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Ringing Artefact Removal From Sparse View
Tomosynthesis using Deep Neural Networks
Shabab Bazrafkan, Vincent Van Nieuwenhove, Joris Soons, Jan De Beenhouwer, and Jan Sijbers,

Abstract—Tomosynthesis imaging is a special type of X-ray-
based image acquisition wherein several projections are acquired
from a limited angular range around the object or in a line above
it. Subsequently, from these projection images, cross-section
images parallel to the detector are reconstructed. However, if
only a small number of projection images is acquired on a limited
angular range, the reconstruction images suffer from ringing
artefacts. This issue has not been addressed in the literature
due to the lack of any model-based approach explaining this
phenomenon. In the clinical setting, these artefacts can hinder a
correct diagnosis. In this work, a deep learning-based ringing
artifact reduction algorithm is proposed. The deep learning
network was trained on 45786 medical images, resulting in a
substantial reduction of ringing artefacts in the tomosynthesis
reconstructions. Based on the numerical and visual evaluations,
a conclusion is made on the positive effect of a deblurring Deep
Neural Network in getting higher quality outputs.

Index Terms—Deep Neural Networks, Deep Learning, To-
mosynthesis, Ring Artefact.

I. INTRODUCTION

Tomosynthesis involves the reconstruction of a 3D object
imaged with a relatively small number of views acquired
over a limited angular range, resulting in typical image ar-
tifacts. Indeed, reconstructions with (filtered) backprojection
((F)BP) algorithms generate out-of-plane artifacts that appear
as blurred versions of the in-plane objects. Under certain
conditions, this blurring changes into ringing, in particular
when the perpendicular distance from a ringing source to the
imaging plane increases above a certain threshold. Indeed,
ringing occurs by a similar mechanism as blurring but is
caused by the small number of projections in a sweep. It
is caused by a high-contrast structure (e.g. rib structure) that
is outside the plane in focus and whose contribution to that
imaging plane is not sufficiently blurred. As a result, each
interval between two successive projections in the imaging
plane is wider than the tomographic blurring, so that separate
instances of the ringing source appear in the imaging plane.
In order to avoid the FPB reconstruction disadvantages, other
numerical methods known as iterative reconstruction algo-
rithms such as SIRT (Simultaneous Iterative Reconstruction
Technique) and CGLS with total variation minimization are
used to generate the tomosynthesis image. However the main
problem of ringing artefacts persists even with these recon-
struction methods. Fig 1 illustrates this issue wherein using
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a low number of projections induces a disturbing ringing
artefact in the final reconstruction which is not describable
by analytical models. Hence, there are no successful model-
based algorithms that are able to suppress these type of
artefacts. In the current study, a data-driven machine learning
method known as Deep Learning is utilized to restore the
tomosynthesis image. To the best of our knowledge, there are
no other data-driven or model-based methods addressing this
issue.
Deep learning approaches have been successfully applied to
the medical image processing. One of the widely investigated
applications of the DNNs in medical image processing is
known as image restoration. In image restoration, the input
and the output of the network are from the same class of data.
They include the same content and represent the same object.
Noise removal is an example of image restoration. Other work
focussed on the removal of reconstruction artefacts in limited
angle or few-view CT with Deep learning techniques as in [6],
[7]. In the current study, a similar approach is applied to the
tomosynthesis reconstructions in order to remove the ringing
artefact caused by a limited number of projections.

In the next section, the Neural Network model used in the
current study is explained followed by a discussion on the
database and training procedure in section III. In section IV,
the numerical and visual results are presented and conclusions
and future works is discussed in section V.

II. DEEP NEURAL NETWORKS

A. Network Design
Convolutional Deep Neural Networks consist of consecutive

processing units also known as layers which can be fully
connected, convolution, deconvolution, pooling, or un-pooling
operations [1]. Based on the application, the network designs
could take advantage of different regularization units such as
batch normalization [2], weight normalization and/or drop-
out [3] techniques. One of the widely used network designs
in image processing is known as Fully Convolutional Deep
Neural Networks (FCDNN). These are DNNs wherein no
Fully Connected operation is applied throughout the network
design. All the layers are convolution, deconvolution, pooling,
and un-pooling units. FCDNNs are used in applications in
which the input and the output of the network are images.
Restoration problems are good examples of the uses cases of
FCDNNs. In our work, two FCDNNs known as Mixed Scale
Dense (MSD) Deep Neural Network [4] and a deblurring DNN
[5] are utilized to remove ringing artefacts in tomosynthesis
reconstruction. These network architectures are explained in
the following sections.
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Fig. 1. a) A high number of projections returns a high quality reconstruction. b) Sparse view acquisition induces ring artefact in the final reconstruction.

