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A B S T R A C T

Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance imaging technique
for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers from an inherently low signal-to-noise
ratio (SNR) and spatial resolution, undermining its potential. Increasing spatial resolution without significantly
sacrificing SNR or scan time represents a critical challenge towards routine clinical use. In this work, we
propose a model-based super-resolution reconstruction (SRR) method with joint motion estimation that breaks
the traditional SNR/resolution/scan-time trade-off. From a set of differently oriented 2D multi-slice pseudo-
continuous ASL images with a low through-plane resolution, 3D-isotropic, high resolution, quantitative CBF
maps are estimated using a Bayesian approach. Experiments on both synthetic whole brain phantom data, and
on in vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms state-of-the-art
ASL quantification.
1. Introduction

Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging
technique to noninvasively measure cerebral blood flow (CBF), which
is a biomarker for various brain disorders (Alsop et al., 2015; van
Osch et al., 2018). ASL uses magnetically labeled arterial blood as an
endogenous tracer, where the labeling is performed by inverting the
inflowing blood magnetization in a plane proximal to the brain. After
a specific period of time, called the post-labeling delay (PLD) time,
during which labeled blood travels through the arterial vascular tree
towards the brain tissue, a so-called label image is acquired. Addition-
ally, a control image is acquired without prior labeling. The difference
between the label and control image yields a perfusion weighted image
that isolates the ASL signal. Next, a CBF map is computed from the
perfusion weighted image using a perfusion model and a separately
acquired calibration image (Alsop et al., 2015).

The consensus paper by Alsop et al. recommends pseudo-continuous
ASL (pCASL), background suppression (BS), and segmented 3D readout
for clinical implementation of ASL (Alsop et al., 2015). Segmented 3D
acquisition schemes use a single excitation per TR, which is optimal for
BS (Ye et al., 2000; Krüger and Glover, 2001; Garcia et al., 2005; Maleki
et al., 2012; Paschoal et al., 2021). However, 3D readout sequences
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employ long echo trains, resulting in through-plane blurring due to 𝑇2
decay along the echo train. Splitting the readout into more segments
can reduce this blurring, but at the cost of a longer acquisition time
and increased sensitivity to inter-shot motion and physiological fluctu-
ations (Hernandez-Garcia et al., 2022). In addition, the long readout
time of a 3D imaging sequence holds an increased risk of motion
artifacts (Alsop et al., 2015).

As a viable alternative to 3D readout, single-shot 2D multi-slice
(MS) readout methods based on echo-planar imaging (EPI) have been
suggested (Alsop et al., 2015). 2D readout methods have several advan-
tages over 3D readout methods. First, they have a much shorter readout
and are hence less susceptible to motion during readout (Vidorreta
et al., 2013, 2014; Alsop et al., 2015). Second, they are less susceptible
to spatial blurring due to 𝑇2 decay (Vidorreta et al., 2013). Finally,
2D readout methods are readily available on all systems (Alsop et al.,
2015).

However, 2D readout approaches also come with disadvantages.
First, 2D MS imaging causes the PLD time to increase in subsequently
acquired slices, which results in a significant degradation of the signal-
to-noise ratio (SNR) in the last acquired slices due to longitudinal
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relaxation (van Osch et al., 2018). At the same time, however, the slice-
wise increase of PLD can help accommodate unbiased CBF estimation
in subjects with arterial transit time (ATT) values that increase from
inferior to superior slices, which can be considered a consistent finding
in most subjects. Second, the use of a separate excitation pulse for every
slice complicates BS. In practice, BS can be optimal for only one slice
and will be progressively less efficient for other slices (Alsop et al.,
2015).

In this work, which is based on a preliminary study (Bladt et al.,
2020), we propose an alternative 2D MS based image acquisition and
parameter estimation method for single-PLD pCASL that alleviates the
main disadvantages of traditional 2D MS imaging, while preserving its
advantages. The method relies on MS super-resolution reconstruction
(SRR). In this approach, a 3D isotropic high resolution (HR) image
or parameter map is estimated from multiple, differently oriented,
2D MS images with a low through-plane resolution. SRR has been
shown to improve the inherent trade-off between spatial resolution,
SNR, and acquisition time in MRI (Van Reeth et al., 2012; Plenge
et al., 2012) and has previously been applied successfully in anatomical
imaging (Poot et al., 2010; Van Dyck et al., 2020), diffusion MRI (Poot
et al., 2013; Fogtmann et al., 2014; Van Steenkiste et al., 2016), and
relaxometry (Van Steenkiste et al., 2017; Bano et al., 2020; Beirinckx
et al., 2020, 2022). The current paper introduces SRR in the field of
ASL, proposing a model-based MS-SRR framework with joint motion
estimation for direct whole brain CBF mapping from 2D MS single-
PLD pCASL data. By choosing an SRR acquisition scheme in which
low resolution (LR) label-control image pairs are acquired with vary-
ing slice-encoding directions, the negative effects of fading BS and
increasing PLD values in subsequently acquired slices of the traditional
2D MS readout scheme for pCASL are made independent of location,
i.e. averaged out. To explore its potential in ASL, our newly proposed
method is evaluated on synthetic whole brain perfusion data. Moreover,
our pCASL MS-SRR method is combined with multiband (MB) imaging,
also known as simultaneous multi-slice (SMS) imaging, to accelerate
image acquisition and hence provide a more constant and thus on
average better BS as well as a more constant PLD across slices (van Osch
et al., 2018). Finally, our method is validated on in vivo brain data, and
compared to a conventional single-PLD pCASL experiment with 2D MS
readout using a widely used Bayesian inference model (BASIL Chappell
et al., 2009; Groves et al., 2009) for CBF quantification.

2. Theory

In what follows, the components of the proposed ASL SRR frame-
work are discussed, namely the SRR forward model (Section 2.1), the
single-PLD pCASL signal model, which encapsulates the CBF quan-
tification formula (Section 2.2), and the joint Bayesian estimation
framework, for direct CBF mapping with joint motion estimation from
LR single-PLD pCASL data (Section 2.3).

