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A B S T R A C T
This document includes supplementary material that complements the main body of the paper.
In Section 1, we provide analytical derivations of the Jacobian and Hessian of the alternating
minimization scheme which was used to obtain the joint Maximum a Posteriori estimates of the
tissue and motion parameters. Next, Section 2 elaborates on the implementation of the forward
model operators and the computational requirements. Finally, a section has been added to explain
the choice of a realistic motion parameter set for the whole brain simulation experiments, to
provide confidence intervals for the quantitative performance measures, to elaborate on the
spatial resolution assessment by means of edge profile fitting, and to illustrate the echo time
selection for the in vivo 𝑇2 mapping experiment.

1. Analytical derivatives for optimization of problems (P.1) and (P.2)
The proposed joint MAP estimation consists of the following iterative recursive procedure:

𝜽̂(𝑡+1) =argmin
𝜽

𝒔̃(𝝑̂(𝑡),𝜽|𝒔̃) (P.1)

𝝑̂(𝑡+1) =argmin
𝝑

[

𝒔̃(𝝑, 𝜽̂(𝑡+1)|𝒔̃) +
𝑄
∑

𝑞=1

2
𝜆𝑞

TV(𝝑𝑞)

]

(P.2)

with
𝒔̃(𝝑,𝜽|𝒔̃) =

𝑁
∑

𝑛=1
𝒔̃𝑛 (𝝑,𝜽𝑛|𝒔̃𝑛) = −

𝑁
∑

𝑛=1
log 𝑝(𝒔̃𝑛|𝝑,𝜽𝑛) (S1)

where the summation runs over all 𝑁 contrast-weighted low-resolution (LR) images 𝒔̃𝑛. Problems (P.1) and (P.2) are
minimized using a trust-region Newton method (Coleman and Li, 1994). Such a gradient-based optimization algorithm
benefits from having analytical expressions for the Jacobian and Hessian to avoid time-consuming finite difference
computations. These analytical expressions are derived hereafter.
Nomenclature In what follows, we rewrite the forward operator sequence as 𝑨𝑛 = 𝑫𝑩𝑮𝑛 and its adjoint sequence
as 𝑨𝑇

𝑛 = 𝑮𝑇
𝑛 𝑩

𝑇𝑫𝑇 to ease the notation, unless stated otherwise. As such, the forward model introduced in (1) of
section 2.1 in the main body of the paper, can be written more concisely as:

𝒔𝑛 =
|

|

|

𝑫𝑩𝑮𝑛𝑴𝜽𝑛𝒓𝑛
|

|

|

= |

|

|

𝑨𝑛𝑴𝜽𝑛𝒓𝑛
|

|

|

. (S2)
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1.1. MAP estimation of motion parameters
Assuming no dependence of {𝜽𝑛}𝑁𝑛=1 through index 𝑛, the rigid inter-image motion parameter optimization problem

(P.1) can be decoupled into 𝑁 parallel subproblems. In what follows, the optimization of a single rigid motion set 𝜽𝑛corresponding with LR image 𝒔̃𝑛 is considered.
The cost function of this estimation problem is given by
𝒔̃𝑛 (𝝑,𝜽𝑛|𝒔̃𝑛) = − log 𝑝

𝑛
(𝒔̃𝑛;𝝑,𝜽𝑛)

=
𝑁𝒔
∑

𝑙=1

[

− log 𝑠̃𝑛𝑙 + log 𝜎2𝑛𝑙 +
𝑠̃2𝑛𝑙
2𝜎2𝑛𝑙

+
𝑠2𝑛𝑙(𝝑,𝜽𝑛)

2𝜎2𝑛𝑙
− log 𝐼0

(

𝑠̃𝑛𝑙𝑠𝑛𝑙(𝝑,𝜽𝑛)
𝜎2𝑛𝑙

)]

. (S3)

Keeping only terms that are function of the unknown parameter vector 𝜽𝑛, as only those are relevant for the
minimization, (S3) simplifies to

𝒔̃𝑛 (𝝑,𝜽𝑛|𝒔̃𝑛) ∼
𝑁𝒔
∑

𝑙=1

[

𝑠2𝑛𝑙(𝝑,𝜽𝑛)

2𝜎2𝑛𝑙
− log 𝐼0

(

𝑠̃𝑛𝑙𝑠𝑛𝑙(𝝑,𝜽𝑛)
𝜎2𝑛𝑙

)]

. (S4)

Assuming inter-rigid motion, the motion parameter vector 𝜽𝑛 ∈ ℝ6×1 is defined as,
𝜽𝑛 = {𝜃𝑛𝑘}6𝑘=1 =

[

𝑡𝑥𝑛, 𝑡𝑦𝑛, 𝑡𝑧𝑛, 𝛼𝑛, 𝛽𝑛, 𝛾𝑛
]𝑇 . (S5)

We then define the gradient w.r.t. the motion parameter 𝜃𝑛𝑘 by taking the respective derivative of (S4):

∇
𝑛𝑘 =

𝜕𝒔̃𝑛 (𝝑,𝜽𝑛|𝒔̃𝑛)
𝜕𝜃𝑛𝑘

= 𝒃𝑇𝑛 𝒄𝑛𝑘 (S6)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝒃𝑛 =
𝜕𝒔̃𝑛 (𝝑,𝜽𝑛|𝒔̃𝑛)
𝜕𝒔𝑛(𝝑,𝜽𝑛)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒔𝑛(𝝑,𝜽𝑛)
𝝈2
𝑛

−
𝒔̃𝑛
𝝈2
𝑛

𝐼1

(

𝒔̃𝑛𝒔𝑛(𝝑,𝜽𝑛)
𝝈2
𝑛

)

𝐼0

(

𝒔̃𝑛𝒔𝑛(𝝑,𝜽𝑛)
𝝈2
𝑛

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝒄𝑛𝑘 =
𝜕𝒔𝑛(𝝑,𝜽𝑛)

