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METHODOLOGY

A distributed ASTRA toolbox
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Abstract 

While iterative reconstruction algorithms for tomography have several advantages compared to standard backprojec-
tion methods, the adoption of such algorithms in large-scale imaging facilities is still limited, one of the key obstacles 
being their high computational load. Although GPU-enabled computing clusters are, in principle, powerful enough 
to carry out iterative reconstructions on large datasets in reasonable time, creating efficient distributed algorithms 
has so far remained a complex task, requiring low-level programming to deal with memory management and 
network communication. The ASTRA toolbox is a software toolbox that enables rapid development of GPU acceler-
ated tomography algorithms. It contains GPU implementations of forward and backprojection operations for many 
scanning geometries, as well as a set of algorithms for iterative reconstruction. These algorithms are currently limited 
to using GPUs in a single workstation. In this paper, we present an extension of the ASTRA toolbox and its Python 
interface with implementations of forward projection, backprojection and the SIRT algorithm that can be distributed 
over multiple GPUs and multiple workstations, as well as the tools to write distributed versions of custom reconstruc-
tion algorithms, to make processing larger datasets with ASTRA feasible. As a result, algorithms that are implemented 
in a high-level conceptual script can run seamlessly on GPU-enabled computing clusters, up to 32 GPUs or more. 
Our approach is not limited to slice-based reconstruction, facilitating a direct portability of algorithms coded for 
parallel-beam synchrotron tomography to cone-beam laboratory tomography setups without making changes to the 
reconstruction algorithm.
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Background
In recent years, iterative reconstruction algorithms for 
tomography have demonstrated promising results in 
the ability to compute high-quality 3D images from less 
data compared to the classical backprojection algorithms 
[1–3]. Despite these results, the practical use of advanced 
iterative algorithms for X-ray tomography, in both syn-
chrotron and laboratory settings, remains limited.

One of the key obstacles in the adoption of such 
algorithms is the requirements that it imposes on the 
hardware (computing and memory) and software (par-
allelization). Due to advances in modern X-ray cameras, 
experimental datasets and their corresponding 3D recon-
structed volumes can easily occupy hundreds of giga-
bytes of computer memory. For classical backprojection 
methods, it is trivial to partition both computation and 

memory-usage into smaller portions that can each be 
processed independently. The computations can there-
fore be carried out on a distributed computing system 
(e.g. a large cluster) to reduce the computation time to 
acceptable levels [4, 5]. For iterative methods, however, 
such a decomposition is often not straightforward [6–8].

For single workstations, there are now many high-per-
formance implementations of both classical backprojec-
tion methods and iterative methods, often using graphics 
processing units (GPUs), for both parallel and cone-beam 
geometries [9–14].

The main constraint when applying iterative recon-
struction methods is that in many cases the full 3D vol-
ume must be loaded into computer memory at once 
during the reconstruction, such that the basic operations 
of forward projection (FP, computing the X-ray images 
for the given 3D volume) and backprojection (BP, the 
mathematical transpose of the forward projection) can 
both be carried out efficiently.
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One notable exception to this memory requirement is 
tomography in a strictly parallel-beam illumination set-
ting, using a single axis of rotation, which is common in 
synchrotron imaging. In this setting, each slice of the 3D 
volume is measured by a single row of the detector, allow-
ing the reconstruction to be carried out independently 
for different slices. Although it is very powerful, this 
approach also has strong limitations. In particular, (1) 
small deviations from the ideal geometrical setup, such as 
slightly divergent X-ray beams or a slight tilt of the rota-
tion axis, cannot be dealt with in slice-based algorithms; 
(2) to exchange algorithms between a synchrotron setup 
and the much more common cone-beam setups used in 
non-synchrotron X-ray labs, the entire algorithm must 
be recoded into a non-slice-based version; (3) many itera-
tive algorithms make use of prior information about the 
object, which is often specified in 3D, thereby inducing 
dependencies between the reconstructions of different 
slices.