2.1. Super-resolution reconstruction forward model

Let 𝒔 = {𝒔𝑛}2𝑁𝑛=1 be the set of 𝑁 vectorized, noiseless, anisotropic
LR 2D MS control (odd 𝑛) and 𝑁 label (even 𝑛) magnitude images.
Each image 𝒔𝑛 = {𝑠𝑛𝑙}

𝑁𝒔
𝑙=1 ∈ R𝑁𝒔×1 is sampled at the LR grid points

𝒚𝑛 = {𝒚𝑛𝑙}
𝑁𝒔
𝑙=1 ∈ R3×𝑁𝒔 with 𝑁𝒔 the number of voxels per LR image, and

an be modeled as:

𝑛 = 𝑫𝑩𝑮𝑛𝑴𝜽𝑛𝒓𝑛 (1)

here 𝒓𝑛 = {𝑟𝑛𝑗}
𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1 represents the unknown, noiseless HR

mage with the same perfusion-weighting as 𝒔𝑛 and defined at the
argeted isotropic HR grid points 𝒙 = {𝒙𝑗}

𝑁𝒓
𝑗=1 ∈ R3×𝑁𝒓 , with 𝑁𝒓 the

number of voxels of the HR image. Furthermore, 𝑴𝜽𝑛 ∈ R𝑁𝒓×𝑁𝒓 ,
𝑮𝑛 ∈ R𝑁𝒓×𝑁𝒓 , 𝑩 ∈ R𝑁𝒓×𝑁𝒓 , and 𝑫 ∈ R𝑁𝒔×𝑁𝒓 are linear operators
2

hat describe unintended motion, a known geometric transformation
that models the image acquisition with specific slice orientation, spa-
tially invariant blurring, and down-sampling, respectively. The motion
operator 𝑴𝜽𝑛 is modeled as a parametric function of 𝜽𝑛. Assuming
rigid inter-image motion, the parameter vector 𝜽𝑛 ∈ R6×1 is given by
𝜽𝑛 =

[

𝑡𝑥𝑛, 𝑡𝑦𝑛, 𝑡𝑧𝑛, 𝛼𝑛, 𝛽𝑛, 𝛾𝑛
]𝑇 , with 𝑡𝑥𝑛, 𝑡𝑦𝑛, 𝑡𝑧𝑛 the translation parameters

and 𝛼𝑛, 𝛽𝑛, 𝛾𝑛 the Euler angles that describe rotation around the 𝑥, 𝑦,
nd 𝑧 axis, respectively.

.2. Single-PLD pCASL signal model

Let 𝛥𝒓𝑛 = {𝛥𝑟𝑛𝑗}
𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1, with 𝑛 even, be the difference image

𝑛−1 − 𝒓𝑛 and let 𝝑rCBF = {𝜗rCBF,𝑗}
𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1 represent the HR relative

BF parameter map to be estimated, expressed in arbitrary units (a.u.).
ccording to the recommended quantification formula for single-PLD
CASL data (Alsop et al., 2015), 𝛥𝑟𝑛𝑗 is given by:

𝑟𝑛𝑗 (𝜗rCBF,𝑗 ) = 𝜗rCBF,𝑗𝛿
−1 exp

(

−
PLD𝑛𝑗

𝑇1𝑏

)

, (2)

with

𝛿 = 6000 ⋅ 𝜆

2𝛼𝑇1𝑏
(

1 − exp
(

− 𝜏
𝑇1𝑏

)) (3)

a scalar constant that encapsulates the labeling efficiency 𝛼, the brain–
blood partition coefficient 𝜆, the labeling duration 𝜏, and the longitu-
dinal relaxation time of blood 𝑇1𝑏, which are all assumed to be known
from experiment or fixed at their recommended population averages. In
Eq. (2), PLD𝑛𝑗 is the PLD time that corresponds with the readout time
of the corresponding slice within the label image 𝒔𝑛 that contains the
HR grid point 𝒙𝑗 . Indeed, each slice of 𝒔𝑛 is characterized by a unique
PLD that depends on the slice acquisition order. If the MS acquisition
proceeds in ascending slice order with a slice readout time 𝑡read, the
effective PLD in the 𝑀 th slice is given by: (𝑀 −1)× 𝑡read+PLDbase, with
PLDbase the time between the end of the labeling pulse train and the
readout. In contrast to a conventional pCASL MS acquisition scheme,
in a rotated SRR acquisition scheme, PLD𝑛𝑗 will depend on the slice
direction (Fig. 1(d)). The mathematical model that describes the slice-
dependent PLD𝑛𝑗 is provided in Appendix A. Note that due to the PLD
variations, the virtual HR label images (i.e., 𝒓𝑛 with 𝑛 is even) differ
from each other, whereas the virtual HR control images (i.e., 𝒓𝑛 with
𝑛 is odd) are all equal when ignoring BS. Consequently, it follows that
the 𝑗th voxel of 𝒓𝑛 can be modeled as:

𝑟𝑛𝑗 =

{

𝑟1,𝑗 , if 𝑛 is odd
𝑟1,𝑗 − 𝛥𝑟𝑛𝑗 (𝜗rCBF,𝑗 ), if 𝑛 is even .

(4)

Eq. (4) can be extended to include the effect of BS in 2D MS readout:

𝑟𝑛𝑗 =

{

𝑟1,𝑗𝑏𝑛𝑗 , if 𝑛 is odd
𝑟1,𝑗𝑏𝑛𝑗 − 𝛥𝑟𝑛𝑗 (𝜗rCBF,𝑗 ), if 𝑛 is even,

(5)

where 𝒃𝑛 = {𝑏𝑛𝑗}
𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1 models inversion-recovery nulling for

BS, under the assumption that BS is perfect for the first acquired slice
and with 𝑇1𝑡 the 𝑇1 relaxation time of tissue 𝑡, i.e. 𝑏𝑛𝑗 = 1 − 2 ⋅
exp

(

−TI𝑛𝑗∕𝑇1𝑡,𝑗
)

, with TI𝑛𝑗 the optimal inversion time for perfect BS of
the first slice. More details on how to model TI𝑛𝑗 for SRR are provided
in Appendix B.

