimates abundance maps
and directly estimates endmembers through the network itself.
The overall architecture of DFFN is presented in Fig. 1.

A. Feature Fusion Module (FFM)

Many existing unmixing methods often encounter chal-
lenges in extracting spectral-spatial information, especially
when they rely solely on fully connected (FC) layers to design
the network. To address this problem, we design FFM, a fea-
ture fusion module that captures spectral-spatial information
and enhances hyperspectral images for more accurate spectral
unmixing.

Let Y ∈ RNb×Np be the hyperspectral image with Nb
bands and Np pixels. To capture spectral information, the band
distance matrix DB ∈ RNb×Nb is defined as:

(DB)ik =

Np∑
j=1

(yij − ykj)
2, (1)

where (DB)ik denotes the squared Euclidean distance between
band i and band j, summed over all pixels of the image.

Similarly, to capture spatial information, the pixel distance
matrix DP ∈ RNp×Np is defined as:

(DP )jr =

Nb∑
i=1

(yij − yir)
2 (2)

where (DP )jr denotes the squared Euclidean distance between
pixels j and r, summed over all bands.

In both matrices, a larger distance corresponds to a lower
similarity. Therefore, a spectral similarity matrix SB ∈ RNb×Nb

and a spatial similarity matrix SP ∈ RNp×Np are defined by:

SB = e−DB ,

SP = e−DP , (3)
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Fig. 1. Architecture of the proposed dual-feature fusion network (DFFN) for hyperspectral unmixing and reconstruction.
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Fig. 2. Visualization of the feature fusion module (FFM) on (a) Samson and (b) Jasper Ridge datasets. SB : spectral similarity matrix; SP : spatial similarity
matrix; YB : spectrally enhanced image (band 40); YP : spatially enhanced image (band 40); Ỹ: FFM output (band 40); Y: original image (band 40).

where SB and SP are used to enhance the hyperspectral image
with spectral and spatial information respectively:

YB = SBY,

YP = YSP , (4)

YB and YP are normalized by:

YB =
YB − min(YB)

max(YB)− min(YB)
,

YP =
YP − min(YP )

max(YP )− min(YP )
. (5)

Both spectral and spatial information sources are combined by
a weighted fusion strategy:

Ỹ = wYB + (1− w)YP , (6)

where w is a weight parameter. After final normalization we
have:

Ỹ =
Ỹ − min(Ỹ)

max(Ỹ)− min(Ỹ)
, (7)

where Ỹ, a spectrally and spatially enhanced hyperspectral
image, is obtained.

Fig. 2 visually shows the image enhancement capabilities of
FFM on the well-known Samson and Jasper Ridge datasets. It
shows both the spectral similarity matrix SB and the spatial
similarity matrix SP , the enhanced hyperspectral images,
namely YB with enhanced spectral information and YP with
enhanced spatial information, and the final enhanced image
Ỹ that is clearer than the original hyperspectral image Y. To

obtain the final enhanced image, the optimal choice of w is
image dependent. For the Samson dataset, one can observe
that the information contained in YB and YP is similar in
terms of clarity. In this sense, we choose 0.5 as the weight
parameter. On the other hand, in the Jasper Ridge dataset,
the spatial information is dominant, and we choose 0.9 as the
weight parameter to enhance the spectral information.

The matrix multiplications with the spectral and spatial
similarity matrices in Eq. (4) imply a local weighting of
neighboring pixels, and act as a denoising step. Since the
enhanced hyperspectral images are used as the input of AEM,
they make the final unmixing results less sensitive to noise.

B. Abundance Estimation Module (AEM)

Some deep learning-based hyperspectral unmixing methods
have used convolution (Conv) layers in their networks, yield-
ing outstanding results. Therefore, Conv layers are employed
in this work to design a straightforward AEM. The proposed
AEM includes four Conv layers with a kernel size of 5×5. The
number of nodes in these layers is set to 128, 64, c (the number
of endmembers), and Nb, respectively. To improve the training
process and stability, a batch normalization (BN) layer follows
each Conv layer. Additionally, the ReLU activation function
is employed to introduce nonlinearity into the network. The
input of the first Conv layer is given by:

A0 = reshape(Ỹ), (8)

where Ỹ ∈ RNb×Np is the output of the FFM. The operation
’reshape’ rearranges the array elements to shape the data as a
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TABLE I
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE SYNTHETIC DATASET. BEST RESULTS ARE SHOWN IN BOLD AND

SECOND-BEST RESULTS ARE UNDERLINED.

