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A B S T R A C T   

Quantitative Magnetic Resonance (MR) imaging provides reproducible measurements of biophysical parameters, 
and has become an essential tool in clinical MR studies. Unfortunately, 3D isotropic high resolution (HR) 
parameter mapping is hardly feasible in clinical practice due to prohibitively long acquisition times. Moreover, 
accurate and precise estimation of quantitative parameters is complicated by inevitable subject motion, the risk 
of which increases with scanning time. In this paper, we present a model-based super-resolution reconstruction 
(SRR) method that jointly estimates HR quantitative parameter maps and inter-image motion parameters from a 
set of 2D multi-slice contrast-weighted images with a low through-plane resolution. The method uses a Bayesian 
approach, which allows to optimally exploit prior knowledge of the tissue and noise statistics. To demonstrate its 
potential, the proposed SRR method is evaluated for a T1 and T2 quantitative mapping protocol. Furthermore, 
the method’s performance in terms of precision, accuracy, and spatial resolution is evaluated using simulated as 
well as real brain imaging experiments. Results show that our proposed fully flexible, quantitative SRR frame-
work with integrated motion estimation outperforms state-of-the-art SRR methods for quantitative MRI.   

1. Introduction 

In recent decades, magnetic resonance imaging (MRI) has evolved 
from a qualitative imaging tool to a quantitative measurement method. 
Whereas qualitative MRI relies on the subjective interpretation of tissue 
contrast, quantitative MRI (qMRI) aims to measure reproducible and 
objective maps of biophysical parameters, which allows the comparison 
of measurements across subjects and sites, or over time (e.g., longitu-
dinal follow-up of patients). Indeed, biophysical parameters measured 
by qMRI, such as relaxation times and diffusion metrics, are increasingly 
used as biomarkers for neurological diseases (Seiler et al., 2021), in 
quantitative musculoskeletal imaging (de Mello et al., 2019), or in 
qMRI-guided radiotherapy (van Houdt et al., 2021). Unfortunately, 
despite its broad range of potential applications, qMRI is not widely used 
in clinical practice. This is mainly because qMRI requires a series of MR 
images with different contrast weightings to estimate the biophysical 
parameter maps of interest and suffers from long scan times to provide 

accurate and precise parameter maps at 3D isotropic high spatial reso-
lution. Methods have been proposed that enable reconstruction from 
highly under-sampled images and hence speed up image acquisition, 
such as model-based reconstruction (Maier et al., 2019), low-rank ap-
proaches (Zhang et al., 2015), or the imposition of sparsity constraints 
(Zhao et al., 2012). However, they generally come at the cost of either a 
lower precision or a lower spatial resolution of the reconstructed 
parameter maps. 

To break the trade-off between resolution, precision and acquisition 
time, super-resolution reconstruction (SRR) has been put forward 
(Greenspan et al., 2002; Van Reeth et al., 2012). In this approach, 
high-resolution (HR) 3D isotropic images are estimated from a set of 
multi-slice images with a high in-plane but low through-plane resolu-
tion, where the multi-slice images are acquired with either sub-voxels 
shifts in the through-plane direction (Greenspan et al., 2002), three 
orthogonal slice orientations (Rousseau et al., 2006; Gholipour et al., 
2010; Scherrer et al., 2012; Sui et al., 2021), slice orientations rotated 
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around a common frequency encoding axis (Shilling et al., 2009), or 
arbitrary slice orientations (Poot et al., 2010b). SRR has indeed been 
shown to provide a better trade-off between acquisition time, spatial 
resolution, and signal-to-noise ratio (SNR) than conventional direct HR 
acquisition (Plenge et al., 2012). Meanwhile, SRR has also been suc-
cessfully applied to different qMRI modalities, including diffusion MRI 
(Poot et al., 2013; Fogtmann et al., 2014; Van Steenkiste et al., 2016), 
relaxometry (Van Steenkiste et al., 2017; Bano et al., 2020; Lajous et al., 
2020) and arterial spin labeling (Bladt et al., 2020). In some of these 
approaches, HR images are individually reconstructed from a set of 
equally contrast-weighted LR images, prior to voxel-wise fitting a 
parametric qMRI signal model (e.g., a diffusion model or relaxation 
model) to these reconstructed HR images (Poot et al., 2013; Lajous et al., 
2020), whereas in other approaches the qMRI signal model is included in 
the reconstruction and HR parameter maps are estimated directly from 
the LR images, without first reconstructing the individual HR con-
trast-weighted images (Fogtmann et al., 2014; Van Steenkiste et al., 
2016, 2017; Bano et al., 2020). 

In addition to the challenge of 3D isotropic HR parameter mapping, 
the long qMRI scan times come with an increased risk of patient motion. 
If this motion is not properly accounted for, the spatial resolution of the 
obtained parameter maps will be negatively affected. Like conventional 
qMRI methods, SRR methods for qMRI usually correct for motion by 
performing image registration as a pre-processing step, prior to the 
estimation of the HR parameter maps (Van Steenkiste et al., 2016, 
2017), where the latter step is often preceded by an intermediate step of 
HR image reconstruction (Scherrer et al., 2012; Poot et al., 2013). A 
downside to this multi-step approach is the lack of a feedback mecha-
nism that connects the motion compensation routine with the final 
estimation of the HR parameter maps. As a result, registration errors 
may propagate into the parameter estimation step, introducing a bias 
(Nachmani et al., 2019). 

To avoid error propagation, image registration can be integrated in a 
joint motion/qMRI parameter estimation framework. This strategy has 
already been successfully applied to correct inter-scan motion in T1 
mapping (Ramos-Llordén et al., 2017) or to correct for motion in 
multi-shell diffusion MRI (Christiaens et al., 2021). At the same time, 
methods have been proposed that combine SRR with joint motion esti-
mation for anatomical (qualitative) MRI (Rousseau et al., 2006, 2010; 
Jiang et al., 2007; Gholipour et al., 2010; Fogtmann et al., 2012; Kainz 
et al., 2015; Ebner et al., 2020). However, until now, the development of 
a unified motion estimation/SRR approach for qMRI has received little 
attention (Fogtmann et al., 2014; Beirinckx et al., 2020). 

In the present work, we propose a multi-frame model-based SRR 
method for multi-parametric quantitative MRI with integrated inter- 
image motion estimation in a Bayesian Maximum a Posteriori (MAP) 
estimation framework. As a guiding application, we focus on MR 
relaxometry, but the method’s modular construction ensures an easy 
adaption to other qMRI modalities. The novelty of the method lies in its 
unique combination of properties that makes it stand out from existing 
SRR methods in qMRI. First, by combining super-resolution image 
reconstruction and quantitative parameter estimation in a single inte-
grated model-based approach, 3D HR biophysical parameter maps are 
estimated directly from a set of multi-slice differently contrast-weighted 
LR images, which distinguishes our method from two-step qMRI SRR 
approaches that reconstruct individual HR images from equally 
contrast-weighted LR images prior to voxel-wise fitting a qMRI signal 
model (e.g. a relaxation model or diffusion model) to these reconstructed 
images (Poot et al., 2013; Lajous et al., 2020). Second, the joint esti-
mation of the motion and the biophysical parameters of interest allows 
our method to outperform state-of-the-art qMRI SRR algorithms that 
either do not correct for motion (Bano et al., 2020), or work with 
decoupled motion estimation algorithms (Van Steenkiste et al., 2017). 
Third, unlike state-of-the-art SRR methods in qMRI that rely on 
orthogonal slice orientations and use the same set of contrast weightings 
for each slice orientation (e.g., Fogtmann et al., 2014), our method 

allows for arbitrary slice orientations and a different contrast weighting 
for each LR image, offering a much-increased imaging flexibility. 
Finally, its Bayesian estimation approach allows our method to opti-
mally exploit prior knowledge of tissue properties and noise statistics, as 
opposed to standard regularized least-squares methods (Poot et al., 
2010b; Van Steenkiste et al., 2017; Bano et al., 2020; Lajous et al., 
2020). 