Following the recommendations of the ASL white paper (Alsop
et al., 2015), a calibration step is needed to translate CBF values in
arbitrary units to absolute units of mL/100 g/min of tissue, by voxel-
wise dividing the relative CBF map 𝝑rCBF by a HR proton density
weighted calibration image 𝝆reg = {𝜌reg,𝑗}

𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1, registered to the

HR reconstruction grid. In this work, we assume 𝝆reg to be a known
image, acquired from a separate acquisition. This calibration image is
essentially a control image without background suppression acquired
with the same readout as the ASL data (Clement et al., 2022). As

𝑁𝒓
such, the HR CBF parameter map is defined as 𝝑CBF = {𝜗CBF,𝑗}𝑗=1 =
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Fig. 1. MS SRR acquisition scheme: (a) acquisition coordinate system; (b) 𝑘-space coverage; (c) grid in image space; (d) slice dependent PLDs; (e) coronal LR MS images. The x-,
y-, and 𝑧-direction represent the frequency-, phase-, and slice-encoding direction, respectively.
{𝜗rCBF,𝑗∕𝜌reg,𝑗}
𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1. Note that by replacing 𝝑rCBF with 𝝑CBF in

Eq. (4), a calibrated version of the single-PLD pCASL model for 𝒓𝑛 can
be obtained.

2.3. Joint Bayesian estimation framework

2.3.1. Maximum a posteriori estimator
Let 𝒔̃ = {𝒔̃𝑛}2𝑁𝑛=1 ∈ R𝑁𝒔×2𝑁 denote the set of 2𝑁 measured, noisy

LR MS images with 𝒔̃𝑛 = {𝑠̃𝑛𝑙}
𝑁𝒔
𝑙=1 ∈ R𝑁𝒔×1. Furthermore, let 𝝑 =

[𝒓𝑇1 𝝑𝑇
rCBF]

𝑇 ∈ R2𝑁𝒓×1 and 𝜽 = {𝜽𝑛}2𝑁𝑛=1 ∈ R6×2𝑁 represent the perfusion
parameters and the motion parameters to be estimated, respectively.
Following a Bayesian approach, the data 𝒔̃ and the parameters {𝝑,𝜽}
are modeled as random variables, where Bayes’ theorem gives an
expression for the posterior distribution of the parameters given the
data:

𝑝 (𝝑,𝜽|𝒔̃) =
𝑝(𝒔̃|𝝑,𝜽)𝑝(𝝑)𝑝(𝜽)

𝑝(𝒔̃)
, (6)

with 𝑝(𝒔̃|𝝑,𝜽) the conditional probability distribution of 𝒔̃ given the
parameters {𝝑,𝜽}, 𝑝(𝝑) and 𝑝(𝜽) the prior distributions that encapsulate
the prior knowledge about 𝝑 and 𝜽, respectively, and with 𝑝(𝒔̃) a
normalization factor. When 𝑝(𝒔̃|𝝑,𝜽) is viewed as a function of the
unknown parameters {𝝑,𝜽} given the data 𝒔̃, it is called the likelihood
function.

For a single-coil acquisition, the noisy voxel intensities 𝑠̃𝑛𝑙 can be
modeled as Rician distributed random variables, while for a multi-coil
acquisition, 𝑠̃𝑛𝑙 are governed by a non-central chi distribution (den
Dekker and Sijbers, 2014). When the SNR is high enough (>3), which
is typically the case for the low resolution voxels 𝑠̃𝑛𝑙, both distributions
can be well approximated by a Gaussian distribution. If the voxel
intensities are additionally assumed to be statistically independent and
the standard deviation of the noise 𝜎 to be temporally and spatially
invariant, the likelihood function 𝑝(𝒔̃|𝝑,𝜽) can be expressed as:

𝑝(𝒔̃|𝝑,𝜽) ∝ exp

(

− 1
2

2𝑁
∑

𝑁𝒔
∑

(

𝑠̃𝑛𝑙 − 𝑠𝑛𝑙(𝝑,𝜽𝑛)
)2
)

. (7)
3

2𝜎 𝑛=1 𝑙=1
Furthermore, the prior distributions of the HR parameter maps 𝒓1 and
𝝑rCBF, which are assumed to be smooth, are chosen as:

𝑝(𝒓1) ∝ exp
(

−
𝜆𝒓1
2

‖𝛥(𝒓1)‖22

)

and

𝑝(𝝑rCBF) ∝ exp
(

−
𝜆𝝑rCBF

2
‖𝛥(𝝑rCBF)‖22

)

, (8)

respectively, where 𝛥(⋅) denotes the 3D discrete Laplace operator (Poot
et al., 2013), and 𝜆𝒓1 > 0 and 𝜆𝝑rCBF > 0 are hyper-parameters that
control the regularization strengths. For the motion parameters 𝜽, a
non-informative prior 𝑝(𝜽) is adopted, assuming 𝑝(𝜽) to be uniform over
the range of values for which the likelihood function is non-negligible.
The maximum a posteriori (MAP) estimator then maximizes 𝑝(𝝑,𝜽|𝒔̃)
w.r.t. the parameters {𝝑,𝜽}. Hence, by combining Eqs. (6)–(8), we
obtain:

{𝝑̂, 𝜽̂} = argmax
𝝑,𝜽

𝑝(𝝑,𝜽|𝒔̃) = argmin
𝝑,𝜽

[

− ln 𝑝(𝝑,𝜽|𝒔̃)
]

(9)

= argmin
𝝑,𝜽

[2𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1

(

𝑠̃𝑛𝑙 − 𝑠𝑛𝑙
(

𝝑,𝜽𝑛
))2 + 𝜆′𝒓1‖𝛥(𝒓1)‖

2
2

+ 𝜆′𝝑rCBF‖𝛥(𝝑rCBF)‖22

]

, (10)

with 𝜆′𝒓1 = 𝜎2𝜆𝒓1 and 𝜆′𝝑rCBF = 𝜎2𝜆𝝑rCBF regularization parameters to

be selected by the user. Note that 𝜎 does not have to be known or
estimated in advance.

2.3.2. Optimization
The optimization problem in Eq. (9) is solved using the alternating

minimization method, also known as the cyclic block-coordinate descent
(cBCD) method (Fessler and Kim, 2011; Beck and Tetruashvili, 2013).
In this method, the parameters {𝝑,𝜽} are split into two blocks that
contain the perfusion parameters 𝝑, and the motion parameters 𝜽, and
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the cost function is successively minimized with respect to each block
in a cyclic order:

𝝑̂(𝑡+1)
=argmin

𝝑

[2𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1

(

𝑠̃𝑛𝑙 − 𝑠𝑛𝑙(𝝑, 𝜽̂
(𝑡)
𝑛 )

)2
+ 𝜆′𝒓1‖𝛥(𝒓1)‖

2
2

+ 𝜆′𝝑rCBF‖𝛥(𝝑rCBF)‖22

]

(P.1)

𝜽̂(𝑡+1) =argmin
𝜽

2𝑁
∑

𝑛=1

𝑁𝒔
∑

𝑙=1

(

𝑠̃𝑛𝑙 − 𝑠𝑛𝑙(𝝑̂
(𝑡+1)

,𝜽𝑛)
)2

(P.2)

with 𝝑̂(0)
= 𝝑ini the initial values of the HR parameter maps 𝝑, and with

𝜽̂(0) = 𝜽ini the initial values of the motion parameters 𝜽, respectively.
The procedure is terminated when a maximum number of iterations is
exceeded, or when a convergence tolerance on the relative difference of
the tissue parameter estimates between consecutive iterations, defined
as  (𝑡) = ‖𝝑̂(𝑡)

− 𝝑̂(𝑡−1)
‖2∕‖𝝑̂

(𝑡)
‖2, is reached.

