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Abstract. Magnetic resonance imaging (MRI) based T1 mapping allows spatially resolved quan-
tification of the tissue-dependent spin-lattice relaxation time constant T1, which is a potential
biomarker of various neurodegenerative diseases, including Multiple Sclerosis, Alzheimer dis-
ease, and Parkinson’s disease. In conventional T1 MR relaxometry, a quantitative T1 map is
obtained from a series of T1-weighted MR images. Acquiring such a series, however, is time
consuming. This has sparked the development of more efficient T1 mapping methods, one of
which is a super-resolution reconstruction (SRR) framework in which a set of low resolution
(LR) T1-weighted images is acquired and from which a high resolution (HR) T1 map is directly
estimated.

In this paper, the SRR T1 mapping framework is augmented with motion estimation. That is, mo-
tion between the acquisition of the LR T1-weighted images is modeled and the motion parameters
are estimated simultaneously with the T1 parameters. Based on Monte Carlo simulation exper-
iments, we show that such an integrated motion/relaxometry estimation approach yields more
accurate T1 maps compared to a previously reported SRR based T1 mapping approach.

Keywords: quantitative magnetic resonance imaging, super-resolution, T1 mapping, maximum
likelihood estimation, motion correction

1. Introduction

T1 mapping is a quantitative Magnetic Resonance Imaging (MRI) technique that generates maps of the
tissue-specific spin-lattice relaxation time T1 [1]. There is growing evidence that T1 mapping can be
applied to detect subtle microscopic tissue damage, with potential for earlier diagnosis of various brain
diseases including multiple sclerosis [2–4], epilepsy [5] and Alzheimer’s disease [6]. Despite these
promising results, T1 mapping currently remains a research tool and is not yet part of routine clinical
assessment. The main obstacle for clinical adaptation of T1 mapping is that conventional T1 mapping
techniques require long scan times to achieve adequate accuracy, precision and spatial resolution.

The gold standard method for T1 mapping, the inversion recovery method, is presented in Fig. 1.
When an object is placed in a strong magnetic field, its nuclear spins align to this magnetic field,
resulting in a net magnetic moment oriented in the so-called longitudinal direction (i.e., the direction
parallel to the external magnetic field, corresponding with the z-direction in Fig. 1). Next, this equilib-
rium state is disturbed by applying a 180◦ radio frequency (RF) pulse, which inverts the longitudinal
magnetization. After this pulse, the spins start to relax back towards the equilibrium state with a time
constant T1 [7]. After inversion time TI, the longitudinal component is tipped into the transverse plane
by a 90◦ RF pulse, after which the (T1-weighted) MR signal is measured. In this way, T1-weighted
images are acquired at different inversion times. Subsequently, a T1 map is estimated by voxel-wise
fitting a parametric model to these images. Since many images are required in such an acquisition
scheme, conventional T1 mapping suffers from long acquisition times.

A simple way to reduce acquisition time is to lower the number of T1-weighted images. This,
however, results in a loss of precision in the estimated T1 map. Alternatively, a large number of
T1-weighted images can be acquired in a short acquisition time by reducing the acquisition time of
each individual T1-weighted image by lowering their spatial resolution. Commonly, this is done by
acquiring multi-slice images where the slice-thickness is much larger than the spatial resolution within



Q. Beirinckx, et al. / Joint Maximum Likelihood Estimation of Motion and T1 Parameters... 3

t

t

TI
TR

RF pulse

Mz(t)

Mz(0)
(
1− 2e−

t
T1

)

180◦ 90◦ 180◦A

z′

y′

x′

z′

y′

x′

z′

y′

x′

z′

y′

x′

z′

y′

x′

B0 B0 B0 B0 B0
Mz′

Mz′

Mz′

Mz′

Mx′y′

(a) (b) (c) (d) (e)

B

Figure 1. A: Inversion Recovery Sequence: The longitudinal net nuclear magnetization vector is inverted by
a 180◦ pulse. After inversion time TI, the longitudinal component is tipped into the transverse plane by a
90◦ pulse, after which the (T1-weighted) MR signal is measured. By acquiring multiple MR signals (images)
at different inversion times, the recovery of the longitudinal magnetization towards its equilibrium value can
be sampled. The time between two repetitions of the sequence, i.e. the time between the inversion pulses,
is called the repetition time TR. B: Effect of the inversion recovery sequence on the net nuclear longitudinal
magnetization vector Mz as seen in the RF-rotating frame. B0 represents the external magnetic field vector.
(a) Initial net nuclear longitudinal magnetization in alignment with B0, (b) the 180◦ inverts the longitudinal
magnetization Mz , (c)-(d) the longitudinal magnetization Mz relaxes and recovers to equilibrium, (e) after an
inversion time TI the relaxing longitudinal magnetizationMz is tipped into the transverse plane by a 90◦ pulse
before readout.

the slice, i.e., the through-plane resolution is much lower than the in-plane resolution. Additionally,
increasing the slice thickness increases the signal-to-noise ratio (SNR) of the T1-weighted images, as
signal strength scales linearly with imaged volume. However, thicker slices also suffer from increased
partial volume effects, which arise when different tissues occur within a single voxel. In summary,
reducing the acquisition time in conventional T1 mapping is clearly a trade-off in which faster scanning
comes at the cost of either a lower precision or a lower spatial resolution and increased partial volume
effects, of the resulting T1 map.
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To improve this trade-off, a super-resolution reconstruction (SRR) method was recently proposed
that estimates a 3D high resolution T1 map with isotropic voxel size from a set of low resolution T1-
weighted multi-slice images with different slice orientations and anisotropic voxel size [8]. These low
resolution images are acquired at a high in-plane resolution and a low through-plane resolution. It was
shown that this method indeed provides a better trade-off between resolution, precision and acquisition
time than direct high-resolution acquisition [9]. In this approach, motion was compensated for by
adjusting the transformation parameters constituting the motion operator in a preprocessing step, and
fixing these parameters in the SR-T1 estimation routine that followed. Fixing the motion parameters,
however, may lead to inaccurate (i.e., biased) T1 maps since no feedback mechanism is present in the
SR-T1 estimation routine that can undo incorrect fixation of motion parameters. As such, errors that
potentially exist in the motion estimation step might propagate into the T1 estimation. At the same
time, another recent work has proposed a unified Maximum Likelihood framework for simultaneous
motion and T1 estimation in non-super-resolution T1 mapping [10]. It was demonstrated that the
joint incorporation of the relaxation model, the motion model as well as the data statistics provide
substantially more accurate motion and T1 parameter estimates. In the present paper, we explore,
by means of simulation experiments, the potential of combining both approaches, resulting into joint
Maximum Likelihood estimation of T1 and motion in a super-resolution framework.