The problem of performing large-scale iterative 
reconstructions on a distributed computing cluster is 
illustrated in Figs. 1 and 2. Figure 1 shows how the com-
putations for a typical synchrotron tomography dataset 
(single rotation axis, parallel-beam illumination) are dis-
tributed over multiple nodes in a computing cluster. Split-
ting the volumes into thick “slabs,” each consisting of a 
stack of slices perpendicular to the rotation axis, the areas 
on the detector influenced by the slabs are all disjoint. 
This allows treating the slabs as independent volumes in 
the reconstruction, where each node is responsible for 
a specific part of the 3D volume (its slab) and a specific 
part of the projection data. Figure  2 illustrates the situ-
ation for a circular cone-beam acquisition scheme. Due 
to the divergence of the beam, each line from source to 
detector intersects with multiple slices perpendicular 

to the beam. As a result, the areas on the detector that 
are influenced by each slab are overlapping. To perform 
a forward projection (computing the projections of a 
given 3D volume) where each node is responsible for one 
slab, the computational results for adjacent slabs have to 
be merged to form the projections in these overlapping 
regions. This introduces the need for network communi-
cation between the nodes, which is typically much slower 
than memory access within the nodes. Moreover, such 
communication typically requires low-level network pro-
gramming using the message-passing interface (MPI) or 
other message-passing libraries, which can turn elegant 
high-level implementations of reconstruction algorithms 
into technically complex programmes that are tied to 
particular computing architectures.

Our goal for the work presented here is to create a soft-
ware platform that allows for easy implementation of 
advanced reconstruction algorithms in a non-slice-based 
setting, that is scalable from a single workstation to a 
medium-sized computing cluster. By focusing on a more 
generic geometry model, our approach can alleviate all 
of the drawbacks of a slice-based approach mentioned 
above: (1) it provides the ability to perform large-scale 
(up to a TB of data size or more) reconstructions that can 
be used in both parallel-beam and circular cone-beam 
setups; (2) it allows for the implementation of spatial pri-
ors that exploit the 3D dependencies between the infor-
mation present in consecutive slices.

Our platform is an extension to the ASTRA toolbox 
[15], a toolbox for rapid implementation of advanced 
tomography algorithms that offers a high-level math-
ematical syntax for expressing the algorithms, while 
performing the basic computational operations using an 
optimized parallel GPU-implementation. The ASTRA 
toolbox offers a high degree of geometrical flexibility, 

Fig. 1 Parallel-beam projection of two volume slabs. It shows a parallel-beam projection of the cubic volume in the centre on the detector plane 
on the right. Two slabs in the volume are outlined in black, and indicated by North-West (NW) diagonal patterns and North-East (NE) diagonal pat-
terns. The projections of these two slabs are correspondingly patterned with NW respectively NE diagonals, and do not overlap
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making it possible to use the same algorithms for differ-
ent geometrical setups [16, 17]. Without our new exten-
sion, the ASTRA toolbox is limited to the processing of 
3D volumes that fit fully into the available system mem-
ory of a single workstation. Our distributed computing 
extension makes it possible to use the same high-level 
model for specifying algorithms, while the algorithm can 
be carried out in a distributed computing environment, 
with limited overhead for communication between the 
compute nodes.

A key challenge in the design of such a distributed 
computing framework is hiding the details of comput-
ing and memory synchronization for the user. We use 
Python as the language for specifying the reconstruc-
tion algorithms. By using the capabilities of the Python 
language for code serialization and remote execution, 
the user can provide a single algorithm implementation 
that looks almost identical to a standard single-node 
algorithm. Operations performed on large volumes are 
carried out by the individual nodes without the need 
for unnecessary expensive data-communication. The 
forward and backprojection operations, which are usu-
ally the most time-consuming, are also carried out in a 
distributed way, synchronizing only the memory over-
lap between detector regions that reside on different 
nodes.

This paper is structured as follows: In “Methods” sec-
tion, we describe our approach for distributing both 
the 3D volume data and the projection data across mul-
tiple nodes in a cluster, where each node is responsible 

for processing only part of the data. We then describe 
the various operations that are supported in our frame-
work: Forward projection, backprojection, and voxel-
based operations on the 3D volume. “Usage” section 
then covers the high-level usage of our platform and 
illustrates its use by a concrete example, where the 
CGLS algorithm is combined with a smoothness prior 
in the volume domain. In “Results” section, we pre-
sent timing results that demonstrate the scalability of 
our approach, report on the subtle differences that can 
arise between the results of a distributed reconstruc-
tion as compared to a reconstruction on a single node, 
and show reconstructions of both simulated and exper-
imental data, followed by “Discussion and conclusions” 
section.