1) Mixed Scale Dense (MSD) DNN: In order to explain the
MSD network, one needs to understand the dilation property
of the convolution operation. Dilation allows the convolution
kernel to cover a larger area without using a higher number
of parameters in larger kernels and/or applying a pooling
operation. This is computationally more efficient because
using bigger non-dilated kernels leads to a higher number of
parameters which is susceptible to over-fitting, and using the
pooling operation causes blurring in the final outcome. The
dilation idea was first introduced in [4] and is illustrated in
Fig. 4a. The operation is simply implemented by dilating the
convolution kernel and filling the gaps with zero value.
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Fig. 2. 3× 3 kernels. Left: 1 dilate. Right: 2 dilate.

The Mixed Scale Dense DNN as introduced in [4], is taking
advantage of the dilation operation followed by concatenating
the output of each layer with its input in the channel dimen-
sion. The network architecture is shown in Fig. 4a. The kernel
dilation value is chosen by the layer number. This network
has been already used to remove low dose CT artefacts from
reconstructed images in [6], [7]. In the current study, this
architecture is utilized to remove the ringing artefacts from

Horizontal kernels Vertical kernels Large square kernels

Input

Output

Fig. 3. Deconvolution network presented in [5].

low-dose tomosynthesis reconstructions.

2) Deblurring Convolutional Neural Network: Convolu-
tional Deep Neural Networks tend to introduce a certain
amount of blurring into the output especially when used with
the Mean Squared Error as the loss function. However, De-
blurring or Deconvolutional Convolutional Neural Networks
have been proposed that are designed to reduce the blurring
artefact in their input image. These networks are widely
used to increase the quality of the image in super-resolution
applications. In this article, a Deblurring network is used after
the MSD network to improve the sharpness of the output.
In [5], the authors proposed a network architecture designed
for image deblurring, which is shown in Fig. 3. The first
two layers consist of horizontal and vertical kernels and the
last layer is a large square kernel. This design resembles the
Singular Value Decomposition technique used in conventional
deblurring methods, with the difference that here these filters
are learned during training.
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Fig. 4. a) Mixed Scale Dense network. b) Mixed Scale Dense network followed by deblurring network.

B. Network Architectures

In the current study, two main architectures have been
evaluated, and compared for the ring removal application.

1) MSD: The network is shown in Fig 4a. This is an MSD
network with 25 layers and dilate rage p=5.

2) MSD+Deconv: The network is shown in Fig. 4b. This
is an MSD network with 25 layers and dilate rage
p=5 followed by a deblurring network shown in Fig. 3.
The deblurring network uses the horizontal kernel size
(1,129), vertical kernel size (21,1), and square kernel
size (17,17). The number of channels in the first and
second layers is 128 and 32, respectively.

III. DATABASE AND TRAINING

In order to simulate the ringing artefacts and the cor-
responding ground truth, two different scanning geometries
were defined, similar to Fig. 1. The first geometry takes 10
projections which eventually leads to reconstructions with the
ringing artefacts and the second geometry uses 100 projections
and the reconstruction is used as the ground truth. All simu-
lations are accomplished using the ASTRA toolbox [8]. The
reconstruction volumes were calculated with 25 iterations of
SIRT. Two separate databases are used for training and testing
purposes. Using different datasets is essential in evaluating the
generality of the solution [9]. The training set is divided into
Training and Evaluation subsets with the ratio 4 to 1, and the
network is blind to the test set during the training process.
Note that the networks are trained on the 2D samples in the
transverse plane and results are shown in coronal plane where
the ring artefact is visible.

A. Training Database

CPTAC-PDA: National Cancer Institutes Clinical Pro-
teomic Tumor Analysis Consortium Pancreatic Ductal Ade-
nocarcinoma (CPTAC-PDA)1 is a publicly available database
containing 45786 Pancreas images from CPTAC phase 3
patients. It consists of 45 radiology and 77 pathology sub-
jects. This database contains several modalities including CT,

1https://wiki.cancerimagingarchive.net/display/Public/CPTAC-PD

Computed Radiography (CR) and MRI samples. The images
are from different sizes but in the current work, they were
resized to 30× 512 (transverse plane).

