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Abstract: Object reconstruction from a series of projection images, such as in computed
tomography (CT), is a popular tool in many different application fields. Existing commercial
software typically provides sufficiently accurate and convenient-to-use reconstruction tools to the
end-user. However, in applications where a non-standard acquisition protocol is used, or where
advanced reconstruction methods are required, the standard software tools often are incapable of
computing accurate reconstruction images. This article introduces the ASTRA Toolbox. Aimed
at researchers across multiple tomographic application fields, the ASTRA Toolbox provides
a highly efficient and highly flexible open source set of tools for tomographic projection and
reconstruction. The main features of the ASTRA Toolbox are discussed and several use cases are
presented.

c© 2016 Optical Society of America

OCIS codes: (110.6955) Tomographic imaging; (100.6950) Tomographic image processing; (110.1758) Computational
imaging.

References and links
1. E. Perilli, V. Le, B. Ma, P. Salmon, and K. Reynolds, “Detecting early bone changes using in vivo micro-CT in

ovariectomized, zoledronic acid-treated, and sham-operated rats,” Osteoporos Int. 21, 1371–1382 (2010).
2. L. B. Christensen, S. G. H. Erbou, M. Vester-Christensen, M. F. Hansen, M. Darré, M. Hviid, and E. V. Olsen,

“Optimized Workflow and Validation of Carcass CT-scanning,” in 56th International Congress of Meat Science and
Technology, (2010).

3. E. Janssens, J. De Beenhouwer, M. Van Dael, P. Verboven, B. Nicolai, and J. Sijbers, “Neural Network Based X-Ray
Tomography for Fast Inspection of Apples on a Conveyor Belt,” in Proceedings of IEEE International Conference on
Image Processing, (IEEE, 2015), pp. 917–921.

4. W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The ASTRA
Toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47
(2015).

5. J. Gregor and T. Benson, “Computational Analysis and Improvement of SIRT,” IEEE Trans. Medical Imaging 27,
918–924 (2008).

6. A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems,” J.
Imaging Sciences 2, 183–202 (2009).

7. K. J. Batenburg and J. Sijbers, “DART: a practical reconstruction algorithm for discrete tomography,” IEEE Trans.
Image Processing 20, 2542–2553 (2011).

8. A. Sheppard, S. Latham, J. Middleton, A. Kingston, G. Myers, T. Varslot, A. Fogden, T. Sawkins, R. Cruikshank,
M. Saadatfar, N. Francois, C. Arns, and T. Senden, “Techniques in helical scanning, dynamic imaging and image
segmentation for improved quantitative analysis with X-ray micro-CT,” Nucl. Instr. Meth. Phys. Res. B 324, 49–56
(2014).

9. M. Maisl, F. Porsch, and C. Schorr, “Computed Laminography for X-ray Inspection of Lightweight Constructions,”
in 2nd International Symposium on NDT in Aerospace (2010), pp. 2–8.

10. A. Dabravolski, K. J. Batenburg, and J. Sijbers, “Adaptive zooming in X-ray computed tomography,” J. Xray Sci.
Technol. 22, 77–89 (2014).

11. A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The PyHST2 hybrid distributed code for high speed
tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities,” Nucl. Instr. Meth.
Phys. Res. B 324, 41–48 (2014).



12. T. Dahmen, N. Marsalek, Lukas Marniok, B. Turonova, S. Bogachev, P. Trampert, S. Nickels, and P. Slusallek,
“Ettention: building blocks for iterative reconstruction algorithms,” in Proceedings of Microscopy & Microanalysis
(2015).

13. J. Fessler, “Image Reconstruction Toolbox (IRT),” http://web.eecs.umich.edu/~fessler/code/.
14. “The ASTRA Toolbox,” http://www.astra-toolbox.com.
15. D. M. Pelt, D. Gürsoy, W. J. Palenstijn, J. Sijbers, F. De Carlo, and K. J. Batenburg, “Integration of TomoPy and

the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data,” J. Synchrotron
Radiat. 23, 842–849 (2016).

16. W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for iterative electron tomography
reconstruction using graphics processing units {(GPUs)},” J. Struct. Biol. 176, 250–253 (2011).

17. M. A. Helvie, “Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications,” Radiol Clin
North Am. 48, 917–929 (2010).

18. C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system
(tomosynthesis) for security screening of passenger baggage,” Nucl. Instr. Meth. Phys. Res. A 652, 108–111 (2011).

19. L. De Chiffre, S. Carmignato, J. Kruth, R. Schmitt, and A. Weckenmann, “Industrial applications of computed
tomography,” CIRP Annals - Manufacturing Technology 63, 655–677 (2014).

20. U. Ewert, B. Redmer, C. Rädel, U. Schnars, R. Henrich, K. Bavendiek, and M. Jahn, “Mobile Computed Tomography
for Inspection of Large Stationary Components in Nuclear and Aerospace Industries,” Materials Transactions 53,
308–310 (2012).

21. S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, and J. P. Kruth, “Micro-CT-based improvement of
geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures,” Mater. Sci. Eng. A
528, 7423–7431 (2011).

22. B. Goris, J. De Beenhouwer, A. De Backer, D. Zanaga, K. J. Batenburg, A. Sánchze-Iglesias, L. M. Liz-Marazàn,
S. Van Aert, S. Bals, J. Sijbers, and G. Van Tendeloo, “Measuring Lattice Strain in Three Dimensions through
Electron Microscopy,” Nano Lett. 15, 6996–7001 (2015).

23. E. Y. Sidky, J. H. Jørgensen, and X. Pan, “Convex optimization problem prototyping for image reconstruction in
computed tomography with the Chambolle Pock algorithm,” Phys. Med. Biol. 57, 3065–3091 (2012).

24. W. van Aarle, P. Ghysels, J. Sijbers, and W. Vanroose, “Memory access optimization for iterative tomography on
many-core architectures,” in Proceedings of 12th Int. Meeting on Fully 3D Image Reconstruction in Radiology and
Nuclear Medicine, (2013), pp. 364–367.