The alternating optimization routine requires suitable choices of the
convergence tolerances and regularization weights, as well as choosing
suitable solvers for model parameter optimization problem (P.1), and
the motion parameter optimization problem (P.2). To efficiently solve
the linear subproblem (P.1), the Conjugate Gradient Least Squares
(CGLS) algorithm was used, in which parameter maps were initialized
with zeros. The inter-image motion estimation problem (P.2), on the
other hand, is nonlinear and adopts a particularly simple structure
when the signal model parameters remain fixed. If the elements of 𝜽
are independent, problem (P.2) can be decoupled into 2𝑁 optimization
problems that can be solved efficiently by parallel operations. Each of
these decoupled problems is minimized using a trust-region Newton
algorithm (Coleman and Li, 1994), with analytical expressions for the
Jacobian to speed up convergence.

2.3.3. Implementation
The proposed method was written in MATLAB and partially in C++.

The computational complexity of the proposed algorithm is primarily
defined by the Fast Fourier Transform (FFT)-based image warping
operators 𝑴𝜽𝑛 and 𝑮𝑛 in Eq. (1) (Beirinckx et al., 2022). To speed
up reconstruction, the FFTs of these image warping operators were
executed on the GPU. Furthermore, while the forward model given by
Eq. (1) treats 𝑴𝜽𝑛 and 𝑮𝑛 as separate operators, in our implementation
we combined both operators to limit the number of FFTs and to maxi-
mize computational efficiency. Linear operators 𝑫 and 𝑩 followed the
implementation of Beirinckx et al. (2022). MATLAB parallel computing
tools were used to estimate 𝜽𝑛 for each value of 𝑛 separately when
solving problem (P.2) of the alternating minimization method. A single
reconstruction took approximately 19 min for a simulated LR single-
PLD pCASL dataset (without motion optimization), and 1 h 10 min for
the in vivo LR single-PLD pCASL dataset, respectively.

3. Methods

The proposed method, denoted as SRR-pCASL, was evaluated in
simulation and in-vivo experiments, where its performance was com-
pared to that of the following reference methods:

C-pCASL Conventional acquisition of single-PLD pCASL data with
2D MS readout in which each control-label image pair is ac-
quired multiple times at a 3D isotropic high resolution, with
an inferior–superior slice-encoding direction, and with an as-
cending slice readout order. The reconstruction and direct CBF
mapping are performed using the same joint Bayesian estimation
framework as for SRR-pCASL.

BASIL Conventional acquisition of single-PLD pCASL data with 2D MS
readout, similar as for C-pCASL. From these data, CBF was quan-
tified using the Bayesian Inference for Arterial Spin Labeling
4

(BASIL) method (Chappell et al., 2009; Groves et al., 2009),
which is part of the FSL toolbox (Smith et al., 2004; Woolrich
et al., 2009). Default settings were used to process single-PLD
data, as described by the BASIL documentation guide and fol-
lowing the recommendations of the consensus paper (Alsop
et al., 2015). BASIL uses FSL’s mcflirt (Jenkinson et al., 2002)
to correct for motion between the ASL data and the calibration
image. Note that this second reference method is primarily in-
cluded to verify C-pCASL as a benchmark for optimal traditional
CBF quantification w.r.t. SRR-pCASL. As such, a true one-to-one
benchmarking between BASIL and the proposed MAP estimation
framework is not the main objective, especially since the use of
different prior information and motion correction strategies in
both approaches complicates a fair comparison.

In addition to the above methods a multiband (MB) imaging ver-
sion to SRR-pCASL, C-pCASL and BASIL was evaluated to partially
prevent longitudinal relaxation effects due to increasing PLD values for
ascending slices during acquisition. The corresponding MB augmented
methods are denoted as SRR-pCASL-MB, C-pCASL-MB, and BASIL-MB,
respectively.

3.1. Simulation experiments

Simulation experiments were set up to evaluate the proposed SRR
method for single-PLD pCASL and compare its performance with that
of the reference methods. First, to exclude a possible bias in the CBF
estimation introduced by misregistration when comparing the different
methods, a Monte Carlo simulation experiment was performed where
the motion parameters 𝜽𝑛 were set to 𝟎 and no motion correction
was performed. Second, a Monte Carlo simulation experiment was
performed in which the synthetic pCASL data were corrupted with un-
wanted inter-image motion to evaluate the estimation of both CBF and
motion parameters. To guarantee realistic head movement, the inter-
image motion parameters

{

𝜽𝑛
}2𝑁
𝑛=1 were chosen equal to an estimated

set of motion parameters obtained using a rigid registration routine
on the in vivo LR SRR data. A detailed description of this registration
routine and the obtained true reference motion parameters for each of
the 2𝑁 pCASL images in the simulation study is provided in section
S1.2 of the supplementary file.