𝜕𝜃𝑛𝑘
=

𝜕|𝑨𝑛𝑴𝜽𝑛𝒓𝑛|
𝜕𝜃𝑛𝑘

= sgn(𝑨𝑛𝑴𝜽𝑛𝒓𝑛)⊙
(

𝑨𝑛
𝜕𝑴𝜽𝑛
𝜕𝜃𝑛𝑘

𝒓𝑛
)

(S7)

with 𝒃𝑛 = {𝑏𝑛𝑙}
𝑁𝒔
𝑙=1 ∈ ℝ𝑁𝒔×1, 𝒄𝑛𝑘 ∈ ℝ𝑁𝒔×1, and where ⊙ stands for point-wise multiplication. Finally, substitution of

(S7) in (S6) results in (S8) for ∇
𝑛𝑘 ∈ ℝ

∇
𝑛𝑘 = 𝒓𝑇𝑛

⏟⏟⏟
∈ℝ1×𝑁𝒓

𝜕𝑴𝑇
𝜽𝑛

𝜕𝜃𝑛𝑘
𝑨𝑇

𝑛

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sgn(𝑨𝑛𝑴𝜽𝑛𝒓𝑛)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

∈ℝ𝑁𝒔×1

⊙

⎛

⎜

⎜

⎜

⎝

𝒔𝑛(𝝑,𝜽𝑛)
𝝈2
𝑛

−
𝒔̃𝑛
𝝈2
𝑛

𝐼1
(

𝒔̃𝑛𝒔𝑛(𝝑,𝜽𝑛)
𝝈2
𝑛

)

𝐼0
(

𝒔̃𝑛𝒔𝑛(𝝑,𝜽𝑛)
𝝈2
𝑛

)

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∈ℝ𝑁𝒔×1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∈ℝ𝑁𝒓×1

(S8)
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The exact implementation of
𝜕𝑴𝑇

𝜽𝑛
𝜕𝜃𝑛𝑘

and the SRR forward model operators is further discussed in Section 2
hereafter.

In addition, to avoid drift of the coordinate system, a zero-mean motion constraint is used that enforces the
geometric mean of the motion parameters 𝜽̂(𝑡) to be the identity transformation. Specifically, the motion parameters of
each LR image are drift corrected after solving problem (P.1) by composing the inverse of the geometric mean of 𝜽̂(𝑡)
to each motion parameter set 𝜽̂(𝑡)𝑛 .
1.2. MAP estimation of tissue parameters

In contrast to problem (P.1), the tissue parameter estimation problem (P.2) is a large-scale minimization problem.
The cost function of this estimation problem is given by

𝒔̃(𝝑,𝜽|𝒔̃) +
𝑄
∑

𝑞=1

2
𝜆𝑞

TV(𝝑𝑞) = −
𝑁
∑

𝑛=1
log 𝑝𝒔̃𝑛 (𝒔̃𝑛;𝝑,𝜽𝑛) +

𝑄
∑

𝑞=1

2
𝜆𝑞

TV(𝝑𝑞). (S9)

The tissue parameter maps to be inferred are 𝝑 = {𝝑𝑞}
𝑄
𝑞=1 ∈ ℝ𝑁𝒓×𝑄, with 𝝑𝑞 = {𝜗𝑞𝑗}

𝑁𝒓
𝑗=1 ∈ ℝ𝑁𝒓×1 the 𝑞th tissue

parameter map and 𝝑∙𝑗 ∈ ℝ𝑄×1 all tissue parameters of the 𝑗th voxel of 𝝑𝑞 . The gradient of the cost function w.r.t. the
tissue parameter element 𝜗𝑞𝑗 can be written as:

∇
𝜗𝑞𝑗

=
𝜕𝒔̃(𝝑,𝜽|𝒔̃)

𝜕𝜗𝑞𝑗
=

𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1

𝜕𝒔̃𝑛𝑙 (𝝑,𝜽𝑛|𝒔̃𝑛)
𝜕𝜗𝑞𝑗

=
𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1
𝑏𝑛𝑙

𝜕𝒔𝑛𝑙(𝝑,𝜽𝑛)
𝜕𝜗𝑞𝑗

=
𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1
𝑏𝑛𝑙𝐽𝑛𝑙,𝑞𝑗 . (S10)

Here, 𝐽𝑛𝑙,𝑞𝑗 denotes the elements of the Jacobian matrix, which can be further expressed by

𝐽𝑛𝑙,𝑞𝑗 =
𝜕𝒔𝑛𝑙(𝝑,𝜽𝑛)

𝜕𝜗𝑞𝑗
=

𝜕 ||
|

∑𝑁𝒓
𝑗=1𝑨𝑛𝑴𝜽𝑛𝑓𝑛

(

𝝑∙𝑗
)

|

|

|

𝜕𝜗𝑞𝑗
= sgn

(

𝜑𝑛
)

𝑁𝒓
∑

𝑗=1
𝑨𝑛𝑴𝜽𝑛

𝜕𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗𝑞𝑗
, (S11)

where we write 𝜑𝑛 =
∑𝑁𝒓

𝑗=1𝑨𝑛𝑴𝜽𝑛𝑓𝑛
(

𝝑∙𝑗
) to ease the notation in what follows.

Furthermore, the upwind Total Variation term TV(𝝑𝑞), as described in section 2.2.4 of the main body of the paper,
is given by:

TV(𝝑𝑞) =
∑

𝑗

[√

𝜁𝑞𝑗 − 𝜖
]

(S12)

with
𝜁𝑞𝑗 = 𝜖2 +

∑

𝑚∈{𝑥,𝑦,𝑧}

[

(

Δ𝑚,+(𝜗𝑞𝑗)
)2 +

(

Δ𝑚,−(𝜗𝑞𝑗)
)2
]

. (S13)

The derivative of (S12) w.r.t. element 𝜗𝑞𝑗 is then given by
𝜕TV(𝝑𝑞)
𝜕𝜗𝑞𝑗

= 1
2
∑

𝑗

(

𝜁𝑞𝑗
)−1∕2 𝜕𝜁𝑞𝑗

𝜕𝜗𝑞𝑗
. (S14)