25. E. van den Berg and M. P. Friedlander, “Spot: a linear-operator toolbox,”
http://www.cs.ubc.ca/labs/scl/spot.

26. F. Bleichrodt, T. van Leeuwen, W. J. Palenstijn, W. van Aarle, J. Sijbers, and K. J. Batenburg, “Easy implementation
of advanced tomography algorithms using the ASTRA toolbox with Spot operators,” Numer. Algorithms 71, 673–697
(2015).

27. D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “TomoPy : a framework for the analysis of synchrotron tomographic
data,” J. Synchrotron Radiat. 21, 1188–1193 (2014).

28. N. Viganò, A. Tanguy, S. Hallais, A. Dimanov, and M. Bornert, “Three-dimensional full-field X-ray orientation
microscopy,” Sci. Rep. 6, 1–9 (2016).

29. S. Cools, P. Ghysels, W. van Aarle, J. Sijbers, and W. Vanroose, “A multi-level preconditioned Krylov method for
the efficient solution of algebraic tomographic reconstruction problems,” J. Comput. Appl. Math. 283, 1–16 (2015).

1. Introduction

The use of X-ray Computed Tomography (CT) is not limited to its most well-know application
in medical diagnostics. Indeed, its ability to look at the interior of certain objects benefits many
other application fields as well. Examples include biomedical research, that often relies on
micro-CT scanning setups to investigate the effect of certain substances or medicines on small
animals [1]; industrial applications, where tomographic reconstruction can be an invaluable tool
for quality control of (semi-)automatic processes on a conveyor belt [2, 3]; chemistry, where
it can be used to study and optimize reactions and their results (e.g., of polyurethane foams);
and material science with various imaging modalities such as micro-CT, synchrotron radiation
facilities, and electron microscopes [4]. While all of these applications share the same basic
concept (multiple projection images are measured from different directions), the specific setup
of the scanning system can differ from application to application.

Typically, reconstruction software comes bundled with the purchase of the scanner (e.g.
NRecon for Bruker micro-CT systems, Phoenix datos|x for GE systems, and Inspect3D for FEI
electron microscopes). A few commercial products are also available that are not tightly coupled
to a specific scanning system, but can come at a premium rate (e.g., VG Studio Max, Octopus



Reconstruction, Ikeda’s TomoShop). The main advantages of these commercial packages are their
reliability due to their large user-base and their user-friendly graphical user interfaces. For the
majority of CT users these tools will therefore be well sufficient. However, the implementations
provided by these packages offer only a limited flexibility, restricting some use cases:

• The choice of reconstruction algorithm is typically limited to Filtered Backprojection
(FBP), Feldkamp-Davis-Kress (FDK), and in some cases the Simultaneous Iterative
Reconstruction Technique (SIRT) [5]. However, other reconstruction methods (such as
FISTA) may offer better results, especially in cases with low statistics (highly noisy)
projection data [6]. Moreover, a priori information of the scanned object cannot be easily
integrated to improve reconstruction quality. Such prior knowledge is especially useful
when dealing with limited data (e.g., a low number of projections, a limited angular range,
truncated projection data, etc.) [7].

• In most CT systems the X-ray source and detector follow a predefined circular trajectory
around the object in a plane perpendicular to the axis of rotation. In many applications
however, the X-ray source and detector array have to follow a non-conventional trajectory,
which means their projection data can not be easily reconstructed using conventional
software. For example, helical trajectories are nowadays not only used in medical systems,
but also in µ-CT systems for rock analysis [8]. Also, in a typical tomosynthesis setup, the
detector panel is positioned underneath a patient and the X-ray source follows a linear
trajectory. Similarly, in laminography, the source and detector are respectively fixed above
and underneath a thin object, which is then tilted and rotated [9]. The trajectory is thus
circular, but not perpendicular to the axis of rotation. Furthermore, in quality control of
industrial processes, projections can only be acquired from a few arbitrary perspectives,
and even when projections can be taken from all directions on a circular trajectory, it can
be beneficial to change the magnification during the scan of objects that are elongated in
one direction [10].

• The computational efficiency of the implemented algorithms may be limited, resulting in
long reconstruction times, especially for large datasets. While the computational power
of reconstruction frameworks keeps increasing, so does the size and resolution of X-ray
detector panels.

For users of non-conventional CT systems the limitations dictated by commercial software
packages can thus be a severe hindrance while prototyping new concepts and ideas.

In Table 1, a short overview is given of different open source software packages for to-
mographic reconstruction that have recently been updated: pyHST2 [11], Ettention [12], and
IRT [13]. While each of these packages provide excellent implementations of the most common
tomographic routines, it can be noted that each package is focused on a specific target application.
To the authors knowledge, there is currently no software package available that is more suited
for the development of advanced algorithms that can be used in multiple application fields, using
non-conventional geometries and various constraints.

The ASTRA Toolbox (All Scales Tomographic Reconstruction Antwerp) introduced in this
article is a software platform to address the need for a flexible, efficient, and easy to use
development platform for tomographic algorithms. Since 2010, it has been developed by the
Vision Lab, University of Antwerp, Belgium, and since 2014 jointly by Vision Lab and the
Centrum Wiskunde & Informatica (CWI) in Amsterdam, The Netherlands. It is freely available
as open source software under a GPLv3 license [14]. To achieve optimal efficiency, most of its
code is written in C++, with its core computations offloaded to a GPU card using the CUDA
language. Users with no access to GPU workstations can resort to CPU code, accelerated using
OpenMP. The toolbox is accessible through a MATLAB and a Python interface, providing a fast
and powerful platform for algorithm and application prototyping.