SNR Metrics CAE [67] DAEU [46] MTAEU [68] SIDAEU [69] mDAE [53] A2SN [66] A2SAN [66] MSNet [58] DFFN

10dB

Mean SAD 0.4095 0.1277 0.1332 0.1179 0.1441 0.0932 0.0747 0.0654 0.0504

Mean RMSE 0.3053 0.2513 0.2154 0.1965 0.3204 0.1681 0.1530 0.1194 0.1364

RE 0.3802 0.3592 0.3577 0.3956 0.4258 0.3543 0.3547 0.3577 0.3589

20dB

Mean SAD 0.3271 0.1430 0.1094 0.2630 0.1275 0.0529 0.0912 0.1579 0.0228

Mean RMSE 0.2836 0.2174 0.1372 0.2211 0.3235 0.1313 0.1051 0.1020 0.0681

RE 0.1785 0.1286 0.1219 0.1276 0.1765 0.1239 0.1256 0.1200 0.1188

30dB

Mean SAD 0.2510 0.0796 0.0938 0.1223 0.0574 0.0585 0.0418 0.0264 0.0041

Mean RMSE 0.2657 0.2170 0.2320 0.2340 0.3265 0.1255 0.1098 0.1154 0.0617

RE 0.1831 0.0419 0.0412 0.0470 0.1869 0.0407 0.0346 0.0377 0.0344

TABLE II
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE SAMSON DATASET. BEST RESULTS ARE SHOWN IN BOLD AND SECOND-BEST

RESULTS ARE UNDERLINED.

Methods CAE [67] DAEU [46] MTAEU [68] SIDAEU [69] mDAE [53] A2SN [66] A2SAN [66] MSNet [58] DFFN

SAD

Soil 1.0500 0.0271 0.0393 0.0236 0.3958 0.0243 0.0208 0.0163 0.0147

Tree 0.1614 0.0322 0.0430 0.0243 0.1263 0.0224 0.0259 0.0218 0.0236

Water 0.3227 0.0467 0.0439 0.0542 0.1906 0.0551 0.0625 0.0377 0.0479

Mean SAD 0.5114 0.0353 0.0421 0.0340 0.2376 0.0339 0.0364 0.0253 0.0287

Mean RMSE 0.2462 0.0700 0.0786 0.0614 0.3390 0.0469 0.0443 0.0457 0.0274

RE 0.0965 0.0501 0.0544 0.0590 0.1053 0.0370 0.0390 0.0406 0.0359

tensor of size RNb×W×H, where W and H are the width and
height of the hyperspectral image, respectively. The output Al

of the l-th hidder layer is given by:

Al = ReLU(BN(Conv(Al−1))), (9)

where Al−1 is the input of the l-th hidden layer. The output
Â3 ∈ Rc×W×H of layer 3 (with c nodes) is an estimation of
the abundance maps and the output Â4 ∈ RNb×W×H of layer
4 (with Nb nodes) is the reconstructed image.

C. Endmember Estimation Module (EEM)

The predominant deep learning-based unmixing methods in
the literature involve the use of FC layers or Conv layers in
their networks. Unfortunately, this tendency often results in an
inability to effectively learn spectral-spatial information or in
their performance being compromised by external initializa-
tion methods. Furthermore, these methods typically estimate
endmember signatures from the weights between a Softmax
and a reconstruction layer, rather than allowing the network
to perform this task autonomously.

For an automatical estimation of the endmembers, we use
FC layers to construct the EEM. The module contains three
FC layers followed by a Sigmoid activation function, with
1000, 30, and c nodes, respectively. To include spectral-spatial
information, the proposed EEM uses the reconstructed image
after the AEM module as the input:

E0 = Ŷ1, (10)

where Ŷ1 = reshape(Â4) ∈ RNb×Np. The output El of the l-th
hidden layer is obtained as:

El = Sigmoid(FC(El−1)). (11)

The output of the last hidden layer Eend provides the end-
member signatures.

D. Reconstruction Module (RM)

The final reconstructed image is obtained by:

Ŷ2 = ÊÂ, (12)

where Ê = Êend ∈ RNb×c and Â = reshape(Â3) ∈ Rc×Np are
the estimated endmember signatures and abundance maps by
the EEM and AEM, respectively.