3.1.1. Synthetic data generation
Both for the simulations without and with motion, four different

synthetic datasets were generated, all having the same underlying HR
ground truth parameter maps for CBF, PD and the relaxation time 𝑇1𝑡
of tissue. These ground-truth parameter maps were generated starting
from a 216 × 180 × 180 HR brain phantom with labeled tissue classes
supplied by MRiLab (Liu et al., 2017) with a 1 mm3 isotropic resolution.
Gray (GM) and white matter (WM) CBF values of 65 mL/100 g/min and
20 mL/100 g/min, respectively, reported for the healthy human brain,
were assigned to the CBF map (Parkes et al., 2004; Zhang et al., 2014;
Fan et al., 2016). To assess the identification of hyperintensities (Maier
et al., 2021), we additionally simulated a hyperperfusion lesion of
113.75 mL/100 g/min in GM and 50 mL/100 g/min in WM, having
a volume equal to 408 mm3 and 330 mm3, respectively. Subsequently,
the CBF, PD, and 𝑇1𝑡 maps were resampled onto a 72 × 60 × 60 grid
using cubic interpolation with a scale-variant kernel to prevent aliasing,
matching a 3D isotropic resolution of 3 mm typical for HR ASL data.
Finally, each HR ground-truth parameter map was zero padded to a
80 × 80 × 64 grid, such that it corresponds to the dimensions of the
reconstruction grid of the real data experiment (Section 3.2). Start-
ing from these ground truth parameter maps, the following noiseless
datasets were generated:
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Table 1
Acquisition settings for the synthetic data sets using 2D MS readout. A slice orientation angle of 0◦ corresponds with the slice-encoding axis
directed from left to right, and with the phase-encoding axis perpendicularly directed from anterior to posterior. Each angle listed below is a
rotation of the slice-encoding axis around the phase-encoding direction counterclockwise. Therefore, a 90◦ angle is consistent with an ascending
slice order. These rotations are consistent with the rotations visualized in Fig. 1.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
LR 2D MS HR 2D MS LR 2D MS MB HR 2D MS MB

Slices per slab 𝑁slice (#) 16 40 16 40
Acquisition matrix 80 × 80 80 × 80 80 × 80 80 × 80
FOV [mm3] 240 × 240 × 192 240 × 240 × 120 240 × 240 × 192 240 × 240 × 120
Voxel size [mm3] 3 × 3 × 12 3 × 3 × 3 3 × 3 × 12 3 × 3 × 3
Labeling duration 𝜏 [ms] 1800 1800 1800 1800
PLDbase [ms] 1800 1800 1800 1800
PLD rangea [ms] 1800–2550 1800–3750 1800–2150 1800–2750
Slice readout time 𝑡read [ms] 50 60 50 60
Number of control-label pairs 𝑁 24 22 24 22
Number of slice encoding directions 24 1 24 1
Slice orientation anglesb [◦] 0, 7.5,. . . ,172.5 90 0, 7.5,. . . ,172.5 90
Multiband factor 𝜔 n.a. n.a. 2 2
Theoretical scan timec 𝑇 [min:s] 3:30 4:20 3:10 3:30

a For a dataset with MB, the PLD range is given for a single band.
b For the LR datasets, the slice orientation angles where chosen by rotating the slice stack around the virtual phase encoding axis in increments
of 180∕𝑁 degrees. For 𝑁 = 24, each rotational increment is equal to 7.5◦.
c Defined as 𝑇 = 2𝑁 ⋅ (𝜏 + PLDbase +𝑁slice ⋅ 𝑡read∕𝜔).
D

a
r
n

Dataset 1: LR 2D MS data (for SRR) Whole brain SRR single-PLD
pCASL data was simulated assuming the rotational acquisition
scheme depicted in Fig. 1. The acquisition settings, shown in
Table 1, were chosen equal to those of the in vivo SRR experi-
ment described in Section 3.2. 𝑁 = 24 control-label image pairs,
each with a unique slice-encoding direction, were simulated
by rotating the slice stack around the virtual phase encoding
axis, aligned in the anterior–posterior direction, in increments
of 180/𝑁 degrees. The acquisition settings, which include a
labeling duration 𝜏 = 1.8 s, a time between the end of labeling
and the start of readout of the first slice PLDbase = 1.8 s, 𝑁slice
= 16 slices with a thickness of 12 mm, an in-plane isotropic
resolution of 3 mm, and a readout time per slice 𝑡read = 50 ms,
correspond to a total scan time 𝑇 = 2𝑁 ⋅ (𝜏 + PLDbase + 𝑁slice ⋅
𝑡read) ≈ 210 s. The LR control-label image pairs were simulated
as follows. Starting from the 3 × 3 × 3 mm3 HR ground truth
CBF, PD, and 𝑇1𝑡 maps described above, 𝑁 = 24 HR whole-
brain control-label image pairs were generated using Eq. (5),
each with a unique PLD map. Next, for each HR control-label
pair, a 3 × 3 × 12 mm3 LR version was computed using the SRR
forward model (Eq. (1)).

Dataset 2: HR 2D MS data Whole brain single-PLD data was simu-
lated assuming a 2D MS acquisition with an isotropic spatial
resolution of 3 × 3 × 3 mm3. The acquisition settings, which
are tabulated in Table 1, were chosen identical to those of the
in vivo experiment described in Section 3.2, except for the use of
MB imaging, which was ignored in this dataset. Assuming 𝑁slice
= 40 slices with a thickness of 3 mm, 𝜏 = 1.8 s, PLDbase = 1.8
s, and 𝑡read = 60 ms, 𝑁 = 22 HR control-label image pairs
were simulated, leading to a longer total scan time than the
in vivo experiment (see also dataset 4). Starting from the HR
ground truth CBF, PD, and 𝑇1𝑡 maps, Eq. (5) was used to gen-
erate a HR control-label image pair where the PLD increased
along the inferior–superior slice-encoding direction, following
the recommended ascending slice readout order (Alsop et al.,
2015). Subsequently, the HR image pair was blurred by applying
a spatially invariant 3D point spread function that corresponds
with an MS acquisition at 3D isotropic spatial resolution.

Dataset 3: LR 2D MS MB data (for SRR) To generate dataset 3, the
procedure used to generate dataset 1 was repeated assuming
MB imaging with an MB factor equal to 2. That is, an MB
5

version of dataset 1 was generated assuming that slice 𝑛 and slice
Table 2
Acquisition settings for SRR data and conventionally acquired data using 2D MS
readout. A slice orientation angle of 0◦ corresponds with the slice-encoding axis
directed from left to right, and with the phase-encoding axis perpendicularly directed
from anterior to posterior. Each angle listed below is a rotation of the slice-encoding
axis around the phase-encoding direction counterclockwise. Therefore, a 90◦ angle
is consistent with an ascending slice order. These rotations are consistent with the
rotations visualized in Fig. 1.