Methods
To facilitate re-use of code, and hide as many distributed 
programming details as possible, we have chosen to keep 
the interface similar to single-node usage of ASTRA. We 
have therefore made distributed ASTRA still execute a 
single Python script on a single master node. The ASTRA 
functions called by this script then internally manage the 
other nodes and distribute the work to these nodes. For 
the communication between nodes we use MPI. In this 
section, we describe the distributed operations in more 
detail.
First, we summarize the use of the ASTRA toolbox from 
Python on a single node here. As we illustrate in Fig. 3, 
both input and output data are stored internally in data 

Fig. 2 Cone-beam projection of two volume slabs. It shows a cone-beam projection of the cubic volume in the centre on the detector plane on 
the right. Two slabs in the volume are outlined in black, and indicated by North-West (NW) diagonal patterns and North-East (NE) diagonal patterns. 
The projections of these two slabs are correspondingly patterned with NW, respectively, NE diagonals. The solidly filled area shows where the projec-
tions of the two slabs overlap
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objects, as single precision floating point. These come in 
two types: projection data, and volume data. Associated 
to these objects are, respectively, a projection geometry 
and a volume geometry. These describe the geometry 
of the experimental setup, with the position and move-
ment of the X-ray source (or the direction of the rays), 
the number and size of pixels in the detector, and the 
number and size of voxels in the reconstruction volume. 
On these data objects, users can call algorithms, such as 
the Forward Projection or Backprojection operators, or 
reconstruction algorithms including, but not limited to, 
filtered backprojection (FBP), Feldkamp-Davis-Kress 
(FDK), and the simultaneous iterative reconstruction 
technique (SIRT). These concepts and functions are dem-
onstrated in the sample Python code in Table 1.

Distribution of data
To go beyond the use of a single node, we have to dis-
tribute the data objects over multiple nodes. For this 

distribution, we make a distinction between volume data 
and projection data. For efficiency reasons, we assume 
that we have a setup that approximately rotates around 
the z-axis, with either a rotating sample or rotating 
source and detector.

Suppose we have N nodes. First of all, we split the vol-
ume into N independent sub-volume blocks of approxi-
mately equal size, where each node is assigned as a 
different set of slices orthogonal to the z-axis, which 
we call a “slab.” Next, we compute for each such volume 
slab the projection extent on the detector, combined 
for the full range of projection angles; this is the region 
of the detector that is affected by an FP of the slab (in 
any projection direction), or, equivalently, the region of 
the detector that affects a BP to the slab. Note that, the 
detector regions corresponding to different volume slabs 
can overlap, cf. Fig. 2.

Each node stores the data for its volume slab, and the 
data for the corresponding detector region. In this way, 

Algorithms:
Forward Projection
Backprojection
Reconstruction

Projection Data

Projection Geometry

Volume Data

Volume Geometry

Fig. 3 Relationships between the core ASTRA concepts

Table 1 Calling single-node GPU SIRT
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we store a limited amount of data on each node, while 
also only requiring a limited amount of communication 
between neighbouring nodes for the FP and BP opera-
tions, as we will describe in the subsection on these oper-
ations below.

Ghost cells
The domain decomposition splits the volumes such that 
the amount of data in the nodes is minimized and each 
node therefore only holds the data that are necessary for 
the FP and BP operations. However, certain operations, 
such as computing gradients, or applying image filters, 
require information from (usually a small set of ) neigh-
bouring voxels. When all voxels are in the same memory 
buffer, this is not a problem and the required data can 
be read directly. However, when the neighbouring vox-
els are stored in the memory of another node, this would 
no longer be possible. To enable the execution of these 
operations, we have the option to make the domains, as 
computed by our domain decomposition, slightly larger 
than otherwise strictly necessary. These extra slices 
which overlap with neighbouring nodes, we call ghost 
cells. They are automatically synchronized after FP and 
BP operations.

The addition of ghost cells allows users to execute their 
multi-voxel operations as before, without having to worry 
about the fact that they are applied to a subset of the full 
dataset. The toolbox contains utility functions to auto-
matically select the unique subset within the local volume 
in case the user has to perform operations on unique ele-
ments only (e.g. compute a norm or inner product).