E. Loss Function

Our proposed DFFN is an end-to-end model that automat-
ically reconstructs hyperspectral images and estimates abun-
dances and endmembers. To optimize our network, the recon-
struction loss and abundance loss are used. The reconstruction
loss is given by:

LR =
1

Np

Np∑
j=1

arccos
yj · ŷ2j

||yj ||2||ŷ2j ||2
, (13)

where yj ∈ RNb×1 is the original hyperspectral pixel, ŷ2j ∈
RNb×1 represents the reconstructed pixel from the RM module,
and || · ||2 denotes the L2 norm.
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Fig. 3. Reference signatures (red) and estimtaed endmember signatures (blue) by different unmixing methods on the Samson dataset.
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Fig. 4. Abundance maps estimated by different unmixing methods on the Samson dataset. The GT column shows the ground-truth abundance maps.

To construct the abundance loss, both ASC and ANC should
be met. To meet the ASC constraint, the ASC loss is defined
as:

LASC =
1

Np

Np∑
j=1

[(

c∑
m=1

âmj)− 1]2, (14)

where âmj is the abundance of the m-th endmember at the
j-th pixel and c is the number of endmembers. The ANC loss
is defined as:

LANC =
1

c×Np

c∑
i=1

Np∑
j=1

max(0,−âmj). (15)

Finally, the entire abundance loss is defined as:

LA = LASC + LANC. (16)

Additionally, a correction error loss function is constructed
to optimize the endmember estimation, that enhances the
robustness of the proposed DFFN and minimizes the difference
between the input of the EEM Ŷ1 and the final reconstructed
image Ŷ2:

LC =
1

Np

Np∑
j=1

arccos
ŷ1j · ŷ2j

||ŷ1j ||2||ŷ2j ||2
, (17)

Finally, the total loss function for optimizing the proposed
DFFN is defined as:

L = LR + bLA + cLC, (18)

where b and c are regularization parameters to balance be-
tween image reconstruction, abundance estimation and end-
member estimation.

III. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
DFFN on one synthetic and three widely-used real hyperspec-
tral datasets: Samson, Jasper Ridge, and Urban. To ensure
a fair comparison, we evaluate the proposed DFFN against
several classic deep learning-based unmixing methods that
address mixed pixels in the supervised scenario: the convo-
lutional autoencoder (CAE) [67], deep autoencoder unmix-
ing (DAEU) [46], multitask autoencoder unmixing (MTAEU)
[68], spectral information divergence autoencoder unmixing
(SIDAEU) [69], marginalized denoising autoencoder (mDAE)
[53], abundance-guided spectral and spatial network (A2SN)
[66], abundance-guided attention spectral and spatial attention
network (A2SAN) [66], and multi-stage convolutional autoen-
coder network (MSNet) [58].

A. Data Description and Evaluation Metrics

1) Synthetic Dataset: The developed method assumes that
the spectral reflectance of the mixtures can be reconstructed
by linearly combining the spectra of pure materials. Thus, to
demonstrate the potential of the proposed method, a dataset
that perfectly follows the linear mixing model is first gener-
ated. For this purpose, we generated a synthetic dataset of
60 × 60 pixels by combining five endmembers linearly. The
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TABLE III
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE JASPER RIDGE DATASET. BEST RESULTS ARE SHOWN IN BOLD AND

SECOND-BEST RESULTS ARE UNDERLINED.

Methods CAE [67] DAEU [46] MTAEU [68] SIDAEU [69] mDAE [53] A2SN [66] A2SAN [66] MSNet [58] DFFN

SAD

Tree 0.2314 0.0185 0.0961 0.0300 0.1322 0.0240 0.0297 0.0442 0.0270

Water 0.2400 0.0098 0.0955 0.0261 0.1810 0.0120 0.0201 0.0427 0.0162

Soil 0.2434 0.0506 0.1048 0.0796 0.4673 0.0390 0.0502 0.0479 0.0274

Road 0.4382 0.2056 0.2172 0.2433 0.1587 0.0934 0.0428 0.1014 0.0524

Mean SAD 0.2883 0.0711 0.1284 0.0948 0.2348 0.0421 0.0357 0.0591 0.0308

Mean RMSE 0.2468 0.1319 0.2700 0.1309 0.2748 0.0956 0.1164 0.0977 0.0951

RE 0.0957 0.0768 0.0888 0.0718 0.1048 0.0700 0.0652 0.0728 0.0697

Tree

Water

Soil

Road

Fig. 5. Reference signatures (red) and estimtaed endmember signatures (blue) by different unmixing methods on the Jasper Ridge dataset.