Table 1. Overview of different open source toolboxes for tomographic reconstruction.

package pyHST2 [11] Ettention [12] IRT [13] ASTRA

Target synchrotron (ESRF) electron PET, SPECT, all non-medical CT
applications tomography X-ray CT

Algorithms analytical, iterative analytical, analytical, analytical,
dictionary learning, iterative iterative iterative
FISTA, ... through plugins

Interface Python command line, MATLAB MATLAB, Python
GUI through IMOD

Hardware MPI, CUDA OpenCL OpenCL, CUDA OpenMP, CUDA
acceleration

The ASTRA Toolbox is mainly intended for use in research (e.g., application prototyping
and algorithm development), and less so for day to day usage by end-users. However, due to its
open nature, the ASTRA Toolbox can be coupled with existing practical software packages. One
example is its inclusion into TomoPy [15], which combines the user-friendliness and efficient
pre-and postprocessing methods of TomoPy with the flexibility and optimized reconstruction
methods of the ASTRA toolbox into a single framework. Also, for applications in the field of
electron tomography, the ASTRA Toolbox is available through FEI’s Inspect3D software.

The main strength of the ASTRA Toolbox is its inherent flexibility, which comes in three
forms:

• With its broad support, various non-conventional acquisition geometries are supported.

• With its modular design, each small building block of the toolbox (e.g., the projection
operations) can be used independently such that they can be combined in other, existing,
codebases. Also, the ASTRA Toolbox can be used in multiple application fields and imple-
mentations of advanced reconstruction methods that were made for a specific application
using the basic ASTRA building blocks can be easily applied in other application fields as
well.

• With its scalability, reconstruction methods and their parameters can be quickly evaluated
on small-size problems with a local computation platform. Afterwards, the resulting
reconstruction strategy can then, with relatively little effort, be deployed on large-scale
computation clusters for large, high-resolution datasets.

This article provides an overview of the ASTRA Toolbox, its design, and some of its use-cases.
Firstly, in Section (2), the key components of the toolbox are introduced. Then, Section (3)
demonstrates how they can be used in a conventional cone beam setup. The subsequent two
sections then delve deeper into some key advanced features of the toolbox that allow it to be
used flexibly: Section (4) concerns the specification of non-conventional scanning setups, and
Section (5) discusses how the ASTRA Toolbox can be easily integrated into external codebases.
Finally, Section (6) concludes this work.

2. Framework concepts

There are seven different concepts and modules in the ASTRA Toolbox (Fig. 1). Volume and
projection data objects (Section (2.1)) are linked to their corresponding geometry information
(Section (2.2)), both of which are linked together in a projection algorithm building block
(Section (2.3)), which is subsequently used together with the data in the reconstruction algorithm
object (Section (2.4)).
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Fig. 1. Schematic overview of all ASTRA Toolbox concepts.

2.1. Projection and volume data

The data modules of the ASTRA Toolbox store and manage all datasets, both for volume data and
for projection data. In order to perform actions on this data (e.g., a projection or a reconstruction)
the toolbox first needs to have access to it, which is not the case if the data is stored only in
the MATLAB or Python environment. Thus, memory first has to be allocated and data has to
be copied from the interface layer to the actual toolbox. This operation then returns a unique
identifier that can subsequently be used to refer to that particular set of data, much like how file
input/output works in many programming languages.

2.2. Geometry
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Fig. 2. Two approaches to the specification of a cone-beam projection geometry.

The experimental setup of the scanning system is specified by linking the data objects to a
corresponding volume geometry or projection geometry. The volume geometry describes the
pixel or voxel grid on which the reconstructed object is represented. A voxel is typically isotropic
but can be specified to anisotropic as well. This is useful in cases where the effective resolution
in a reconstruction is not the same in each dimension (e.g., tomosynthesis and laminography).

The projection geometry defines the trajectory of the X-ray source and detector relative to the
volume geometry. This involves the number and size of the detectors pixels and the specification
of the trajectory of the X-ray source and detector as they rotate around the object. Standard
projection geometries that are available are parallel beam and fan beam for two-dimensional
data, and parallel beam and cone beam for three-dimensional data.

Specifying a projection geometry in the ASTRA Toolbox can be done in two ways. In its
default form, the source and detector follow a circular trajectory around the origin of the volume
coordinate system and the detector plane lies perpendicular (and perfectly aligned) to the line
through the source and the origin. Hence, for a circular cone-beam geometry, there are five sets
of parameters to be specified: the number of detector pixels, the detector pixel size, the distance



from the source to the centre of rotation, the distance from the centre of rotation to the centre of
the detector and a list of projection directions (Fig. 2(a)). With this approach, the most widely
used projection setups can be specified, but non-conventional, non-circular trajectories can not.
Moreover, it is not possible to model common small detector misalignments, such as a detector
tilt or detector shift (when the centre of the detector does not line up with line through the source
and the centre of rotation), without resorting to interpolation in the projection domain, a process
which will introduce inaccuracies in the reconstructed images and should thus at all times be
avoided.

Instead of specifying all these parameters in general with a fixed object source distance and
detector size and instead of assuming that the X-ray source nicely rotates around the centre of
rotation, the ASTRA Toolbox also allows users to specify each projection separately. This is
called a vector-based geometry (Fig. 2(b)). As an example for a cone-beam projection model,
each projection image is then defined by four 3D vectors in the volume coordinate system:

• The location of the source, S = (sx , sy , sz ).

• The centre of the detector panel, D = (dx , dy , dz ).

• The principal axes of the detector plane, U = (ux , uy , uz ) and V = (vx , vy , vz ). The length
of these vectors corresponds with the size of each detector pixel.

From a user perspective, specifying a projection geometry like this is more difficult as the compu-
tation of the source and detector trajectory has to be carefully specified. It does, however, allow
much more advanced setups. Moreover, detector alignment can be modeled in the reconstruction
process without requiring interpolation in the projection domain. For example, a detector tilt
can be modelled by rotating U and V accordingly around the line SD in each projection; and a
detector shift can be modelled by translating D in the detector plane (specified by U and V).