Forward projection and backprojection
Computing the result of an FP operation on the over-
lapping regions on the detector requires volume data 
from multiple nodes. Since FP as modelled by ASTRA 
is a linear operation, we can perform the FP opera-
tion for each node separately, and afterwards sum the 
results in the overlapping detector regions by exchang-
ing data between nodes. This is achieved using the 
overlap configuration computed during the domain 
decomposition. These overlapping slices are exchanged 
with the neighbouring processes, and the overlapping 
detector regions are combined. By exactly computing 
the domain extents, we minimize the amount of data 
that have to be exchanged, while ensuring that after-
wards, each node has a consistent and correct copy of 
its detector region.
For the backprojection operation, each node locally 
stores the part of the detector data needed to perform a 
BP operation, so this can be performed locally and inde-
pendently on each node.

Other operations
All iterative reconstruction algorithms need intermediate 
operations apart from the FP and BP steps. These include 
(but are not limited to) basic arithmetic on the data vol-
umes, image filtering steps such as blurring or computing 
gradients, reduction operations such as norms or inner 
products, and reading and writing data to disc.

Some of these operations are available directly using 
utility functions provided by the ASTRA toolbox, a num-
ber of which are shown below in “Usage” section. Oth-
ers can be implemented using a provided general method 
to execute a custom written Python function across all 
nodes. With this functionality, the user can perform cus-
tom operations on the distributed dataset, thereby taking 
full advantage of the extra available computation power 
when using multiple nodes.

Using Python’s functionality to serialize code, the user-
supplied custom function is sent from the master script 
to all nodes, and executed on each node. There, the func-
tion can access the local data on each node, and perform 
the required functions on that data.

The user-supplied function can choose to either pro-
cess all local data on a node, or only to process data for 
which the current node has the authoritative copy. This 
last functionality can for example be used to compute dot 
products, where it is important not to perform computa-
tions twice on overlapping regions. After any such opera-
tions, the ASTRA toolbox can synchronize all data on the 
nodes again, to propagate any changes to the overlapping 
regions.

In “Usage” section, we show two basic functions that 
process distributed volumes in this way.

SIRT
We have extended the GPU implementation of the Simul-
taneous Iterative Reconstruction Technique (SIRT) [18] 
in ASTRA to this MPI framework, using the distributed 
FP and BP operations described above, and also perform-
ing all intermediate arithmetic directly on the GPUs.

During an iteration of SIRT, the only communication 
between nodes takes place at the end of the FP operation 
as described above. The BP operation requires no addi-
tional communication, and neither do all other arithme-
tic operations, which are performed locally on each node.

Usage
Launching code
The distributed code is integrated in the Python bindings 
of the ASTRA toolbox, which allows near-transparent 
use for the user of the distributed toolbox functions. All 
the functions that handle data and execute functions have 
been made MPI aware and will handle the distribution 
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and gathering of data. This functionality is enabled by a 
special launcher. This launcher programme will start cli-
ents on all nodes, and then executes the user’s script on 
the master node. A launch could look as follows:

which performs the actual addition using NumPy arrays. 
It takes ASTRA object IDs as input, and accesses the data 
contained in the objects using the get_shared_local 
function.

To execute this function on all the available processes, 
the function mpi.run is called, with as arguments the 
function to be distributed, and a list of parameters to be 
passed to the function.

Finally, the last line could be used to synchronize 
any overlapping regions. However, since the function 
sumArrays keeps all data consistent, there is no need to 
call that in this specific example.

Certain operations should solely be executed on unique 
data. For example, when computing the inner product of 
a volume the overlapping regions of the volumes should 
not be included. The content of these regions is available 
on multiple processes and would therefore be added mul-
tiple times. To exclude this overlap in the computations 
there is a function that selects the data for which the 
current node has the authoritative copy, which we refer 
to as the slices that the current node is responsible for. 
The usage of this function is presented in Table 4 using 
a simple sum example. The function reduceExample 
calls getObjectResponsibleSlices to obtain the 
necessary subset of the data, sums this, and returns the 

Table 2 Calling distributed SIRT

This will use four nodes to run a script called recon-
struction.py written by the user. As mentioned 
before, the user script itself is executed only on a single 
master node, but supported ASTRA calls will use all four 
nodes.

