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Abstract—Hyperspectral unmixing, an essential and funda-
mental task in remote sensing, focuses on estimating endmembers
(spectrally pure components) and their fractional abundances
within each mixed pixel of a hyperspectral image. With the
advent of deep learning (DL), which provides powerful and
automated feature representations, the field of hyperspectral
unmixing has made significant progress. Among DL approaches,
autoencoder-based models (widely used for unsupervised learn-
ing) have shown promising results. However, most unmixing
methods do not consider the noise contained in hyperspectral
images, and endmembers are usually estimated by the weights
of the linear layers in the decoder of these models, and their
performance may be highly dependent on weight initialization,
which may limit their effectiveness. In this work, we propose
an automatic spectral-spatial attention unmixing network (AS-
SAUN) that performs unmixing using an innovative strategy. AS-
SAUN includes a deep denoising module (DDM) to filter the noise
contained in the hyperspectral images and an automatic unmixing
module (AUM) to estimate abundances from the output, extract
endmembers in an inversion strategy instead of the weight, and
reconstruct images using the multiplication of estimated end-
members and abundances. Especially, a spectral-spatial attention
module (SSAM) is designed in the AUM to learn the long-distance
vertical and horizontal spatial dependencies in the hyperspec-
tral images and capture the important differences between the
spectral bands. Extensive experiments on a synthetic and three
real datasets show that the proposed method significantly and
consistently outperforms the compared state-of-the-art methods.
The full code is available at https://github.com/xuanwentao for
public evaluation.

Index Terms—Hyperspectral unmixing, automatic unmixing
module, autoencoder, deep denoising module, attention module.

I. INTRODUCTION

YPERSPECTRAL images provide rich spectral informa-
H tion and intricate spatial characteristics of target scenes,
making them indispensable in a wide range of applications,
including environmental monitoring, mineral exploration, and
precision agriculture [1]-[4]. These images capture detailed
spectral signatures comprising hundreds of contiguous spectral
bands, allowing an accurate identification of materials and
substances in the scene.
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However, one of the inherent challenges with hyperspectral
images is their low spatial resolution. A single pixel in a
hyperspectral image can cover a large physical area, often
ranging from tens to thousands of square meters. This large
footprint leads to mixed pixels, where multiple materials are
captured within a single pixel, resulting in a blurred repre-
sentation of the actual scene. This spatial ambiguity, where
distinct materials are blended within individual pixels, poses
a significant limitation for many applications that require high
spatial precision. To overcome this critical obstacle, hyper-
spectral unmixing techniques [5] have been developed. These
methods aim to solve the mixed pixel problem by decomposing
each pixel into a set of spectrally pure components, known as
endmembers, and estimating their corresponding proportions,
referred to as abundances.

A. Classical Unmixing Methods

The most widely used mixing model is the nonlinear
mixing model (NLMM) [6]-[9] and the linear mixing model
(LMM) [10]-[13]. Nonlinear spectral unmixing assumes that
materials undergo multiple scattering, LMM operates under
the assumption that each incident light ray interacts with a
single pure material within the pixel’s instantaneous field of
view before reaching the sensor, making it possible to express
the spectrum of each pixel as a linear combination of a set of
endmembers and their corresponding abundances. Due to its
simplicity and computational efficiency, the LMM is popular
compared to more complex nonlinear mixing models [14]-
[16]. Hyperspectral unmixing techniques that solve the LMM
can be broadly categorized into three groups: geometry-based,
statistical-based, and sparse regression-based methods.

Geometry-based unmixing methods operate under the as-
sumption that the observed spectral vectors lie within a sim-
plex, with vertices corresponding to the endmembers, ensuring
that the resulting abundances are non-negative and sum to one
to provide a physically interpretable solution. Two main cate-
gories exist: pure pixel-based methods [17]-[19] and minimum
volume-based methods [20]-[22]. Pure pixel-based methods
assume the existence of at least one pure pixel for each
endmember in the image. For example, maximum distance
analysis (MDA) [18] computes the maximum distance between
any pixel and the affine hull formed by previously extracted
endmembers, and selects the next endmember based on this
criterion. When no pure pixels are present, minimum volume-
based methods aim to estimate the endmembers as vertices
of a simplex with minimal volume. As an example, minimum



volume simplex analysis (MVSA) [20] minimizes the volume
of the simplex enclosing the data points while constraining the
abundance fractions within a probability simplex, ensuring that
the resulting abundances are non-negative and sum to one.

Statistical methods describe the unmixing problem as an
inference task, often within a Bayesian framework [23]-[25].
These techniques model the uncertainty of both endmembers
and abundances, allowing for a more flexible and probabilistic
interpretation of the results. In [23], a hierarchical Bayesian
model was proposed, selecting appropriate priors to enforce
non-negativity and encourage sparsity in the abundance vec-
tors. This helped to ensure that the solution is both physically
meaningful and sparse, which is often desirable in hyperspec-
tral unmixing. [25] presented a Bayesian model and a Markov
Chain Monte Carlo (MCMC) algorithm for unsupervised hy-
perspectral unmixing. This approach simultaneously estimates
endmembers and abundances, providing a robust statistical
solution to the unmixing problem.

Sparse regression-based methods tackle hyperspectral un-
mixing by selecting endmember candidates from a spectral
library [26]-[29]. These methods exploit the fact that, in many
cases, only a small subset of materials from the spectral
library are present in each pixel, leading to sparse abundance
representations. In [28], a spectral-spatial weighted sparse
unmixing framework was proposed, which leverages both the
spectral characteristics of the data and the spatial dependencies
between adjacent pixels to improve the sparsity and accuracy
of the unmixing solution. Similarly, a local-global sparse
regression unmixing method was introduced in [29]. This
method incorporates a local sparsity regularization to enhance
performance by considering both local and global sparsity
patterns, addressing the limitations of purely global sparsity-
based methods.