Note that a small offset 𝜖 > 0 is introduced in (S13) to avoid derivative singularities of TV when 𝝑𝑞 is locally constant.
The second order derivatives of cost function 𝒔̃(𝝑,𝜽|𝒔̃) w.r.t. the tissue parameter elements 𝜗𝑞𝑗 can be calculated

by taking the derivatives one order higher:

𝐻
𝜗𝑞𝑗𝜗𝑞′𝑗′

= 𝜕
𝜕𝜗𝑞𝑗

(

∇
𝜗𝑞′𝑗′

)

=
𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1

𝜕
𝜕𝜗𝑞𝑗

(

𝑏𝑛𝑙𝐽𝑛𝑙,𝑞′𝑗′
)

=
𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1

(

∇𝑏𝑛𝑙
𝜗𝑞𝑗

𝐽𝑛𝑙,𝑞′𝑗′ + 𝑏𝑛𝑙∇
𝐽𝑛𝑙
𝜗𝑞𝑗

)

. (S15)
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Using the shorthand notation 𝑧𝑛𝑙 =
𝑠̃𝑛𝑙𝑠𝑛𝑙(𝝑,𝜽𝑛)

𝜎2𝑛𝑙
, the gradient terms ∇𝑏𝑛𝑙

𝜗𝑞𝑗
and ∇𝐽

𝜗𝑞𝑗
are given by

∇𝑏𝑛𝑙
𝜗𝑞𝑗

=
𝜕𝑏𝑛𝑙
𝜕𝜗𝑞𝑗

= 𝜕
𝜕𝜗𝑞𝑗

(

𝜕𝑠̃𝑛𝑙 (𝝑,𝜽𝑛|𝒔̃𝑛)
𝜕𝑠𝑛𝑙(𝝑,𝜽𝑛)

)

=
𝜕2𝑠̃𝑛𝑙 (𝝑,𝜽𝑛|𝒔̃𝑛)

𝜕𝑠2𝑛𝑙(𝝑,𝜽𝑛)
𝜕𝑠𝑛𝑙(𝝑,𝜽𝑛)

𝜕𝜗𝑞𝑗

=

[

1
𝜎2𝑛𝑙

−
𝑠̃2𝑛𝑙
𝜎4𝑛𝑙

[

1 − 1
𝑧𝑛𝑙

𝐼1
(

𝑧𝑛𝑙
)

𝐼0
(

𝑧𝑛𝑙
) −

𝐼21
(

𝑧𝑛𝑙
)

𝐼20
(

𝑧𝑛𝑙
)

]]

𝐽𝑛𝑙,𝑞𝑗 , (S16)

∇𝐽𝑛𝑙
𝜗𝑞𝑗

=
𝜕𝐽𝑛𝑙,𝑞′𝑗′
𝜕𝜗𝑞𝑗

= 𝜕
𝜕𝜗𝑞𝑗

(

𝜕𝑠𝑛𝑙(𝝑,𝜽𝑛)
𝜕𝜗𝑞′𝑗′

)

= 𝜕
𝜕𝜗𝑞𝑗

(

sgn
(

𝜑𝑛
))

𝑁𝒓
∑

𝑗=1
𝑨𝑛𝑴𝜽𝑛

𝜕𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗𝑞′𝑗′
+ sgn

(

𝜑𝑛
)

𝑁𝒓
∑

𝑗=1
𝑨𝑛𝑴𝜽𝑛

𝜕2𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗𝑞𝑗𝜕𝜗𝑞′𝑗′

= sgn
(

𝜑𝑛
)

𝑁𝒓
∑

𝑗=1
𝑨𝑛𝑴𝜽𝑛

𝜕2𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗𝑞𝑗𝜕𝜗𝑞′𝑗′
, (S17)

where we have used that 𝑑 sgn(𝑥)
𝑑𝑥

= 2𝛿(𝑥).
The partial derivatives 𝜕𝑓𝑛

(

𝝑∙𝑗
)

𝜕𝜗𝑞𝑗
and 𝜕2𝑓𝑛

(

𝝑∙𝑗
)

𝜕𝜗𝑞𝑗𝜕𝜗𝑞′𝑗′
depend on the signal model of choice. In this work, a T1-relaxometry

model was adopted as a showcase example (Barral et al., 2010):

𝑓𝑛(𝝑∙𝑗) = 𝜌𝑗

(

1 − 2 𝑒
− TI𝑛

𝑇1,𝑗

)

, (S18)

with 𝝑∙𝑗 = [𝜌𝑗 , 𝑇1,𝑗]𝑇 the tissue parameter vector at position 𝒙𝑗 . A more extensive description of this signal model
is given in section 2.1 of the main body of the paper. The signal model considers 𝑄 = 2 tissue parameter maps.
Keeping track of the HR voxel index 𝑗 = 1,… , 𝑁𝒓, and tissue parameter index 𝑞 = 1,… , 𝑄, the first and second order
derivatives of 𝑓𝑛(𝝑∙𝑗) w.r.t. the tissue parameters 𝜗𝑞𝑗 are defined by (S19) and (S20), which are given as

𝜕𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗1𝑗
= 1 − 2𝑒

− TI𝑛
𝑇1,𝑗 ,

𝜕𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗2𝑗
= −2𝜌𝑗𝑒

− TI𝑛
𝑇1,𝑗

⎛

⎜

⎜

⎝

TI𝑛
(

𝑇1,𝑗
)2

⎞

⎟

⎟

⎠

(S19)

𝜕2𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗21𝑗
= 0,

𝜕2𝑓𝑛
(

𝝑∙𝑗
)

𝜕𝜗22𝑗
= −2𝜌𝑗𝑒

− TI𝑛
𝑇1,𝑗

⎛

⎜

⎜

⎝

TI𝑛
(

𝑇1,𝑗
)3

⎞

⎟

⎟

⎠

(

TI𝑛
𝑇1,𝑗

− 2
)

,
𝜕2𝑓𝑛

(

𝝑∙𝑗
)