The remainder of this paper is organized as follows. In Section 2, the image acquisition model, the
proposed joint Maximum Likelihood estimator (MLE) and its implementation are described. Section
3 describes the simulation experiments, of which the results are presented and discussed in Section 4.
Finally, in Section 5 conclusions are drawn.

2. Theory

The proposed method starts from a set of N T1-weighted multi-slice images, each with a different
slice direction. The multi-slice images, which are assumed to have a high in-plane resolution and a
low through-plane resolution, will be referred to as the low resolution (LR) images. That is, the slice
thickness, or through-plane voxel size, is larger than the in-plane voxel size, leading to anisotropic
voxels. The method then estimates a high-resolution (HR) T1 map with isotropic voxels from a set of
LR multi-slice T1-weighted images and simultaneously estimates the motion between the acquisition
of these LR images.

In the derivation of the imaging model, we will assume that the LR T1-weighted images are ac-
quired with a multi-slice inversion recovery (IR) conventional spin echo (SE) sequence, being the gold
standard sequence for T1 mapping [11–13].

2.1. MR imaging model

Let T1 = (T1(j)) ∈ RNr×1 be the vector containing the values of the unknown T1 map at the HR
grid points {xj} (with xj ∈ R3×1 and j the HR voxel index, j = 1, . . . , Nr). Furthermore, let
sn ∈ RNs×1, with n = 1, . . . , N , denote the vector containing the intensities of the noiseless LR
T1-weighted multi-slice image with slice direction n, acquired with inversion time TIn, and sampled
at the LR grid points {ynl} (with ynl ∈ R3×1 and l the LR voxel index, l = 1, . . . , Ns). To derive
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the mathematical relation between the HR T1 map of interest, T1, and the LR image sn, we now first
introduce the virtual, noise free, HR T1-weighted image rn = (rn(j)) ∈ RNr×1, which is assumed to
be acquired with the same inversion time TIn as sn and sampled at the (nonrotated) HR grid points of
T1.

Then, rn can be modeled as a function of T1 and a quantity ρ = (ρj) ∈ RNr×1, which is
proportional to the proton density [14]:

rn(j) = ρ(j)

(
1− 2e

− TIn
T1(j)

)
, (1)

where we have assumed a perfect inversion pulse of 180◦ and a repetition time TR � T1. In the
remainder of this paper, T1 and ρ will be referred to as relaxation model parameters to be estimated.

Mathematically, we can now express the LR image sn as the result of applying a sequence of
operators on the virtual HR image rn:

sn = DBGnMθnrn, (2)

with Mθn ∈ RNr×Nr , Gn ∈ RNr×Nr , B ∈ RNr×Nr and D ∈ RNs×Nr linear operators that
describe, respectively, unintended motion, a known geometric transformation, spatially invariant blur-
ring, and downsampling. In this work, we assume the unintended motionMθn to be rigid, parameter-
ized by

θn = (txn, tyn, tzn, αn, βn, γn)T , (3)

with txn, tyn, tzn the translation parameters and αn, βn, γn the Euler angles of three elementary ro-
tation matrices that describe rotation around the x, y and z axis, respectively. The superscript T in
Eq. (3) denotes the transpose operation. In the present work, we use the same implementation of the
rigid motion operator Mθ as in [10], where they used the fact that rotation matrices can be decom-
posed as the product of three shear matrices. Each of the shearings can be implemented efficiently
with Fast Fourier Transforms (FFT). Translation is implemented using the FFT as well. The opera-
tor Gn applies a known geometric transformation that models the image acquisition with a specific
slice direction. More specifically, operator Gn models the SRR acquisition, in which multiple LR
T1-weighted images at different orientations are acquired by rotation of the acquisition plane for each
image around one fixed encoding axis. In our implementation, operator Gn is a simplified version
of Mθ that models rotation around one fixed encoding axis. However, whereas Mθn models the ef-
fect of unintended motion, which is unknown and has to be estimated from the data, the geometric
transformationGn is known and determined by the prescribed slice direction of the LR image sn.

The blurring operatorB describes the point spread function (PSF) of the MRI acquisition process,
which can be modeled as tensor product of the PSF in three orthogonal directions: the through-plane
(i.e., slice-selection) direction and the two in-plane directions, which are known as the phase- and
frequency-encoding direction. We currently consider the PSF in the through-plane direction only.
This through-plane PSF depends on the slice selection method. In this incipient work, the operatorsB
and D describing spatially invariant blurring and downsampling, respectively, are combined into one
operatorD that performs downsampling by averaging along the through-plane direction [15]. Details
about this specificD operator (and corresponding adjoint operator) are given in Appendix A.
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For convenience of expression, we defineAn = DGnMθn , and rewrite Eq. (2) as

sn = Anrn, (4)

with An = (an(l, j)) ∈ RNs×Nr . By combining Eqs. (1) and (4), the noiseless signal in voxel l of
the LR T1-weighted image can be described in terms of the HR maps T1 = (T1(j)) and ρ = (ρ(j)):

sn(l;T1,ρ) =

Nr∑
j=1

an(l, j)ρ(j)

(
1− 2e

− TIn
T1(j)

)
. (5)

In this work, we will assume that magnitude images are acquired, as is common for spin echo IR
sequences. The voxel intensities of magnitude images reflect only the magnitude of the longitudinal
magnetization, disregarding polarity [16]. Hence, in the absence of noise, the magnitude images are
described by |sn|, with | · | the point-wise modulus operator.