2.3. Projection operations

The most important building blocks of any reconstruction technique are the projection operations.
Consider tomography in its algebraic form, the forward projection operator then simulates
projection images from a 2D or 3D volume by computing a sparse matrix vector multiplication
(SpMV):

p := Wv, (1)

in which p is a vector representing 2D or 3D projection data, v is a vector representing 2D or 3D
volume data, and W is the projection matrix and is defined by both the volume geometry and
the projection geometry. The backprojection operation “smears” the projection data through a
reconstruction volume by computing:

v := WT p. (2)

The projection building blocks in the ASTRA Toolbox is where the values wi j of W are
calculated and used to compute projection and backprojection images. As these are the operations
that typically make up most of the computation time and power of a tomographic algorithm,
much effort was put into making these implementations as computationally efficient as possible.
To achieve this, the ASTRA Toolbox uses the computational power provided by GPU cards
through the NVIDIA CUDA language [16]. In case the user has no GPU cards available, OpenMP
accelerated CPU implementations of the 2D versions of these building blocks are also provided.

2.4. Reconstruction algorithms

All tomographic reconstruction algorithms are built on top of the basic projection and back-
projection building blocks. These building blocks are internally configured by the algorithm



itself and thus need no intervention of the user. Reconstruction methods that are available in the
ASTRA Toolbox include the analytical reconstruction methods FBP for parallel and fan beam
and FDK for cone beam datasets, several algebraic reconstruction methods such as SIRT, SART,
and the Krylov subspace method CGLS. All of these are available both for 2D and 3D datasets,
and also allow for some optional customization such as reconstruction limited to pixels in a
certain mask, or enforcing minimum/maximum constraints during iterations. Configuration of
an algorithm can be done in the MATLAB or Python interface by linking it to the correct data
identifiers and by setting some algorithm specific options. It is important to note that the forward-
and backprojection building blocks themselves can also be directly accessed from within the
external interfaces. This means that a user can easily develop new tomographic algorithms or
prototypes in which a substantial portion of the computational burden is offloaded to a much
faster GPU card.

3. Conventional cone beam example

This section demonstrates the interface of the ASTRA Toolbox for a user wishing to perform
a simple SIRT reconstruction of a set of conventional cone beam projection images. The code
examples that are provided make use of the MATLAB interface to the ASTRA Toolbox. The
Python interface uses the same design and interface principles and differs only in its syntax.

It is assumed that projection data is already stored as a 3D array in the MATLAB environment.
As each CT machine utilizes different file formats to store projection images and geometry
information, the ASTRA toolbox does not provide methods for reading in specific file formats,
but instead relies on the user to be able to do this.

1. Firstly, the projection and volume geometries are defined. Here, a 600×600×300 isotropic
voxel grid is considered, with the size of each voxel being 1 × 1 × 1mm. The centre of
this volume is located at its central slice, at the axis of rotation. The projection geometry
is specified with the parameters depicted in Fig. 2(a). Each projection is recorded as a
512 × 512 image with pixel size 0.7 × 0.7mm. The source-to-object, and object-to-detector
distances are 1000mm and 1500mm, respectively. In total, 360 projection images are
defined over a full angular range [0, 2π).

vol_geom = astra_create_vol_geom(600,600,300);
proj_geom = astra_create_proj_geom(’cone’, 0.7, 0.7, 512, 512, ...

linspace(0,2*pi,360), 1000, 1500);

2. Projection data is copied into the toolbox memory and space is allocated store the re-
construction in. The result of these operations is two data identifiers which are used in
subsequent steps of the workflow. Each data object is linked to its corresponding geometry
object.

vol_id = astra_mex_data3d(’create’, ’-vol’, vol_geom, 0);
proj_id = astra_mex_data3d(’create’, ’-proj3d’, proj_geom, p); % ‘p’ contains the

projection data

3. With the data accessible to the toolbox, a reconstruction algorithm object can be configured.
Consider here a CUDA accelerated SIRT implementation for 3D data problems. This
algorithm internally configures the projection building blocks that it will use. For this
specific case, a non-negativity constraint is also applied. This is a simple form of prior
knowledge that can lead to improved reconstruction quality. The result of this configuration
is an identifier referencing to the algorithm object.

cfg = astra_struct(’SIRT3D_CUDA’);
cfg.ProjectionDataId = proj_id;
cfg.ReconstructionDataId = vol_id;



cfg.option.MinConstraint = 0;
alg_id = astra_mex_algorithm(’create’, cfg);

4. The algorithm identifier is used to perform 100 iterations.

astra_mex_algorithm(’iterate’, alg_id, 100);

5. Finally, the reconstruction data is retrieved into the MATLAB memory, ready for subse-
quent analysis.

reconstruction = astra_mex_data3d(’get’, vol_id);

4. Non-conventional geometries

This section explores a few distinct applications of CT with a non-conventional projection
geometry. The specification of each of these can be done in the ASTRA Toolbox using the vector
based approach as described in Section (2.2) and Fig. 2(b). Specifically, with l the total number
of projection images, an l × 12 matrix is constructed in which each row represents the geometry
of a single projection. The first three columns represent the position of the X-ray source (S), the
fourth to sixth column represent the position of the centre of the detector array (D), and columns
seven to nine and ten to twelve represent both unit detector vectors (U and V). This matrix and
the number of detectors are then supplied to the toolbox when building a cone beam projection
geometry (Table 2).

Table 2. MATLAB code demonstrating how a conventional cone beam setup can be specified
by a vector-based geometry object. The variable theta represents a l × 1 vector of projection
directions; SOD and ODD represent the source-to-object and object-to-detector distance
respectively; detWidth and detHeight represent the size of each detector pixel; and detCol
and detRows represent the number of detectors in each projection image.

vectors = zeros(l,12);
vectors(:,1:3) = [sin(theta) -cos(theta) 0] * SOD; % S
vectors(:,4:6) = [-sin(theta) cos(theta) 0] * ODD; % D
vectors(:,7:9) = [cos(theta) sin(theta) 0] * detWidth; % U
vectors(:,10:12) = repmat([0 0 detHeight], [l 1]); % V
proj_geom = astra_create_proj_geom(’cone_vec’, detCols, detRows, vectors);

4.1. Rotary computed laminography

In conventional cone-beam CT, the object is imaged in a circular trajectory. However, for large
flat objects, such as circuit boards and paintings, this is not possible as they might not physically
fit longitudinally between the source and detector, or because the total X-ray attenuation in that
direction might be too high. In those cases rotary computed laminography can offer a solution
by tilting the object and rotation stage such that the rotation axis is no longer perpendicular to
the plane defined by the point source and the central row of the detector (Fig. 3) [9]. This is
equivalent to a setup with a fixed object, where the source and detector follow a circular trajectory
parallel to the z = 0 plane. The radius of these circles depends on the angle α by which the
object is tilted, and on the object-to-source or object-to-detector distance. The choice of α also
represents a trade-off between a small field of view (FOV) (small α) and long intersections of the
X-ray beam with the object and thus possibly noisy projection statistics (large α). For α = 90◦,
this setup is equivalent to a conventional cone-beam setup.

