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ABSTRACT

Because of the complex interaction of light with the Earth
surface, a hyperspectral pixel can be composed of a highly
nonlinear mixture of the reflectances of the materials on the
ground. When nonlinear mixing models are applied, the es-
timated model parameters are usually hard to interpret and to
link to the actual fractional abundances. Moreover, not all
spectral reflectances in a real scene follow the same particular
mixing model. In this paper, we present a supervised learn-
ing method for nonlinear spectral unmixing. In this method, a
neural network is applied to learn mappings of the true spec-
tral reflectances to the reflectances that would be obtained if
the mixture was linear. A simple linear unmixing then re-
veals the actual abundance fractions. This technique is model-
independent and allows for an easy interpretation of the ob-
tained abundance fractions. We validate this method on sev-
eral artificial datasets, a data set obtained by ray tracing, and
a real dataset.

Index Terms— Hyperspectral, neural networks, end-
members, abundances

1. INTRODUCTION

In hyperspectral unmixing, the aim is to estimate the frac-
tional abundances of the different materials that are contained
within the field of view of a pixel, by describing the obtained
reflectance spectrum as a mixture of the reflectances of these
materials. Because of the complex interaction of light with
the Earth surface, spectral reflectances can be highly nonlin-
ear mixtures of the reflectances of the materials on the ground,
and nonlinear unmixing techniques are required.

In most cases, the reflectance spectra are modeled by a
mixing model. When applying a mixing model, the fractional
abundances of each endmember (material) in each pixel spec-
trum are estimated by inverting the model. This can be done
by minimizing the error between the true spectrum and the re-
flectance spectrum that is reconstructed by using the specific
mixing model.

The most common applied model is the linear mixing
model (LMM), which is a valid model when the incoming
rays of light interact with a single pure material in the in-
stantaneous field of view (IFOV) before reaching the sensor.
This model can be solved along with positivity and sum-

to-one constraints on the abundances [1], using the Fully
Constrained Least Squares Unmixing procedure (FCLSU).

Several nonlinear mixing models have been developed
that try to model multiple interactions of the light with sev-
eral pure materials. A popular group of models are the bilin-
ear mixing models: the generalized bilinear model (GBM),
the polynomial post-nonlinear model (PPNM), the linear
quadratic model (LQM), and the Fan model (FM) as re-
viewed in [2]. Some recent models also consider more than
two interactions, e.g. the multilinear mixing model (MLM)
[3]. When intimate mixtures are in play, the Hapke model [2]
can be applied.

When nonlinear mixing models are applied, the estimated
model parameters are usually hard to interpret and to link to
the actual fractional abundances. Moreover, not all spectral
reflectances in a real scene follow the same particular mixing
model. Some attempts have been made to learn a system to
model the complex mixing effects rather than using specific
mixing models. The methodology proposed by [4] learns a
mapping from spectra to abundance fractions, which is ba-
sically a linear method. In [5], abundances obtained from a
linear model were refined using a neural network-based for-
ward modeling. In [6], artificial neural networks were used
to decide whether a pixel is linearly or nonlinearly mixed,
after which an appropriate model was applied for unmixing.
This method however again requires the selection of particu-
lar nonlinear mixing models, which makes this method unre-
liable in real scenarios.

In this work, we propose a model-independent methodol-
ogy that allows to estimate fractional abundances with high
accuracy. The method requires a training set of spectral re-
flectances from which the endmembers and fractional abun-
dances are known a priori. A neural network is then applied to
train a mapping of the actual (nonlinear) spectral reflectances
to a spectrum that is composed of a linear mixture. A simple
linear unmixing then reveals the fractional abundances.

2. METHODOLOGY

Consider a set of p endmembers E = (e1, e2, · · · , ep) in Rd
+.