To demonstrate its potential, the proposed unified quantitative SRR 
method is evaluated for T1 mapping and T2 mapping. Its performance in 
terms of accuracy, precision and mean squared error is extensively 
validated using synthetic whole brain simulations. Finally, the applica-
bility of the SRR method is demonstrated on in-vivo brain data and its 
performance on brain structure delineation (spatial resolution) is 
evaluated.2 

2. Theory 

This section introduces the forward model of the SRR problem 
considered in this work. It describes the relation between the LR images 
and the HR parameter maps to be reconstructed and accounts for un-
intended motion. Furthermore, the Bayesian Maximum a Posteriori 
(MAP) estimator is introduced that is used to estimate the HR maps 
jointly with the motion parameters, accounting for the MR data distri-
bution and using a total variation (TV) prior for the HR maps and a non- 
informative prior for the motion parameters. 

2.1. Forward model 

Let s = {sn}
N
n=1 be the set of N vectorized noiseless anisotropic LR 

multi-slice contrast-weighted magnitude images, where sn = {snl}
Ns
l=1 ∈

RNs×1 is sampled at the LR grid points yn = {ynl}
Ns
l=1 ∈ R3×Ns with Ns the 

number of voxels per LR image. Then, each sn can be modelled as: 

sn = |DBGnMθn rn|, (1)  

where ∣ ⋅ ∣ denotes the pointwise modulus operator and rn = {rnj}
Nr
j=1 ∈

RNr×1 represents the virtual, noise-free HR image assumed to be ac-
quired with the same contrast-weighting settings as sn and defined at the 
targeted isotropic HR grid points x = {xj}

Nr
j=1 ∈ R3×Nr , with Nr the 

number of voxels of the HR image. Furthermore, Mθn ∈ RNr×Nr , 
Gn ∈ RNr×Nr , B ∈ RNr×Nr , and D ∈ RNs×Nr are linear operators that 
describe motion, a known geometric transformation that maps the grid 
coordinates of the HR image rn to those of the LR image sn, spatially 
invariant blurring, and down-sampling, respectively. The motion oper-
ator Mθn is modeled as a parametric function of θn. Assuming rigid inter- 
image motion, the parameter vector θn ∈ R6×1 is given by 

θn =
[
txn, tyn, tzn,αn, βn, γn

]T
, (2)  

with txn, tyn, tzn the translation parameters and αn, βn, γn the Euler angles 
of three elementary rotation matrices that describe rotation around the 
x, y and z axis, respectively. The operator Gn models the SRR acquisition 
scheme. In the SRR acquisition scheme considered in this work, the LR 
images each have a different slice orientation, where the different ori-
entations are obtained by rotating around a fixed encoding axis. Detailed 
descriptions of the warping operator Mθn , which is analytically differ-
entiable w.r.t. θn, as well as the operators Gn, B, and D are included as 
part of the supplementary material. 

In qMRI, one is not so much interested in the voxel intensities of the 
HR images rn, but rather in the values of the underlying biophysical 

2 A preliminary study of our framework, implementing a maximum likeli-
hood instead of a Bayesian approach and covering a limited number of simu-
lation results, was published as a proceedings paper (Beirinckx et al., 2020). 
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tissue parameters in those voxels, such as the proton densities and T1 and 
T2 relaxation times. Let ϑ = {ϑq}

Q
q=1 ∈ RNr×Q be the biophysical 

parameter maps to be inferred, with ϑq = {ϑqj}
Nr
j=1 ∈ RNr×1 the qth tissue 

parameter map and ϑ•j ∈ RQ×1 all tissue parameters of the jth voxel of ϑq. 
Then, the jth voxel of the HR image rn, can be modelled as 

rnj = fn(ϑ•j) (3)  

with fn(ϑ•j) : RQ×1 ↤ R a relaxometry, diffusion, or perfusion model, or 
any other qMRI model that describes the relation between rnj and the 
underlying biophysical tissue parameters ϑ•j in the corresponding voxel. 
In the current work, the proposed SRR method is evaluated for T1 and T2 
relaxometry, using the signal models described in section 3. The forward 
model of the SRR reconstruction problem considered in this work is 
obtained by substituting Eq. (3) in Eq. (1). The parameters to be esti-
mated are the parameter maps ϑ and motion parameters θ = {θn}

N
n=1. 

2.2. Joint Bayesian estimation framework 

2.2.1. Bayes theorem 
Let ̃s = {̃sn}

N
n=1 ∈ RNs×N denote the set of N measured LR multi-slice 

images with ̃sn = {̃snl} ∈ RNs×1. Following a Bayesian approach, both the 
data ̃s and the parameters {ϑ, θ} to be estimated are modeled as random 
variables, where Bayes’ theorem gives an expression for the posterior 
distribution of the parameters given the data: 

p(ϑ, θ|̃s) =
p(̃s|ϑ, θ)p(ϑ)p(θ)

p(̃s)
, (4)  

with p(̃s|ϑ, θ) the likelihood function of the data, p(ϑ) and p(θ) the prior 
distributions that encapsulate the prior knowledge about ϑ and θ, 
respectively, and p(̃s) a scaling factor that can be ignored since it does 
not affect the estimator that will be described below. 

2.2.2. Maximum a posteriori estimator 
The MAP estimator maximizes p(ϑ, θ|̃s) w.r.t. the parameters {ϑ, θ}: 

{ϑ̂, θ̂} = argmax
ϑ,θ

p(ϑ, θ|̃s). (5) 

Eq. (5) is typically solved by minimizing the negative logarithm of 
p(ϑ,θ|̃s). 

2.2.3. Likelihood function 
Without loss of generalization, the measured LR images s̃ are 

assumed to be Rician distributed, which is a valid noise model for 
magnitude images reconstructed from single-coil k-space data (den 
Dekker and Sijbers, 2014), for images reconstructed from multi-coil data 
with SENSE (Aja-Fernández et al., 2014), or with GRAPPA jointly with a 
spatial-matched-filter or the Adaptive Combine method (Walsh et al., 
2000). Then, the probability density function (PDF) of ̃snl is given by: 

p(̃snl|ϑ, θn) =
s̃nl

σ2
nl

e
−

s̃
2
nl+s2

nl (ϑ,θn )

2σ2
nl I0

(
s̃nlsnl(ϑ, θn)

σ2
nl

)

u(̃snl), (6)  

with I0( ⋅ ) the zeroth order modified Bessel function of the first kind, and 
σnl the non-stationary (i.e. spatially-dependent) standard deviation of 
the Gaussian noise disturbing the complex data underlying the magni-
tude MR data. The unit step function u( ⋅ ) is used to indicate that (6) is 
non-zero for non-negative values of ̃snl only. Assuming all voxels to be 
statistically independent, the joint PDF of ̃s is given by 

p(̃s|ϑ, θ) =
∏N

n=1

∏Ns

l=1
p(̃snl|ϑ, θn). (7)  

When (7) is viewed as a function of the unknown parameters {ϑ, θ} 
given the data s̃, it is called the likelihood function. It follows from (6) 

and (7) that the negative log-likelihood function L s̃ ≡ − log p(̃s|ϑ, θ) can 
be written as (Sijbers et al., 1998) 

L s̃(ϑ, θ|̃s) =
∑N

n=1

∑Ns

l=1

[

− log s̃nl + log σ2
nl +

s̃2
nl

2σ2
nl
+

s2
nl(ϑ, θn)

2σ2
nl

− log I0

(
s̃nlsnl(ϑ, θn)

σ2
nl

)]

. (8)  

Furthermore, it is assumed that the noise standard deviations can be 
estimated prior to the construction of the MAP estimator of {ϑ, θ} using 
tailored noise estimation routines (Aja-Fernández et al., 2015; Pieciak 
et al., 2017; Maitra and Faden, 2009; Bouhrara et al., 2017). 