Obviously, real-world images will be subject to noise. In this work, the noise is assumed to be
additive, zero mean Gaussian noise. It has been shown that this is a valid assumption when the signal-
to-noise ratio of the magnitude data is sufficiently high (> 3) [17–20], which is typically the case for
the LR images. Hence, if we denote the acquired LR magnitude images by s̃n ∈ RNs×1, our image
acquisition model can be described as

s̃n = |Anrn|+ en, n = 1, . . . N, (6)

with en ∈ RNs×1 a vector containing zero mean Gaussian noise contributions.

2.2. The joint Maximum Likelihood estimator

Having derived the imaging model in subsection 2.1, this subsection will describe the model-based
SRR framework that estimates an HR ρ and T1 map (ρ and T1, respectively) simultaneously with the
motion parameters θn, n = 1, . . . , N , from a set of LR images {s̃1, s̃2, . . . , s̃N}, using a joint Maxi-
mum Likelihood estimator (MLE). The MLE is chosen because it is asymptotically unbiased, efficient
(i.e., most precise) and consistent [21]. The MLE fully exploits prior knowledge on the statistical
distribution of the data. In our case, the data consists of the voxels of the LR images. These voxels can
be modeled as random variables that, due to the presence of noise, fluctuate about their expected val-
ues which are described by the model |Anrn| that was derived in subsection 2.1. Assuming additive,
zero-mean Gaussian distributed noise, the PDF of a voxel s̃n(l), with l = 1, . . . , Ns, of the image s̃n
is given by:

ps̃n(l)(s̃n(l);T1,ρ,θn) =
1

σ
√

2π
e−

(s̃n(l)−sn(l;T1,ρ,θn))2

2σ2 , (7)

with σ the standard deviation of the noise, which in this work is assumed to be spatially and temporally
invariant. Assuming all voxels of all T1-weighted LR images statistically independent, the joint PDF
of all voxels is given by:

ps̃(̃s;T1,ρ,θ) =

N∏
n=1

Ns∏
l=1

ps̃n(l)(s̃n(l);T1,ρ,θn), (8)
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with s̃ = (s̃T1 , . . . , s̃
T
N )T and θ = (θT1 , . . . ,θ

T
N )T . To simplify the notation, let us define the parameter

vector τ = (T T
1 ,ρ

T ,θT )T .
To construct the MLE of τ , the likelihood function L(τ |̃s), which is the joint PDF of Eq. (8)

regarded as a function of the unknown parameter vector τ (with s̃ fixed), is needed. The MLE τ̂ML of
the parameter vector τ from measured data s̃ is that value of τ that maximizes the likelihood function
L(τ |̃s), or equivalently, the so-called log-likelihood function Ls̃(τ |̃s) , logL(τ |̃s), with respect to
τ , i.e.,

τ̂ML = arg max
τ
Ls̃(τ |̃s). (9)

It follows from Eq. (8) that the log-likelihood function can be written as

Ls̃(τ |̃s) = −NNs ln
(√

2πσ
)
− 1

2σ2

N∑
n=1

Ns∑
l=1

(s̃n(l)− sn(l;T1,ρ,θn))2. (10)

Hence, the ML estimator τ̂ML is equal to the ordinary (unweighted) least-squares estimator:

τ̂ML = arg min
τ
J(τ ), (11)

with

J(τ ) =

N∑
n=1

Ns∑
l=1

(s̃n(l)− sn(l;T1,ρ,θn))2 . (12)

The non-linear optimization problem (11) can be solved using the alternating minimization method,
also known as the cyclic block-coordinate descent (cBCD) method [22,23]. In this method, the param-
eter vector τ is split into blocks and the cost function J(τ ) is successively minimized with respect to
each block in a cyclic order. In our case, we use a split into two blocks that contain the motion param-
eters and relaxation model parameters, respectively. In this way, the large-scale optimization problem
(11) is separated into more easily solvable problems [10]. Moreover, it can be shown that this cBCD
method assures a convergence property where J(τ ) decreases at every iteration [22]. Convergence to
at least a local minimum is guaranteed [24]. In summary, the joint MLE is obtained by the following
iterative recursive procedure:

θ̂(t+1) = arg min
θ
J(T̂1

(t)
, ρ̂(t),θ) (P.1)

T̂1
(t+1)

, ρ̂(t+1) = arg min
T1,ρ

J(T1,ρ, θ̂
(t+1)) (P.2)

with θ̂(0) = θini, ρ̂(0) = ρini and T̂1
(0)

= T1ini the initial values of the parameters θ, ρ and T1,
respectively. By its definition, this procedure produces a nonincreasing sequence of cost function
values [23]. The procedure is terminated when the number of iterations exceeds tmax or when E(t) <
Emin, where E(t) = J(τ̂ (t−1)) − J(τ̂ (t)), and consecutive iterations are started from E(0) = rEmin,
with r ∈ R>1. The pseudo-code of the joint MLE algorithm is presented in Algorithm 1.
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Algorithm 1: Joint MLE
Input: LR images s̃ and initial values θini, ρini and T1ini
Output: ML estimates θ̂ML, T̂1ML and ρ̂ML

Set t← 0 and θ̂(0), T̂1
(0)
, ρ̂(0) ← θini,ρini,T1ini;

E(0) = rEmin, with r ∈ R>1;
while E(t) ≥ Emin and t < tmax do

Solve (P.1) to get θ̂(t+1):

θ̂(t+1) = arg min
θ
J(T̂1

(t)
, ρ̂(t),θ), started from θ ← θ̂(t);

Solve (P.2) to get ρ̂(t+1), T̂
(t+1)
1 :

T̂1
(t+1)

, ρ̂(t+1) = arg min
T1,ρ

J(T1,ρ, θ̂
(t+1)), started from T1,ρ← T̂

(t)
1 , ρ̂(t);