B. DL-based Unmixing Methods

Recently, neural networks [30]-[33] have been widely ap-
plied to hyperspectral image analysis due to their powerful
generalization and modeling capabilities, which have been
significantly improved by advances in DL technology. DL-
based unmixing methods [34]-[36] have increasingly become
the mainstream approach for addressing the mixed pixel
problem in hyperspectral remote sensing. Traditional unmixing
algorithms require manual parameter setting or rely on strict
mathematical assumptions, but deep learning leverages the
ability of neural networks to learn complex representations,
making them particularly suitable for tasks such as hyper-
spectral unmixing. A notable unsupervised approach that has
attracted attention is the autoencoder framework. Autoen-
coders are designed with an encoder-decoder architecture,
where the encoder reduces the dimensionality of the input
data and the decoder reconstructs the original data from the
learned representations. This has proven successful in hyper-
spectral unmixing by automatically learning low-dimensional
representations (i.e., the abundances) and reconstructing the
original data using a corresponding basis (i.e., the endmem-
bers). In [37], Hua et. al proposed an autoencoder network
with adaptive abundance smoothing (AAS) that employs a

multi-layer encoder to infer the abundances, and a single-
layer decoder to reconstruct the hyperspectral image. The
approach incorporates spatial-contextual information to handle
outliers and adaptively adjusting for each pixel. Similarly,
in [38], Su et. al developed a deep autoencoder network
that uses stacked autoencoders (SAEs) to provide a good
initialization for the unmixing task. This model also integrates
a variational autoencoder (VAE) to simultaneously estimate
the endmember signatures and abundance fractions, offering a
more robust unmixing solution. However, most autoencoder-
based approaches tend to focus solely on capturing spectral
information and overlook the spatial relationships between dif-
ferent pixels. This limitation may hinder the full exploitation
of spatial-contextual information, which is crucial for accurate
unmixing in scenarios where spatial continuity or homogeneity
plays a significant role.

Recently, convolutional neural networks (CNNs) have
shown significant progress in hyperspectral image processing
by incorporating both 2D or 3D convolutions to effectively
learn spatial and spectral information simultaneously. The abil-
ity of CNNs to capture both local spatial patterns and spectral
features has stimulated the development of many innovative
unmixing methods [34], [35], [39]-[43]. In particular, con-
volutional neural network autoencoder unmixing (CNNAEU)
[40] exploited the inherent spatial and spectral structures
of hyperspectral images to estimate both endmembers and
abundances. Unlike traditional CNN architectures that rely
on pooling or upsampling layers, CNNAEU processes image
patches directly, preserving the spatial structure throughout
the network. This allows abundance maps to be generated
as feature maps from hidden convolutional layers, preserving
detailed spatial relationships during unmixing. The cross-
convolution unmixing network (CrossCUN) [34] is a hybrid
approach, combining both 3D and 2D convolutions for a
more efficient feature extraction. The multi-stage convolutional
autoencoder network (MSNet) [35] employs a multi-stage
approach to acquire long-range dependencies and high-level
contextual information without losing fine spatial details. The
network consists of three sub-stages of CNN autoencoders.
The first two stages extract broad information and capture
long-range dependencies through multi-stage downsampling
operations, while the final stage operates at the original res-
olution to preserve fine spatial details. Although CNN-based
unmixing methods have shown significant improvements, the
limited receptive field of the traditional CNN limits its ability
to capture the global distribution of features across the entire
scene.

Very recently, inspired by the remarkable ability of the atten-
tion mechanism to capture long-range dependencies in images
[44]-[46], several techniques have been proposed that use
attention to improve the extraction of spatial and spectral fea-
tures from hyperspectral data for hyperspectral unmixing [47]-
[53]. In [47], a new attention mechanism called multi-head
self-patch attention was proposed that employs the long-range
dependencies between patches for performing hyperspectral
unmixing. In [52], a unidirectional local-attention autoencoder
network (ULA-Net) was introduced to effectively capture
and utilize discriminative local spatial-spectral information



while addressing spectral variability. ULA-Net successfully
addresses the challenges of high computational complexity and
slow convergence often encountered when dealing with global
information. In [54], the authors proposed a graph attention
convolutional autoencoder (GACAE), which employs graph
attention convolution to learn the global spatial relationships
within hyperspectral data for unsupervised unmixing.

C. Motivations and Contributions

Despite the advances made by autoencoders, CNNs, and
attention-based unmixing methods, most decoders estimate
the endmembers as weights of a linear layer. To initialize
these weights, many methods still rely on techniques such as
VCA. Consequently, they face three primary challenges: (1)
Existing methods cannot be easily generalized to nonlinear
unmixing. Because the dataset is linearly reconstructed, a
nonlinear transformation is required to accurately reconstruct
the input hyperspectral image, and there is no guarantee that
the estimated abundances and endmembers will be correct. (2)
The endmembers estimated by VCA are non-unique, as each
run produces a different set of endmembers. This randomness
is then transferred to networks that initialize decoder weights
with VCA’s output, impacting the final unmixing performance.
(3) The previous unmixing methods do not consider the noise
contained in the original hyperspectral images, which will
affect the performance of the subsequent unmixing. Although
some mature denoising algorithms [55], [56] have been pro-
posed, using them as a priori algorithms will constrain the
performance of the unmixing algorithm. To accurately estimate
both endmembers and abundances while overcoming these
challenges, we propose an automatic spectral-spatial attention
unmixing network (ASSAUN) for hyperspectral unmixing.
The key innovative contributions of this work can be sum-
marized as follows:

e We propose a novel AUM to directly estimate endmem-
bers instead of weights using an inversion strategy. This
not only estimates endmembers from the network but also
avoids introducing the randomness of other methods into
the network.

e We propose a DDM to filter out noise from hyper-
spectral images, allowing for the generation of clean,
reconstructed images. To the best of our knowledge, this
not only provides a promising direction for addressing
nonlinear unmixing challenges but also represents the first
attempt in the literature to include a separate module for
denoising, thereby significantly improving the unmixing
performance.

e We design a SSAM into AUM to enhance the perfor-
mance of unmixing. The SSAM is designed to learn the
long-distance vertical and horizontal spatial dependencies
in the hyperspectral images and capture the important
differences between the spectral bands.