2.2.4. Prior distributions 
For each of the Q HR tissue parameter maps associated with ϑ, a 

discretized upwind TV prior (Chambolle et al., 2011) is chosen as: 

p(ϑq) ∝ exp{ −
2
λq

TV(ϑq)}, with q = 1,…,Q, (9)  

where λq > 0 denotes the hyperparameter to be selected by the user, as 
will be discussed in section 2.2.6, and with 

TV(ϑq) =
∑

j

⎡

⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϵ2 +(Δx,+(ϑqj))
2
+ (Δx,− (ϑqj))

2

+(Δy,+(ϑqj))
2
+ (Δy,− (ϑqj))

2

+(Δz,+(ϑqj))
2
+ (Δz,− (ϑqj))

2

√
√
√
√
√ − ϵ

⎤

⎥
⎥
⎦, (10)  

where Δx,+(ϑqj), Δx,− (ϑqj), Δy,+(ϑqj), Δy,− (ϑqj), Δz,+(ϑqj), and Δz,− (ϑqj) 
represent the forward ( + ) and backward ( − ) first order differences, in 
the x-, y-, and z-direction, at the jth HR voxel of the parameter map ϑq. 
Furthermore, a small value ϵ > 0 is introduced, to avoid derivative 
singularities of TV when ϑq is locally constant. 

For the motion parameters θ, a non-informative prior p(θ) is adopted, 
assuming p(θ) to be uniform over the range of values for which the 
likelihood function is non-negligible. 

2.2.5. Alternating minimization 
The nonlinear optimization problem (5) is solved using the alter-

nating minimization method, also known as the cyclic block-coordinate 
descent (cBCD) method (Fessler and Kim, 2011; Beck and Tetruashvili, 
2013). In this method, the parameters {ϑ, θ} are split into two blocks 
that contain the motion parameters θ and the tissue parameters ϑ, 
respectively, and the cost function is successively minimized with 
respect to each block in a cyclic order: 

θ̂
(t+1)

= argmin
θ

L s̃(ϑ̂
(t)
, θ
⃒
⃒̃s) (P.1)  

ϑ̂
(t+1)

= argmin
ϑ

[

L s̃(ϑ, θ̂
(t+1)⃒
⃒̃s) +

∑Q

q=1

2
λq

TV(ϑq)

]

(P.2)  

with ϑ̂
(0)

= ϑini, and θ̂
(0)

= θini the initial values of the HR tissue pa-
rameters ϑ and the motion parameters θ, respectively. The procedure is 
terminated when a maximum number of iterations, tmax, is exceeded, or 
when a convergence tolerance on the relative difference of the tissue 
parameter estimates between consecutive iterations is reached. The 
pseudo-code of our proposed MAP estimation framework is presented in 
Algorithm 1. The initial values ϑini, and θini are obtained using a while- 
loop routine consisting of three main steps. First, a HR magnitude 
contrast-weighted image is approximated from each LR contrast- 
weighted image by applying the adjoint operator MT

θn
GT

n BTDT of the 
SRR forward model (1) to each LR image, followed by the application of 
the pointwise modulus operator ∣ ⋅ ∣, to regain magnitude images. Sec-
ond, initial tissue parameter values ϑini are obtained by voxel-wise 
nonlinear least-squares (NLLS) fitting the modulus of the signal model 
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(12) to these upsampled LR images with a Levenberg-Marquardt algo-
rithm. In a third step, problem (P.1) is solved to obtain initial estimates 
for the motion parameters θini, where the tissue parameter estimates of 

the second step are kept fixed in the cost function L s̃(ϑ̂
(t+1)

, θ̂
⃒
⃒̃s). 

The inter-image motion estimation problem (P.1) adopts a particu-
larly simple structure when the signal model parameters remain fixed. If 
no dependence of {θn}

N
n=1 through index n is assumed, the minimization 

can be decoupled into N optimization problems, which can be imple-
mented very efficiently by parallel operations. Each of these decoupled 
problems is minimized using a trust-region Newton algorithm (Coleman 
and Li, 1994), with analytical expressions for the Jacobian to speed up 
convergence. The derivation of these expressions is included as part of 
the supplementary material provided with this paper. To solve the 
large-scale optimization problem (P.2), a trust-region-reflective Newton 
algorithm is used (Coleman and Li, 1994), with analytical expressions 
for the Jacobian and Hessian, which have also been included as part of 
the supplementary material. 

Algorithm 1. (Model-based SRR with joint motion estimation (SRR- 
joint))   

2.2.6. Regularization parameter selection 
The hyperparameters λ1, …, λQ of the prior distribution (9) act as 

regularization parameters that balance data consistency (as quantified 
by the likelihood function) against the requirement that the parameter 
maps be smooth (as imposed by the TV prior). The selection of the 
regularization parameters of a nonlinear optimization problem like the 
one at hand is a challenging task for which no standard procedure exists. 
Poorly chosen regularization parameters may lead to either over- 
smoothing or under-smoothing. In this work, the individual regulari-
zation parameters were determined such that the corresponding TV 
terms contribute equally to the cost function of (P.2). To this end, each 
TV term of (P.2) is evaluated in the initial estimates of the respective 
tissue parameter map, and the ratio of each TV value to the TV value of 
the first tissue parameter is used to determine the regularization pa-
rameters λ2, …, λQ as a function of λ1. More specifically, this leads to λq =
[
TV(ϑ̂q,ini)∕TV(ϑ̂1,ini)

]
⋅λ1. As such, the multi-parameter regularization 

selection problem is cast into a single-parameter regularization problem. 
The remaining regularization parameter, λ1, is chosen empirically. 

3. Materials and methods 

The proposed model-based Bayesian SRR method with joint motion 
estimation was validated in whole brain simulations choosing T1 
relaxometry as a showcase example. Next, to demonstrate the ability of 
the proposed method to improve the quality of reconstructed parameter 

maps, a proof-of-concept evaluation was performed for a T1 and T2 
quantitative mapping protocol using two contrast-weighted in vivo brain 
datasets. 

The following parametric signal models were adopted in this work:  

• T1 relaxation signal model of the gold standard inversion recovery 
(IR) sequence (Barral et al., 2010): 

fn(ϑ•j) = ρj

(
1 − (1 − cosα)e−

TIn
T1,j + e−

TR
T1,j

)
, (11)  

with TIn the nth inversion time, α the inversion pulse angle, TR the 
repetition time and ϑ•j = [ρj,T1,j]

T the tissue parameter vector at 
position xj, in which ρj is a parameter proportional to the proton 
density and receiver gain and T1,j is the longitudinal relaxation time. 
Assuming α = 180∘ and TR≫T1, Eq. (11) simplifies to 

fn(ϑ•j) = ρj

(
1 − 2 e−

TIn
T1,j

)
. (12)    

• T2 relaxation signal model of a conventional Multiple-Echo Spin Echo 
(MESE) sequence (Carr and Purcell, 1954): 

fn(ϑ•j) = ρje
−

TEn
T2,j , (13)  

with TEn the nth echo time, and ϑ•j = [ρj,T2,j]
T the tissue parameter 

vector at position xj, in which ρj is again a parameter proportional to 
the proton density and receiver gain and T2,j is the transverse 
relaxation time. Note that we have assumed a perfect 90∘ excitation 
pulse to tilt the magnetization vector in the transverse plane, and 
perfect 180∘ refocusing pulses to recover multiple spin echoes cor-
responding with T2 estimates along the signal envelope. 