Calculate E(t+1) = J(T̂1
(t)
, ρ̂(t), θ̂(t))− J(T̂1

(t+1)
, ρ̂(t+1), θ̂(t+1));

Set t← t+ 1;
end

θ̂ML = θ̂(t), T̂1ML = T̂1
(t)

and ρ̂ML = ρ̂(t);
return θ̂ML, T̂1ML, ρ̂ML;

2.3. Implementation

For the proposed joint MLE algorithm, in which the non-linear optimization problem is solved in
alternating fashion between problems (P.1) and (P.2), the motion estimation problem (P.1) adopts a
particularly simple structure when the relaxation model parameters are fixed. Assuming no depen-
dence of {θn}Nn=1 through index n, as is done here, the motion estimation problem can be decoupled
into N independent minimization problems that can be evaluated in parallel. In the absence of addi-
tional information, a natural choice for the initialization of the motion parameters in the first iteration
is a zero-motion initial condition such that the rigid motion operator Mθini = I , with I the identity
matrix. Initial values ρini and T1ini were obtained by voxel-wise NLLS fitting the modulus of the
relaxation model in Eq. (1) to the upsampled LR images with a Levenberg-Marquardt [25] algorithm,
using the MATLAB routine lsqnonlin. Upsampling was performed using the adjoint operator se-
quence GT

nD
T acting on the LR images s̃n, followed by application of | · |, the point-wise modulus

operator, to regain magnitude images.
The cost functions of LS problems (P.1) and (P.2) were minimized with a trust-region Newton

algorithm using the MATLAB routine fminunc. Explicit analytical gradients were supplied for LS
problem (P.1), while both explicit analytical gradients and implicit Hessian matrix elements (in the
form of a matrix multiplication routine) were supplied for LS problem (P.2). The matrix multipli-
cations in Eq. (2) were implemented by splitting the transformation operators Mθn and Gn in sets
of shear operations, each of which can be efficiently applied as a filtering operation in the frequency
domain [10].

The computational complexity of the joint MLE algorithm is primarily defined by the FFT opera-
tions that are part of the implementation of operators Gn and Mθn in equation Eq. (2). Using that a
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Q element 1D FFT has computational complexity of O (Q log2(Q)), we derived that a single step of
problem (P.1) required O

(
69M3 log2(M

2) + 5M6 log2
(
M6
))

floating point operations, given that
Gn and Mθn operate on HR images with isotropic dimensions M ×M ×M . This includes the op-
erations introduced by the explicit analytical expressions for the gradient of the objective function of
problem (P.1) w.r.t. motion parameters θn. Furthermore, the given number of floating point operations
should be multiplied by a factor N − 1, since problem (P.1) is optimized in parallel manner. In ad-
dition, a single step of problem (P.2) requires O

(
N ·

(
48M3 log2(M

2) + 4M6 log2
(
M6
)))

floating
point operations. This number also includes the additional FFT operations introduced by the analytical
gradient and Hessian expression for the objective function w.r.t. the T1 parameters. The computational
requirements of operatorD were less demanding with one call of operatorD calculated up to 10 times
faster thanGn, and up to 50 times faster thanMθn , for the considered phantom size.

3. Simulation experiments

In this section, we describe the Monte Carlo (MC) simulation experiments that were carried out to
evaluate the performance of the proposed joint MLE and to compare it with:

• SRR-T1: SR least squares (LS) estimation without motion correction. In this approach, the
motion is simply ignored. That is, the least-squares criterion (12) is minimized with respect to
the relaxation model parameters only, while fixing the motion parameters at θ = 0.

• SRR-T1-MI: Mutual Information (MI) based registration prior to SR LS estimation. In this
approach, the LR images {s̃1, s̃2, . . . , s̃N} are first upsampled by applying the adjoint operator
AT

n . Next, the upsampled (HR) images are registered using a mutual information image similar-
ity metric [26,27]. The motion parameters that result from this procedure are then substituted in
the LS criterion (12), which is then minimized with respect to the relaxation model parameters
only.

• SRR-T1-PRE: SRR T1 mapping described in [8]. In this approach, the motion parameters
are estimated in a preprocessing step prior to the estimation of the HR T1 and ρ map. For
this purpose, an iterative model-based motion correction scheme is used. First, the LR images
{s̃1, s̃2, . . . , s̃N} are upsampled by applying the adjoint operator AT

n . The first time that this
upsampling is performed, the motion operator Mθn that co-constitutes A is set equal to the
identity matrix. Next, a T1 and ρ map are estimated by voxel-wise fitting the modulus of model
(1) to these upsampled images, using the Levenberg-Marquardt algorithm. Based on the thus
obtained HR T1 and ρ maps, LR images are generated using model (5). These LR images are
then rigidly aligned with the LR images {s̃1, s̃2, . . . , s̃N} by minimizing their mean squared
difference. The resulting motion parameter estimates are then used to update Mθn . All steps
are repeated until the stopping criterion is met with Emin = 10−4. The motion parameters are
then fixed and a HR T1 and ρ map is estimated using a LS estimator, with as initial values for
T1 and ρ the values that resulted from the motion correction procedure.

Details about the specific simulation settings for each of the described MC simulation experiments
are summarized in Table 1. Information about the initialization of (P.1) and (P.2) is also summarized in
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Table 1. Simulation settings for the different Monte Carlo experiments: SR LS estimation without motion
correction (SRR-T1), Mutual information based registration prior to SR LS estimation (SRR-T1-MI), SRR T1
mapping with preprocessing loop (SRR-T1-PRE), the proposed Joint MLE (SRR-T1-JMLE).