A distributed version of the non-distributed script 
given before in Table 1 is presented in Table 2. It differs 
from the single-node script only in the single line calling 
mpi.create that enables the distributed functionality 
when combined with mpirun and toolbox.py.

User‑supplied functions
We present two examples, Tables 3 and 4, to illustrate the 
functionality to run user-supplied functions on distrib-
uted data volumes.

The first example, Table  3, adds two data volumes 
(pointwise) and stores the sum in a third data volume. 
This is implemented by a function called sumArrays 

mpirun −np 4 . / too lbox . py −−s c r i p t r e c on s t r u c t i on . py
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partial local sum. The function mpi.run returns a list 
containing these partial local sums from all nodes, and 
we sum these values to obtain the full sum of the data 
volume.

A sample reconstruction algorithm
Finally, we show an implementation of a full iterative 
reconstruction algorithm using the distributed function-
ality of ASTRA presented in this paper.

We make no claims here on the suitability of this algo-
rithm for reconstruction of specific projection datasets, 
but use it to illustrate a set of operations used in many 
algorithms.

Writing x for an (unknown) volume (in vector form), 
p for the measured projection data (also in vector form), 
and W for the tomographic system matrix, a basic alge-
braic formulation for the tomography problem is given by

To this, we add a regularization term with the ℓ2-norm 
of the discrete gradient (Sobolev prior) of the image, 
denoted by ||∇x||2, and with �2 as the weight of this term:

min
x

||Wx − p||22.

Since both W and ∇ are linear operations, we can stack 
these operators into a single operator to obtain

Our sample script in Table  5 implements the conjugate 
gradients least-squares (CGLS) algorithm [19] for this 

stacked operator, which we denote by A =

(

W
�∇

)

.
It calls the FP and BP operators (corresponding to 

multiplication with W and WT , respectively) using the 
ASTRA functions create_sino3d_gpu and cre-
ate_backprojection3d_gpu. It also calls utility 
functions grad3 and grad3_adj to perform the ∇ and 
∇T operations, respectively.

The function dot is used to compute inner products, 
and finally, the script uses the linear_combination 
utility function to compute various linear combinations 
of pairs of vectors, as described in the comments in the 
script.

min
x

||Wx − p||22 + �
2||∇x||22.

||Wx − p||22 + �
2||∇x||22 =

∣

∣

∣

∣

∣

∣

∣

∣

(

W
�∇

)

x −

(

p
0

)
∣

∣

∣

∣

∣

∣

∣

∣

2

2

.

Table 3 Running a custom function on distributed data objects

Table 4 Running a custom reduction function on distributed data objects
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In “Results” section below, we show sample reconstruc-
tions and timings for this implementation.

Results
To demonstrate the MPI implementation of ASTRA 
described in this paper is able to produce proper recon-
structions of real-world tomographic data, we have run 

150 iterations of the SIRT algorithm on projection data 
of an alginate/hydroxyapatite bone tissue engineer-
ing scaffold [20]. The data consist of 1800 projections of 
2005× 1335 with a cone angle of approximately 15.8◦ , 
and the reconstruction volume is 1984 × 1984 × 1332. 
We used 20 GPUs for this reconstruction. A representa-
tive slice of the reconstructed volume is shown in Fig. 4.

Table 5 ASTRA/MPI implementation of CGLS with Sobolev regularization
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To further validate the MPI implementation, we have 
compared the results of multi-node runs of the FP, BP 
and SIRT (50 iterations) functions against the existing 
single-node implementations in ASTRA. We have used a 
512

3 volume with 180 projections of 5122 for this, and 2, 
3, 4, and 16 nodes.

The results are summarized in Table 6. As expected, the 
parallel-beam results are identical (to full machine pre-
cision), as there is no need for communication between 
nodes. For cone beam, there are small differences. These 
are caused by small numerical inaccuracies during the 
tracing of rays, which differ between tracing through the 
subvolume on each individual node compared to tracing 
through the full volume. However, the differences are iso-
lated, and the average error remains very small.