The remainder of this article is structured as follows.
Section II describes the related work. Section III elaborates the
proposed ASSAUN method. Section IV evaluates the proposed
method on synthetic and real hyperspectral datasets. Section
V provides relevant discussions, evaluating the effect of the

proposed strategy. Finally, the conclusion is given in Section
VL

II. RELATED WORK
A. Linear Mixture Model (LMM)

In linear hyperspectral unmixing, the observed spectral
reflectance at each pixel of a hyperspectral image is assumed
to be a linear combination of pure spectral signatures, known
as endmembers, and their corresponding proportions, referred
to as abundances. This relationship can be formulated as:

X =MA +N, (1)

where X € R¥?*M represents the hyperspectral image with Nb
bands and Np pixels, M € RV*¢ is the endmember matrix,
in which each column corresponds to the spectral signature
of an endmember, and ¢ is the number of endmembers.
A € R*M denotes the abundance matrix, in which each
element a;; represents the proportion (or abundance) of the i-
th endmember in the j-th pixel. N is additive noise. Generally,
the abundance matrix satisfies two physical constraints, i.e., the
abundance nonnegative constraint (ANC) and the abundance
sum-to-one constraint (ASC), which can be expressed as:

ANC :a;; > 0; Vi, j, 2)
and .
ASC: Y ay; =1;Vj. (3)

i=1

B. Autoencoder

An autoencoder is a type of unsupervised neural network
that aims to learn compact, low-dimensional representations
of input data and that is commonly applied to tasks such
as dimensionality reduction, feature extraction, and data re-
construction. The fundamental architecture of an autoencoder
consists of two primary components: an encoder and a decoder.

The encoder compresses the input data X into a latent space
representation Y, effectively reducing the dimensionality while
preserving the most salient information. This process can be
mathematically represented as:

Y = f(X;W,b), 4)

where f is the activation function of the encoder, typically
a non-linear function such as rectified linear unit (ReLU) or
sigmoid, and W and b represent the learnable weights and
biases of the encoder, respectively. The decoder is used to
reconstruct the input from the latent representation:

X = g(Y;W,b), (5)

where g is the activation function of the decoder, and W and
b are its weights and biases. The objective of the decoder is
to generate a reconstruction X that closely approximates the
original input X, capturing the underlying structure of the data.
The overall learning process of the autoencoder is driven by
the minimization of the reconstruction loss, which measures
the difference between the input X and its reconstruction X.
The loss is typically formulated by the mean squared error



(MSE) or by other loss functions such as binary cross-entropy
and spectral angle distance, depending on the nature of the
data. In summary, the autoencoder learns to map the input data
to a compressed representation and to reconstruct it effectively,
thus capturing key patterns and dependencies in the data.

C. Self-Attention Mechanism

The self-attention mechanism has emerged as a crucial
concept in DL, especially in tasks involving sequential or
structured data, such as natural language processing and image
analysis. This attention mechanism allows models to focus on
specific parts of the input data, effectively capturing both local
and global dependencies.

Typically, the input to the self-attention mechanism consists
of three main components, i.e., query Q, key K, and value V.
These components are derived from the same input sequence,
allowing the model to dynamically assess the relationships
between different parts of the data. The attention scores are
calculated by taking the matrix multiplication of the query and
the transpose of the key:

Att = QKT (6)

This operation produces a scoring matrix that quantifies how
much attention each element of the input data should receive
relative to others. To ensure that the attention scores are
interpretable and stable, they are typically normalized using
the Softmax function. This step converts the raw scores into
a probability distribution, effectively emphasizing the most
relevant parts of the input:

Attyorm = Softmax(

)
T (7

\/g)’

where d is the dimension of Q and K. The final output of the
self-attention mechanism is obtained by weighting the value
vectors V with the normalized attention scores:

At
Vd

= Softmax(

T

7 = AttyorV = Softmax(Q

Vd

where Z represents the final output of the attention layer,
capturing the important features of the input while filtering
out irrelevant information.

)V, ®)

III. PROPOSED METHOD

The proposed approach (ASSAUN) includes a novel DDM
to filter the noise in the hyperspectral images, followed by an
AUM that automatically estimates the abundances and end-
members and simultaneously completes the image reconstruc-
tion. To improve performance, a novel SSAM is embedded
in the AUM. Fig. 1 shows the architecture of the proposed
ASSAUN. The three modules are further elaborated below.

A. Deep Denoising Module

In general, most existing unmixing methods consider the
autoencoder (subsection II-B) as the main backbone of the
networks to perform abundance estimation and endmember
extraction. Noise seriously hinders network robustness and
unmixing accuracy, but is usually not taken into account. To
this end, we design a DMM to pre-filter noise in hyperspectral
images, ensuring cleaner data for further analysis and improv-
ing overall unmixing performance.

The proposed DDM uses autoencoder as the core frame-
work, including several encoder-decoder layers that gradually
compress and reconstruct the input image while skip connec-
tions combine the different encoders and decoders to preserve
high-level spatial and spectral features across different network
stages.

The input of DDM is a 3D hyperspectral image X &
RNbXNexNy with spatial dimensions Nx and Ny (width and
height), and the number of spectral bands Nb. A first encoder
block transforms the input image to |, € R&#mxNxxNy.

E; = ReLU(BN(Conv(X))), )

where Conv denotes the 2D convolutional operation with dim
kernels of size 3 x 3 (in our experiment, dim = 32), BN stands
for batch normalization, and ReLLU is the activation function.