endmembers were (randomly) chosen from the United States
Geological Survey (USGS)1. The spectral data has 188 bands
with a spectral resolution of 10 nm and a wavelength range of
0.38 to 2.5 µm. We start from an image (64 × 64 pixels),
divided in 8 × 8 blocks. For each block, one of the five
endmembers is randomly selected and fills the entire block.
The abundance maps are generated by convolution of that
image with a low pass filter, i.e., the 5×5 mean filter. Then, the
pixels at the edge of the image (2× 2 rows and columns) are
removed. In order to investigate the robustness of the proposed
method in the presence of noise, Gaussian noise at different
signal-to-noise ratio (SNR) levels was added to the spectra. For
each noise level, different sets of endmembers were used to
generate the synthetic dataset, but the spatial ordering remains
the same.

2) Samson Dataset: The Samson dataset is composed of
952× 952 pixels with 156 bands, covering the spectral range
from 401 to 889 nm. To alleviate computational costs, a region
of 95 × 95 pixels is extracted, starting from the (252, 332)-th
pixel. The dataset contains three endmembers: soil, tree, and
water.

3) Jasper Ridge Dataset: The Jasper Ridge dataset has 224
bands with wavelengths ranging from 380 to 2500 nm and
is composed of 512 × 614 pixels. A subset of 100 × 100
pixels, starting from the (105, 269)-th pixel is extracted.
Bands 1-3, 108-112, 154-166, and 220-224 are removed due

1https://www.usgs.gov/labs/spectroscopy-lab/science/spectral-library

to atmospheric interferers and dense water vapor, and the
remaining 198 bands are retained. The final Jasper Ridge
dataset includes four endmembers: water, soil, tree, and road.

4) Urban Dataset: The Urban dataset consists of 210 bands
with a wavelength range of 400–2500 nm and 307 × 307
pixels. To mitigate the effects of atmospheric interferers and
dense water vapor, bands 1-4, 76, 87, 101–111, 136–153, and
198–210, are excluded, resulting in 162 remaining bands. The
final Urban dataset comprises four endmembers: asphalt, grass,
tree, and roof.

5) Evaluation Metrics: In our experiments, we introduce
three commonly used evaluation metrics to assess the per-
formance of algorithms: the spectral angle distance (SAD)
between the estimated and ground-truth (GT) endmember
signatures, the root mean square error (RMSE) between the
estimated and GT abundances, and the reconstruction error
(RE) between the reconstructed and the original spectra. These
metrics are defined as follows:

SAD(em, êm) = arccos
em · êm

||em||2||êm||2
, (19)

RMSE(âj , aj) =

√√√√ 1

Np

Np∑
j=1

(âj − aj)2, (20)
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Fig. 6. Abundance maps estimated by different unmixing methods on the Jasper Ridge dataset. The GT column shows the ground-truth abundance maps.

TABLE IV
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE URBAN DATASET. BEST RESULTS ARE SHOWN IN BOLD AND SECOND-BEST

RESULTS ARE UNDERLINED.

Methods CAE [67] DAEU [46] MTAEU [68] SIDAEU [69] mDAE [53] A2SN [66] A2SAN [66] MSNet [58] DFFN

SAD

Asphalt 0.3523 0.2106 0.1411 0.2901 0.2163 0.0735 0.1113 0.1511 0.0728

Grass 0.9602 0.2171 0.3427 0.3471 0.4843 0.0520 0.0494 0.1022 0.0654

Tree 0.1629 0.0806 0.0773 0.1338 0.1567 0.0199 0.0557 0.0948 0.0358

Roof 0.2044 0.2436 0.1473 0.2555 0.2105 0.0945 0.1337 0.1736 0.1296

Mean SAD 0.4199 0.1880 0.1771 0.2566 0.2670 0.0600 0.0875 0.1304 0.0759

Mean RMSE 0.2679 0.1454 0.1560 0.1670 0.2704 0.1013 0.1065 0.1259 0.1049

RE 0.1696 0.0548 0.0713 0.0509 0.1151 0.0650 0.0540 0.0837 0.0707

RE(Y, Ŷ2) =
1

Np

Np∑
j=1

RE(yj , ŷ2j)

=
1

Np

Np∑
j=1

arccos
yj · ŷ2j

||yj ||2||ŷ2j ||2
,

(21)

where êm, âj , and ŷ2j stand for the estimated endmember
signatures, abundance maps, and hyperspectral images, re-
spectively. Similarly, em, aj , and yj are the real endmember
signatures, abundance maps, and hyperspectral images.