The proposed SRR method was compared with an SRR approach without 
motion estimation, and one in which SRR is preceded by a motion 
compensation step. To sum up, the following three frameworks were 
compared against each other: 

1. SRR-static: a model-based SRR framework without motion estima-
tion. This approach consists of three steps. First, a HR magnitude 
image is approximated from each LR image using the adjoint oper-
ator GT

n BTDT of the SRR forward model (1), followed by application 
of the pointwise modulus operator ∣ ⋅ ∣. Second, voxel-wise NLLS 
fitting of the modulus of the signal model is performed using a 
Levenberg-Marquardt algorithm to obtain initial parameter map es-
timates. Finally, problem (P.2) is solved assuming θ̂ = 0.  

2. SRR-reg: a model-based SRR framework in which the inter-image 
motion parameters are estimated prior to the SRR by means of an 
advanced registration routine (Van Steenkiste et al., 2017). In this 
approach, a registration routine is performed consisting of four steps, 
where the first two steps correspond with the first two steps of 
SRR-static. In a third step, LR images are simulated using the esti-
mated HR parameter maps from the previous step and the forward 
model (1). As a fourth step, rigid motion parameter estimates θREG 
are obtained from pairwise rigid registration using a mean squared 
error metric and a regular step gradient descent optimization algo-
rithm (MaxIter = 800, GradientMagnitudeTolerance = 10− 12). In 
order to obtain rigid motion parameters that can be used as input 
parameters of the motion operator Mθn, which is part of the forward 
model in problem (P.2), registration needs to be performed on the 
HR grid. As such, the simulated and acquired LR image datasets to be 
co-registered are transformed to the HR grid using the adjoint 
operator GT

n BTDT of the SRR forward model (1). Next, steps 1-4 are 
repeated until a convergence tolerance E min = 10− 4 on the relative 
difference of the tissue parameter estimates between consecutive 
iterations is met. Finally, problem (P.2) is solved in which motion 

Input: LR images ̃s and initial values ϑini and θini 

Output: MAP estimates ϑ̂ MAP and θ̂ MAP 

Set t ← 0 and ϑ̂
(0)

, θ̂
(0)

←ϑ ini ,θ ini ; 
E

(0)
= rE min , with r ∈ R>1; 

while E (t)
≥ E min and t < tmax do  

∣⊳ Solve (P.1) to get θ̂
(t+1)

:  

∣ θ̂
(t+1)

= argmin
θ

L s̃(ϑ̂
(t)
,θ
⃒
⃒̃s), started from θ←θ̂

(t)
;  

∣⊳ Solve (P.2) to get ϑ̂
(t+1)

:  

∣ ϑ̂
(t+1)

= argmin
ϑ

[

L s̃(ϑ, θ̂
(t+1)⃒

⃒̃s) +
∑Q

q=1

2
λq

TV(ϑq)

]

, started from ϑ←ϑ̂
(t)

;  

∣⊳ Calculatea
E

(t+1)
= ‖ ϑ̂

(t+1)
− ϑ̂

(t)
‖2∕ ‖ ϑ̂

(t+1)
‖2;  

∣⊳ Set t ← t + 1; 
end 

ϑ̂ MAP = ϑ̂
(t)

and θ̂ MAP = θ̂
(t)

; 
return ϑ̂MAP, θ̂MAP;  

a Vectorization of SRR ϑ̂
(t+1)

and ϑ̂
(t)

is performed before taking the norm.  
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parameter estimates θREG obtained from the registration routine 
remain fixed. 

3. SRR-joint: the proposed SRR framework with joint motion estima-
tion, as described in section 2.2. The pseudo code of this framework 
is described in Algorithm 1. The maximum number of iterations and 
the tolerance criterion to halt the algorithm were chosen to be tmax =

80 and E min = 10− 4, respectively. 

For the in vivo experiments described in subsection 3.2, the regula-
rization parameters of SRR-joint were chosen following the procedure 
described in subsection 2.2.6, yielding 2∕λ1 = 1.1 × 10− 2 and 2∕λ2 
= 5.6 × 10− 3 for the in vivo T1 mapping experiment, and 2∕λ1 
= 2.4 × 10− 2 and 2∕λ2 = 1.0 × 10− 2 for the in vivo T2 mapping exper-
iment, respectively. Next, the same regularization parameters were used 
for SRR-static and SRR-reg, to guarantee a fair comparison. Finally, the 
same regularization weights as for the in vivo T1 mapping experiment 
were also used for the whole brain Monte Carlo simulation experiments 
described in the next subsection. 

3.1. Whole brain simulations 

Ground truth T1 and ρ parameter maps for a synthetic whole brain 
Monte Carlo simulation experiment were generated from parameter 
maps obtained after model-based SRR on the T1-weighted in vivo dataset, 
further described in section 3.2. Both HR parameter maps were of size 
160 × 160 × 160, with an isotropic voxel size of 1.6 mm. 

From these ground truth parameter maps, NMC = 8 Rician distributed 
realisations of a LR T1-weighted dataset were simulated. Each dataset 
consisted of N = 14 images with log(TIn) equidistant between 

log(100 ms) and log(3000 ms) (Van Steenkiste et al., 2017). The LR 
images were synthesized using the forward model (1), with an image 
size of 160 × 160 × 40 and with an anisotropic voxel size of 
1.6 × 1.6 × 6.4 mm3. The inter-image motion parameters {θn}

N
n=1 were 

chosen equal to an estimated set of motion parameters obtained from 
model-based SRR with SRR-joint on the T1-weighted in vivo dataset to 
guarantee realistic head movement. The extreme and mean values for 
each of the motion parameters are reported in Table S1 of the supple-
mentary file. 

Similar to the acquisition protocol used in (Van Steenkiste et al., 
2016, 2017) and the acquisition protocol in the in vivo experiments (cfr. 
subsection 3.2), the LR images were simulated with different slice ori-
entations, where the rotation was performed around the phase encoding 
axis in increments of 180∕N0 degrees, with N0 = 7 the number of slice 
orientations. Since rotation in image space corresponds to rotation in 
frequency domain, this acquisition scheme ensures that each LR image 
covers a different part of the k-space (as shown in the top row of Fig. 1) 
(Plenge et al., 2012). Two LR images were simulated for each slice 
orientation, where each of the thus resulting N = 14 images had a 
unique inversion time. An overview of the slice orientations and inver-
sion times of the T1-weighted LR images, along with their k-space 
coverage, is given in Fig. 1. 