Then, a two-times iteration of a combination of a downsam-
pling and an encoder block follow. For i = 1, 2:

FEE) = Downsampling(Conv(E;))

Eix1 = ReLU(BN(Conv(F\™)))) (10)

where downsampling by max-pooling is performed, hereby
reducing the spatial dimensions by a factor of 2, and doubling
the number of channels (i.e., 2 i x dim filters are applied).
The decoder reverses the operations performed by the
encoder, gradually reconstructing the denoised image while
restoring the original spatial dimensions. Starting from the
deepest encoder output F3 = Ds, a combination of an
upsampling and a decoder block is performed twice. For
1=2,1:
FP)

Upsampling(Conv(D; 1))
ReLU(BN(Conv(E; + F\))).

i

D; = (11

In this case, upsampling restores the spatial dimensions, each
time enlarging the spatial dimensions by a factor of 2, and
halving the number of channels (i.e., ixdim filters are applied).
To ensure that fine-grained features from the encoder are
preserved during reconstruction, skip connections are applied
between the corresponding encoder and decoder layers to
obtain [E; + FED).

After the decoding process, a final 2D convolutional layer
is applied to map the features back to the original number of
spectral bands Nb, and the output is combined with the input
X to produce the final denoised hyperspectral image:

Xy = Conv(Dy) + X, (12)

where Xl € RNoxNxxNy This additive operation ensures noise
removal while preserving both the spectral and spatial details
from the input hyperspectral data.
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Architecture of the proposed automatic spectral-spatial attention unmixing network (ASSAUN), containing a deep denoising module (DDM) and an

automatic unmixing module (AUM). The designed spectral-spatial attention module (SSAM) is embedded into AUM to enhance vital spectral-spatial features.

B. Automatic Unmixing Module

The denoised image Ay = X, is the input of the AUM.
AUM performs a sequence of blocks, each of them containing
our newly developed spectral-spatial attention module SSAM
(see subsection III-C) along with a convolutional layer with
a decreasing number of kernels. In this work, 4 blocks are
applied with respectively 128, 64, 32, and c kernels. The
convolution layers also contain batch normalization and ReLLU.
The output A; of the /-th block is given by:

A; = ReLU(BN(Conv(SSAM(A;_1)))), (13)
The final estimated abundance maps Ais given by the output
Ay € RNV of Jayer 4 (with ¢ nodes).

The abundance maps are then reshaped into matrices of size
(¢ x (Nx x Ny)):

A = Reshape(A) (14)
where A € RN with Np = Nx x Ny. Similarly, X; is
reshaped:

X; = Reshape(fil), (15)
where X; € RN0XNp,
Under the assumption that the reconstructed image X is
clean, Eq. (1) becomes:

X; =MA, (16)
where M € RM*¢ s the endmember matrix that needs to
be estimated. A direct estimation is obtained by inverting Eq.
(16):

AT ~~T

M=X;A (AA (17)

)

where the symbol ’-1’ denotes a matrix inversion. From the
estimated A and M, a final reconstructed image X, can be
obtained as:

>
=
>

(18)

C. Spectral-Spatial Attention Module

The performance of the unmixing process can be enhanced
by improving on the spectral-spatial feature extraction. For
this, a spectral-spatial attention module is designed and em-
bedded in the AUM. The module contains a spectral attention
module, a spatial attention module and a fusion of both. The
architecture of the proposed SSAM is presented in Fig. 2.

1) Spectral Attention Module: The spectral attention fo-
cuses on capturing the dependencies between different feature
channels. This attention mechanism re-calibrates the input
feature maps by focusing on the most relevant channels.
Assuming that the feature map of one hidden layer is F €
RBEXWxH with B channels, where W is the width and H is the
height. Query, key and value matrices are initially identical
and computed as follows:

Q = Reshape(F) € RE*"H,
K = Reshape(F) € REXWH,
V = Reshape(F) €

The matrices Q and K are used to compute an attention map
Aspe € REXE as follows:

Agpe = Softmax(QKT) ,

19)
RBXWH

(20)

where T denotes the transpose operation. Ag,, represents the
attention weights across channels, capturing the relationships
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Fig. 2. Architecture of the SSAM, containing a spectral attention module and an dual spatial attention module.

between different feature channels in the input. Next, channel
attention is applied to the attention map Ag,. by multiplying
it with the value matrix V to produce the feature map Fg,, €
RBXWH.

FSpe = ASpeVa (2D

Finally, the output of the spectral attention module is obtained
by reshaping Fg,, back to its original spatial dimensions and
adding it to the original input feature map:

Fspe = aReshape(Fsp,) + F, (22)

where Fg,, € REXWXH and o is a learnable scaling parameter,
initialized to zero.

2) Dual Spatial Attention Module: Spatial attention mech-
anisms play a crucial role in enhancing the performance of
neural networks by focusing on the most informative parts of
an input feature map. In this work, we introduce a dual spatial
attention module that effectively utilizes both maxpooling and
meanpooling to capture a comprehensive representation of the
input features, identifying the most salient features and the
average contextual information, respectively across the spatial
domain.

Let F € REXWXH be the input feature map from a hidden
layer. Maxpooling and meanpooling are performed along
the channel dimension to distill the feature map into two
distinct forms: [F,,,,, capturing the most pronounced features
by computing the maximum value across the channels and
Fynean, providing an average overview of the channels, thereby
preserving the contextual information:

Frax(1, W, H) = Maxpooling(F(B,W,H));
B

23
Foean(1, W, H) = Meanpooling(F(B, W, H)); 3)
B

The module then synthesizes F,, € R WX and F,...m €
R*WxH ysing both concatenation and summation. This dual
approach forms robust spatial attention signals that integrate
the distinct characteristics of the max and mean pooled fea-
tures:

A,y = Conv(Concatenate(F pax, Frnean));

24
Asum - Sum(Fmax; IFmean) 5 ( )

with A, € R>WXH (3 1 x 1 convolution was applied to
retain the dimensionality) and Ag,, € R'*"*H These maps
are then multiplied in element-wise fashion, and a 1 x 1

convolution followed by a sigmoid function is applied to
bound the attention weights between 0 and 1:

Agpq = Sigmoid(Conv(Acar © Agm)), (25)

where © denotes the Hadamard Product. The refined attention
map Agy,, € RMWXH s then used to modulate the input feature
map, enhancing crucial areas while subduing less relevant
regions:

IE‘Spa - ASpa O] F. (26)

where Fg,, € REXW*H has the same dimensions as the input.
This representation not only highlights significant features but
also maintains a balance with the contextual background.