Representing this type of projection geometry in the ASTRA Toolbox is relatively straightfor-
ward. Define ∆t as the size of each detector pixel, ∆s as the distance from the source to the centre
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Fig. 3. In rotary computed laminography, the object is tilted such that its axis of rotation is
not perpendicular to the plane defined by the X-ray source and the central row of the detector
plane. This is equivalent to a setup with a fixed object where the source and detector follow
a circular trajectory parallel to the z = 0 plane. (a) Side-view. Note how the rotation stage
must have an opening for the X-ray beam to pass through. (b) Three-dimensional sketch of
the projection geometry.

of the coordinate system, and ∆d as the distance from the centre of the detector array to the
centre of the coordinate system. Let i ∈ {1, . . . , l} denote the projection index and let θi denote
the viewing perspective corresponding to each projection. The full projection geometry is then:

Si = (∆s sin α sin θi , −∆s sin α cos θi , −∆s cos α) ,
Di = (−∆d sin α sin θi ,∆d sin α cos θi , −∆d cos α) ,
Ui = (∆t cos θi ,∆t sin θi , 0) ,
Vi = (∆t cos α sin θi , −∆t cos α cos θi ,∆t sin α) .

(a) CAD model (b) projection image (c) middle slice (d) top slice

Fig. 4. Simulation study of a laminographic reconstruction of a large flat object. The
projection data (b) was simulated using the NVIDIA Optix raytracing toolbox.

In Fig. 4, an example is shown of a laminographic reconstruction of a large, yet flat, object.
The CAD model depicted in Fig. 4(a) represents a 1000 × 1000mm circuit board with an array
of holes with protruding edges drilled into it. In total, 270 800 × 800 projections (Fig. 4(b)) were



simulated of this CAD model using the NVIDIA Optix raytracing framework. The laminographic
tilt was set to α = 50◦, the source-to-object distance to ∆s = 750mm, and a object-to-detector
distance to ∆s = 1500mm. A realistic level of Poisson noise was applied to the projection images.
A 300 iteration CGLS reconstruction was subsequently performed using the ASTRA Toolbox,
of which two slices are shown in Figs. 4(c) and 4(d). It is clear that only a small portion of the
object falls into the field of view.

4.2. Tomosynthesis
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(a) tomosynthesis geometetry (b) projection image (c) reconstructed slice

Fig. 5. In tomosynthesis, a stationary detector is placed underneath the object. The X-ray
source moves on a circular trajectory above the object, creating a set of projections from a
limited angle.

Tomosynthesis is an imaging technique mainly used in medical radiography when only a few
limited-angle projection images can be taken and when the minimization on X-ray dose is of
crucial importance. Examples include breast cancer screening, where tomosynthesis has a higher
accuracy compared to conventional mammography [17]; and portable, in-bed, radiography for
patients in intensive care units that can not be positioned in a CT or MRI scanner. Tomosynthesis
can also be applied for non-medical purposes, such as baggage screening in airports [18].

In tomosynthesis, projections are acquired with an X-ray source which moves on a linear or
circular trajectory above the object, and a stationary flat panel detector. An example is illustrated
in Fig. 5(a). In this geometry, only a limited angle can be covered by the acquisitions resulting in
a depth resolution that is lower than the in-plane resolution. Therefore, the reconstructed volume
is typically formed by anisotropic voxels, with a voxel size which is several times higher in the
in z-direction compared to the x- and y-direction.

Let i ∈ {1, . . . , l} denote the projection index and let θi denote the acquisition angle corre-
sponding to each projection. The detector plane is in a fixed position, centred underneath the
object centre at distance ∆d. The full projection geometry is then defined by:

Si = (∆s sin θi , 0,∆s cos θi )
Di = (0, 0, −∆d)
Ui = (1, 0, 0)
Vi = (0, 1, 0)

Consider the example shown in Fig. 5(b). A total of 45 tomosynthesis projection images were



acquired of a human hand. The projection angles θi were equally distributed over an angular range
of [−20◦ , 20◦]. The object centre was placed at a distance of ∆d = 65mm above the detector
panel and the object-to-detector distance was ∆s = 1039mm. The detector counted 2208 × 2668
pixels of size 0.160µm. Images were acquired at 48kV and 0.32mAs. These projection images
were reconstructed (Fig. 5(c)) using 100 SIRT iterations on a volume containing 552 × 667 × 30
anisotropic voxels of size (0.640, 0.640, 4.0)mm.

4.3. Conveyor belt tomography
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Fig. 6. Conveyor belt geometry of an object moving on a conveyor belt with a fixed source
and flat-panel detector.

In industrial applications, accurate quality control is often crucial in order to maximize profit and
customer satisfaction. Non-destructive testing using computed tomography can be a valuable
tool to achieve that [19]. In manufacturing, CT can be used to inspect the quality of welding
seams [20], 3D printed objects [21], printed circuit boards, etc. In the food processing industry,
using CT, foodstuffs that do not meet certain requirements (e.g., apples with early rotting on the
inside) can be discarded before shipping [3], and the cutting of meat (e.g., pig carcasses) can be
optimized when it is known where the meat, fat and bones are located [2].