In this work, we assume that the endmembers are either esti-
mated from pure pixels in the data, or known a priori. Using
a linear model, a spectrum x is described as a linear combi-



nation of these endmembers:

xl =

p∑
i=1

aiei + η = Ea+ η (1)

along with the physical constraints:
∑
i ai = 1, ∀i : ai ≥ 0.

Here, a = (a1, a2, · · · , ap) are the fractional abundances for
each endmember of the spectrum x and η represents Gaussian
noise. Within this model, the endmembers define a simplex
Sp in p-1 dimensions and all spectra that follow the model lie
within that simplex.

In general, we can assume that any nonlinearity can be
described by a nonlinear function F (E,a) of the endmembers
and fractional abundances, i.e.:

x = F (E,a) + η (2)

Instead of depending on a particular mixing model, for which
a particular choice of F is fixed, we propose to apply a super-
vised method to learn F based on a training set of spectra with
known fractional abundances. From the available abundance
and endmember information of each of the training spectra x,
we generate linearly mixed spectra xl:

xl = Ea+ η (3)

A neural network is then trained to learn a mapping of the
spectrum of the actual training spectra x to the linearly mixed
spectra xl. The network architecture is a multilayer percep-
tron (MLP) such that the input layer contains the spectral
bands of the actual spectra x (d nodes) and the output layer is
of the same size and contains the spectral bands of the gen-
erated linear spectrum xl. One or more hidden layers are
placed in between. Once the mapping is generated, an un-
known spectrum can be introduced to the network, and the
generated output spectrum can simply be unmixed by apply-
ing FCLSU, obtaining the fractional abundances.

The neural network applied in this work has three lay-
ers: the d-band input layer, a hidden layer consisting of 10
nodes, and the d-band output layer. To train the network, the
Levenberg-Marquardt backpropagation [7] training algorithm
was used. The training was performed by dividing the dataset
into three categories: a training, a validation, and a test set.
The training set was used to determine the network parame-
ters (weights and biases) while the validation set was used to
minimize the generalization error (over-fitting).

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Simulated data

In the first experiment, seven different mixing models: LMM,
GBM, PPNM, LQM, FM, the Hapke model, and MLM were
used simultaneously to generate reflectance spectra. The pa-
rameters and constraints of these models are listed in Table
1. Three endmembers were randomly chosen from the USGS

database, containing 224 reflection values for wavelengths in
the range 0.383-2.508 µm. Abundances were generated uni-
formly and randomly from the unit simplex. On all generated
spectra, Gaussian noise was added with SNR = 20 dB.

To train the neural network, we generated 700 pixels (100
pixels from each mixing model). From the 700 pixels, 315
pixels were used for training and 35 pixels were used for val-
idation. After training was completed, the test dataset (350
pixels) was unmixed using FCLSU. Table 2 shows the abun-
dance root mean squared errors (RMSE) for the seven differ-
ent mixing models and our methodology. This result demon-
strates that the neural network is able to learn the mappings
of several models simultaneously.

3.2. Samson data

In the second experiment, we used the Samson dataset pro-
vided by [8] which is available at this webpage:
http://www.escience.cn/people/feiyunZHU/Dataset_GT.html.
This data contains three endmembers (tree, rock, and wa-
ter). These endmember comprise 156 reflection values for
wavelengths in the range 0.401-0.889 µm. For this dataset,
ground reference data was prepared for a (95 × 95) pixels
subset of the image. We used 180 pixels for training and 20
pixels for validation. The trained network was applied to the
remaining 8825 pixels.

Figure 1 displays the ground truth, the estimated abun-
dance maps and the absolute difference between the ground
truth and estimated abundance maps obtained by MLM and
our method. Table 2 shows the abundance RMSE for the
seven different mixing models and our methodology.