In this section, we also show how the performance 
of three different methods scales with volume size 
and number of used nodes: a single FP (including the 
required communication), a single BP and the SIRT 
reconstruction algorithm. Each SIRT iteration consists 
of an FP (including communication), a BP, and auxiliary 
functions required for the reconstruction algorithm. For 
SIRT, we present the average time of a single iteration. 
With these methods, we have performed three differ-
ent experiments. In the first experiment, we tested the 
multi-node scaling on a fixed sized volume using 1 to 21 
GPUs. In the second experiment, we scale the volume 
size from 256 to 2048 and measured the time that each 
method takes using 4, 8, 16, and 21 GPUs. In the third 
experiment, we use a different cluster (with more nodes) 
to determine how the distribution of GPUs over nodes 
affects performance.

For all computational experiments, we used a cubic 
reconstruction volume of size N 3, with N projections with 
a square detector of size N 2. For the cone-beam experi-
ments, we have used a cone angle of approximately 7.8◦.

The cluster we used for the first two experiments con-
sists of three servers, connected using 100  Gbit EDR 
Infiniband cards and an EDR Infiniband router. Each 
server has an Intel Xeon E5-2698 CPU, 128 GB of RAM 
and contains 7 Titan X (Maxwell) GPUs from NVIDIA 
with 12 GB of RAM each. For these tests, boost was disa-
bled and the GPUs were manually set to their maximum 
supported clock speed. The CPU has two 16 lane PCIe 
slots available. Since this is not enough for the available 
devices, there are PCIe switches in between the PCIe 
devices and the CPU. Each switch has 16 PCIe lanes to 
the CPU and 64 lanes for the connected devices. The first 
switch holds 4 GPUs, so if all these GPUs communicate 
with the CPU at the same time, then this results in a 4:1 
bottleneck. The second switch holds 3 GPUs and the 
Infiniband card. The servers are running Ubuntu Linux 
16.04, with CUDA 7.5, and gcc 4.8.4.

This cluster allows us to scale from 1 to 21 GPUs. We 
always fill a single node before we add a second node. For 
example, with 7 GPUs a single machine is used, and with 
8 GPUs two machines are used with 7 processes on the 
first and 1 process on the second node.

The results of the first experiment are presented in 
Fig.  5 (parallel beam) and Fig.  6 (cone beam), for the 
case N = 1024. On the horizontal axis, we indicate the 
number of GPUs and on the vertical axis the time it takes 
to complete one BP (solid line), FP (dashed line) or one 
SIRT (dotted line) iteration.

For parallel beam, everything scales linearly as there is 
nearly no communication overhead.

For cone beam, the BP scales nearly linearly from 1 to 
21 GPUs as there is no communication required and the 

Fig. 4 SIRT reconstruction of tissue engineering scaffold. Recon-
struction with 150 iterations of SIRT on 20 GPUs of an alginate/
hydroxyapatite bone tissue engineering scaffold. Courtesy of Dr. 
Francesco Brun and Dr. Gianluca Turco, University of Trieste, Italy

Table 6 Comparison of  multi-node with  single-node 
results

Reported is the normalized root mean squared error (NRMSE), the square root of 
the mean squared error divided by the maximum value of the reference output

2 Nodes 3 Nodes 4 Nodes 16 Nodes

Parallel FP 0 0 0 0

Parallel BP 0 0 0 0

Parallel SIRT 0 0 0 0

Cone FP 5.7e−6 5.5e−6 5.6e−6 5.8e−6

Cone BP 3.7e−7 3.6e−7 3.8e−7 3.8e−7

Cone SIRT 2.3e−6 2.4e−6 2.4e−6 2.4e−6
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sub-volumes are large enough to saturate the GPU. For 
the FP the scaling is affected by network communication. 
We can see that the scaling is less ideal than that of the 
BP. But although the network communication negatively 
impacts the scaling, the execution time keeps decreasing 
when more GPUs are added. The SIRT iteration, which 
consists of both an FP, BP, network communication and 
host operations, also benefits from using more GPUs and 

continues to scale. As with the FP operation, we see the 
influence of network communication, but here the effect 
of adding GPUs becomes negligible when using 16 GPUs. 
With 17 or more GPUs, we hardly see any improvement 
in the execution time as it is dominated by the commu-
nication time. The more GPUs are used, the smaller the 
blocks per GPU and the lower the computation time, but 
the number of slices that overlap will form a larger frac-
tion of the total block size on a GPU. So with more GPUs, 
we have to exchange relatively more data with more 
neighbours while the GPU has less data to process. If we 
were to increase the number of GPUs further beyond 21, 
we expect the total runtime will start to increase for this 
volume size.