For fast inspection of objects in a mass production setting (a production line), the use of
a conventional CT is not convenient. Placing every object separately in a CT scanner is both
expensive and very time consuming. In order not to interfere with the efficiency of the production
line, inline tomography can be used. Here, an object moves on a conveyor belt where a fixed
X-ray source is positioned on one side, and a fixed flat-panel detector is placed opposite to it.
While the object translates on the conveyor belt with a speed v, it passes through the field of view
of the source and detector, and multiple cone beam projection images can be recorded. To allow
projections from the full angular range, also consider a rotation of the object around its central
axis with rotation speed ω, perpendicular to the conveyor belt (Fig. 6). In the fixed coordinate
system < x , y, z >, this geometry is defined by:

S = (0, −∆s, 0) , D = (0,∆d , 0) , U = (∆u, 0, 0) , V = (0, 0,∆u) .

Instead of translating and rotating the object while keeping the source/detector system fixed, the
same setup can also be described from the point of view of a fixed object. In this case the source
and detector translate and rotate around the object. The origin of the fixed system is located at
the centre on the crossing of the path of the object and the line that connects the source and the
centre of the detector. For every time point i, i.e. every position of the object on the conveyor
belt, let ti denote the time passed since the first projection, and define Ri as the rotation matrix

Ri =

cos(ωti ) − sin(ωti ) 0
sin(ωti ) cos(ωti ) 0

0 0 1

 .



The virtual projection geometry in function of the fixed object coordinate system < x′ , y′ , z′ >
can then be expressed as follows:

S′
i = RiS − (A0 + vti )RiU ,

D′
i = Ri D − (A0 + vti )RiU ,

U′
i = RiU ,

V′
i = RiV ,

where A0 is the distance between the origin of the < x , y, z > and the < x′ , y′ , z′ > coordinate
systems at the first projection.

(a) projection image (b) reconstruction withω = 0◦/ms (c) reconstruction with
ω = −0.36◦/ms

Fig. 7. Reconstruction of a toy in an inline scanning geometry.

In Fig. 7, an example is shown of an inline reconstruction of a toy. The inline projection data
is derived from 493 projections of a conventional circular CT scan (Fig. 7(a)). After conversion,
100 524 × 3000 projections were obtained at a 10ms interval, with source-to-object distance
∆s = 121mm, object-to-detector distance ∆d = 40mm, detector pixel size ∆u = 35.36µm, a
conveyor belt velocity of v = 100µm/ms, an object rotation speed of ω = −0.36◦/ms, and A0 =

-50mm. Fig. 7(b) shows a reconstruction of the central slice without the rotation of the object on
the conveyor belt (i.e. ω = 0◦/ms) and Fig. 7(c) shows the same reconstruction but with rotation
ω = −0.36◦/ms. It is clear that the extra rotation is required to obtain an accurate reconstruction.

4.4. Adaptive zooming
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Fig. 8. For elongated objects, a fixed source-to-detector distance leads to suboptimal use of
the detector array in some viewing directions.



In a cone beam geometry, the source-to-detector distance is sometimes referred to by the zooming
factor, since the closer the source is to the object, the larger it appears on the detector. Ideally, it
is chosen such that a projection of the object just fills the detector array. That way, the projection
image has the highest achievable resolution without inducing object truncation and region-of-
interest artifacts. Consider, however, an elongated object, such as in Fig. 8. In conventional setups,
the source-to-object distance should, due to physical constraints, be chosen with respect to the
orientation in which the longest axis of the object lines up with the source-to-detector line. This
guarantees the best resolution in that direction (Fig. 8(a)), but leads to suboptimal detector usage
in other projections (Fig. 8(b)).

With an adaptive zooming approach, the idea is to move the position of the object closer to or
farther away from the source as the scan is being taken. The most optimal way of doing so is
by precomputing the trajectory from the convex hull of the scanned object [10]. This approach
allows to acquisition of more information about the object, thus increasing the reconstruction
quality.

To mimic a tomographic system with variable source and detector position, an experiment
was conducted on a desktop micro-CT system SkyScan-1172 (Bruker-MicroCT, Belgium). A
piece of a pencil with a diameter of 7mm and a length of 15mm was used as an elongated object.
Seven full-angle datasets were obtained, each containing 600 projections of 880 × 666, with the
source-to-object distances ranging from 80.77 to 117.01mm. The source-to-detector distance
was fixed at 216.392mm.

(a) conventional geometry (b) adaptive zooming (c) adaptive trajectory

Fig. 9. Reconstructions of an elongated object (a piece of pencil) with a conventional and an
adaptive zooming projection geometry. [10]

In Fig. 9(a), a 700 iteration SIRT reconstruction is shown from the largest source-to-object
distance. Based on this reconstruction, a convex hull of the object was obtained. For each
projection angle the closest possible source position was calculated according to the technique
described in [10], and a projection was chosen from the dataset obtained from the smallest
distance bigger than or equal to the distance from the calculated source position to the centre of
rotation. The resulting trajectories are presented in Fig. 9(c), where is can be seen that the zooming
factor is increased for the angles in which the object has a narrow shadow. The corresponding
reconstruction is shown in Fig. 9(b), where the adaptive zooming approach results in a slightly
improved contrast.

4.5. Automatic projection alignment

Another advantage of considering the projection geometry in its vector form is its inherent
flexibility when it comes to correcting for projection misalignment. Such misalignments may
come in many forms. For example, the centre of rotation might not project exactly to the centre of
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Fig. 10. (a) A shifted and tilted detector array, seen from the point of view of the X-ray
source. (b) Schematic overview of an iterative procedure to automatically estimate detector
shift and tilt.

the detector array and the detector plane may not be exactly perpendicular to the line connecting
the source and the centre of rotation. Moreover, the rotation stage might have small inaccuracies,
the focal spot size might not be constant, and the scanned object may move during the scan. All
of these misalignments can be modelled simply by altering the vectors of the projection geometry.
However, to do so, one first needs to know exactly which misalignments have occurred during
the scan, and by how much. Recently, it has been shown that it is possible to automatically find
these misalignment parameters by optimizing the vectors in the projection geometry such that
the projection difference between the measured data and simulated data of the reconstructed
images is minimal [22].