3.3. Ray tracing data

In the final experiment, the ray tracing datasets (orchard
scenes), generated by [9] were used. This dataset is synthetic
but highly resembles true hyperspectral images. The fully
calibrated virtual citrus orchard, developed in [10] was used
to generate two scenes: an orchard with mixtures of 2 end-
members: citrus trees and soil, and an orchard with mixtures
of three endmembers: citrus trees, soil and weed patches.
These orchard scenes contain 20 × 20 pixels and each pixel
has a size of 2 m × 2 m. The exact per pixel abundances and
endmember spectra are provided. From the 400 pixels, we
used 40 pixels for training, 20 pixels for validation and the
remaining 340 pixels for testing.

Figure 2 displays the ground truth, the estimated abun-
dance maps and the absolute difference between the ground
truth and estimated abundance maps obtained by the Hapke
model and our method, in the three endmember case. Table 2
shows the obtained abundance RMSE for the seven different
mixing models and our methodology. The obtained results
show the superior performance of our method compared to
the LMM, the bilinear models, the multilinear model and the
Hapke model.

http://www.escience.cn/people/feiyunZHU/Dataset_GT.html


Model Equation Parameters
Linear x =

∑p
i=1 aiei

GBM x = y +
∑p−1
m=1

∑p
k=m+1 bmkem � ek ∀m ≥ k : bmk = 0

y =
∑p
i=1 aiei ∀m < k : bmk = γmkamak, γmk ∈ [0, 1]

PPNM x = y + b(y � y) ∀m, k : bmk = bamak
y =

∑p
i=1 aiei b ∈ [−0.25, 0.25]

LQM x = y +
∑p
m=1

∑p
k=m bmkem � ek ∀m, k : bmk ≥ 0

y =
∑p
i=1 aiei

FM x = y +
∑p−1
m=1

∑p
k=m+1 bmkem � ek ∀m ≥ k : bmk = 0

y =
∑p
i=1 aiei ∀m < k : bmk = amak

Hapke x =
w

(1 + 2µ
√
1− w)(1 + 2µ0

√
1− w)

µ0: cosine incident angle

√
1− w =

√
(µ0+µ)2x2+(1+4µ0µx)(1−x)−(µ0+µ)x

1+4µ0µx
µ: cosine reflectance angle

MLM x =
(1− P )y
1− Py

,y =
∑p
i=1 aiei P ∈ [0, 1]

Table 1: Linear and nonlinear models and their parameters. The assumption for all models: ∀m : am ≥ 0,
∑
m am = 1.

Model Simulated Samson Ray tracing
LMM 9.21 41.73 17.80
FM 10.02 40.64 15.07

GBM 9.32 41.73 14.72
PPNM 8.51 38.97 16.20
LQM 12.13 41.73 22.15
MLM 11.55 18.34 19.02
Hapke 16.07 45.80 8.81

Our method 5.09 2.24 2.05

Table 2: Abundance RMSE (×10−2) for the simulated, Sam-
son, and the ray tracing dataset.

4. CONCLUSION

In this paper, we proposed a supervised method for nonlinear
hyperspectral unmixing. A neural network is applied to learn
the mapping of a nonlinear spectrum to the corresponding lin-
ear one, composed of the same fractional abundances. This
method not only maps the nonlinear effects but also solves the
interpretation problem of the estimated abundances. Experi-
ments on simulated, true and ray tracing datasets show that
the performance of this novel methodology is very promis-
ing.

The proposed method is model-independent, but has an
important disadvantage over the use of nonlinear models, in
that it requires a training set. Acquiring high quality ground
reference data for hyperspectral mixed data is not straightfor-
ward. On the other hand, once a network is trained, it can
be applied on similar datasets (i.e. with the same endmem-
bers). In case of endmember variability, the assumption of
fixed endmembers will be violated. Endmember variablity
can however in principle be trained along with the mapping.
This is the topic of our current research.
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Fig. 2: Abundance maps from the ray tracing data set. Rows
1, 2 and 3 denote soil, weed and tree. From left to right: the
ground truth, the estimated abundance map, the absolute dif-
ference between estimated and ground truth abundance maps.
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