Finally, the LR T1-weighted images were corrupted with spatially 
variant Rician noise, where the spatially variant noise pattern corre-
sponded with an isotropic Gaussian function to model the gradual 
deterioration of the head coil detection towards the center of the brain 
(Pieciak et al., 2017). The level of the noise map was adjusted to match 
that of the in vivo T1-weighted dataset that will be described in the next 
subsection. To this end, the overall SNR, defined as the ratio of the 

Fig. 1. Overview of the different slice orientations for the LR T1-weighted in vivo (and simulated) dataset(s), together with a schematic representation of the overlap 
in k-space when images are combined. Fourteen 2D IR TSE T1-weighted LR images were acquired with large slice thickness and a high in-plane resolution. The slice 
orientation was consecutively altered by rotation over a specified angle (0∘, 25.7∘, 51.4∘, …, 154.2∘) around the phase-encoding direction. As indicated, each T1- 
weighted LR image was acquired with a unique inversion time. 
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spatial mean of the signal to the standard deviation of the noise, where 
the latter is estimated using the method of Coupé et al. (Coupé et al., 
2010), was calculated in a small homogeneous region of the corpus 
callosum of the in vivo T1-weighted image acquired with TI = 100 ms, 
and observed to be 16. Next, the level of the noise map of the simulated 
T1-weighted images was adjusted to match this SNR value in the corpus 
callosum of the simulated image sampled at the same inversion time. In 
all simulation SRR experiments, the noise standard deviation maps were 
assumed to be known. 

3.2. In vivo data 

The proposed SRR method was validated using two in vivo human 
brain datasets suffering from involuntary patient motion. Both healthy 
volunteers (adult, male, 28 and 32 years old) were scanned after written 
informed consent and approval by the institutional ethics committee 
using a 3 T MRI scanner (Magnetom PrismaFit, Siemens Healthcare, 
Erlangen, Germany) with VE11B software, a maximum gradient 
amplitude of 80 mT/m, a maximum slew rate of 200 T/m/s, and a 
dedicated head-coil with 32 receiver channels. Magnitude data was 
reconstructed from the complex coil images using the adaptive combine 
algorithm (Walsh et al., 2000). 

The first in vivo LR dataset consisted of a series of T1-weighted LR 
images with anisotropic voxel size. In total, 14 repetitions of an inter-
leaved multi-slice IR TSE with low through-plane resolution (voxel size, 
1.0 × 1.0 × 4.0 mm3), with turbo factor 10, without slice gap, and with 
100% sampling, were acquired. The slice thickness of the LR dataset was 
chosen to have whole brain coverage without exceeding SAR limits. The 
acquisition matrix was equal to 256 × 256, with a total number of slices 
equal to 40. Furthermore, the bandwidth was fixed at 305 Hz/pixel, and 
the TR and echo time (TE) were equal to 5000 ms and 8.8 ms, respec-
tively. No in-plane acceleration was used. Each acquisition was char-
acterized by a specific rotation around the phase-encoding axis and a 
unique inversion time, where the rotation angles and inversion times 
agree with those used in the simulation study, as summarized in Fig. 1. 
The scan time per anisotropic 2D slice stack was 2 min 3 s, resulting in a 
total scan time of 28 min 44 s. SRR was performed at an isotropic HR 
grid with a voxel size of 1.0 × 1.0 × 1.0 mm3. Spatially variant noise 
standard deviation maps were estimated using the method of (Aja--
Fernández et al., 2015). 

A second in vivo T2-weighted anisotropic LR dataset was acquired, 
using 7 repetitions of an interleaved multislice MESE acquisition with 
low through-plane resolution (voxel size, 1.75 × 1.75 × 7.0 mm3), 
without slice gap, using a 3-fold in-plane GRAPPA acceleration factor 
with 24 reference lines. The acquisition matrix was equal to 128 × 128, 
with a total number of slices equal to 26. The bandwidth was fixed at 
227 Hz/pixel. Each MESE acquisition was characterized by a unique 
rotation around the phase-encoding axis (rotations similar as in Fig. 1), 
and consisted of 4 unique echo times. An overview of the sampled TEs 
per MESE acquisition is given in Table 1. The echo time spacing ΔTE in 

each MESE was chosen as such to ensure full coverage of the T2 relax-
ation curve when all 7 acquisitions are combined. This is illustrated in 
more detail in Fig. S4 of the supplementary file. The TR = 4320 ms was 
kept constant for each MESE acquisition to avoid differences in T1- 
weighting. In addition, the first echo of each MESE acquisition was 
ignored in the SRR reconstruction, which is a common consideration for 
MESE acquisitions (Petrovic et al., 2015), to avoid protruding errors 
from imperfect refocusing and stimulated (secondary) echoes that 
disrupt the T2 decay of the primary SEs. In this way, the total count of 
sampled TEs was limited to 21. The scan time per anisotropic 2D MESE 
acquisition was 4 min 11 s, resulting in a total scan time for this 
proof-of-concept protocol of 29 min 17 s. SRR was performed at an 
isotropic HR grid with a voxel size of 1.75 × 1.75 × 1.75 mm3, and 
non-stationary noise standard deviation maps were again estimated 
using the method of (Aja-Fernández et al., 2015). 

3.3. Quantitative image analysis 

The results of the synthetic whole brain Monte Carlo simulation 
experiment were assessed quantitatively using the following perfor-
mance measures (Ramos-Llordén et al., 2017; Beirinckx et al., 2020):  

(a) Relative bias. The bias quantifies the accuracy of an estimator (van 
den Bos, 2007). Relative bias maps were calculated for each 

framework as (ϑ̂q − ϑq) ⊘ ϑq, where ϑ̂q and ϑq refer to the tissue 
parameter maps which contain the element-wise sample mean of 
the NMC estimates ϑ̂q, and the true reference values, respectively, 
and where ⊘ denotes the element-wise division operator.  

(b) Relative standard deviation. The standard deviation quantifies the 
precision of an estimator (van den Bos, 2007). Relative standard 
deviation maps were calculated for each framework as 
(

NMC
NMC − 1(ϑ̂q − ϑ̂q)⚬(ϑ̂q − ϑ̂q)

)⚬1
2

⊘ϑq, where ∘ and the superscript 

∘1
2 denote the Hadamard product and element-wise square-root 

operator, respectively.  
(c) Relative root-mean-squared error (relative RMSE). The RMSE is a 

measure that incorporates both accuracy and precision. Relative 

RMSE maps were calculated as ((ϑ̂q − ϑq)⚬(ϑ̂q − ϑq))
⚬1

2 ⊘ ϑq. 

Additionally, the spatial means of the relative bias, standard devia-
tion and RMSE maps were calculated inside a brain mask, which was 
extracted from the reference ρ map using the Brain Extraction Tool 
(BET) (Smith, 2002). 

To assess the ability of the different frameworks to estimate motion, 
the following performance measure was used:  

(a) Motion component root-(mean)-mean-squared-error (RMMSE), 
defined as 

Table 1 
Distribution of echo times per MESE acquisition for the in vivo T2 mapping experiment. Slice orientation angles corresponds with those given in Fig. 1. The first echo 
times that were ignored to alleviate the effect of stimulated secondary echoes are highlighted in bold.   

Slice orient. angle [∘] TE1 TE2 TE3 TE4 

MESE 1 0 10.0 20.0 30.0 40.0 
MESE 2 25.7 11.8 23.6 35.4 47.2 
MESE 3 51.4 19.2 38.4 57.6 76.8 
MESE 4 77.1 22.6 45.2 67.8 90.4 
MESE 5 102.8 34.0 68.0 102.0 136.0 
MESE 6 128.5 36.9 73.8 110.7 147.6 
MESE 7 154.2 40.0 80.0 120.0 160.0  
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(
1
N
∑N

n=1
(θ̂n − θn)⚬(θ̂n − θn)

)⚬1
2

, (14)  

where θn refers to the true reference values and the operator (⋅)
denotes the element-wise sample mean over the NMC estimates 
θ̂n. 