Here, we consider a simplified version of that work, focused on only a subset of misalignment
factors: the detector offset δU and δV , and detector tilt φ (Fig. 10(a)). These misalignments
generally result in double edges, such as in Fig. 11(b). When the offset and tilt factors are
known, one can first translate and rotate the projection images, and subsequently continue with
a reconstruction with a conventional geometry. However, instead of changing the data to fit
the geometry, which requires interpolation in the projection domain, it is better to change the
geometry to fit the data. Let Ri ,φ denote the rotation matrix around the vector Di − Si with angle
φ. The corrected projection geometry can then be expressed by:

S′i = Si ,
D′i = Di + δUUi + δVVi ,

U′i = Ri ,φUi ,

V ′i = Ri ,φVi .

Sometimes, the offset and tilt factors are measured by the scanning system and can be found
in a log file corresponding to the data. Yet in other cases, this information is lacking or is
inaccurate. Manual correction is tedious and should thus be avoided. In Fig. 10(b), an algorithm
is schematically presented that automatically estimates the unknown alignment parameters. Based
on the measured projections, a first reconstruction is computed with a conventional projection
geometry (i.e. with φ = δU = δV = 0). From this reconstructed volume, a single forward
projection image is created, and a registration procedure is used to find the translation and
rotation parameters that optimally match the measured to the simulated projection data. Because
the original reconstruction was created using a misaligned projection geometry, it is likely to
contain some misalignment artifacts, which might also have influenced the registration procedure.



The whole process is therefore repeated with the updated, and more accurate, projection geometry
until the alignment parameters converge. This typically happens after only a few iterations.

(a) projection image (b) before correction (c) after correction
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Fig. 11. Automatic detector offset and tilt estimation of a dataset containing a box of candy
with a highly attenuating resolution phantom.

To demonstrate this method, consider Fig. 11. A plastic box containing candy and a highly
attenuating QRM resolution phantom was scanned in the TomoLab microCT at the SYRMEP
beamline at Elettra, Trieste, Italy. In total 1444 projections of 890× 1336 were acquired, of which
only 288 are considered here. The source-to-object distance was 6000mm, the object-to-detector
distance was 1000mm, and the detector size was 0.375 µm. A single projection image is shown in
Fig. 11(a). The uncorrected reconstruction shown in Fig. 11(b) clearly shows severe misalignment
artifacts. After 4 iterations of the automatic alignment method presented above, these artifacts
have disappeared (Fig. 11(c)). Figs. 11(e) and 11(f) show the corresponding projection difference.

5. Algorithm prototyping

Suppose a user has a custom MATLAB library with an implementation of some special advanced
reconstruction algorithm. One example might be some form of total variation minimization
(TVmin), for example using Chambolle-Pock [23], which currently does not have a native
implementation inside the ASTRA framework. Custom libraries are typically built for general
use, and their forward- and backprojection operations are likely performed as sparse matrix
vector multiplications (SpMV). In order to use these libraries, the user is thus responsible for
the construction of the projection matrix. While the ASTRA Toolbox provides the functionality
to turn any 2D geometrical setup into a sparse projection matrix (see Table 3), this can only be
advised for very small problems. For realistic data sizes, the projection matrix is simply too large
to fit into the main memory space. Moreover, as the performance in tomographic reconstructions
is latency-bound rather than computation-bound [24], it is best to always recompute the projection
matrix on the fly, i.e. during each forward- or backprojection. The ASTRA Toolbox has very
efficient implementations for these projection operators, exploiting the power of the GPU
hardware. Ideally therefore, the projection operations of the ASTRA Toolbox are used inside the
advanced logic of the custom reconstruction library.



Table 3. MATLAB code demonstrating how to extract a projection matrix for a certain
projection and volume geometry from the ASTRA toolbox, and how to use this matrix inside
an external function performing a SIRT reconstruction. Due to memory constraints, this
approach is feasable only for small problems.

function v = SIRT(W, p, v0, iters)
R = 1 ./ W*ones(size(v0));
C = 1 ./ W’*ones(size(p));
v = v0;
for k = 1:iters

v = v + C.*(W’*(R.*(p-W*v)));
end

end

proj_id = astra_create_projector(’linear’, proj_geom, vol_geom);
matrix_id = astra_mex_projector(’matrix’, proj_id);
W = astra_mex_matrix(’get’, matrix_id);

v = SIRT(W, p, v0, iters);

Table 4. MATLAB code demonstrating a naive approach to include ASTRA projector
operators in a SIRT function.

function v = SIRT_naive(proj_geom, vol_geom, p, v0,iters)
[~, tmp] = astra_fp(ones(size(v0)), proj_geom, vol_geom);
R = 1 ./ tmp;
[~, tmp] = astra_bp(ones(size(p)), proj_geom, vol_geom);
C = 1 ./ tmp;
v = v0;
for k = 1:iters

[~, fp] = astra_fp(v, proj_geom, vol_geom);
[~, upd] = astra_bp(R.*(p-fp), proj_geom, vol_geom);
v = v + C .* upd;

end
end

v = SIRT_naive(vol_geom, proj_geom, p, v0, iters);

Table 5. MATLAB code demonstrating how the opTomo object is configured and simply
passed on to the same SIRT-function as in Table 3.

W = opTomo(’cuda’, proj_geom, vol_geom);
v = SIRT(W, p, v0, iters);

The naive approach to this would be to open up the external library and replace all the SpMV
occurrences with function calls to the appropriate elements of the ASTRA Toolbox (Table 4).
While possible, this is not advisable as the user might not be familiar with the internal code of
the custom library and maintaining its code can be quite difficult.

A better approach is to use a recent MATLAB library called the Spot-Toolbox [25]. This
allows one to overwrite operations like matrix-multiplications with custom logic. The ASTRA
Toolbox for MATLAB comes combined with such a spot-operator called opTomo [26]. This
operator can be configured with the projection and volume geometry of the setup, after which
MATLAB will regard it in many ways as a normal matrix. It can thus be passed to the external
library as a normal function parameter. However, each time MATLAB detects a multiplication of
this matrix and a vector or a multiplication of the transposed matrix and a vector, respectively
the ASTRA forward projection or backprojection code is called (Table 5).