SRR-T1 SRR-T1-MI SRR-T1-PRE SRR-T1-JMLE

Dimension of HR maps 12× 12× 12 12× 12× 12 12× 12× 12 12× 12× 12

Dimension of LR images 12× 12× 6 12× 12× 6 12× 12× 6 12× 12× 6

Spatial SNR SNR∈[20, 30, . . . , 100]a SNR∈[20, 30, . . . , 100]a SNR∈[20, 30, . . . , 100]a SNR∈[20, 30, . . . , 100]a

Number of images N 14 14 14 14
Inversion times TIn [s] TIn ∈ [0.1, . . . , 8]b TIn ∈ [0.1, . . . , 8]b TIn ∈ [0.1, . . . , 8]b TIn ∈ [0.1, . . . , 8]b

# slice orientations 7 7 7 7
# TI per slice orientation 2 2 2 2
Slice orientation angles [◦] 0:(180/7):154.28 0:(180/7):154.28 0:(180/7):154.28 0:(180/7):154.28
Initialization of (P.1) n/a MI registrationc preprocessing loopd zero-motion ICe

Initialization of (P.2) vw-NLLS-LMf vw-NLLS-LMf vw-NLLS-LMf vw-NLLS-LMf

Optim. algorithm of (P.1) n/a n/a, fixedg n/a, fixedg trust-region Newtonh

Optim. algorithm of (P.2) trust-region Newtoni trust-region Newtong,i trust-region Newtong,i trust-region Newtoni

aDuring simulations, nine different SNR values were studied ranging from 20 to 100, sampled with step size 10.
bEach of the LR images {θn}Nn=1, with N = 14, had a unique inversion time TIn. The logarithms of these inversion
times {TIn}Nn=1 were equidistantly spaced between T1 = 0.1s and T14 = 8s.
cThe upsampled LR images are pairwise registered using MATLAB’s imregtform function [28]. During the rigid
registration process, the number of multi-level image pyramid levels is equal to two, and the first image of the series
is chosen as a reference, hence θ1 = 0. The one-plus-one evolutionary optimizer configuration is used, for which the
number of iterations is set to a very high value (> 5000) to ensure convergence of the motion parameter estimation.
The remaining MI registration parameters are set to the default values of the MATLAB built-in code. Assuming no
dependence of the motion parameters {θn}Nn=1 through the index n, the different pairwise registration problems can
be decoupled into N − 1 sub-problems, which can be implemented very efficiently with MATLAB parallel computing
tools.
dPreprocessing loop: the iterative model-based motion correction scheme is used, as described in [8].
ezero-motion IC: In the absence of additional information, a natural choice for the initialization of the motion parameters
in the first iteration is a zero-motion initial condition (IC) such that the rigid motion operator Mθini = I , with I the
identity matrix.
fvw-NLLS-LM: voxel-wise NLLS fitting the modulus of relaxation model in Eq. (1) to upsampled LR images with
Levenberg-Marquardt algorithm, using MATLAB’s lsqnonlin routine, with the initial estimate per voxel chosen equal
to [ρ, T1] = [0.5, 1.5]. Upsampling was performed using the adjoint operator sequenceGT

nD
T

followed by application
of | · |, the point-wise modulus operator.
gProblem (P.2) is solved for the relaxation model parameters only, while fixing the motion parameters at those that result
from the initialization procedure.
hMATLAB’s fminunc routine, implemented with explicit analytical expressions for the gradient of the objective function.
iMATLAB’s fminunc routine, implemented with explicit analytical expressions for the gradient of the objective function
and implicit Hessian matrix elements (in the form of a matrix multiplication routine).

Table 1 for each simulation experiment. To perform realistically adequate simulation experiments, a
set of 2D multi-slice IR-SE T1-weighted LR images affected by inter-image motion (as in Eq. (6)) and
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noise was modeled from the ground truth T1 and proton density maps. These ground truth maps were
based on a simple cubic 12 × 12 × 12 numerical phantom that was adopted from [8]. The phantom
maps consisted of distinct regions, representing grey and white matter tissue parameters that were
characterized using reported T1 and ρ (proton density) values in human brain tissue at 3T [29]. The
ground truth T1 values for grey and white matter were 1607 ms and 838 ms, respectively, while those
for ρ were set at 0.86 and 0.77 for the respective regions. An overview of this numerical phantom,
which we refer to as Phantom 1, is shown in Fig. 2.
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Figure 2. Phantom 1: Overview of the ground truth HR maps, and visualization of the downsampling along
the slice dimension for one LR image.

From these ground truth T1 and ρ maps, a set of N = 14 noiseless LR T1-weighted magnitude
images was simulated using the forward model (6). The dimensions of each LR image were equal
to 12 × 12 × 6. The anisotropy factor (AF) was equal to 2. This AF is defined as the ratio between
the through-plane slice thickness and the (isotropic) in-plane voxel size in the frequency encoding and
phase encoding direction, see also Fig. 3. For each LR image N , the translational shifts txn, tyn, tzn
and Euler angles αn, βn, γn that define the rigid motion parameters {θn}Nn=1 in Eq. (3) were generated
randomly from a uniform distribution on the interval [−1, 1] (voxel units) and [−5, 5] degrees respec-
tively. The reference image was chosen to be s̃1, hence θ1 = 0. The same set of randomly generated
rigid motion parameters was used for all simulation experiments. Furthermore, MATLAB’s intrinsic
coordinate system is used to represent 3D images, for which the origin is chosen at the center of the
3D image.

To account for wraparound artefacts that stem from the use of FFT to perform rotations, appro-
priate zeropadding was performed in each direction. Furthermore, it should be noted that since in
our simulations the M ×M ×M discrete sampled image volume to be rotated had an even number
of sampling points in each direction (i.e., M was even), the FFT based procedure required an extra
multiplication with an exponential phase factor to obtain real values after rotation [30].