B. Experiments on the Synthetic Dataset
Table I lists the quantitative results obtained by different

unmixing methods on the synthetic data with different noise
levels. It can be seen that the proposed DFFN obtained the
best results in terms of mean SAD, mean RMSE, and RE
on the synthetic data with 20dB and 30dB noise. Although
DFFN did not obtain the best results on synthetic data with
10dB noise in terms of mean RMSE and RE, its performance
was very close to the best performers (i.e., MSNet in terms of
mean RMSE and A2SN in terms of RE). Consequently, our
proposed DFFN consistently showed exceptional capability in
estimating endmember signatures, estimating abundance maps,
and reconstructing images.

C. Experiments on the Samson Dataset

Table II reports the performance of different unmixing
methods in terms of endmember estimation, abundance es-
timation, and image reconstruction on the Samson dataset.
From the table, it can be observed that both DFFN and MSNet
performed well in the task of estimating endmembers. MSNet
accurately estimated tree and water, while DFFN obtained the
best result in estimating soil. In terms of RMSE and RE, DFFN
outperformed the other methods and produced the best results
in the task of estimating abundance maps. Fig. 3 and Fig. 4
visually show the endmember signatures and abundance maps
obtained by all the unmixing methods on the Samson dataset,
respectively. From Fig. 3, it can be seen that CAE and mDAE
could not accurately estimate endmembers compared with the
other methods, while the endmember signatures obtained by
MSNet and DFFN agree well with the GT. From Fig. 4, A2SN,
A2SAN, MSNet, and DFFN performed well in estimating
abundance maps, the results of DFFN are closest to the GT,
which further shows the effectiveness and superiority of the
proposed approach in abundance estimation.
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Fig. 7. Reference signatures (red) and estimtaed endmember signatures (blue) by different unmixing methods on the Urban dataset.
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Fig. 8. Abundance maps estimated by different unmixing methods on the Urban dataset. The GT column shows the ground-truth abundance maps.

D. Experiments on the Jasper Ridge Dataset

Table III shows the quantitative results obtained by the
different unmixing methods on the Jasper dataset in terms
of mean SAD for estimating endmember signatures, mean
RMSE for estimating abundance maps, and RE for recon-
structing images. From the table, we observe that A2SN
could accurately estimate the two endmembers tree and water,
while DFFN performed well in estimating soil and road.
The proposed DFFN performed the best in terms of overall
endmember estimation. Moreover, DFFN obtained the best
result and second-best result in abundance estimation and
image reconstruction. Fig. 5 shows the estimated endmembers
by the different unmixing methods on the Jasper dataset. One
can observe that the endmember signatures obtained by the last
four methods, i.e., A2SN, A2SAN, MSNet, and DFFN, were
close to the reference signatures, while the proposed DFFN
performed the most consistent. Fig. 6 shows the abundance
maps estimated by the different unmixing methods on the
Jasper dataset. A2SN, MSNet, and DFFN obtained the best
results.

E. Experiments on the Urban Dataset

Table IV summarizes the mean SAD, mean RMSE, and RE
for all competitive methods on the Urban dataset. From the
table, it can be observed that DFFN obtained the best results
in estimating the endmember of asphalt while A2SN estimated
the grass, tree, and roof endmembers well. Generally, in terms
of overall endmember estimation and abundance estimation,
A2SN performed the best and DFFN performed second best,
while the gap with A2SN was very small. Moreover, SIDAEU
performed the best in image reconstruction. Fig. 7 visually
shows the endmember signatures obtained by the different
unmixing methods on the Urban dataset. Obviously, the spec-
tral curves of A2SN, A2SAN, and DFFN were closer to
the reference signatures compared with other methods. Fig.
8 depicts the abundance maps estimated by all compared
methods for the Urban dataset. It can be observed that CAE,
DAEU, MTAEU, SIDAEU, and mDAE failed to recover
the asphalt and grass abundances, while DFFN successfully
separated these materials and provided accurate abundance
estimation.
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Fig. 9. Hyperparameter analysis on the Samson dataset by varying: (a) the learning rate, (b) the regularization parameter b, (c) the regularization parameter
c, (d) the kernel size, and (e) the weight parameter w.
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Fig. 10. Hyperparameter analysis on the Jasper Ridge dataset by varying: (a) the learning rate, (b) the regularization parameter b, (c) the regularization
parameter c, (d) the kernel size, and (e) the weight parameter w.
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Fig. 11. Hyperparameter analysis on the Urban dataset by varying: (a) the learning rate, (b) the regularization parameter b, (c) the regularization parameter
c, (d) the kernel size, and (e) the weight parameter w.