In Figs. 7 (parallel beam) and 8 (cone beam), we present 
the results of the second experiment. Each of the three 
panels shows a different operation; BP in the top, FP in 
the middle and SIRT in the bottom panel. For each, we 
present the execution time for N = 256 up to N = 2048 
using the four different GPU configurations. Ignoring 
communication, it is expected that doubling N results 
roughly in a 16× increase in execution time. The lines for 
the BP match this approximately, since there is no need 
for communication there. For FP and SIRT, communica-
tion time becomes a smaller fraction of total execution 
time when the volume size increases.

For the third experiment, we have used a cluster of 
eight machines, each with two Intel Xeon E5-2630 CPUs, 
128  GB of memory (except for the master node, which 
has 256  GB), and four Titan X (Maxwell) GPUs from 

Fig. 7 Parallel-beam performance for different volume sizes. Perfor-
mance scaling of parallel-beam BP, FP and SIRT routines over a range 
of volume sizes. Presented is the time required, in seconds, to execute 
a single BP (top panel), single FP (bottom panel) and single SIRT itera-
tion (middle panel). We increase the volume size from 2563 to 20483

. For a volume size of N3, the detector size is N2, and N projections are 
used. Missing data points are due to not enough total GPU memory

Fig. 6 Cone-beam performance for different GPU counts. Perfor-
mance scaling of cone-beam BP, FP and SIRT routines from 1 to 21 
GPUs. Presented is the time required, in seconds, to execute a single 
BP (solid line, square), single FP (dashed line, circle) and single SIRT 
iteration (dotted line, triangle). Missing data points are due to not 
enough total GPU memory

Fig. 5 Parallel-beam performance for different GPU counts. Perfor-
mance scaling of parallel-beam BP, FP and SIRT routines from 1 to 
21 GPUs. Presented is the time required, in seconds, to execute a 
single BP (solid line, square), single FP (dashed line, circle) and single 
SIRT iteration (dotted line, triangle). Missing data points are due to not 
enough total GPU memory
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NVIDIA with 12 GB of RAM each. These machines are 
connected with a Gbit ethernet network (i.e. no Infini-
band). They are running Fedora Linux 24, with CUDA 
8.0, and gcc 5.4.0.

In Fig. 9, we present the results. They are divided into 
three configurations. All of these use a volume of N 3 and 

N projections of size N 2. The configurations are paral-
lel beam with N = 1024, cone beam with N = 1024 , 
and cone beam with N = 1536. As before, the cone 
angle is approximately 7.8◦. For each configuration, we 
have varied the number of GPUs, and distributed these 
GPUs over the hosts in two different ways: either filling 
up a host completely before moving to the next one as 
in the first two experiments (labelled “max GPUs/host” 
in the figure), or using as few GPUs per host as possi-
ble (labelled “min GPUs/host”). Additionally, the points 
labelled “without communication” show the time spent 
on computation without communication between GPUs, 
which we have determined by disabling the exchange of 
overlapping regions in the MPI SIRT implementation 
described. The jump observed between 11 and 12 GPUs 
with the 15363 cone-beam configuration is due to the fact 
that with 12 GPUs, all temporary volumes used by SIRT 
fit entirely in the available GPU memory. With fewer 
GPUs, temporary volumes are stored in host memory, 
and computations other than FP and BP are performed 
by the CPU. (This is not an issue for the 10243 volumes.) 
Clustering as many GPUs together as possible leads to 
higher performance on this cluster since fewer commu-
nication channels traverse the network. When compared 
to the first experiment, the effect of the slower network of 
this cluster can be seen.

Finally, in Fig. 10, we show slices from three reconstruc-
tions using the Sobolev–regularized CGLS algorithm 
implemented in Table  6. We have simulated projection 
data consisting of 180 projection of 10242 pixels of a 3D 
variant of the Shepp-Logan phantom, with a fairly high 
level of Poisson noise. We have run 100 iterations, using a 
reconstruction volume of 10243 voxels, with the Sobolev 
term weighted with three different weights: � = 0, 10 and 
100. The figure shows the central slices of these three 
reconstructions. The effect of a stronger weight on the 
Sobolev term is clearly visible.