To fully recover the HR information, the LR images need to contain complementary information
about the phantom. Rotation in image space corresponds to a rotation in frequency domain. As
previously argued [31], acquiring the LR images with different slice orientations ensures that each LR
image covers a different part of k-space (Fig. 3). In this way, the LR data will contain high spatial
frequencies in all three dimensions. This approach results in more effective sampling of k-space than
shifting the LR images by subpixel distances along the slice selection direction. In the latter case,
the SR reconstruction result relies heavily on the success of recovering the aliased high frequency
in the slice direction, since the narrow slice selection frequency band covers exactly the same part
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Figure 3. Schematic comparison between image space and k-space (2D and 3D view) for a multi-orientation
low resolution acquisition. The anisotropy of the voxels in image space is defined by the anisotropy factor,
AF = b

a with b, the slice thickness, and a, the voxel size in the frequency encoding direction (and phase
encoding direction). Since we choose to rotate only around the phase encoding axis, the k-space can only be
sampled in a cylinder with diameter 1

a .

of the k-space for each LR image. Similar to the acquisition protocol in [8, 32], the rotation of the
LR images was performed around the virtual phase encoding axis in increments of 180/No degrees,
with No the number of slice orientations. Aiming at a short acquisition time, the number of slice
orientations was kept low, but sufficiently high to ensure that the k-space is maximally covered. In
particular, the number of slice orientations was fixed to 7, corresponding to having two different
LR T1-weighted magnitude images per slice orientation. An overview of the slice orientations and
corresponding inversion times (TI), combined with their coverage of k-space is shown in Fig. 3. Each
LR T1-weighted magnitude image had a unique inversion time, with TIn ∈ [0.1, . . . , 8]s, where the
TIs were sampled equidistantly in log-space.

After fixing the motion parameters and acquisition geometry, downsampling by averaging and the
application of the point-wise modulus operator for magnitude images in accordance with (6), zero
mean white Gaussian noise was added to the LR images. The noise level was chosen to obtain SNR
values between 20 and 100, where SNR is the ratio of the spatial mean of the LR image with the
highest TI and the standard deviation of the noise. For each SNR, NMC = 140 realizations of sets of
LR images were generated. For each realization, a HR T1 and ρ map as well as the motion parameters
θ were estimated.

The different simulations experiments were implemented in MATLAB [28], and run on a computer
with an Intel i7-6850K hexa-core CPU @ 3.6 GHz and 32 GB of RAM. The proposed joint MLE
simulation experiment for the numerical phantom required around 4 GB RAM (allocated memory
usage), and for a fixed tolerance of Emin = 10−4, on average about 14 alternating MLE iterations were
needed to ensure convergence of the optimization process. In order to run the series of MC simulations
quickly and efficiently, the University of Antwerp’s High Performance Computing core (HPC) facility
CalcUA was used.
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Overview of the slice orientations of the LR images and corresponding inversion times TIn (top
row) and the k-space sampling strategy (middle and bottom row). The middle row shows the k-space
sampling of seven individual LR images, each having a different slice orientation, whereas the bottom
row shows the overlap in k-space when those images are combined. The shaded area denotes the
sampled k-space, while the white region is not sampled.

To assess the performance of each method to estimate the T1 map, the following performance
measures were used [10]:

(a) Relative bias. The bias quantifies the accuracy or, equivalently, the systematic error of the
estimator [21]. For each voxel, the relative sample bias was calculated as (

¯̂
T1 − T1)/T1, where

¯̂
T1 is the sample mean of theNMC estimates T̂1 and T1 is the true value. A measure of the overall
accuracy of the T1 map was obtained by calculating the spatial mean of the absolute value of
the relative sample bias.

(b) Relative standard deviation. The standard deviation quantifies the precision, or, equivalently, the
non-systematic error of the estimator [21]. For each voxel, the relative sample standard deviation
was calculated as std(T̂1)/T1, and an overall precision measure was obtained by taking the
spatial mean of these relative sample standard deviations.

(c) Relative root-mean-square error (relative RMSE). The RMSE is a measure that incorporates
both accuracy and precision. For each voxel, the relative sample RMSE was calculated as√

(T̂1 − T1)2/T1. An overall RMSE measure was obtained by calculating the spatial mean of
these relative sample RMSE values.

By substitution of ρ for T1, the performance of each method to estimate the ρ map was assessed
in an identical way using measures (a)-(c).

To assess the ability of the proposed method to estimate motion, the following performance mea-
sure was used:
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(d) Motion component root-(mean)-mean-square-error (RMMSE), defined as√√√√ 1

N − 1

N∑
n=2

(
[θ̂n]j − [θn]j

)2
, (13)

with [θn]j the jth component of θn and [θ̂n]j the sample mean of the NMC estimates [θ̂n]j .

To supplement the results of Phantom 1, also a second, more challenging phantom was created
(Fig. 4), which consisted of distinct grey and white matter tissue regions that included both uniform
regions and checkerboard patterns, combined with horizontal and vertical planar structures. This
second phantom will be referred to as Phantom 2. The same ground truth T1 values as for Phantom 1
were used to characterize grey and white matter voxels. The different Monte Carlo experiments were
repeated for Phantom 2 for a fixed spatial SNR = 50, keeping the other simulation settings identical
as for Phantom 1. The reconstruction results of both phantoms were visually compared w.r.t. their
respective ground truth T1 parameter maps. For each phantom and for each method, an average T1
map was calculated by voxel-wise averaging over all NMC reconstruction results for SNR = 50.
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Figure 4. Phantom 2: Overview of the ground truth HR maps, and visualization of the downsampling along
the slice dimension for one LR image.

4. Results and Discussion

Figs. 5-7 summarize the statistical performance results that were obtained from the simulation ex-
periments for Phantom 1. Fig. 5(a-c) and Fig. 6(a-c) show the overall relative sample bias, standard
deviation and RMSE for all considered estimators of, respectively, T1 and ρ, as a function of the SNR.
The results clearly show that for the SRR-T1 method without motion correction, the estimation of the
relaxation model parameters performs poorly in terms of accuracy and precision, with high relative
bias and high relative standard deviation, thereby underlining the importance of a proper motion esti-
mation framework. Furthermore, SRR-T1-MI also shows a poor performance. In terms of precision,
SRR-T1-MI performs even worse than SRR-T1. This observation is quite remarkable. It may reflect
the limitations of intensity-based image registration when it comes to registering images of largely
different contrast, which have been reported earlier [33, 34]. The poor performance of the SRR-T1-
MI method may also be partly due to its implementation. In our implementation, the LR magnitude
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images were naively upsampled using the adjoint operator AT
n followed by application of the point-

wise modulus operator. The latter preserves the magnitude characteristic of the resulting HR images
after upsampling. However, information loss is inherent and unavoidable in this upsampling process,
partially due to the non-existence of an adjoint modulus operation, and this might impede correct
intensity-based registration of these HR images in the next step. Finally, the small size of the images
considered in our simulation experiment may also play a role, as SRR-T1-MI may be more sensitive
to the image size than the other methods considered. Next, the SRR-T1-PRE method clearly improves
the estimation results, both in terms of accuracy and precision. For low SNR values, this method
shows even a better relative standard deviation than the SRR-T1-JMLE approach, as can be observed
from Fig. 5(b) and Fig. 6(b). However, this lower precision of the proposed SRR-T1-JMLE is more
than compensated by its higher accuracy, resulting in the superior performance of SRR-T1-JMLE in
terms of relative RMSE over the whole range of SNR values.