For the in vivo T1 mapping experiment, results were quantitatively 
assessed in terms of spatial resolution and SNR efficiency. Spatial reso-
lution of the obtained parameter maps was assessed in all 3 image di-
mensions by measuring the average width over 15 edge profiles. The 
sample of edge profiles was selected in one parameter map (cfr. Fig. S3 
of the supplementary file), and then consistently compared across all the 
parameter maps of the respective frameworks. The edge width, defined 
as the width (in high resolution voxels) from 10% to 90% of the edge 
height, was measured by least squares fitting with a sigmoid function: 

η(x) = a1 +
a2

1 + exp(− a3(x − a4))
, (15)  

from which the edge width can be derived, given by 4.4∕a3 (Greenspan 
et al., 2002). 

Furthermore, SNR measurements were obtained from the in vivo 
reconstruction results for each framework. First, volumes-of-interest 
(VOIs) were manually delineated in uniform regions of white matter, 
CSF, and the caudate nucleus of the ρ map reconstructed with the SRR- 
joint framework. For the aforementioned tissue types, the VOIs had 
volumes equal to 100 mm3, 21 mm3, and 48 mm3, respectively. Next, 
the same VOIs were selected in the T1 map reconstructed with SRR-joint, 
and in the ρ and T1 maps reconstructed with SRR-static and SRR-reg. 
Subsequently, the SNR was calculated in each VOI as the ratio of the 
spatial mean to the standard deviation. 

3.4. Implementation 

All algorithms were written in MATLAB and partially in C++, and 
run on a computer with an Intel® CoreTM i7–6850 K hexa-core CPU with 
15 MB of cache clocked at 3.60 GHz, with 32 GB of RAM. The compu-
tational complexity of the proposed SRR-joint algorithm is primarily 
defined by the Fast Fourier Transform (FFT)-based image warping op-
erators Mθn and Gn in the forward model (1). The FFT-based imple-
mentation allows to solve the inverse SRR problem using exact adjoint 
image warping, and avoids inaccuracies caused by an approximate in-
verse of the motion. To speed up reconstruction, the FFTs of both image 
warping operators are executed on the GPU, reducing reconstruction 
time by a factor of 2–6 compared to pure MATLAB code, mainly 
dependent on the number of LR images and corresponding image di-
mensions. In addition, as mentioned in section 2.2.5, MATLAB parallel 
computing tools were used to estimate θn for each value of n separately 
when solving problem (P.2) of the alternating minimization method. 
Similarly, voxel-wise NLLS model fitting during the initialization step of 
the different SRR frameworks was performed in a parallel manner. Also, 
to avoid excessive memory usage, the Hessian matrix of problem (P.2) 
was implemented using a Hessian multiply function, which gives the 
result of a Hessian-times-vector product without computing the Hessian 
directly. A more extensive description of the computational re-
quirements, with additional implementation details, is given in section 2 
of the supplementary file. 

4. Results 

4.1. Whole brain simulations 

Table 2 summarizes the quantitative performance measures that 
were obtained from the whole brain simulation experiment for the 

frameworks SRR-static, SRR-reg, and SRR-joint. Corresponding standard 
errors and 95% confidence intervals for each value are included in Table 
S2 of the supplementary file. For each performance measure, the best 
performing framework is highlighted in bold. It follows from Table 2 
that in terms of accuracy SRR-joint clearly outperforms SRR-static (with 
a factor 2) and SRR-reg. In terms of precision, SRR-static outperforms 
the other two approaches, as indicated by the lower overall standard 
deviation. However, in terms of the overall RMSE, SRR-joint performs 
best, both for T1 and ρ mapping. 

The absence of motion estimation in the SRR framework becomes 
evident by looking at maps of the relative RMSE (Fig. 2), for each of the 
three SRR frameworks. A closer look at these maps, shows the improved 
performance in terms of accuracy of the SRR-joint framework compared 
to the other two approaches. Here, the joint estimation of motion pa-
rameters allows for a more accurate estimation of tissue parameters at 
tissue interfaces, in particular for interfaces at tissue types with longer T1 
relaxation times such as the corpus callosum, and voxels at the periphery 
of the brain. Additionally, maps of the absolute value of the relative bias 
and of the relative standard deviation are included in Fig. S1 and Fig. S2 
of the supplementary file. 

4.2. In vivo data 

Fig. 3 shows orthogonal mid-slice views of a directly acquired IR TSE 
T1-weighted image with low through-plane resolution sampled at TI 
= 100 ms, and a synthesized T1-weighted image with high through- 
plane resolution that was produced from the SRR T1 and ρ parameter 
map estimates at the same TI. To ease qualitative comparison, zoomed 
image regions are shown indicating noticeable resolution improve-
ments. The corresponding quantitative T1 relaxation and ρ parameter 
map estimates that were obtained using the proposed SRR-joint frame-
work are also shown in Fig. 3. The improved resolution in each 
orthogonal plane is clearly visible. In particular, SRR manages to recover 
the fine details lost due to the acquisition with low through-plane 
resolution. 

Next, to compare the reconstruction results for the LR-T1w in vivo 
dataset, Fig. 4 shows the estimated T1 and ρ parameter maps obtained 
using SRR-static, SRR-reg, and SRR-joint, respectively. Fig. 4 also shows 
the absolute value of the relative difference between the reconstructed 
parameter maps obtained with SRR-static and SRR-reg, taking the cor-
responding parameter maps obtained with the SRR-joint framework as a 
reference. Based on Fig. 4, it can be deduced that the joint estimation of 
motion parameters yields visible differences at the tissue interfaces, with 
a noticeably better delineation of the various brain structures. This is 
also confirmed by the edge width measurements for the T1 and ρ 

Table 2 
Quantitative performance measures for the whole brain simulations, calculated 
over NMC = 8 reconstruction results, for each SRR framework.   

SRR-static SRR-reg SRR-joint 

Overall rel. bias    
T1 [%] 16.840 10.121 8.698 
ρ [%] 64.530 30.875 24.075 

Overall rel. std. dev.    
T1 [%] 0.316 0.591 0.686 
ρ [%] 0.842 1.072 1.313 

Overall rel. RMSE    
T1 [%] 16.855 10.176 8.799 
ρ [%] 64.547 30.945 24.204 

RMMSE    
tx [mm] 0.374 0.095 0.063 
ty [mm] 1.381 0.321 0.027 
tz [mm] 1.543 0.285 0.043 
α [degree] 1.207 0.346 0.019 
β [degree] 0.245 0.111 0.015 
γ [degree] 0.261 0.078 0.008  
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parameter maps summarized in Table 3, where SRR-joint achieves 
smaller edge widths, i.e. a higher spatial resolution, for all parameter 
maps as compared to SRR-static and SRR-reg. Furthermore, SNR mea-
surements for the selected VOIs in the reconstructed tissue parameter 
maps of the in vivo data experiment were consistently higher for SRR- 
joint as compared to the other two frameworks, except for the SNR 
value of CSF in the ρ parameter map (Table 3). Standard errors and 95% 
confidence intervals for the edge width and SNR measurements are 
included in Table S3 of the supplementary file. 

In addition, Fig. 5 shows a directly acquired IR TSE T1-weighted 
image with low through-plane resolution compared to synthesized T1- 

weighted images with high through-plane resolution, that were pro-
duced from the SRR T1 and ρ parameter map estimates for each frame-
work. Note that SRR-joint outperforms SRR-static and SRR-reg, showing 
enhanced delineation of brain structures, as indicated by the yellow 
arrows for different regions of interest. 