𝜕𝜗1𝑗𝜕𝜗2𝑗′
= −2𝑒

− TI𝑛
𝑇1,𝑗

⎛

⎜

⎜

⎝

TI𝑛
(

𝑇1,𝑗
)2

⎞

⎟

⎟

⎠

(S20)
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Finally, we also give an expression for the second order derivative of the upwind Total Variation prior term in
(S12):

𝜕
𝜕𝜗𝑞𝑗

(𝜕TV(𝝑𝑞)
𝜕𝜗𝑞′𝑗′

)

= 𝜕
𝜕𝜗𝑞𝑗

(

1
2
∑

𝑗

(

𝜁𝑞𝑗
)−1∕2 𝜕𝜁𝑞𝑗

𝜕𝜗𝑞′𝑗′

)

= 1
2
∑

𝑗

[

(

𝜁𝑞𝑗
)−1∕2 𝜕2𝜁𝑞𝑗

𝜕𝜗𝑞𝑗𝜕𝜗𝑞′𝑗′
− 1

2
(

𝜁𝑞𝑗
)−3∕2

( 𝜕𝜁𝑞𝑗
𝜕𝜗𝑞𝑗

)( 𝜕𝜁𝑞𝑗
𝜕𝜗𝑞′𝑗′

)

]

. (S21)

Please note that for problem (P.2) the Hessian matrix was not explicitly stored in memory, but was implemented as
a Hessian multiply function. This function gives the result of a Hessian-times-vector product without computing the
Hessian directly, and thus avoids excessive memory usage.

2. SRR forward model operators and computational requirements
2.1. Warping operators and derivatives

The proposed SRR framework uses different warping operators in the forward model, described by (1) in section
2.1. The operator 𝑮𝑛 describes the known geometric transformation, extracted from the LR image acquisition header
information. This operator models the SRR acquisition, in which multiple LR contrast-weighted images at different
orientations are acquired by rotation of the acquisition plane for each image around one fixed encoding axis. A second
warping operator 𝑴𝜽𝑛 is introduced to model the effect of unintended rigid inter-image motion. Whereas the motion
parameters for 𝑮𝑛 are known from the acquisition, the motion parameters {𝜽𝑛}𝑁𝑛=1 for 𝑴𝜽𝑛 are unknown, and have to
be estimated from the data. The implementation of 𝑮𝑛 is identical to that of 𝑴𝜽𝑛 , which will now be discussed.

In what follows, for ease of notation, the LR image index 𝑛 is dropped. Furthermore, the elements of a single rigid
motion parameter vector 𝜽 are indexed numerically as 𝜽 =

(

𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6
). In other words, 𝜃1, 𝜃2, 𝜃3 correspond

with the rigid translations, and 𝜃4, 𝜃5, 𝜃6 with the Euler angles of the rigid rotations of (2). Similar to (Ramos-Llordén
et al., 2017; Cordero-Grande et al., 2016), the rigid motion is expressed as a series of linear phase modulations in
𝑘-space:

𝑻 (𝜃1, 𝜃2, 𝜃3) = 𝐻𝑼 (𝜃1, 𝜃2, 𝜃3)
𝑹𝟏(𝜃4) = 𝐻

2 𝑽 tan
1 (𝜃4)2𝐻

3 𝑽 sin
1 (𝜃4)3𝐻

2 𝑽 tan
1 (𝜃4)2

𝑹𝟐(𝜃5) = 𝐻
3 𝑽 tan

2 (𝜃5)3𝐻
1 𝑽 sin

2 (𝜃5)1𝐻
3 𝑽 tan

2 (𝜃5)3
𝑹𝟑(𝜃6) = 𝐻

1 𝑽 tan
3 (𝜃6)1𝐻

2 𝑽 sin
3 (𝜃6)2𝐻

1 𝑽 tan
3 (𝜃6)1,

(S22)

where  represents the 3D DFT and 𝑘 corresponds with the DFT along dimension 𝑑, with 𝑑 = 1,… , 3, and where
the superscript 𝐻 denotes the Hermitian conjugate. Both transforms are implemented using MATLAB’s built-in FFT
functions. In addition, 𝑼 ∈ ℝ𝑁𝒓×𝑁𝒓 and 𝑽𝑑 ∈ ℝ𝑁𝒓×𝑁𝒓 are the diagonal matrices that describe, respectively, the
applied translation and applied shear decomposed rotations along different axes, and whose vectors 𝒖 and 𝒗𝑑 contain
the diagonal elements, which are given by:

𝒖 = 𝑒−𝑖(𝜃1𝒌1+𝜃2𝒌2+𝜃3𝒌3)

𝒗tan1 = 𝑒𝑖 tan(𝜃4∕2)𝒌2◦𝒓3 𝒗sin1 = 𝑒−𝑖 sin(𝜃4)𝒌3◦𝒓2
𝒗tan2 = 𝑒𝑖 tan(𝜃5∕2)𝒌3◦𝒓1 𝒗sin2 = 𝑒−𝑖 sin(𝜃5)𝒌1◦𝒓3
𝒗tan3 = 𝑒𝑖 tan(𝜃6∕2)𝒌1◦𝒓2 𝒗sin3 = 𝑒−𝑖 sin(𝜃6)𝒌2◦𝒓1 ,

(S23)

where 𝒌𝑑 is the 𝑘-space coordinate vector of the spectral image voxels along dimension 𝑑, 𝒓𝑑 is the spatial coordinate
vector of the image voxels along dimension 𝑑, and ◦ denotes the Hadamard product.