TABLE V
RUNNING TIME (S) OF DIFFERENT UNMIXING METHODS ON THE

CONSIDERED DATASETS.

Methods Synthetic (20dB) Samson Jasper Ridge Urban

CAE 17.8016 37.4707 53.3654 441.3218

DAEU 18.4865 43.8835 47.9196 52.8121

MTAEU 35.5518 85.9920 99.3320 107.5883

SIDAEU 4.9552 41.2642 10.7187 48.4249

mDAE 13.5610 11.2525 12.4647 103.4156

A2SN 24.0497 41.8415 24.9551 180.3824

A2SAN 23.9539 32.6343 27.5029 214.4112

MSNet 10.7441 11.2745 11.6601 49.6279

DFFN 27.6473 43.2153 64.1353 277.9177

F. Parameter Setting and Parameter Analysis

Figs. 9-11 report the results of hyperparameter analysis on
the different datasets. It can be observed that the proposed
DFFN produced the best results on the three datasets for a
learning rate of 1e-3. Fig. 9(b) and Fig. 9(c) show that DFFN
performed best on the Samson dataset when the regularization

TABLE VI
ABLATION STUDY ON OUR PROPOSED DFFN WITH VARYING

INFORMATION ENHANCEMENT ON DIFFERENT DATASETS. BEST RESULTS
ARE SHOWN IN BOLD.

Datasets Spectral enhancement Spatial enhancement Mean SAD Mean RMSE

Synthetic data (20dB)

! % 0.0213 0.0650

% ! 0.1705 0.1264

! ! 0.0228 0.0681

Samson

! % 0.0378 0.0400

% ! 0.0328 0.0755

! ! 0.0287 0.0274

Jasper Ridge

! % 0.0275 0.1017

% ! 0.1613 0.2847

! ! 0.0308 0.0951

Urban

! % 0.1221 0.3381

% ! 0.0826 0.3416

! ! 0.0759 0.1049

parameters b and c are set to 1e-1 and 1e-3, respectively. Fig.
10(b) and Fig. 10(c) show that DFFN performed best on the
Jasper Ridge dataset when the regularization parameters b and
c are set to 0.5 and 1e-2. Fig. 11(b) and Fig. 11(c) reveal
that DFFN performed best on the Urban dataset when the
regularization parameters b and c both are set to 1e-2. Figs.
9-11 show that the optimal kernel size of the convolutional
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TABLE VII
IMPACT OF INITIALIZATION BY VCA ON THE UNMIXING PERFORMANCE OF MSNET, ALONG WITH RESULTS OF THE PROPOSED DFFN. BEST RESULTS

ARE SHOWN IN BOLD.

Methods
Synthetic (20dB) Samson Jasper Urban

Mean SAD Mean RMSE Mean SAD Mean RMSE Mean SAD Mean RMSE Mean SAD Mean RMSE

MSNet without VCA 0.5403 0.3243 0.2055 0.2125 0.4810 0.3424 0.3946 0.2693

MSNet with VCA-1 0.1579 0.1020 0.0253 0.0457 0.0591 0.0977 0.1304 0.1259

MSNet with VCA-2 0.0694 0.1123 0.0398 0.0612 0.0729 0.0971 0.0802 0.1259

MSNet with VCA-3 0.1656 0.1127 0.0349 0.0453 0.0432 0.1035 0.1269 0.1567

DFFN 0.0228 0.0681 0.0287 0.0274 0.0308 0.0951 0.0759 0.1049

TABLE VIII
UNMIXING PERFORMANCE OF MSNET WITH AND WITHOUT FFM, ALONG WITH THE RESULTS OF THE PROPOSED DFFN. BEST RESULTS ARE SHOWN IN

BOLD.

