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Abstract 
A novel approach to the reconstruction of glass fiber-reinforced polymers (GFRP) from X‐ray micro‐computed tomography 
(µCT) data is presented. The traditional fiber analysis workflow requires complete sample reconstruction, pre-processing and 
segmentation, followed by the analysis of fiber distribution, orientation, and other features of interest. Each step in the chain 
introduces errors that propagate through the pipeline and impair the accuracy of the estimation of those features. In the 
approach presented in this paper, we combine iterative reconstruction techniques and a priori knowledge about the sample, to 
reconstruct the volume and estimate the orientation of the fibers simultaneously. Fibers are modeled using rigid cylinders in 
space whose orientation and position is then iteratively refined. The output of the algorithm is a non voxel-based dataset of the 
fibers’ parametric representation, allowing to directly assess fiber features and distribution characteristics and to simulate the 
resulting material properties. 
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1 Introduction 
Advanced composites such as GFRP integrate essential features for future materials such as low weight, function integration 
and cost-effectiveness, thus allowing for tailored components in many different industries. Composites typically consist of a 
matrix component, i.e. the resin matrix and the reinforcement component, i.e. the glass fibers, to achieve specific structural 
properties. X-ray micro-computed tomography (µCT) is an imaging method to study the internal structure of those composites 
in a non‐destructive way and with high spatial resolution in the µm-scale. From a number of X-ray radiographs acquired from 
several angles, a volumetric image of the composites can be reconstructed. This image is then further processed to characterize 
features, such as the fiber orientation or pore size distribution [8]. The estimation of those features is useful for the estimation 
and optimization of the mechanical properties of the materials. During this process, some unwanted objects such as pores or 
inclusions of foreign particles could be introduced into the composite, which may influence those properties. Given the 
distribution and features of the fibers, those material properties can be simulated and analyzed. The most important features for 
this purpose are length and orientation, but one should also consider the inclusions and pores to give an accurate model of the 
material. Current methods to characterize structure properties of GFRP from high resolution µCT images rely on a sequential 
workflow, generally comprising the following steps. After reconstruction of the radiographs, the result is pre-processed to 
make the segmentation easier. The segmented image is then analyzed to, for example, quantify fiber lengths and/or pore size 
distributions [2-3, 6-7]. This conventional method suffers from poor precision and accuracy in the estimated parameters of the 
advanced composites, though. One of the reasons is using a grid of independent voxels for representing the material. While this 
is common in X-ray image reconstruction, it is unfavorable for fibers, which are typically very thin with a high aspect ratio 
relative to the voxel size. The resulting object voxels therefore exhibit substantial partial volume effects that hinder further 
quantification. Secondly, settings within the pipeline from reconstruction to individual object characterization are typically 
determined in empirical processes, relying mostly on the experience of researchers. That is, many parameters have to be set 
manually or semi‐automatically, in several steps of the workflow, which may introduce additional errors. Finally, because the 
conventional workflow is unidirectional, any error that occurs in one of the steps will propagate through the whole pipeline. To 
correct for those errors, a feedback mechanism to correct for inaccurate estimates is needed. 

2 Methods 
In this work, we suggest a new GFRP reconstruction approach, in which fiber features are estimated during the iterative 
reconstruction of the image from the projection data. This is accomplished by integrating a parameter estimation step in the 
well-known Simultaneous Iterative Reconstruction Technique (SIRT) algorithm [1]. Our approach can be described as follows. 
After the µCT scan, an image is reconstructed by performing an iteration of SIRT, initialized by a completely black image. 
Each following iteration then starts with the three SIRT steps: 1) a forward projection of the current reconstruction, 2) 
calculation of the projection difference, called the residual sinogram, 3) update of the reconstruction using weighted back 
projection [5]. Here is where our approach hooks into the algorithm. We add a 4th step (e.g. every 10 iterations), where the 
parameters of the fibers in the sample are estimated. As the estimation procedure we plan to use the eigenvectors and 
eigenvalues of the Hessian matrix at scale 𝜎 = r, the radius of the fiber [4, 9]. In theory all current approaches to estimate a 
variety of measures can be employed at this step. The advantage of the approach being that the model will refine while the 
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algorithm converges, alleviating the errors mentioned above. From the estimates obtained by the methods, a list of cylinders - 
representing each fiber in the sample - is created and used as a model to replace the fibers in the intermediate reconstruction 
image by rasterizing them with subvoxel accuracy. This added step provides the aforementioned feedback mechanism that 
refines the estimates of the fibers, as the reconstruction of the volume is refined.  

3 Results and future research 
To show how the algorithm works, we assume having acquired values for position, orientation and length of the fiber. We then 
simulate placing the fiber with an added, realistic inaccuracy in position that is closer to the correct position after each 
replacement step. This is supposed to mimic getting better and better estimates for the position oft he fiber.  
Before beginning the reconstruction, Gaussian noise with 𝜎! = 1 and 𝜇! = 0 was added to the forward projection, to add further 
realism to the model. Figure 1 shows the same slice through the original phantom volume and the two reconstruction volumes 
side by side. Our phantom in this case is a single fiber of length 30 voxels and radius 2.5 voxels, oriented along the y-axis and 
positioned at the origin. It can clearly be seen that our approach gives a reconstruction that is much closer to the original 
phantom than a standard SIRT reconstruction. This is due to the fact that replacing the fibers does effectively eliminate the 
noise in the fiber voxels and enables SIRT to converge to a solution with higher contrast. In practice, replacing the fiber with 
correct gray values equivalent to the correct attenuation values will be a challenge. 

Figure 1: Synthetically generated phantom with a single fiber (left) and reconstructions of this phantom using standard SIRT (middle) and our approach with 
the added fiber replacement step (right). Gaussian noise with 𝜎! = 1 and 𝜇!  = 0 was added to the sinogram in both cases. Images have been normalized for 
increased visibility. 
 

In the future we hope to improve the model to incorporate fiber orientation estimation as well as a model for inclusions, pores 
and resin matrix to get an accurate parametric representation of the GFRPs. 
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