3) Attention Fusion: Since both spectral and spatial in-
formation play vital roles in capturing the characteristics of
a scene, the spectral-attention feature map Fg,, € REXWxH
and the spatial-attention feature map Fg,, € RE*WXH gare
concatenated along the channel dimension. To reduce the
number of channels back to B, a 1 x 1 convolution is applied
to the concatenated feature map:

Fgsam = Conv(Concatenate(Fspe, Fspa)), 27

where Fsqupr € REXWXH ig the final feature map, enriched
with information from both spectral and spatial attention
mechanisms. This SSAM module is embedded in each of
the layers of the AUM to enhance the spectral-spatial feature
representation.

D. Loss Function

The proposed ASSAUN is an end-to-end unmixing network
that combines a DDM for noise reduction and an AUM for
unmixing and reconstruction of the hyperspectral image. To
optimize the network, a loss function is designed that combines
a reconstruction loss, a denoising loss, and an abundance
loss. These losses guide the network in the tasks of learning
to denoise the input data, accurately unmixing the spectral
signatures, and reconstructing the hyperspectral images with
improved precision. The reconstruction loss is computed by:

X - X2;

T e T (28)
|12 [%2; ]2

where x; € RM*1 denotes the original hyperspectral pixel,
Xo; € RM*1 is the reconstructed pixel from the AUM, and



|| - ]2 denotes the Ly norm. To guide the denoising module
DDM, the denoising loss is defined as:

X4 .§1/4
Lp=— arccos —2—= (29
Np; |1 1[2[%1;]|2

where X;; € RM*! represents the denoising pixel in the
denoised image X; from the DDM. The abundance loss
includes the ASC and ANC constraints:

LASC = Z Z CL,,L] )
] 1 m=1
LANC = Il'laX dm '),
c X Np Zz; jz; 7
La = Lasc+ Lanc. (30)

where a,,; is the abundance of the m-th endmember at the
j-th pixel, and c is the number of endmembers.
Finally, the total loss function is defined as:

L= Lg+ BLp + 7Ly, 31

where 3 and ~ are regularization parameters, introduced to
balance the contributions of the different loss components in
the optimization process. These parameters adjust the relative
importance of each of the terms, allowing the network to
find an optimal trade-off between accurately reconstructing the
hyperspectral image and estimating the endmember signatures
and the abundances.

IV. EXPERIMENTS

To evaluate the performance of the proposed ASSAUN,
experiments were performed on a synthetic dataset (with
different noise levels) and three real hyperspectral datasets.
Three classical and four state-of-the-art DL-based unmixing
methods were chosen for comparison: VCA followed by
fully constrained least squares (VCA-FCLS) [57], [58], robust
collaborative nonnegative matrix factorization (R-CoNMF)
[59], MVSA [20], deep autoencoder unmixing (DAEU) [60],
multitask autoencoder unmixing (MTAEU) [61], spectral in-
formation divergence autoencoder unmixing (SIDAEU) [62],
and MSNet [35].

A. Data Descriptions

1) Synthetic Dataset: The proposed method assumes that
the observed spectra are linear combinations of pure material
spectra. To demonstrate its effectiveness, a synthetic dataset
is generated that fully complies with the LMM. This dataset
consists of 60 x 60 pixels and is created by linearly combining
five randomly selected endmembers from the United States
Geological Survey (USGS) spectral library. The spectral data
contains 188 bands with a resolution of 10 nm, covering a
wavelength range from 0.38 pm to 2.5 pm. A 64 x 64 pixel
image is divided into 8 x 8 blocks, with each block filled with
one of the five randomly chosen endmembers. The abundance
maps are created by applying a 5 X 5 mean low-pass filter to
ensure smooth transitions between adjacent endmembers. The

outer 2 X 2 rows and columns of pixels are removed, resulting
in a final image of 60 x 60 pixels. To test the robustness of the
method under noisy conditions, Gaussian noise with different
signal-to-noise ratios (SNRs) is added to the spectral data. For
each noise level, different sets of endmembers are used.

2) Samson Dataset: The Samson dataset consists of 952 x
952 pixels with 156 spectral bands, covering a wavelength
range from 401 nm to 889 nm. To reduce the computational
cost for the analysis, a 95 x 95 pixel area is extracted, starting
from the pixel at coordinates (252, 332). This subset of the
dataset contains three endmembers: soil, tree, and water.

3) Jasper Ridge Dataset: The Jasper Ridge dataset contains
224 spectral bands with wavelengths from 380 to 2500 nm and
consists of 512 x 614 pixels. For computational efficiency, a
subset of 100 x 100 pixels is extracted, starting from pixel
coordinates (105, 269). Due to atmospheric interference and
dense water vapor, spectral bands 1-3, 108-112, 154-166, and
220-224 are removed, leaving 198 bands for further analysis.
The final Jasper Ridge dataset includes four endmembers:
water, soil, tree, and road.

4) Urban Dataset: The Urban dataset contains 307 x 307
pixels with 210 spectral bands covering wavelengths from 400
to 2500 nm. To minimize the impact of atmospheric inter-
ference and dense water vapor, bands 1-4, 76, 87, 101-111,
136-153, and 198-210 are removed, leaving 162 bands for
further analysis. The final Urban dataset includes four end-
members: asphalt, grass, tree, and roof. The three real datasets
and ground-truth for endmembers and abundances can be
found in remote sensing lab'.