To show the scaling of performance, we have run this 
algorithm on a larger dataset of 1024 projections of 10242 
on 1–21 GPUs. The average time per iteration is shown 
in Fig. 11.

Discussion and conclusions
In this paper, we have presented the Distributed ASTRA 
toolbox, which offers computational building blocks for 
implementing tomography algorithms that are scalable 
from a single GPU-equipped workstation to a moderately 
sized cluster of GPU-equipped nodes. Our work extends 
the functionality of the existing ASTRA Tomography 
toolbox by allowing efficient reconstructions of volumes 
that do not fit in the memory of a single GPU, on either 
a single node or using multiple nodes of a GPU clus-
ter. We have shown that the method scales to at least a 

Fig. 9 Effects of distribution of GPUs over nodes. Performance scal-
ing of SIRT routines over a range of GPU counts on a cluster of 8 hosts 
with 4 GPUs each, with two different ways of distributing the GPUs 
over hosts: with “max GPUs/host” we cluster the GPUs as much as 
possible on hosts, while with “min GPUs/host” we use as few GPUs per 
host as possible. The time “without communication” is the time spent 
on actual computation, with communication between nodes disa-
bled. The volume size is N3, the detector size is N2, and N projections 
are used. The time shown is the time for a single SIRT iteration

Fig. 8 Cone-beam performance for different volume sizes. Perfor-
mance scaling of cone-beam BP, FP and SIRT routines over a range of 
volume sizes. Presented is the time required, in seconds, to execute a 
single BP (top panel), single FP (bottom panel) and single SIRT iteration 
(middle panel). We increase the volume size from 2563 to 20483. For a 
volume size of N3, the detector size is N2, and N projections are used. 
Missing data points are due to not enough total GPU memory
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volume size of N = 2048 using 21 GPUs. Similar to the 
current operations implemented in the ASTRA toolbox, 
our work will enable the rapid design and implementa-
tion of distributed advanced reconstruction algorithms, 
using the distributed FP, BP and SIRT implementations 
as building blocks.

Through its design, the distributed ASTRA tool-
box allows implementing algorithms in Python using a 
high-level syntax that is close to the formal mathemati-
cal algorithm description, while performing the distri-
bution of data and computation in a way that is almost 
hidden from the user. By keeping the data on the individ-
ual nodes as much as possible and only exchanging the 
parts of 3D volume and projection data at the boundaries 
between the 3D slabs, communication between the nodes 
is minimized.

The experiments from “Results” section indicate that 
the implemented parallel distribution method scales well 

Fig. 11 CGLS + Sobolev multi-node performance. Average execu-
tion time per iteration of the described CGLS+Sobolev algorithm, 
with as input 1024 projections of size 10242 and an output volume of 
1024

3

Fig. 10 CGLS + Sobolev reconstructions. Slices of reconstructions using the described CGLS + Sobolev algorithm, with Sobolev weights set to 
0, 10, 100, from left to right. Below are magnified versions of a small region of the slices to more clearly see the effect on noise and features. The 
projection data consisted of 180 simulated noisy cone-beam projections of 10242 pixels, with a reconstruction volume of 10243 voxels
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for practical volume sizes and GPU counts. The larger the 
volume, the more GPUs can be used before communica-
tion overhead prevents a speedup from adding additional 
GPUs. Yet there is still room for improvement. In par-
ticular, better scaling might be achieved when perform-
ing the exchange of the overlap regions in parallel with 
computation, rather than sequentially.

At present, our implementation is limited to single-
axis tomography acquisition schemes that are close to 
the parallel-beam or circular cone-beam geometry, and 
assumes a homogeneous cluster with similar GPUs and 
nodes. For these configurations, a uniform slab-based 
distribution of the data is highly appropriate. For more 
general acquisition schemes however, such as helical 
cone-beam acquisition and laminography, or for hetero-
geneous clusters, the way the data are distributed across 
the nodes will have to be adapted to achieve reason-
able computational performance. Our current research 
focuses on the development of more automatic ways of 
performing the data distribution that can deal with more 
general acquisition geometries.
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