LR data for SRR Conventional HR data

Slices per slab (#) 16 40
Acquisition matrix 80 × 80 80 × 80
FOV [mm3] 240 × 240 × 192 240 × 240 × 120
Voxel size [mm3] 3 × 3 × 12 3 × 3 × 3
TR [ms] 4400 4800
Labeling duration [ms] 1800 1800
PLDbase [ms] 1800 1800
PLD rangea [ms] 1800–2550 1800–2750
Number of control-label pairs 24 22
Number of slice encoding directions 24 1
Slice orientation angles [◦] 0, 7.5,. . . ,172.5 90
SMS (multiband factor) n.a. yes (factor 2)
Total scan time [min:s] 3:30 3:30

a For the conventional HR data, the PLD range is given for a single band.

𝑛+𝑁slice∕2, with 𝑛 = 1, 2,… , 𝑁slice∕2, were acquired at the same
time, hence with the same PLD. The simultaneous acquisition
of two slices with MB would reduce the scan time of dataset 3
compared to dataset 1, although the labeling duration and the
PLD would still account for most of the scan time. The main
advantage of MB will be a closer to optimal BS over the whole
volume.

ataset 4: HR 2D MS MB data To generate dataset 4, the procedure
used to generate dataset 2 was repeated assuming MB imaging
with an MB factor equal to 2. As such, the acquisition settings
were identical to those of the in vivo experiment described in
Table 2, resulting in the same total scan time as dataset 1 and
the in vivo scan to allow a fair comparison.

Finally, noise was added to the generated datasets. To facilitate
n extensive Monte Carlo study, for each dataset, 𝑁MC = 100 noise
ealizations were generated by adding zero-mean, Gaussian distributed
oise with standard deviation 𝜎 =

√

𝜎20 + 𝜎2𝑃 , with 𝜎0 the standard
deviation of the raw noise component, including thermal and scanner
noise, and 𝜎𝑃 the standard deviation of the physiological noise com-
ponent (Krüger and Glover, 2001). Unlike 𝜎 , 𝜎 is proportional to
0 𝑃
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the signal strength 𝑆, i.e., 𝜎𝑃 = 𝑐𝑆, with 𝑐 a scaling factor. Values
for 𝜎0 and 𝑐 in each dataset were chosen to match the temporal SNR
(tSNR) values observed in the in vivo data. To this end, a voxel-wise
tSNR map was calculated from the conventional HR 2D EPI data set
(Table 2), where the tSNR was defined per voxel as 𝜇𝛥𝑟𝑛𝑗 ∕𝜎𝛥𝑟𝑛𝑗 , with
𝜇𝛥𝑟𝑛𝑗 the temporal voxel-wise mean and 𝜎𝛥𝑟𝑛𝑗 the temporal voxel-wise
standard deviation of the difference images

{

𝛥𝒓𝑛
}𝑁
𝑛=1, obtained from the

𝑁 single-PLD pCASL label-control repetitions. Furthermore, an overall
tSNR value was obtained by calculating the spatial mean inside a brain
mask of the voxel-wise tSNR map. This procedure resulted in a tSNR
ranging from approximately 0.2, in brain regions with almost no BS, to
3.4, in brain regions with perfect BS. Subsequently, values for 𝜎0 and 𝑐
were tuned to match those tSNR values in the simulated datasets. Fig.
S1 of the supplementary file shows the voxel-wise tSNR map obtained
from the conventional HR in vivo data alongside the tSNR maps used
in the simulation experiment, as well as a comparison in overall tSNR
value. Note that for the LR control-label images of dataset 1 and 3,
the tSNR increased approximately 4-fold as a result of the increased
slice thickness of those images when using the SRR forward model
(Eq. (1)), as signal scales linearly with the imaged volume. The process
of simulating (one noise realization of) dataset 1 is summarized in
a flowchart in Fig. 2 for the simulations with unwanted inter-image
motion, and in Fig. S2 for the simulations without motion.

3.1.2. Parameter estimation
SRR-pCASL and SRR-pCASL-MB were applied to all noise realiza-

tions of dataset 1 and 3, respectively, whereas C-pCASL & BASIL and
C-pCASL-MB & BASIL-MB were applied to dataset 2 and 4, respec-
tively. For the simulation experiments with motion, the parameter
optimization routine used in C-pCASL, C-pCASL-MB, SRR-pCASL, and
SRR-pCASL-MB alternated between (P.1) and (P.2). For the outer loop
iterations combining both (P.1) and (P.2), a convergence tolerance on
the relative difference of the tissue parameters between consecutive
iterations  (𝑡) was set at min = 10−4, with a maximum number of 10
iterations. Regarding the inner iterations, the convergence tolerance on
the relative difference of the tissue parameters between consecutive
iterations for (P.1) was also set at min = 10−4, with the maximum
number of iterations set at 120. Each of the decoupled sub-problems
of (P.2) was solved using a lower bound of 𝜇 = 10−6 on the step size
as convergence tolerance, i.e. iterations end when ‖𝜽(𝑡−1) − 𝜽(𝑡)‖2 < 𝜇.
The regularization parameters in (P.1) were heuristically set to 𝜆′𝒓1 =
1.6⋅10−3 and 𝜆′rCBF = 2.0⋅10−5, balancing the trade-off between the data
consistency objective and the regularization objectives of the tissue
parameter maps 𝒓1 and 𝝑rCBF, respectively. To compare the estimation
methods independent of the choice of regularization parameters, the
same values for 𝜆′𝒓1 and 𝜆′rCBF were used for C-pCASL, C-pCASL-MB,
SRR-pCASL and SRR-pCASL-MB. For the simulations without motion,
only (P.1) was solved in the parameter optimization routine of C-
pCASL, C-pCASL-MB, SRR-pCASL, and SRR-pCASL-MB, using the same
tolerance settings and regularization parameters for (P.1) as for the
simulations with motion. For BASIL and BASIL-MB, motion correction
using FSL’s mcflirt was only turned on in the simulations with motion.
To facilitate voxel-wise division with the calibration image 𝝆reg in the
simulation experiments, the 𝝆reg image and the first control image were
assumed to be perfectly aligned and the first control image was used
as a reference target image when estimating the motion of the other
images, both for the proposed framework and for BASIL.

3.1.3. Performance analysis
The CBF estimates obtained by the individual methods were com-

pared based on a voxel-wise analysis of the accuracy and precision
of each method using the following performance measures (Beirinckx
6

et al., 2020, 2022):
Absolute relative bias (arBias), which quantifies the accuracy of an
estimator, calculated as |

|

|

( ̄̂𝝑CBF − 𝝑CBF)⊘ 𝝑CBF
|

|

|

, where ̄̂𝝑CBF and
𝝑CBF refer to the CBF maps which contain the element-wise
sample mean of the 𝑁MC estimates 𝝑̂CBF, and the true reference
values, respectively, and where ⊘ denotes the element-wise
division operator.