Fig. 7 shows the motion component RMMSE for each of the six rigid motion components as a
function of the SNR. SRR-T1-JMLE clearly outperforms the other methods (SRR-T1, SRR-T1-MI,
and SRR-T1-PRE) in terms of the motion component RMMSE. This is particularly visible for the
rotation parameter components α,β,γ, in the lower bottom half of Fig. 7. It is worth emphasizing
once more that the motion parameter problem in the SRR-T1-JMLE method was initialized from a
zero-motion initial condition, i.e. Mθini = I , with I the identity matrix. This also highlights the
robustness of the SRR-T1-JMLE method for poor motion initialization scenarios. The quantitative
performance measures for Phantom 2, for a fixed spatial SNR = 50, are summarized in Table 2.
Results with this new phantom are very similar to those obtained with Phantom 1, underlining the
superior performance of SRR-T1-JMLE in terms of relative RMSE and motion component RMMSE.

Finally, to provide a visual comparison of the performance of the different methods, for each
method an average T1 map was calculated by voxel-wise averaging over allNMC reconstruction results
for SNR = 50. Fig. 8 shows the resulting average T1 maps for three orthogonal slices (sagittal, axial
and coronal planes) of Phantom 1, accompanied by histograms of the voxel data distribution of the
corresponding full 3D average T1 maps. The number of histogram bins was specified at 200. Note
that the grey and white matter phantoms considered have histograms consisting of two distinct peaks
corresponding with the ground truth T1 values of both tissues. From Fig. 8, for Phantom 1, it is clear
that only with SRR-T1-PRE and SRR-T1-JMLE, these peaks can be distinguished. Moreover, Fig. 8
clearly shows that the block-wise homogeneous structure of the phantom is best reconstructed by
SRR-T1-JMLE. The same observations can be made for Phantom 2, for which the results of the visual
comparison are shown in Fig. 9.

Overall, the results clearly demonstrate the superior performance of the SRR-T1-JMLE method in
terms of accuracy and relative RMSE for both motion and T1 and ρ estimation. This is also supported
by the visual comparison presented in Fig. 8 and Fig. 9, where SRR-T1-JMLE clearly outperforms the
other estimation frameworks.

In the outline of the MR imaging model under paragraph 2.1, the voxel intensity values of the HR
images rn were modeled by a three-parameter T1 model (Eq. (1)) that depends on T1 and ρ, for given
inversion times TIn [14]. It should be noted that if the assumptions that substantiate the choice of this
model, i.e. perfect inversion pulse of 180◦ and a repetition time TR� T1, are invalid in practice, the
proposed joint MLE method can still be used, but the model should be extended so as to avoid biased
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results. Such an extension may include the introduction of additional unknown model parameters to be
estimated from the data [35], which may have a negative influence on the precision. This well-known
trade-off between bias and precision should always been taken into account in model selection.

According to the computational complexity of the SRR-T1-JMLE algorithm described in section
2.3, increasing the volume size of the images, i.e. choosing a larger region-of-interest (ROI), will
result in longer computation times, as the number of floating point operations increases. As a pos-
sible solution to this problem, the ROI could be split in several blocks (with overlap to avoid edge
artifacts), where the HR relaxation parameters are reconstructed in each block separately. This would
allow parallelization of estimation problem (P.2), which would considerably reduce the computational
complexity, memory consumption and computation time of the SRR-T1-JMLE method.
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Figure 5. Results of the simulation experiments for Phantom 1: (a) relative T1 bias, (b) relative T1 standard
deviation, (c) relative T1 RMSE, as a function of SNR. Error bars correspond with the standard error of the
spatial mean, but are omitted when their size matches the order of the graph symbol size.



Q. Beirinckx, et al. / Joint Maximum Likelihood Estimation of Motion and T1 Parameters... 17

11

12

13

14

15

16

O
ve

ra
ll

re
la

tiv
e
ρ

bi
as

[%
]

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

SNR

2

4

6

8

10

O
ve

ra
ll

re
la

tiv
e
ρ

st
an

da
rd

de
vi

at
io

n
[%

]

20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

SNR

14.0

15.0

16.0

17.0

O
ve

ra
ll

re
la

tiv
e
ρ

R
M

SE
[%

]
SRR-T1 SRR-T1-MI SRR-T1-PRE SRR-T1-JMLE

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

SNR

(a) (b) (c)

Figure 6. Results of the simulation experiments for Phantom 1: (a) relative ρ bias, (b) relative ρ standard
deviation, (c) relative ρ RMSE, as a function of SNR. Error bars correspond with the standard error of the
spatial mean, but are omitted when their size matches the order of the graph symbol size.

Table 2. Quantitative performance measures for Phantom 2, calculated over all NMC = 140 reconstruction
results for SNR = 50, for the different Monte Carlo experiments: SR LS estimation without motion correction
(SRR-T1), Mutual information based registration prior to SR LS estimation (SRR-T1-MI), SRR T1 mapping
with preprocessing loop (SRR-T1-PRE), the proposed Joint MLE (SRR-T1-JMLE).