With this in mind, the rigid motion operator 𝑴𝜽 can then be rewritten as
𝑴𝜽 = 𝑻 (𝜃1, 𝜃2, 𝜃3)𝑹1(𝜃4)𝑹2(𝜃5)𝑹3(𝜃6). (S24)
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This helps in defining the partial derivatives of 𝑴𝜽:

𝜕𝑴𝜽
𝜕𝜃𝑘

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑻 (𝜃1, 𝜃2, 𝜃3)
𝜕𝜃𝑘

𝑹1(𝜃4)𝑹2(𝜃5)𝑹3(𝜃6), 1 ≤ 𝑘 ≤ 3

𝑻 (𝜃1, 𝜃2, 𝜃3)𝑹′
1(𝜃4)𝑹2(𝜃5)𝑹3(𝜃6), 𝑘 = 4

𝑻 (𝜃1, 𝜃2, 𝜃3)𝑹1(𝜃4)𝑹′
2(𝜃5)𝑹3(𝜃6), 𝑘 = 5

𝑻 (𝜃1, 𝜃2, 𝜃3)𝑹1(𝜃4)𝑹2(𝜃5)𝑹′
3(𝜃6), 𝑘 = 6,

(S25)

where
𝜕𝑻 (𝜃1, 𝜃2, 𝜃3)

𝜕𝜃𝑘
= 𝐻 𝜕𝑼 (𝜃1, 𝜃2, 𝜃3)

𝜕𝜃𝑘
 , 1 ≤ 𝑘 ≤ 3. (S26)

𝑹′
1(𝜃4) = 𝐻

2 𝑽 ′ tan
1 (𝜃4)2𝐻

3 𝑽 sin
1 (𝜃4)3𝐻

2 𝑽 tan
1 (𝜃4)2

+ 𝐻
2 𝑽 tan

1 (𝜃4)2𝐻
3 𝑽 ′ sin

1 (𝜃4)3𝐻
2 𝑽 tan

1 (𝜃4)2
+ 𝐻

2 𝑽 tan
1 (𝜃4)2𝐻

3 𝑽 sin
1 (𝜃4)3𝐻

2 𝑽 ′ tan
1 (𝜃4)2,

(S27)

𝑹′
2(𝜃5) = 𝐻

3 𝑽 ′ tan
2 (𝜃5)3𝐻

1 𝑽 sin
2 (𝜃5)1𝐻

3 𝑽 tan
2 (𝜃5)3

+ 𝐻
3 𝑽 tan

2 (𝜃5)3𝐻
1 𝑽 ′ sin

2 (𝜃5)1𝐻
3 𝑽 tan

2 (𝜃5)3
+ 𝐻

3 𝑽 tan
2 (𝜃5)3𝐻

1 𝑽 sin
2 (𝜃5)1𝐻

3 𝑽 ′ tan
2 (𝜃5)3,

(S28)

𝑹′
3(𝜃6) = 𝐻

1 𝑽 ′ tan
3 (𝜃6)1𝐻

2 𝑽 sin
3 (𝜃6)2𝐻

1 𝑽 tan
3 (𝜃6)1

+ 𝐻
1 𝑽 tan

3 (𝜃6)1𝐻
2 𝑽 ′ sin

3 (𝜃6)2𝐻
1 𝑽 tan

3 (𝜃6)1
+ 𝐻

1 𝑽 tan
3 (𝜃6)1𝐻

2 𝑽 sin
3 (𝜃6)2𝐻

1 𝑽 ′ tan
3 (𝜃6)1.

(S29)

Finally, the derivatives of the diagonal elements of 𝑼 and 𝑽𝑑 can be summarized as
𝜕𝒖(𝜃1, 𝜃2, 𝜃3)

𝜕𝜃𝑑
= −𝑖𝒌𝑑◦𝒖(𝜃1, 𝜃2, 𝜃3)

𝜕𝒗tan1
𝜕𝜃4

= 𝑖
(

1+tan2(𝜃4∕2)
2

)

𝒌2◦𝒓3◦𝒗tan1

𝜕𝒗tan2
𝜕𝜃5

= 𝑖
(

1+tan2(𝜃5∕2)
2

)

𝒌3◦𝒓1◦𝒗tan2

𝜕𝒗tan3
𝜕𝜃6

= 𝑖
(

1+tan2(𝜃6∕2)
2

)

𝒌1◦𝒓2◦𝒗tan3

𝜕𝒗sin1
𝜕𝜃4

= −𝑖 cos(𝜃4)𝒌3◦𝒓2◦𝒗sin1
𝜕𝒗sin2
𝜕𝜃5

= −𝑖 cos(𝜃5)𝒌1◦𝒓3◦𝒗sin2
𝜕𝒗sin3
𝜕𝜃6

= −𝑖 cos(𝜃6)𝒌2◦𝒓1◦𝒗sin3 .

(S30)

Note that this warping operator 𝑴𝜽𝑛 can be shown to be unitary (Ramos-Llordén et al., 2017), which means that
its inverse is given by 𝑴𝐻

𝜽𝑛
. Hence, the motion operator 𝑴𝜽𝑛 is reversible, i.e. when applied to an image, this image

can be retrieved by applying 𝑴𝐻
𝜽𝑛

to the output of this operation.
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2.2. Blurring operator
The blurring operator 𝑩 in (1) describes the point spread function (PSF) of the MRI signal acquisition process. For

multislice acquisition methods that sample a rectangular part of 𝑘-space, the 3D PSF is separable and can be modeled as
the product of three 1D PSFs that are applied in the orthogonal directions aligned with the MR image coordinate axis.
The PSFs in the frequency and phase encoding direction are defined by the rectangular part of 𝑘-space that is regularly
sampled. In this work, an in-plane 2D PSF is constructed as a convolution of two identical Gaussian functions, with a
standard deviation set to 0.25 ×Δin-plane, with Δin-plane the in-plane resolution (Van Reeth et al., 2015). The remaining
through-plane 1D PSF models the slice selection profile (SSP), as SRR relies on rotated SSP cross-talk to enhance
the through-plane resolution while keeping the in-plane resolution fixed. In a multislice MRI acquisition, each slice is
excited by incorporating a slice selective gradient which is often generated by applying either a (windowed) sinc or a
Gaussian shaped RF pulse. In this work, the SSP in the slice-direction (i.e. the 𝑧-direction) corresponds to a windowed
sinc slice excitation, and was modeled as a smoothed box function (Poot et al., 2010):

SSP(𝑧; Δ𝑆) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 |

|

|

𝑧
Δ𝑆

|

|

|

≤ 1
3

1
2 −

1
2 sin

(

3𝜋
(

|

|

|

𝑧
Δ𝑆

|

|

|

− 1
2

))