B. Evaluation Metrics

In our experiments, we employ three widely-used evaluation
metrics to assess the performance of the algorithms: spectral
angle distance (SAD), root mean square error (RMSE), and re-
construction error (RE) with respect to the ground truth. These
metrics are used to evaluate the accuracy of the estimated
endmember signatures, the abundances, and the reconstructed
hyperspectral images, respectively. SAD is defined as follows:
my - l’flk
[ [ |27

where my, and my, represent the estimated and the ground truth
endmember signatures, respectively. RMSE is computed by:

SAD(my, my) = arccos (32)

Np

1 A
N7p ;(aj

RMSE(ﬁj, aj) = — aj)2, (33)
where a; and a; represent the estimated and ground-truth
abundances, and Np is the number of pixels. Finally, RE is

defined as:

RE(X,X;) = ZRE X, Xa;)
T o (34)
= — Z arccos ]7?],
Np = |1 []2][%2; |2

Uhttps://rslab.ut.ac.ir/data



TABLE I
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE SYNTHETIC DATASET. BEST RESULTS ARE SHOWN IN BOLD.

SNR Metrics VCA-FCLS R-CoNMF MVSA DAEU MTAEU SIDAEU MSNet | ASSAUN
Mean SAD 0.0741 0.0602 0.1620  0.1277 0.1332 0.1179 0.0654 0.0499
10dB Mean RMSE 0.1154 0.1284 0.2367  0.2513 0.2154 0.1965 0.1194 0.1129
RE (Noisy GT) 0.4050 0.3989 04137  0.3592 0.3577 0.3956 0.3577 0.3571
RE (Clean GT) 0.1901 0.1770 0.2144  0.0743 0.0579 0.1745 0.0578 0.0543
Mean SAD 0.1379 0.1457 0.1870  0.1430 0.1094 0.2630 0.1579 0.0364
20dB Mean RMSE 0.0662 0.1067 0.1765 0.2174 0.1372 0.2211 0.1020 0.0603
RE (Noisy GT) 0.2118 0.1897 0.1617  0.1286 0.1219 0.1276 0.1200 0.1204
RE (Clean GT) 0.1628 0.1398 0.1044  0.0462 0.0289 0.0478 0.0217 0.0239
Mean SAD 0.0141 0.0265 0.0469  0.0796 0.0938 0.1223 0.0264 0.0033
30dB Mean RMSE 0.0397 0.0697 0.1070  0.2170 0.2320 0.2340 0.1154 0.0394
RE (Noisy GT) 0.1585 0.1686 0.1785  0.0419 0.0412 0.0470 0.0377 0.0343
RE (Clean GT) 0.1530 0.1637 0.1741  0.0230 0.0216 0.0311 0.0149 0.0051

where Xo; and x; are the reconstructed and ground truth
spectra of pixel j.

TABLE I
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE
SAMSON DATASET. BEST RESULTS ARE SHOWN IN BOLD.

Methods VCA-FCLS  R-CoNMF
Soil 0.0232 0.0534
SAD Tree 0.0206 0.0290
‘Water 0.1058 0.1861
Mean SAD 0.0499 0.0895
Mean RMSE 0.2748 0.3145
RE 0.4009 0.4791

MVSA
0.0455
0.0247
0.3724
0.1475
0.2747
0.4578

DAEU
0.0271
0.0322
0.0467
0.0353
0.0700
0.0501

MTAEU
0.0393
0.0430
0.0439
0.0421
0.0786
0.0544

SIDAEU
0.0236
0.0243
0.0542
0.0340
0.0614
0.0590

MSNet
0.0163
0.0218
0.0377
0.0253
0.0457
0.0406

ASSAUN
0.0112
0.0219
0.0405
0.0245
0.0269
0.0362

C. Experiments on the Synthetic Dataset

Table I presents the mean SAD and mean RMSE obtained
by the different unmixing methods on the synthetic dataset
with different noise levels. The proposed ASSAUN consis-
tently outperformed the other methods in terms of both SAD
and RMSE. This indicates that ASSAUN is highly effective in
extracting endmembers and estimating their abundances, even
when noise is introduced into the synthetic datasets. To further
assess the noise robustness of the proposed ASSUN, RE values
are shown with the original noisy and clean image as ground
truth, respectively (note that the noisy image was always the
input for all unmixing methods). It can be observed that DL-
based unmixing methods, such as DAEU, MTAEU, SIDAEU,
and MSNet, exhibited superior performance in terms of image
reconstruction compared to traditional techniques like VCA-
FCLS, R-CoNMF, and MVSA. Notably, the reconstruction
results of ASSAUN were closer to the original clean image
compared to other techniques, demonstrating that it is immune
to noise, highlighting its capability to effectively deal with
noise, leading to more accurate unmixing results (even in
challenging conditions). Moreover, we can observe that the
accuracy of ASSAUN decreases as the SNR decreases, which

is consistent with the behavior of all methods due to the
increasing difficulty of unmixing under noisy conditions.

D. Experiments on the Samson Dataset

Table II shows a quantitative performance assessment of all
algorithms on the Samson dataset. The results show that VCA-
FCLS, MSNet, and ASSAUN achieved the best performance in
extracting the tree, water, and soil endmembers, respectively.
However, ASSAUN standed out overall, providing the best
results in terms of mean SAD, mean RMSE, and RE, demon-
strating that ASSAUN is highly effective for endmember ex-
traction, abundance estimation, and image reconstruction. Fig.
3 provides a visual comparison of the endmembers estimated
by different unmixing methods. Clearly, the DL-based methods
outperformed traditional methods such as R-CoNMF and
MVSA, which struggle to effectively extract the endmembers.
The abundance maps estimated by different unmixing methods
are presented in Fig. 4. It can be observed that DAEU,
MTAEU, SIDAEU, and ASSAUN successfully separated the
three endmembers more clearly compared to VCA-FCLS, R-
CoNMEF, and MVSA, demonstrating the superiority of the DL-
based approaches for this task.