Relative standard deviation (rSTD), which quantifies the precision of
an estimator, calculated as
(

𝑁MC
𝑁MC−1

(𝝑̂CBF − ̄̂𝝑CBF)◦(𝝑̂CBF − ̄̂𝝑CBF)
)◦ 1

2
⊘𝝑CBF, where ◦ and the

superscript ◦ 1
2 denote the Hadamard product and element-wise

square-root operator, respectively.

elative root-mean-squared error (rRMSE), which is a combined
measure of accuracy and precision, calculated as
(

(𝝑̂CBF − 𝝑CBF)◦(𝝑̂CBF − 𝝑CBF)
)◦ 1

2
⊘ 𝝑CBF.

In addition, the spatial mean of each of these performance measure
maps was computed, yielding 𝑎𝑟𝐵𝑖𝑎𝑠, 𝑟𝑆𝑇𝐷, and 𝑟𝑅𝑀𝑆𝐸, respectively.
To further assess image quality of the estimated CBF maps compared
to the ground truth HR CBF map, average structural similarity index
measure (SSIM) and peak SNR (PSNR) values were obtained for each
method by calculating the sample mean of the SSIM and PSNR values
obtained for each of the 𝑁MC realizations.

To assess the ability of the different frameworks to estimate motion,
the following performance measure was used:

Motion component root-(mean)-mean-squared-error (RMMSE),

which is defined as
(

1
2𝑁

∑2𝑁
𝑛=1 (𝜽̂𝑛 − 𝜽𝑛)◦(𝜽̂𝑛 − 𝜽𝑛)

)◦ 1
2 , where 𝜽𝑛

refers to the true reference value and the operator (⋅) denotes
the element-wise sample mean over the 𝑁MC estimates 𝜽̂𝑛.

Next, to visually compare the estimated CBF values against the
eference CBF values, a 2D scatter plot for each method was gener-
ted between ̄̂𝝑CBF and 𝝑CBF. Additionally, following the definition

of Delbany et al. (2019), the SNR gain map 𝜞𝑋,𝑌 ∈ R𝑁𝒓×1 between
method 𝑋 and method 𝑌 was calculated as 𝜞𝑋,𝑌 = 𝐒𝐍𝐑𝑋 ⊘ 𝐒𝐍𝐑𝑌 .

ere, 𝐒𝐍𝐑𝑋 represents the average SNR map of the reconstructed
BF maps in the simulation experiments for method 𝑋, which was
alculated as the ratio of the element-wise sample mean and standard
eviation of the 𝑁MC estimates 𝝑̂CBF,𝑋 for method 𝑋, i.e., 𝐒𝐍𝐑𝑋 =

̄̂
CBF,𝑋◦

(

𝑁MC
𝑁MC−1

(𝝑̂CBF,𝑋 − ̄̂𝝑CBF,𝑋 )◦(𝝑̂CBF,𝑋 − ̄̂𝝑CBF,𝑋 )
)◦

(

− 1
2

)

. Note that
𝜞𝑋,𝑌 incorporates both the SNR gain due to the use of a different ac-
quisition strategy as well as due to a different reconstruction algorithm
being used between both methods. Finally, the spatial mean of each
SNR gain map was computed, yielding overall SNR gain values 𝛤𝑋,𝑌
between the different methods.

3.2. Real data experiment

The performance of the proposed SRR-pCASL method was also
evaluated using in vivo brain MS single-PLD pCASL data from a healthy
volunteer (adult, male, 29 years old), acquired using a 32-channel
head coil on a 3 Tesla-scanner (Achieva, Philips Healthcare). Ethical
approval from the local institutional review board was obtained and
an informed consent was signed by the volunteer. The pCASL data was
acquired using a single-shot 2D EPI readout method, as recommended
by Alsop et al. (2015). LR MS data for SRR as well as conventional
MB MS data directly acquired at high resolution were collected using
the acquisition settings tabulated in Table 2. Data sets were acquired
without slice gap. A larger FOV for the LR data set compared to that
of the conventional HR data set is needed because the entire brain
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Fig. 2. A flowchart of the data simulation process for single-PLD pCASL data using SRR, in correspondence with the procedure outlined in Section 3.1. Coronal slices are shown
for four slice-encoding directions, illustrating the forward modeling of HR ground-truth parameter maps to LR MS images. Signal intensities of the control and label images are
shown in arbitrary units.
has to be within the FOV for each rotation angle. Also note that,
even though the readout time is significantly longer when acquiring
40 slices instead of 16, this results in only 2 control-label image pairs
less for the conventional HR dataset compared to the LR dataset, given
a fixed total scan time for both protocols (cfr. Table 2). This is a direct
consequence of the fact that the labeling duration and the PLD take
up most of the scan time. ASL imaging was performed in combination
7

with background suppression, which consisted of a saturation pulse
immediately before labeling and inversion pulses at 1680 and 2830 ms
after the saturation pulse. In addition to the pCASL data, a proton
density weighted calibration image was acquired without labeling and
background suppression at isotropic high resolution for absolute CBF
quantification. CBF map estimates were obtained from the LR MS data
using the proposed SRR-pCASL method, and compared to the CBF maps
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Table 3
Quantitative performance measures with standard error (SE) for the whole brain simulation experiment without motion, calculated over 𝑁MC = 100 reconstruction results for CBF

apping, for each respective readout scheme and reconstruction framework. For each performance measure, the value of the best performing strategy is highlighted in bold.
BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB

Value SE Value SE Value SE Value SE Value SE Value SE

SSIM 0.9833 1e−4 0.9846 1e−4 0.9927 1e−4 0.9894 1e−4 0.9905 1e−4 0.9940 1e−4
PSNR [dB] 30.97 0.02 30.99 0.01 32.33 0.01 32.28 0.03 32.17 0.01 32.45 0.01
arBias [%] 7.15 0.02 5.87 0.02 4.59 0.01 5.33 0.02 4.12 0.01 4.79 0.02
rSTD [%] 17.15 0.03 17.29 0.03 11.71 0.02 13.87 0.02 13.81 0.02 10.07 0.02
rRMSE [%] 19.27 0.04 18.76 0.03 13.07 0.02 15.42 0.02 14.81 0.02 11.68 0.02
p
a
i

estimated from the conventional MS MB data using BASIL-MB and C-
pCASL-MB. For the acquisition of the conventional HR MS ASL data,
an MB factor of 2 was used to limit ASL signal loss in the upper part
of the brain. In contrast, MB was not used in the acquisition of the
LR SRR-pCASL data because an MB acquisition required a mandatory
calibration scan to be performed before the acquisition of each LR
image pair with adjusted slice orientation. As a result, the condition
of equal total scan time for the conventional HR dataset and the
SRR-pCASL dataset would no longer apply.