1
3 < |

|

|

𝑧
Δ𝑆

|

|

|

< 2
3

0 2
3 ≤ |

|

|

𝑧
Δ𝑆

|

|

|

(S31)

where the full width at half maximum (FWHM) of the smoothed box equals the given slice thicknessΔ𝑆 of the modeled
LR images 𝒔𝑛. The spatially invariant blurring of the separable 3D PSF is performed using cyclic convolution, as
described in (Hansen et al., 2006), where the blurring operator 𝑩 ∈ ℝ𝑁𝒓×𝑁𝒓 and its conjugate transpose 𝑩𝐻 ∈ ℝ𝑁𝒓×𝑁𝒓

are spectrally decomposed as:
𝑩 = 𝐻

3 𝚲33𝐻
12𝚲1212 (S32)

𝑩𝐻 = 𝐻
3 𝚲𝐻

3 3𝐻
12𝚲

𝐻
1212 (S33)

with 𝚲12 the spectrum of a block-circulant-with-circulant-blocks matrix that describes the in-plane convolution, and
𝚲3 a sparse diagonal matrix whose diagonal elements are the Fourier coefficients of the first column of a circulant
blurring matrix created by circularly shifting the SSP array preceeding row forward. Furthermore, 12 and 3 denote
the 2D unitary DFT along the in-plane dimensions (𝑑 = 1 and 𝑑 = 2) and the unitary 1D DFT along the through-plane
dimension (𝑑 = 3), respectively.
2.3. Downsampling operator

Downsampling along the through-plane direction is required to resample the HR image to a LR image with
increased slice thickness. To allow for noninteger resampling, interpolation is required. The choice of interpolation
paradigm should allow a straightforward transpose implementation for substitution in the analytical expressions of the
Jacobian and Hessian of the gradient-based SRR optimization routine. Therefore, resampling was performed using
cubic convolution-based interpolation, which was first introduced in (Keys, 1981). As the original proposition of this
type of interpolation is put quite general and extensive, some extra choices are required regarding its computational
implementation. To promote full reproducibility of our method, these choices will now be discussed.

Cubic convolution-based interpolation (CCI) (Keys, 1981; Meijering and Unser, 2003) of uniformly sampled data
implies the use of an interpolation kernel 𝑢 ∶ ℝ → ℝ, which determines the weights to be assigned to the samples
𝑓𝑘 = 𝑓 (𝑘𝑇 ) of an original function 𝑓 ∶ ℝ → ℝ in computing the value of the interpolant 𝑔 at any arbitrary 𝑥 ∈ ℝ. In
what follows, for ease of notation, but without loss of generality, we will use 𝑇 = 1. CCI may then be described as

𝑔(𝑥) =
∑

𝑘∈ℤ
𝑓𝑘𝑢(𝑥 − 𝑘). (S34)

As can readily be observed from (S34), it is required that in order for 𝑔 to be an interpolant, the kernel 𝑢must satisfy that
𝑢(0) = 1 and 𝑢(𝑛) = 0 when 𝑛 is any nonzero integer. A balanced trade-off between computational cost and accuracy
is provided by the family of cubic convolution kernels that consist of piecewise third-degree polynomials and are once
continuously differentiable. In this work, Keys’ third-order cubic convolution kernel is used (Keys, 1981), which is
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defined as

𝑢(𝑥) =

⎧

⎪

⎨

⎪

⎩

3
2 |𝑥|

3 − 5
2 |𝑥|

2 + 1 if 0 ≤ |𝑥| ≤ 1,
− 1

2 |𝑥|
3 + 5

2 |𝑥|
2 − 4|𝑥| + 2 if 1 ≤ |𝑥| ≤ 2,

0 if 2 ≤ |𝑥|.
(S35)

This kernel has an approximation order of 𝐿 = 3, which implies that the resulting interpolant converges to the original
function as fast as the third power of the intersample distance. It also implies that the kernel is capable of reproducing
polynomials up to second degree. Outside the interval (−2, 2), the interpolation kernel 𝑢(𝑥) is zero. This means that
only four data samples are used to evaluate the interpolant at some new position 𝑥. In practice, the original function 𝑓
can only be observed on a finite interval. For values outside this interval, boundary conditions must be chosen. In our
work, values outside the image matrix are assumed to have a zero weight contribution, i.e. 𝑓𝑘 = 0, indicating that only
three values are used to evaluate the interpolant at the outer background edges of the generated LR image.

The HR image 𝒓 can be thought of as a function
𝒓 ∶ [𝑛] × [𝑚] × [𝑜] → ℝ, (S36)

where 𝑛, 𝑚, 𝑜 ∈ ℕ and ∀𝑘 ∈ ℕ ∶ [𝑘] = {1,… , 𝑘}. For each pair of integer coordinates, it yields a HR voxel
value. Following 3D volume considerations, downsampling along the third [𝑜] through-plane dimension, i.e. the slice
selection dimension of 𝒓, corresponds with [𝑛] × [𝑚] repeated one-dimensional CCI operations. A single CCI at a
non-integer position 𝑎 is given by

𝑥′(𝑎) = 𝑐1𝒙(𝒑1) + 𝑐2𝒙(𝒑2) + 𝑐3𝒙(𝒑3) + 𝑐4𝒙(𝒑4), (S37)
where 𝒑1,… ,𝒑4 are the four integer valued points surrounding 𝑎, and 𝑐1,… , 𝑐4 are the CCI coefficients obtained by
substituting 𝒑1,… ,𝒑4 in (S35). The downsampling operator 𝑫 transforms HR image 𝒓 into a LR image 𝒔 = 𝑫𝒓 of
which the (𝑖, 𝑗, 𝑘)-th voxel value is obtained by