E. Experiments on the Jasper Ridge Dataset

Table III provides a quantitative comparison of the dif-
ferent algorithms. The table indicates that DAEU accurately
estimated the endmembers for trees and water, while MSNet
and ASSAUN were the most successful in estimating soil and
road, respectively. Overall, ASSAUN standed out in terms of
mean SAD, as well as in RMSE and RE. Fig. 5 presents
the endmember signatures estimated by different unmixing
methods on the Jasper Ridge dataset. The results show that
the endmember signatures from ASSAUN aligned closely
with the ground truth. Fig. 6 displays the visual results of
abundance maps estimated by different unmixing methods.



| VCAFCLS | __R-CoNMF 1 MVSA 1 DAEU MTAEU SIDAEU MSNet ASSAUN
g g = o [P [ va [V .
Soil 305 7 05 / 05 7 05 / 05 05 05 / 05
S = =t - o~
) 0 0 L~ 0 0 0 0 0
0 50 100 150 0 50 100 150 0 S0 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
y 1 1 1 1 1 1 1 1
g ‘J/:? /7/" /‘1— =a 7 ’/‘/f s f
Tree 305 05 / 05 05 / 05 05 05 -J\/ 05
B / /
S — — o ,_,_/ ;s,;__/ |
o 0 0 0 0 0 0 0
0 50 100 150 0 50 100 150 0 S0 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
s 1 I —7 1 ,/\ 1 1 1 1 - 1 -
Water 3 05 / \’\ 05 /// \\l\ 0s| / 05 /\\\ 05 \\ﬁ 05 / \/\ 0s| / N 05| /
=1 / \ / \ ] r \ 1 4 4 \ 4 \
5 p fd (YO R o , U] o . (VO o / (Y
0 0 0 0 0 0 ) 0
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Bands Bands Bands Bands Bands Bands Bands Bands
Fig. 3. Reference (red) and endmember signatures (blue) estimated by the different unmixing methods on the Samson dataset.
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Water

It has been noted that traditional unmixing methods, such
as VCA-FCLS, R-CoNMF, and MVSA, did not accurately
estimate the abundances of endmembers. In contrast, our
proposed ASSAUN effectively estimated the abundances of
trees, water, and roads, whereas MSNet excelled in generating
abundance maps for soil.

F. Experiments on the Urban Dataset

Table IV quantitatively assesses the performance of the
different methods on the Urban dataset. ASSAUN was not
only superior in estimating each of the endmembers but also
achieved the best results in terms of mean mean SAD and
RMSE. Although SIDAEU obtained the best RE values, AS-
SAUN was competitive, showing only a small gap. Overall, the
results underline ASSAUN’s effectiveness in hyperspectral un-
mixing and image reconstruction, confirming its effectiveness
across multiple performance metrics. Fig. 7 provides a visual
comparison of the reference signatures and the endmembers
estimated by different methods. The figure highlights that
ASSAUN exhibited high accuracy and consistency compared
to other approaches, indicating its stable ability in extracting
precise endmembers. Fig. 8 shows the estimated abundance
maps for the Urban dataset, generated by different methods.
Clearly, MSNet had the best result in estimating abundances of
roof, and ASSAUN had clearer abundance maps in estimating
asphalt, grass, and tree than other methods.

i

FTT

Fig. 4. Abundance maps estimated by the different unmixing methods on the Samson dataset. The GT column shows the ground truth abundance maps.

TABLE III
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE
JASPER RIDGE DATASET. BEST RESULTS ARE SHOWN IN BOLD.

Methods VCA-FCLS R-CoNMF MVSA DAEU MTAEU SIDAEU MSNet | ASSAUN
Tree 0.3176 0.0330 0.0490  0.0185 0.0961 0.0300 0.0442 0.0310
SAD Water 0.2956 0.0253 0.1227  0.0098 0.0955 0.0261 0.0427 0.0146
) Soil 0.6569 0.0786 0.1137  0.0506 0.1048 0.0796 0.0479 0.0606
Road 0.5195 0.0473 0.0550  0.2056 0.2172 0.2433 0.1014 0.0240
Mean SAD 0.4474 0.0460 0.0851  0.0711 0.1284 0.0948 0.0591 0.0326
Mean RMSE 0.3545 0.1641 0.2007  0.1319 0.2700 0.1309 0.0977 0.0913
RE 0.3276 0.3951 0.4380  0.0768 0.0888 0.0718 0.0728 0.0627

G. Computational Cost

We conducted all experiments on a computer equipped with
a 2.6 GHz Intel Core i7 CPU, 16 GB of memory, and an
NVIDIA GeForce RTX 2060 GPU. The efficiency of different
unmixing methods across all datasets is documented in Table
V. This table shows that traditional methods such as VCA-
FCLS, R-CoNMF, and MVSA achieved higher efficiency
compared to DL-based unmixing methods. Nevertheless, when
considering a comprehensive evaluation, the efficiency of the
proposed ASSAUN method remained acceptable. This balance
between performance and computational efficiency highlights
the practical utility of ASSAUN in hyperspectral unmixing
applications.
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Fig. 6. Abundance maps estimated by different unmixing methods on the Jasper Ridge dataset. The GT column shows the ground truth abundance maps.

TABLE IV
PERFORMANCE EVALUATION OF DIFFERENT UNMIXING METHODS ON THE
URBAN DATASET. BEST RESULTS ARE SHOWN IN BOLD.