B. Test Database
Visible Human Project CT Datasets: Visible Human

Project CT Datasets2 contains 2989 images from 10 CT
imaging cases. This dataset is publicly available. The images
are 512× 512 while in the current study they were all resized
to 30× 512 (transverse plane).

C. Training
The Mean Squared Error between the output of the network

and the ground truth has been used as the loss function at
the training stage. An ADAM optimizer has been utilized to
update the parameters with learning rate, β1, β2 and ε equal
to 0.0001, 0.9, 0.999, and 10−8 respectively. The MXNET
1.3.03 [10] framework has been used to train the network on
top of python 2.7. The training and validation losses are shown
in Fig 5. As it is shown in this figure, the deblurring network
introduces a large gap between the loss functions which means
that the MSD+Deconv network converges to a better solution
at the training stage. In the next section, both networks are
evaluated on the test database.

IV. RESULTS

Table I shows the Peak Signal to Noise Ratio (PSNR) and
Structural SIMilarity index (SSIM) for both networks tested
on 10 subsets of the test database. The column labeled ”Input”
corresponds to the comparisons between input and the ground
truth. The MSD network returns outputs with up to 5dB
improvement compared to the input signal and, the numerical
results show 2 to 3 dB improvement for the MSD+Deconv
network compared to MSD. This amount of improvement
in the ranges higher than 40 dB implies that the deblurring
network has a significant effect on the output quality.
Fig. 6 illustrates visual results from the Shoulder M subset and
clearly shows that the output of the MSD+Deconv network is
sharper and more consistent with the ground truth image.

2https://mri.radiology.uiowa.edu/visible human datasets.html
3https://mxnet.apache.org/
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Input MSD MSD+Deconv

PSNR SSIM PSNR SSIM PSNR SSIM

µ σ µ σ µ σ µ σ µ σ µ σ

Hip M 38.88 0.88 0.944 7.1e-5 44.05 0.97 0.980 2.5e-3 47.08 0.95 0.989 1.5e-3
Pelvis M 37.73 0.97 0.930 9.5e-3 41.71 1.13 0.969 6.2e-3 44.25 1.0 0.982 2.5e-3

Shoulder M 36.60 1.30 0.921 1.0e-2 40.25 1.43 0.960 7.1e-3 43.65 1.88 0.980 7.1e-3
Head M 43.98 1.60 0.969 7.0e-3 48.18 1.36 0.980 3.2e-3 50.78 1.17 0.991 8.8e-4

Hip F 40.97 2.57 0.957 1.4e-2 45.51 2.16 0.981 5.7e-3 48.42 1.82 0.989 2.9e-3
Pelvis F 38.31 0.20 0.935 4.4e-3 42.28 0.59 0.969 2.8e-3 44.99 0.51 0.983 1.3e-3

Shoulder F 36.98 1.42 0.929 9.9e-3 40.89 1.67 0.964 7.3e-3 43.70 2.16 0.979 6.5e-3
Head F 41.80 1.90 0.960 9.4e-3 46.44 1.65 0.979 3.9e-3 49.41 1.64 0.991 1.4e-3

Ankle F 42.60 2.30 0.964 8.1e-3 46.63 1.70 0.980 4.6e-3 49.11 1.66 0.989 1.7e-3
Knee F 42.38 0.74 0.967 4.3e-3 46.94 0.50 0.986 1.5e-3 49.42 0.42 0.990 1.1e-3

TABLE I
TEST RESULTS FOR BOTH MSD AND MSD+DECONV MODELS ON SUBSETS OF VISIBLE HUMAN PROJECT CT DATASETS
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Fig. 5. Training and validation loss for both MSD and MSD+Deconv models.

Input
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Fig. 6. Top left: The input to each network. Top right: Ground truth. Bottom
left : The output of MSD network. Bottom right: the output of MSD+Deconv
network. The visual results shows sharper and higher quality results for
MSD+Deconv network.

V. CONCLUSION AND FUTURE WORK

In this article, a deep learning approach has been introduced
to remove the ring artefacts from sparse view tomosynthesis
reconstruction images. To the best of our knowledge, no other
method presented in the literature addresses this problem
and the current study shows the effectiveness of Deblurring
networks in obtaining sharper and higher quality results using
both numerical and visual assessments. Fully convolutional
DNNs applied to restoration problems do not induce severe

localization errors due to the convolution nature. In our initial
visual evaluations (an example is depicted in Fig. 6 ), the
network does not induce localization inconsistencies but our
future works include educated evaluations by radiologists to
ensure that the network does not alter the diagnosis procedure.
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