SRR-T1 SRR-T1-MI SRR-T1-PRE SRR-T1-JMLE

Overall relative T1 bias [%] 71± 3 42± 2 6.3± 0.1 1.83± 0.03

Overall relative T1 standard deviation [%] 8.0± 0.5 46± 2 0.51± 0.01 2.50± 0.03

Overall relative T1 RMSE [%] 72± 3 67± 3 6.4± 0.1 3.21± 0.04

Overall relative ρ bias [%] 16.1± 0.3 15.2± 0.3 2.23± 0.04 0.309± 0.005

Overall relative ρ standard deviation [%] 1.44± 0.05 9.6± 0.1 0.204± 0.001 0.686± 0.005

Overall relative ρ RMSE [%] 16.4± 0.3 19.1± 0.2 2.25± 0.04 0.772± 0.006

RMMSE of tx [voxel units] n/a 0.59± 0.06 0.06± 0.01 0.014± 0.002

RMMSE of ty [voxel units] n/a 0.53± 0.06 0.10± 0.02 0.011± 0.002

RMMSE of tz [voxel units] n/a 0.54± 0.05 0.05± 0.02 0.010± 0.001

RMMSE of α [degrees] n/a 2.1± 0.1 0.93± 0.07 0.055± 0.004

RMMSE of β [degrees] n/a 1.9± 0.1 0.91± 0.07 0.068± 0.004

RMMSE of γ [degrees] n/a 2.4± 0.1 1.54± 0.09 0.060± 0.005
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Figure 7. Results of the simulation experiments for Phantom 1, showing the motion component RMMSE for
each of the six rigid motion components, as a function of SNR. Error bars are omitted when their size matches
the order of the graph symbol size.
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Figure 8. Visual comparison of the performance of the different SRR methods: SRR-T1 (row 1), SRR-T1-MI
(row 2), SRR-T1-PRE (row 3), and our proposed SRR-T1-JMLE (row 4). On the left, three orthogonal slices of
the T1 map obtained by voxel-wise averaging over all NMC = 140 reconstruction results for SNR=50. On the
right, histograms showing the voxel data distribution of the corresponding full 3D T1 parameter map estimates
for the different simulation experiments. The ground truth T1 values for grey and white matter, 1607 ms and
838 ms respectively, are marked with vertical lines.
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Figure 9. SRR-T1-JMLE reconstruction result for Phantom 2: Ground Truth (row 1), SRR-T1-PRE (row 2),
SRR-T1-JMLE (row 3). On the left, three orthogonal slices of the T1 map obtained by voxel-wise averaging
over all NMC = 140 reconstruction results for SNR=50. On the right, histograms showing the voxel data
distribution of the corresponding full 3D T1 parameter map estimate. The ground truth T1 values for grey and
white matter, 1607 ms and 838 ms respectively, are marked with vertical lines.



Q. Beirinckx, et al. / Joint Maximum Likelihood Estimation of Motion and T1 Parameters... 21

5. Conclusion

Quantitative MR T1 mapping suffers from long acquisition times with high risk for patient motion
artefacts, resulting in poor accuracy of estimated T1 relaxometry parameters. In this work, we ex-
plored the potential of augmenting a recently proposed super-resolution reconstruction method for
MRI T1 mapping with simultaneous motion estimation in a maximum likelihood framework. Super-
resolution reconstruction provides a better trade-off between resolution, precision and acquisition time
than conventional direct high-resolution acquisition. By extending super-resolution reconstruction
with simultaneous motion estimation, potential bias in the estimated T1 map caused by motion can be
substantially reduced compared to motion correction by preprocessing. By means of Monte Carlo sim-
ulation experiments, our newly proposed method was quantitatively compared against a ground-truth
T1 map together with three other approaches. The results were analysed using statistical performance
measures and by performing a visual comparison. In conclusion, the results of these simulation exper-
iments demonstrate that our newly proposed joint relaxometry and motion estimation approach yields
more accurate T1 maps than a previously reported SRR based T1 mapping approach, in which motion
registration is applied as a preprocessing step prior to T1 mapping. Future work will focus on the
validation of the proposed joint MLE method on real data scenarios, the development of advanced
blurring operators for the acquisition model, and the extension of the motion model to non-rigid or
affine motion. In addition, it is also worthwhile to investigate intra-image motion correction strategies
and to further customize the alternating optimization scheme.
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Appendix A Downsampling and upsampling operators

In the buildup of the forward model (4) encapsulated in operator A, operators B and D describing
spatially invariant blurring and downsampling, respectively, are combined into one operator D that
performs downsampling by averaging [15]. Conventionally, downsampling keeps one sample out of a
block and discards the remaining samples, whereas blurring takes into consideration the point spread
functions of the MRI acquisition process. Downsampling by averaging is used here. For example,
downsampling by a factor of 2 in 1D has matrix form,


. . . . . .

1
2

1
2

1
2

1
2

. . . . . .





...
x[0]

x[1]

x[2]

x[3]
...


=


...

x[0]+x[1]
2

x[2]+x[3]
2
...

 . (A.14)

In the spatial (i.e. image) domain, this downsampling from a discrete vector x[n] to y[n] can be
written in more compact form as

y[n] = Dx[n] =
1

M

M−1∑
m=0

x[nM +m], (A.15)

where M corresponds with the anisotropy factor AF, defined as the ratio of the through-plane slice
thickness and the (isotropic) in-plane voxel size.

Implementing the iterative recursive procedure described by problems (P.1) and (P.2) benefits from
having adjoint operators. Interestingly, upsampling is the adjoint of downsampling. Conventionally,
upsampling with zero insertion is used, we use upsampling with replication. For example, upsampling
by a factor of 2 in 1D has matrix form,

1

2



. . .

. . . 1

1

1

1
. . .
. . .




...
y[0]

y[1]
...

 =



...
1
2y[0]
1
2y[0]
1
2y[1]
1
2y[1]

...


. (A.16)

The upsampling matrix is the transpose of the downsampling matrix in (A.15). We can write the
upsampled x[n] from y[n] as

x[n] = D
T
y[n] =

1

M
y
[⌊ n
M

⌋]
, (A.17)

where the floor function b·c gives the largest integer less than or equal to its argument.
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