Methods VCA-FCLS R-CoNMF MVSA DAEU MTAEU SIDAEU MSNet | ASSAUN
Asphalt 0.3459 0.2091 0.1923 02106  0.1411 0.2901 0.1511 0.0773
SAD Grass 0.1170 1.0611 1.0430  0.2171 0.3427 0.3471 0.1022 0.0659
) Tree 0.2314 0.0728 0.0825  0.0806  0.0773 0.1338 0.0948 0.0222
Roof 0.3608 0.1341 0.1314 02436 0.1473 0.2555 0.1736 0.1235
Mean SAD 0.2638 0.3693 03623  0.18380  0.1771 0.2566 0.1304 0.0722
Mean RMSE 0.3184 0.3080 0.2887  0.1454  0.1560 0.1670 0.1259 0.1103
RE 0.2835 0.4925 0.4454  0.0548 0.0713 0.0509 0.0837 0.0521

H. Hyperparameter Settings

We employ an Adam optimizer alongside Eq. (31) as the
loss function to guide the optimization process. The regular-
ization parameters S and < in Eq. (31) play a crucial role
in balancing the trade-off between the image reconstruction,
denoising, and abundance estimation tasks. The size of the
applied convolution kernel across the different layers of the

network is another hyperparameter. Fig. 9 provides a detailed
analysis of the impact of these hyperparameters. The analysis
shows that setting the regularization parameter 3 to 0.01 and
keeping the kernel size at 3 x 3 consistently yielded the best
performance for all datasets. The optimal settings for the
regularization parameter ~ varied per dataset: 0.02 for the
Samson dataset, 0.015 for the Jasper Ridge dataset, and 0.1 for
the Urban dataset. These specific settings significantly improve
performance in terms of mean SAD and mean RMSE, thereby
confirming their effectiveness in hyperspectral unmixing tasks.

V. DISCUSSION

A. Ablation Study for the Spectral-Spatial Attention Module

In the proposed approach, we embedded a novel SSAM into
the AUM to enhance the performance of hyperspectral unmix-
ing. SSAM contains a spatial attention module and a spectral
attention module that are fused together. We performed an
ablation study, in which either or both of the attention modules
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Fig. 8. Abundance maps estimated by different unmixing methods on the Urban dataset. The GT column shows the ground truth abundance maps.

TABLE V
COMPUTATIONAL COST OF ALL METHODS ON DIFFERENT DATASETS (IN
SECONDS).

Methods Synthetic (20dB) | Samson | Jasper Ridge Urban
VCA-FCLS 0.2909 0.4276 0.4401 4.2662
R-CoNMF 2.2753 1.1273 1.2587 20.9045

MVSA 0.7224 0.8615 0.4283 3.3006
DAEU 18.4865 43.8835 47.9196 52.8121
MTAEU 35.5518 85.9920 99.3320 107.5883
SIDAEU 4.9552 41.2642 10.7187 48.4249
MSNet 10.7441 11.2745 11.6601 49.6279
ASSAUN 16.8025 23.3912 25.1283 172.1192

are applied, and the obtained results are compared. Table
VI presents the results. The combination of both spectral
and spatial attention led to the best results. In some cases,
only applying the spatial or the spectral module matches the
results of applying both. In other cases, the combination is

TABLE VI
ABLATION STUDY FOR OUR PROPOSED ASSAUN WITH VARYING
ATTENTION MODULES ON DIFFERENT DATASETS. BEST RESULTS ARE
SHOWN IN BOLD.

Datasets Spectral attention | Spatial attention | Mean SAD | Mean RMSE
v X 0.1671 0.1563
Synthetic data (20dB) X v 0.1759 0.0854
v v 0.0364 0.0603
v X 0.0385 0.0506
Samson X v 0.0556 0.0489
v v 0.0245 0.0269
v X 0.0332 0.1023
Jasper Ridge X v 0.0364 0.0974
v v 0.0326 0.0913
v X 0.0849 0.1168
Urban X v 0.0726 0.1140
v v 0.0722 0.1103

significantly superior, underlining the advantage of attentively
focusing on both spectral and spatial information.
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TABLE VII
ABLATION STUDIES FOR OUR PROPOSED DUAL SPATIAL ATTENTION
MODULE USING DIFFERENT COMBINATIONS FOR DIFFERENT KINDS OF
SPATIAL EXTRACTION ON DIFFERENT DATASETS. BEST RESULTS ARE
SHOWN IN BOLD.

Datasets Concatenation Summation | Mean SAD | Mean RMSE
v X 0.1514 0.1229
Synthetic data (20dB) X v 0.3097 0.3491
v v 0.0364 0.0603
v X 0.0460 0.0361
Samson X v 0.0537 0.0409
v v 0.0245 0.0269
v X 0.0468 0.1476
Jasper Ridge X v 0.0928 0.1156
v v 0.0326 0.0913
v X 0.0985 0.3279
Urban X v 0.0989 0.1429
v v 0.0722 0.1103

B. Ablation Study for the Spatial Attention Module

In the dual spatial attention module, both concatenation and
summation steps are applied to merge the feature maps [,
and F,,;,, as detailed in Eq. (23). We performed an ablation
study in which either or both of the steps are applied, and the
results are compared. Results, presented in Table VII, indicate
that the combined use of concatenation and summation for
designing the attention module yielded superior results.

VI. CONCLUSION

In this work, we proposed an automatic spectral-spatial at-
tention unmixing network (ASSUN) for effective hyperspectral

unmixing and image reconstruction. We addressed the chal-
lenges common to conventional DL-based unmixing methods
and improved performance through several key innovations.
ASSAUN includes a DDM that preemptively filters out noise,
strengthening the robustness and accuracy of the network. The
core unmixing tasks are handled by AUM, which directly
estimates the abundance maps from the output. Furthermore,
instead of using weights to estimate the endmembers, an inno-
vative inversion strategy is used. Image reconstruction can be
performed using the multiplication of estimated endmembers
and abundances. A SSAM is carefully designed to identify
and highlight critical features across spectral channels while
capturing extensive vertical and horizontal spatial dependen-
cies. This dual attention to spectral and spatial details allows
our newly developed ASSUN to distinguish and enhance
relevant features, significantly improving unmixing accuracy.
Extensive evaluations on both synthetic and real-world datasets
have validated the effectiveness and robustness of ASSUN,
confirming its superior performance in hyperspectral unmixing
and image reconstruction tasks. Our future efforts will focus
on expanding ASSUN’s capabilities to address nonlinear un-
mixing problems. This initiative aims to adapt the network to
more complex scenarios, increasing its applicability and its
effectiveness in various hyperspectral unmixing applications.
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