The reconstruction results for the SRR-joint framework on the in vivo 
T2-weighted dataset are summarized in Fig. 6. This figure shows 
orthogonal mid-slice views of a directly acquired MESE T2-weighted 
image with low through-plane resolution sampled at TE = 42.7 ms, a 
synthesized T2-weighted image with high through-plane resolution that 
was produced from the SRR T2 and ρ parameter map estimates sampled 

Fig. 2. Relative RMSE maps for T1 and ρ, calculated from the reconstruction results of the synthetic whole brain simulations. For each of the different model-based 
SRR frameworks orthogonal mid-slice views are shown. Numbers at the bottom of the images indicate the overall relative RMSE measure, which was obtained by 
calculating the spatial mean of the corresponding relative RMSE map. 

Fig. 3. Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement for a directly acquired IR TSE T1-weighted image with low through- 
plane resolution sampled at TI1 (first column), compared to a synthesized T1-weighted image with high through-plane resolution (second column), that was produced 
from the SRR T1 and ρ parameter map estimates (columns 3 and 4) sampled at the same inversion time. Note that for the LR-T1w in vivo data set, SRR-joint can 
recover the fine details lost to the acquisition with low through-plane resolution. Dashed lines indicate the slice locations. 
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Fig. 4. Reconstruction results for the LR-T1w in vivo dataset showing orthogonal mid-slice views of the quantitative T1 and ρ parameter maps obtained using SRR- 
static (left column), SRR-reg (middle column), and SRR-joint (right column), respectively. For comparison reasons, the absolute value of the relative difference maps 
for T1 and ρ is shown, which is calculated using the SRR-joint reconstruction result as relative reference. Numbers in boxes represent the overall relative difference 
measure, which was obtained by calculating the spatial mean of the absolute value of the corresponding relative difference map. 
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at the same TE, and the obtained T2 and ρ parameter map estimates, 
respectively. From Fig. 6, it can be appreciated that SRR-joint enhances 
the spatial resolution, and reduces the partial volume effects present in 
the acquired MESE T2-weighted images with low through-plane reso-
lution. As a result, the interfaces and fine structural details of the 
different tissue types appear more clear in the quantitative T2 and ρ 

parameter maps. Furthermore, to visually compare how the different 
SRR frameworks arrive at different parameter map estimates for the T2- 
weighted dataset, Fig. 8 shows the absolute value of the relative dif-
ference between the reconstructed parameter maps obtained with SRR- 
static and SRR-reg, taking the parameter maps obtained with the SRR- 
joint framework as a reference. 

In addition, Fig. 7 shows a directly acquired MESE T2-weighted 
image with low through-plane resolution compared to synthesized T2- 
weighted images with high through-plane resolution, that were pro-
duced from the SRR T2 and ρ parameter map estimates for each frame-
work. As can be appreciated from Fig. 7, SRR-joint outperforms SRR- 
static and SRR-reg, showing enhanced delineation of brain structures 
and a reduction in noise artifacts. We recall that identical regularization 
weights were used for the three SRR frameworks. Furthermore, it fol-
lows from Fig. 7 that the SRR-joint-T2w image shows improved detail in 
the axial view, which is the in-plane orientation of the LR image. This is 
probably due to reduced through-slice blurring. 

Motion parameter estimates obtained using the SRR-reg and SRR- 
joint framework on the in vivo datasets are reported in Fig. 9. In 
particular, graphs of the translation and rotation parameters estimated 
for each LR image number are plotted. LR image numbers were ranked 
in order of acquisition. As indicated by the order of magnitude of the 

Table 3 
Quantitative performance measures for the in vivo T1 mapping experiment, 
summarized for each SRR framework.   

SRR-static SRR-reg SRR-joint 

Average edge width    
T1 map [mm] 3.88 3.76 3.67 
ρ map [mm] 2.92 2.50 2.38 

SNR VOI in T1 map    
white matter 97.1 99.6 133.7 
CSF 30.1 32.4 34.7 
caudate nucleus 35.2 38.6 45.1 

SNR VOI in ρ map    
white matter 66.1 85.2 93.6 
CSF 19.6 22.8 19.4 
caudate nucleus 42.4 55.8 59.9  

Fig. 5. Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement for a directly acquired IR TSE T1-weighted image with low through- 
plane resolution sampled at TI1 (first column), compared to synthesized T1-weighted images with high through-plane resolution (columns 2–4), that were produced 
from the SRR T1 and ρ parameter map estimates for each framework, sampled at the same echo time. 
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estimated motion parameters, inter-image rigid motion was less present 
in the T1-weighted dataset as compared to the T2-weighted dataset. 
Although the motion parameter traces look very similar for SRR-joint 
and SRR-reg, small differences can still be observed that likely 
contribute to the superior performance of SRR-joint compared to SRR- 
reg. 

Furthermore, by construction of the MESE sequence no inter-image 
motion should exist between the different LR images (i.e. different 
echoes) of the same MESE scan in the T2-weighted dataset. Indeed, it 
follows from Fig. 9 that motion parameter estimates obtained using SRR- 
joint are consistent for the three LR image numbers corresponding with 
each MESE number. For SRR-reg, on the other hand, one can observe 
nonphysical differences of the motion parameter estimates for the LR 

image numbers per MESE number. This motion stability property can be 
further quantified by calculating the mean across MESE scans of the 
standard deviations across the echoes per individual MESE scan, for each 
motion parameter. Table 4 summarizes these values for SRR-reg and 
SRR-joint. As summarized in Table 4, SRR-joint arrives at significantly 
lower sample mean values compared to SRR-reg, indicating superior 
motion stability performance. Note that, both for SRR-joint and SRR-reg, 
a rigid motion parameter set was estimated per individual LR image. 

Finally, to evaluate the convergence behavior of the three SRR 
methods in the in vivo T1 and T2 mapping experiments, Fig. 10 shows the 
cost function value and the 2-norm of the residual between the measured 
LR images and their predictions based on the estimated tissue and mo-
tion parameters as a function of the number of iterations. For both in vivo 

Fig. 6. Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement for a directly acquired MESE T2-weighted image with low through- 
plane resolution sampled at TE = 47.2 ms (first column), compared to a synthesized T2-weighted image with high through-plane resolution (second column), that 
was produced from the SRR T2 and ρ parameter map estimates (columns 3 and 4) sampled at the same echo time. Dashed lines indicate the slice locations. 

Fig. 7. Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement for a directly acquired MESE T2-weighted image with low through- 
plane resolution sampled at TE = 47.2 ms (first column), compared to synthesized T2-weighted images with high through-plane resolution (columns 2–4), that were 
produced from the SRR T2 and ρ parameter map estimates for each framework, sampled at the same echo time. Dashed lines indicate the slice locations. 
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Fig. 8. Reconstruction results for the LR-T2w in vivo dataset showing orthogonal mid-slice views of the quantitative T2 and ρ parameter maps obtained using SRR- 
static (left column), SRR-reg (middle column), and SRR-joint (right column), respectively. For comparison reasons, the absolute value of the relative difference maps 
for T2 and ρ is shown, which is calculated using the SRR-joint reconstruction result as relative reference. Numbers in boxes represent the overall relative difference 
measure, which was obtained by calculating the spatial mean of the absolute value of the corresponding relative difference map. 
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experiments, it can be observed that SRR-joint arrives at lower cost 
function values and lower residual values than SRR-static and SRR-reg. 