(𝑫𝒓)(𝑖, 𝑗, 𝑘) = 𝑥′((𝑖, 𝑗, 𝑘)). (S38)
Since, by (S37), (S38) is a linear combination of voxel values of 𝒓, we can interpret the action of 𝑫 as a matrix vector
product. Where the vectors are the [𝑛] × [𝑚] one-dimensional HR through-plane arrays. 𝑫 can be represented by a
matrix, with 4 non-zero coefficients on each row, namely the CCI coefficients of (S37) at the corresponding voxel
indices separated by the inter-slice distance. The adjoint operator 𝑫𝑇 is then simply given by the matrix with the rows
of 𝑫 as its columns. The rows of 𝑫 or equivalently, the columns of 𝑫𝑇 can be computed on the fly, so there is no need
to store these matrices explicitly. If we denote the 𝑖-th row of 𝑫, i.e. the 𝑖-th column of 𝑫𝑇 by 𝒐𝑖, then the action of
𝑫𝑇 on a vector 𝒔 ∈ ℝ𝑁 can be implemented as follows:

𝑫𝑇 𝒔 =
𝑁
∑

𝑖=1
𝑠𝑖𝒐𝑖. (S39)

With this approach we obtain an exact adjoint operator 𝑫𝑇 that can be substituted in the analytical expressions for the
Jacobian and Hessian of the gradient-based optimization routine.
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2.4. Computational requirements
All algorithms were written in MATLAB and partially in C++, and run on a computer with an Intel® CoreTM i7-

6850K hexa-core CPU with 15MB of cache clocked at 3.60 GHz, with 32 GB of RAM. The computational complexity
of the proposed SRR-joint algorithm is primarily defined by the Fast Fourier Transform (FFT)-based image warping
operators 𝑴𝜽𝑛 and 𝑮𝑛, as described in section 2.1. The FFT-based implementation allows to solve the inverse SRR
problem using exact adjoint image warping, and avoids inaccuracies caused by an approximate inverse of the motion.
Furthermore, 𝑴𝜽𝑛 is analytically differentiable w.r.t. 𝜽𝑛. To speed up reconstruction, the FFT’s of these image warping
operators are executed on the GPU, reducing reconstruction time by a factor of 2-6 compared to pure MATLAB
code, mainly dependent on the number of LR images and corresponding image dimensions. In addition, as discussed
in section 1.1, MATLAB parallel computing tools were used to estimate 𝜽𝑛 for each value of 𝑛 separately when
solving problem (P.2) of the alternating minimization method. Similarly, voxel-wise NLLS model fitting during the
initialization step of the different SRR frameworks was performed in a parallel manner. The modified Bessel functions
required to calculate the negative log-likelihood function with Rician PDF and the upwind TV prior term, as described
in sections 2.2.3-2.2.4 of the main body, were implemented using custom C++ MEX-files for use with MATLAB. Also,
to avoid excessive memory usage, the Hessian matrix of problem (P.2) was implemented using a Hessian multiply
function, which gives the result of a Hessian-times-vector product without computing the Hessian directly. Bearing in
mind these implementation details, and given the (rather strict) tolerance criteria described in section 3 of the main
body, the reconstruction using SRR-joint took approximately 8.67 hours for a simulated LR 𝑇1-weighted dataset, 6.43
hours for the in vivo 𝑇2-weighted dataset, and 14.02 hours for the in vivo 𝑇1-weighted dataset, respectively. Overall, it is
expected that a more advanced implementation of the framework using only C/C++ and GPU/CUDA programming will
lead to further reduction of the reconstruction time. In particular, we would like to highlight a CUDA implementation
for exact adjoint image warping designed to run on NVIDIA GPUs (Renders et al., 2021), which could potentially be
used to speed up the present implementation of the SRR-joint framework. Finally, this proof-of-concept implementation
treats 𝑴𝜽𝑛 and 𝑮𝑛 as separate operators. However, the input of both operators could be combined to limit the number
of FFT’s and improve the computational efficiency.

3. Supplementary information on the whole brain simulation and in vivo experiments
3.1. Realistic motion parameters

For the synthetic whole brain Monte Carlo simulation experiment, different LR Rician distributed 𝑇1-weighted
magnitude datasets were simulated. Each of the 𝑁 noisy LR 𝑇1-weighted images {𝒔̃𝑛}𝑁𝑛=1 was affected by rigid inter-
image motion parameters {𝜽𝑛}𝑁𝑛=1 with motion components 𝜽𝑛 = {𝜃𝑛𝑘}6𝑘=1, that were chosen equal to an estimated
motion set obtained from model-based SRR with the SRR-joint framework on the 𝑇1-weighted in vivo dataset to
guarantee realistic head movement. To indicate the order of magnitude of these rigid motion parameters, Table S1
reports the extreme and mean values for each respective motion component, calculated over the LR image index 𝑛.
More specifically, the mean value of the 𝑘th motion component, i.e. 𝜃𝑘, was calculated as:

𝜃𝑘 = 1
𝑁

𝑁
∑

𝑛=1
𝜃𝑛𝑘. (S40)

Table S1
Extreme and mean values for each of the motion parameters that were used for the synthetic whole brain simulation
experiments.

𝑡𝑥 𝑡𝑦 𝑡𝑧 𝛼 𝛽 𝛾
[mm] [mm] [mm] [degree] [degree] [degree]

extremum 0.517 2.486 2.082 2.890 -0.538 -0.836
𝜃𝑘 0.28 1.69 0.38 0.67 -0.03 -0.54
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3.2. Quantitative performance measures
Table S2 and S3 show the quantitative performance measures obtained in the whole brain simulation and in

vivo experiments, which were already reported in the paper, but this time the corresponding standard error and 95%
confidence intervals are added as complementary information. In addition, Fig. S1 and Fig. S2 show, respectively, the
absolute value of the relative bias maps and the relative standard deviation maps of SRR-static, SRR-reg, and SRR-joint
for the whole brain simulation experiment.

Table S2
Quantitative performance measures with standard error (SE) and 95% confidence intervals (CI) for the whole brain
simulations, calculated over 𝑁MC = 8 reconstruction results, for each SRR framework.