Methods
Synthetic (20dB) Samson Jasper Urban

Mean SAD Mean RMSE Mean SAD Mean RMSE Mean SAD Mean RMSE Mean SAD Mean RMSE

MSNet without FFM 0.1579 0.1020 0.0253 0.0457 0.0591 0.0977 0.1304 0.1259

MSNet with FFM 0.0381 0.0803 0.0248 0.0432 0.0546 0.0929 0.0826 0.1229

DFFN 0.0228 0.0681 0.0287 0.0274 0.0308 0.0951 0.0759 0.1049

layers in DFFN is 5×5. The weight parameter w that balances
between spectral information and spatial information in the
FFM is optimally set to 0.5, 0.9, and 0.1 for the Samson,
Jasper Ridge, and Urban datasets, respectively.

G. Computational Cost

All experiments were conducted on a computer with 2.6-
GHz Intel Core i7 CPU and 16 GB of memory (NVIDIA
GeForce RTX 2060 GPU). The running times of the different
unmixing methods on the different datasets are reported in
Table V. It can be observed that SIDAEU, mDAE, and MSNet
are more efficient than other unmixing methods. Considering
the results of endmember estimation, abundance estimation,
and image reconstruction, although the proposed DFFN is
not the fastest unmixing method, its computational cost is
acceptable.

IV. DISCUSSIONS

A. Ablation Study

To validate the FFM of the proposed approach, an ablation
study was performed in which either the spectral or the spatial
enhancement step (or both) have been considered. Results
on all datasets are shown in Table VI. From the table, it
can be observed that the proposed method achieved the best
results on the synthetic data when spatial enhancement was
removed. This may be due to non-realistic spatial patterns in
the synthetic dataset. From the table, it can also be observed
that, considering both spectral enhancement and spatial en-
hancement leads to the best results in endmember estimation
and abundance estimation on the Samson and Urban datasets.
The ablation study reflects that the proposed fusion strategy
FFM is very effective for the unmixing task.

B. Initialization Analysis of VCA

Most existing unmixing methods based on deep learning
use VCA as the initial weight to improve the performance
of endmember extraction. However, the randomness of VCA
will inevitably be propagated to the corresponding network
and greatly affects the final unmixing performance.

Given that MSNet generates superior unmixing results com-
pared to other methods, we consider MSNet as a representative
algorithm of the SOTA, and make use of it to assess the impact
of initialization by VCA. For this, MSNet is run without any
initialization, and with 3 different runs of VCA as initializa-
tion. Results are reported in Table VII. To compare, the results
of the proposed DFFN are shown as well. As can be observed,
the performance of MSNet reduces significantly when end-
members are not initialized properly. Moreover, although VCA
is an effective initialization, it produces different endmembers
on different runs. This randomness is passed to the network,
which subsequently affects the unmixing performance. To
address the randomness problem caused by initialization, our
proposed DFFN directly estimates endmember signatures and
abundance maps without relying on VCA and demonstrates
superior performance compared to other methods.

C. Evaluation of the FFM module

The proposed approach includes a feature fusion strategy,
FFM to enhance hyperspectral images. In theory, FFM should
also be effective for other unmixing methods. Considering
the superiority of MSNet, we again use it as a representative
algorithm of the SOTA to test the effectiveness of FMM. Table
VIII shows the mean SAD and mean RMSE of MSNet with
and without using FFM on all datasets. When including FFM,
the performance of MSNet improves drastically. Remark how-
ever that the proposed approach remains superior. Therefore,
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the proposed FFM not only serves as a denoising tool to
improve the robustness of the proposed DFFN but also as a
preprocessing step of other methods to enhance hyperspectral
images for more effective unmixing.

V. CONCLUSIONS

In this paper, we have developed a new dual-feature feature
fusion network (referred to as DFFN) for hyperspectral un-
mixing. Our newly proposed DFFN contains a feature fusion
module (FFM) that calculates pixel and band similarities to
enhance the hyperspectral image using spatial and spectral
information. The enhanced hyperspectral image is used as
the input of an abundance estimation module (AEM) and
an endmember estimation module (EEM). The reconstructed
image is obtained by the matrix multiplication between the
endmember signatures and abundance maps obtained by these
modules. Experimental results show that our newly proposed
DFFN can effectively estimate endmember signatures, esti-
mate abundance maps, and reconstruct images. Its performance
is compared to state-of-the-art methods, and is found to be
highly competitive. In the future, we will devote our efforts
to designing a general model to automatically determine the
number of endmembers and estimate endmember signatures
and abundance maps.
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