5. Discussion 

In this work, we presented a Bayesian framework for model-based 
motion-corrected SRR in qMRI. The framework allows the joint esti-
mation of 3D isotropic HR tissue parameter maps and inter-image mo-
tion parameters from a set of multi-slice magnitude images with a low 
through-plane resolution. The framework’s potential was 

demonstrated in both simulations and real data experiments, using T1 
and T2 mapping as carrying examples. As follows from Table 2, the 
proposed SRR framework with joint motion estimation (SRR-joint) 
showed superior motion parameter estimation and, at the same time, 
improved tissue parameter mapping RMSE compared to previously 
published approaches without (SRR-static) and with (SRR-reg) motion 
pre-compensation. More specifically, the motion component RMMSE of 
SRR-joint was about an order of magnitude smaller compared to that of 
SRR-reg and even more for SRR-static. Furthermore, the overall relative 
RMSE of the tissue parameters T1 and ρ for SRR-joint was about 20% 

Fig. 9. Graphs of the motion parameter estimates that were obtained for the in vivo T1-weighted dataset (left column) and T2-weighted dataset (right column), using 
the SRR-reg and SRR-joint framework, respectively. The LR image numbers are ranked in order of acquisition. For the T2-weighted dataset, the MESE numbers are 
indicated (right column, bottom graph) with their corresponding LR image numbers. Translation parameters are reported in millimeters, rotation parameters 
in degrees. 
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smaller compared to that of SRR-reg and about 50% smaller compared to 
SRR-static. Finally, the proposed SRR-joint framework revealed sharper 
edges in the real data experiments, providing a noticeably better 
delineation of brain structures, as compared to SRR-reg and SRR-static. 

Our proposed framework is modular with respect to the signal and 
noise model describing the MR data. That is, the T1 or T2 relaxation 
model used in this paper can easily be replaced by any other quantitative 
signal model. Examples may include SRR strategies for quantification 
T2*-relaxation times of the knee (Smekens et al., 2021), blood flow in 
single post labeling delay pseudo-Continuous Arterial Spin Labeling 
(Bladt et al., 2020), or diffusion (Van Steenkiste et al., 2016). In addi-
tion, the framework is modular with respect to the assumed distribution 
of the MR data. Indeed, MR data can be characterized by various noise 
distributions (other than the Rice distribution), considering either 
single-coil or multi-coil acquisition systems (den Dekker and Sijbers, 
2014). Examples include the noncentral chi distribution, which is valid 
for magnitude images reconstructed from multi-coil data using the 
sum-of-squares method (Constantinides et al., 1997), or data distribu-
tions that occur for parallel MRI techniques which perform under-
sampling of the k-space to reduce the acquisition time, such as SENSE or 
GRAPPA (Aja-Fernández et al. 2016). Our Bayesian joint motion and 

tissue parameter estimation framework can be easily adapted towards 
any of these data distributions. 

Unlike various SRR methods in the literature that rely on orthogonal 
slice orientations, our method allows for arbitrary slice orientations, 
which offers much more flexibility with respect to sampling of the k- 
space and setting the contrast weightings. This increased k, q-space 
sampling flexibility is a key asset for optimal experiment design studies 
aimed at the estimation of quantitative tissue parameters with the 
highest precision (Poot et al., 2010a; Zhao et al., 2019). In future work, 
we intend to investigate, given a fixed acquisition time and relying on 
Cramér-Rao lower bound analysis, the best slice direction and contrast 
weighting combination of each of the LR images in terms of the precision 
with which qMRI parameters can be estimated with our proposed 
SRR-joint framework. Preliminary results of this study for SRR-static 
have recently been reported by Nicastro et al. (Nicastro et al., 2020). 

The current framework has some limitations. First, while the 
framework corrects for motion between the LR multislice images, intra- 
and inter-slice motion is not yet accounted for. To compensate for intra- 
slice motion, our framework could be combined with prospective mo-
tion correction strategies (Gao et al., 2021; Maclaren et al., 2013). 
Furthermore, inter-slice motion could be accounted for by adding mo-
tion parameters for each individual slice of the LR images and estimating 
these parameters jointly with the HR tissue parameter maps. Note, 
however, that although such an approach may improve the accuracy of 
the estimated maps, the addition of extra parameters to be estimated 
comes at the expense of a reduced precision. Hence, both effects should 
be carefully weighed against each other. The extension of our frame-
work to include inter-slice motion and the trade-off between accuracy 
and precision that comes with it are subject of future investigation. 

Second, in this work the hyperparameters of the prior distributions 
(9) are selected by casting the Bayesian MAP estimation problem as a 
regularized optimization problem of which the regularization weights 
are chosen empirically, aiming at equal contributions of the different 

Table 4 
Quantification of motion stability performance for the in vivo T2-weighted data 
set. Tabulated values indicate the sample mean across the MESE scans of the 
standard deviations calculated across the echoes per individual MESE scan, for 
each motion parameter, using the SRR-reg and SRR-joint framework, respec-
tively. Translation values are reported in millimeters, rotation values in degrees. 
Lower values indicate better performance.   

tx ty tz α β γ  
[mm] [mm] [mm] [degree] [degree] [degree] 

SRR-reg 0.064 0.205 0.958 0.111 0.123 0.052 
SRR-joint 0.004 0.023 0.075 0.020 0.005 0.007  

Fig. 10. Convergence plots showing the cost function value and the residual norm as function of the iterations for the in vivo T1 mapping experiment (left column) 
and T2 mapping experiment (right column), respectively. 
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regularization terms. This approach may be sub-optimal. To the best of 
our knowledge, however, there is no consensus on the optimal selection 
strategy of regularization parameters in a multi-parameter nonlinear 
regression problem like the one at hand. Nevertheless, we hypothesize 
that choosing the (hyperparameters of the) prior distributions based on 
prior acquisitions or learning them from available (q)MRI databases 
may be promising alternative approaches, which are subject of ongoing 
research. 

Finally, the existence of fast 2D multi-slice protocols for MR relax-
ometry parameter mapping is crucial to fully exploit the benefits of 
model-based SRR, and to allow for clinically acceptable scan times. The 
proof-of-concept acquisitions in this paper aim to illustrate the advan-
tages of joint motion estimation. The combination of model-based SRR 
with state-of-the-art sequences applying undersampling strategies to 
further reduce acquisition time is subject of future work. As an example, 
recent work for T2 mapping discussed the use of GRAPPATINI (Hilbert 
et al., 2018), a fast prototype sequence allowing for block-based Carte-
sian undersampling of k-space combined with additional GRAPPA ac-
celeration. Its potential for model-based SRR has been previously 
reported (Bano et al., 2020), albeit without any appropriate motion 
estimation routine for SRR. We are convinced that our work can serve as 
an extension to such an approach and to other model-based SRR 
frameworks that only account for motion using pre-compensation 
routines. 

6. Conclusion 

In conventional model-based SRR approaches for qMRI, it is common 
practice to compensate for motion prior to the SRR, e.g. by using a pre- 
registration routine. However, as demonstrated in this paper, this con-
ventional two-step approach lacks high accuracy motion estimation and 
leads to biased parameter estimates. Hence, we have proposed a 
rigorous unified framework for model-based SRR with joint motion 
estimation using a Bayesian Maximum A Posteriori (MAP) estimator. 
The framework allows the joint estimation of 3D isotropic HR tissue 
parameter maps and inter-image motion parameters from a set of multi- 
slice magnitude images with a low through-plane resolution. Our SRR 
framework, which is modular with respect to the quantitative signal 
model and the assumed distribution of the MR data, has been validated 
in synthetic whole brain simulations and also with two in vivo human 
brain data sets, for T1 and T2 mapping, respectively. It has been 
demonstrated that the proposed SRR framework provides a more 
detailed delineation of brain structures and shows superior motion 
parameter estimation and improved tissue parameter mapping RMSE 
compared to state-of-the-art SRR approaches. 
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