SRR-static SRR-reg SRR-joint

value SE CI value SE CI value SE CI

Overall rel. bias
𝑇1 [%] 16.840 0.030 (16.782,16.899) 10.121 0.020 (10.081,10.161) 8.698 0.016 (8.667,8.731)
𝜌 [%] 64.530 4.014 (56.663,72.398) 31.875 2.083 (26.793,34.957) 24.075 1.712 (20.719,27.431)

Overall rel. std. dev.
𝑇1 [%] 0.316 0.001 (0.314,0.318) 0.591 0.002 (0.589,0.595) 0.686 0.002 (0.682,0.692)
𝜌 [%] 0.842 0.039 (0.765,0.919) 1.072 0.034 (1.006,1.139) 1.313 0.052 (1.211,1.415)

Overall rel. RMSE
𝑇1 [%] 16.855 0.030 (16.796,16.914) 10.176 0.020 (10.136,10.216) 8.799 0.016 (8.767,8.831)
𝜌 [%] 64.547 4.014 (56.679,72.415) 30.945 2.083 (26.863,35.028) 24.204 1.713 (20.846,27.561)

RMMSE
𝒕𝑥 [mm] 0.374 0 n/a 0.095 0.004 (0.085,0.105) 0.063 0.006 (0.049,0.079)
𝒕𝑦 [mm] 1.381 0 n/a 0.322 0.018 (0.280,0.364) 0.027 0.009 (0.006,0.049)
𝒕𝑧 [mm] 1.543 0 n/a 0.289 0.037 (0.203,0.375) 0.043 0.017 (0.003,0.083)
𝜶 [degree] 1.207 0 n/a 0.335 0.049 (0.219,0.453) 0.019 0.006 (0.005,0.035)
𝜷 [degree] 0.245 0 n/a 0.109 0.013 (0.079,0.139) 0.015 0.003 (0.007,0.023)
𝜸 [degree] 0.261 0 n/a 0.079 0.004 (0.069,0.089) 0.008 0.003 (0.001,0.017)

Table S3
Quantitative performance measures with standard error (SE) and 95% confidence intervals (CI) for the in vivo experiment.

SRR-static SRR-reg SRR-joint

value SE CI value SE CI value SE CI

Average edge width
𝑇1 map [mm] 3.878 0.389 (2.995,4.762) 3.759 0.423 (2.801,4.718) 3.671 0.412 (2.738,4.605)
𝜌 map [mm] 2.920 0.357 (2.111,3.729) 2.499 0.402 (1.587,3.413) 2.389 0.468 (1.328,3.450)

SNRVOI in 𝑇1 map
white matter 97.103 5.094 (88.064,107.246) 99.656 5.336 (90.073,109.803) 133.730 8.161 (119.206,150.323)
CSF 30.131 7.861 (19.287,43.518) 32.412 6.393 (21.860,43.253) 34.769 8.944 (22.384,48.906)
caudate nucleus 35.211 16.113 (17.852,65.443) 38.697 14.549 (21.356,64.944) 45.074 16.729 (24.307,75.419)

SNRVOI in 𝜌 map
white matter 66.084 4.097 (57.727,73.382) 85.208 4.153 (77.596,93.347) 93.667 4.996 (84.195,102.947)
CSF 19.632 3.688 (14.403,25.933) 22.897 4.189 (16.213,29.394) 19.456 4.046 (14.295,26.428)
caudate nucleus 42.494 2.946 (37.241,48.165) 55.883 4.904 (47.988,65.498) 59.989 5.136 (51.068,69.679)
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Figure S1: Absolute value of the relative bias maps for T1 and 𝜌, calculated from the reconstruction results of the
synthetic whole brain simulations. For each of the different model-based SRR frameworks orthogonal mid-slice views are
shown. Numbers at the bottom of the images indicate the overall relative bias measure, which was obtained by calculating
the spatial mean of the absolute value of the corresponding relative bias map.

Figure S2: Relative standard deviation maps for T1 and 𝜌, calculated from the reconstruction results of the synthetic whole
brain simulations. For each of the different model-based SRR frameworks orthogonal mid-slice views are shown. Numbers
at the bottom of the images indicate the overall relative standard deviation measure, which was obtained by calculating
the spatial mean of the corresponding relative standard deviation map.

Q. Beirinckx et al.: Preprint submitted to Computerized Medical Imaging and Graphics Page 11 of 14



Supplementary file

3.3. Edge profile selection
As described in subsection 3.3 of the main body paper, spatial resolution of the obtained parameter maps was

assessed in all 3 image dimensions by measuring the average width over 15 edge profiles. The sample of edge profiles
was selected in one parameter map, and then consistently compared across all the parameter maps of the respective
frameworks. To illustrate this approach, Fig. S3 shows the edge profile fitting drawn across 3 lines-of-interest for
different inserts along each orthogonal plane.
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Figure S3: Spatial resolution assessment by means of edge profile fitting, drawn across 3 lines-of-interest for different
inserts along each orthogonal plane, and compared for the three SRR frameworks.
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3.4. Echo time selection
Figure S4 illustrates the echo time selection for the in vivo 𝑇2 mapping experiment. The echo time spacing ΔTE in

each MESE was chosen as such to guarantee full coverage of the T2 relaxation curve when all 7 MESE acquisitions are
combined. The first echo time of each MESE was ignored in the model-based SRR to alleviate the effect of stimulated
secondary echoes.

Figure S4: Echo time selection for the in vivo 𝑇2 mapping experiment: Seven different MESE acquisitions were used to
acquire a total of 28 𝑇2-weighted LR images. Each MESE acquisition was characterized by a unique rotation around
the phase-encoding axis (rotation angles similar as in Fig. 1 in section 3.1 of the main body). Furthermore, each MESE
consisted of 4 unique echo times, which are tabulated (bottom right), and visualized with the corresponding LR image
number (top). The first echo time of each MESE was ignored in the model-based SRR to alleviate the effect of stimulated
secondary echoes. This effect is clearly distinguishable when plotting the mean signal intensity for each LR 𝑇2-weighted
image as a function of the echo time (bottom left).
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