As an example, consider the Simultaneous Iterative Reconstruction Technique (SIRT). This



algebraic reconstruction method regards the reconstruction problem as the solving of the system

Wv = p, (3)

in which p is a vector containing the projection data, v is a vector representing the unknown
reconstructed volume, and W is the projection matrix mapping the volume geometry onto the
projection geometry. As Eq. (1) cannot be solved directly, SIRT uses the following iteration
scheme:

v(k+1) = v(k ) + CWT R( p −Wv(k )), (4)

where C is a diagonal matrix containing the inverse column sums of W (i.e. c j j = 1/
∑

i wi j ),
and R is a diagonal matrix containing the inverse row sums of W (i.e. rii = 1/

∑
j wi j ).

In Fig. 3, a MATLAB function is shown that performs a SIRT reconstruction given a projection
matrix (W), projection data ( p), an initial estimation (v(0)), and a number of iterations. In practice,
this script would not be useful as SIRT also has a native implementation inside the ASTRA
Toolbox, which is much faster. However, this does provide the flexibility to quickly prototype
new ideas. To use the SIRT function, a projection matrix is extracted from the ASTRA Toolbox
and passed to the function as a parameter. This method requires a lot a memory, and does not
exploit the efficient implementation of the ASTRA Toolbox. With a naive linking of the ASTRA
Toolbox and the script in Table 4, the projection operations run on the GPU using the ASTRA
Toolbox implementation, but the code turns from 6 elegant lines to 10 lines that are a lot less
readable. Also note that the function parameter list is slightly different, which might break other
pieces of code. With the usage of the Spot tools, in Table 5, the best of both worlds are combined.

matrix naive opTomo ASTRA-cpu ASTRA-gpu
0

0.5

1

1.5

2
data I/O
FP/BP
other

(a) SIRT

matrix naive opTomo ASTRA-cpu ASTRA-gpu
0

0.5

1

1.5

2
data I/O
FP/BP
other

(b) CGLS

Fig. 12. Timings for 100 iterations of various implementations of the (a) SIRT and (b) CGLS
reconstruction algorithm on a 100 × 100 volume. The first three bars correspond to Table
3, 4, and 5, respectively. The final two bars refer to native ASTRA implementations of the
SIRT and CGLS algorithm.

In terms of performance, Fig. 12(a) shows the timings of these different SIRT implementations
for 100 iterations on a 128 × 128 volume with 180 projections, as performed on a system
containing an Intel Core i7-6700HQ CPU running at 2.60GHz, an NVIDIA GeForce GTX 960M
GPU, and 32GB of system memory. Of the three implementations presented in this section,
the original script (Fig. 3) is the slowest as it does not make use of the efficiently implemented
ASTRA Toolbox projection operations. Both the naive (Table 4) and the opTomo (Table 5) code
are substantially faster, with the opTomo code being only very slightly the weaker of the two.
Also included in Fig. 12 are two native ASTRA implementations of SIRT. The one that fully runs
on the CPU, turns out to be substantially slower than any of these MATLAB implementations.
This is due to MATLAB also using GPU computations for performing SpMV’s. The ASTRA
GPU based implementation is slightly more than a factor two faster than the fastest MATLAB



code. This is mainly due to the constant copying back and forth of the data that is going on in
these MATLAB versions. In Fig. 12(b), the same experiment is repeated with a 100 iteration
CGLS reconstruction algorithm.
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Fig. 13. Reconstruction times of 100 SIRT iterations as a function of the volume size (both
2D and 3D), on two distinct systems.

In Fig. 13, reconstruction times of 100 SIRT iterations are plotted as a function of the volume
size (both 2D and 3D). In each, a total of 180 parallel-beam projection angles were considered.
This experiment was performed on two different systems: System A, as described in the previous
paragraph; and System B, a 12-core Intel Xeon E5-2630 computation server running at 2.30GHz
and fitted with 64GB of memory and a powerful Tesla K20 GPU card.

6. Discussion and conclusions

In this article, the ASTRA Toolbox has been introduced and several use-cases were presented
showing off its main features. These include its free, open source nature [14], its ability to
describe virtually any 2D and 3D projection setup using vector geometries, and its flexibility
regarding the easiness with which it can be included in other frameworks. Combined, they make
the ASTRA Toolbox very suitable for fast prototyping of new applications, new geometry setups,
and new reconstruction methods. Furthermore, due to its efficiently implemented building blocks,
these prototypes can straightforwardly be upscaled to realistic data sizes and usages.

However, it should be noted that the ASTRA Toolbox is by no means the first and only tool to
consider when dealing with tomographic reconstruction. Many users might prefer commercial
software packages as they provide an easy-to-use graphical user interface, which the ASTRA
Toolbox does not. Also, because of its flexibility regarding application fields, scanning devices
and protocols, the ASTRA Toolbox can not provide out-of-the box support for various file



formats. In order to use the toolbox, the user thus requires knowledge of these file formats, and
the skill to parse and process them in the MATLAB or Python layer. Moreover, the algorithms
bundled in the ASTRA Toolbox are limited to reconstruction methods, and do not include typical
preprocessing (e.g., flat field correction, phase retrieval) and postprocessing (e.g., segmentation,
morphological operations, mesh generation) algorithms. For practical use, the toolbox must thus
be linked with other tools such as TomoPy [27]. These disadvantages limit the target audience of
the ASTRA Toolbox mainly to researchers and users with a expertise in computer science.

While this may seem a huge issue, these research communities are in fact relatively large, and
more of them are appearing in the literature. The list of applications that can benefit from the
ASTRA Toolbox is extensive, and includes (i) material sciences, through electron tomography [4],
diffraction contrast tomography with synchrotron radiation [28], microCT systems, laminography
systems [9], etc.; (ii) biomedical sciences, through microCT [1], tomosynthesis setups, etc.; (iii)
industrial purposes, through conveyor belt systems [3], microCT systems, etc.; and (iv) security
purposes [18].

In summary, the ASTRA toolbox is an excellent platform to bridge the large gap between
application scientists and researchers in the field of numerical mathematics and linear solvers [29].
That way, new and advanced numerical solvers can be tested on realistic data, benefiting both
communities.
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