The parameter optimization routine used in C-pCASL-MB and SRR-
pCASL alternated between (P.1) and (P.2). For the outer loop iterations
combining both (P.1) and (P.2), a convergence tolerance on the relative
difference of the tissue parameters between consecutive iterations  (𝑡)

as set at min = 10−3, with a maximum number of 10 iterations.
egarding the inner iterations, the convergence tolerance on the rela-

ive difference of the tissue parameters between consecutive iterations
or (P.1) was also set at min = 10−3, with the maximum number of

iterations set at 120. Each of the decoupled sub-problems of (P.2) was
solved using a lower bound of 𝜇 = 10−3 on the step size as convergence
olerance, i.e. iterations end when ‖𝜽(𝑡−1) − 𝜽(𝑡)‖2 < 𝜇. Regularization

weights for the in vivo reconstructions were heuristically set at 𝜆′𝒓1 =
8 ⋅ 10−3 and 𝜆′rCBF = 1 ⋅ 10−4, again similar for C-pCASL-MB and SRR-
pCASL. The in vivo data for BASIL-MB was motion corrected using FSL’s
mcflirt (Jenkinson et al., 2002).

4. Results

4.1. Simulation experiments

4.1.1. Simulation experiments without motion
Table 3 summarizes the results of the whole brain simulation CBF

mapping experiments in terms of the average SSIM, PSNR, 𝑎𝑟𝐵𝑖𝑎𝑠,
𝑟𝑆𝑇𝐷, and 𝑟𝑅𝑀𝑆𝐸, for BASIL, C-pCASL, and SSR-pCASL (with and

ithout MB). For each performance measure, the best performing
ramework is highlighted in bold. It follows from Table 3 that SRR-
CASL consistently resulted in higher average SSIM and PSNR values
ompared to traditional CBF quantification with BASIL and C-pCASL.
f all methods studied, SRR-pCASL-MB outperformed the other ap-
roaches in terms of average SSIM and PSNR. C-pCASL-MB had the
owest 𝑎𝑟𝐵𝑖𝑎𝑠 value of all methods, and performed best in terms of
verall accuracy. SRR-pCASL and SRR-pCASL-MB had the lowest 𝑟𝑆𝑇𝐷
alues, outperforming the other methods in terms of overall precision.
n terms of overall RMSE, being a measure that incorporates both
ccuracy and precision, SRR-pCASL outperformed BASIL and C-pCASL,
aving an 𝑟𝑅𝑀𝑆𝐸 value that is about 30% and 32% smaller than that
f C-pCASL and BASIL, respectively. The addition of MB provided con-
istent improvement for each performance measure for each method,
xcept for SRR-pCASL-MB where the 𝑎𝑟𝐵𝑖𝑎𝑠 value slightly increased.

Yet, combining SRR-pCASL with MB, resulting in SRR-pCASL-MB, pro-
vided a notable improvement in CBF estimation precision and RMSE.
Indeed, 𝑟𝑆𝑇𝐷 and 𝑟𝑅𝑀𝑆𝐸 for SRR-pCASL-MB decreased with about
4% and 10% compared to SRR-pCASL, respectively.

Fig. 3 shows coronal CBF maps estimated with each reconstruction
ramework as well as their absolute value of the rBias, rSTD, and
RMSE. Different aspects stand out. First, SRR-pCASL outperformed
8
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single-orientation pCASL in terms of CBF estimation accuracy, as illus-
trated by the coronal mid-slice of the arBias. For example, for BASIL
a clear bias existed for gray matter estimates in the outer edges of the
brain, while for C-pCASL there existed a significant bias in some voxels
in the upper part of the brain. The latter may be attributed to the SNR
of the ASL signal becoming critically low in these slices, which have the
longest effective PLDs and the lowest degree of BS. For SRR-pCASL, the
accuracy of the CBF estimation was more uniform across the brain, with
no apparent differences between tissue types, or between top or lower
parts of the brain. Second, the rSTD of the CBF estimates obtained using
BASIL and C-pCASL increased from the lower parts of the brain towards
the top parts of the brain (third row of Fig. 3). When using SRR-pCASL,
on the other hand, the precision of CBF estimation was much more
uniform, per tissue type, throughout the brain (Fig. 3). Furthermore, the
addition of MB led to a reduction of the rSTD for each method. Whereas
for BASIL-MB and C-pCASL-MB the precision improvement was limited
to slices acquired in the second band only, for SRR-pCASL-MB these
improvements were obtained across the whole brain. Third, in terms
of rRMSE, SRR-pCASL clearly outperformed the other methods without
MB, as indicated by the visibly darker rRMSE maps in the fourth row
of Fig. 3. Here, the same trends as for the precision maps in Fig. S6
are visible, showing both an increase in the rRMSE for ascending slices
during acquisition for BASIL and C-pCASL, and a more uniform rRMSE
of the CBF estimation across brain regions for SRR-pCASL.

Fig. 5 (left) shows the locations of the transverse slices that were
selected to visualize the variations in CBF estimation on a slice level.
Each transverse slice is characterized by a unique PLD and degree of
BS, depending on the acquisition settings of the processed dataset for
each CBF estimation method. Ground truth values of CBF for these
slice locations are given in the leftmost column of Fig. 6, including
the GM and WM hyperperfusion lesions denoted by the white arrows
in the fourth axial slice. Fig. 6 also shows the rRMSE maps for each
slice location and method. Only slices D and E, which were positioned
halfway and at the beginning of the second band, respectively, showed
a lower rRMSE for BASIL-MB and C-pCASL-MB compared to BASIL
and C-pCASL, respectively. Whereas for BASIL-MB and C-pCASL-MB the
rRMSE improvement was limited to slices acquired in the second band
only, for SRR-pCASL-MB these improvements were obtained across
all slices. Axial slice views of the absolute value of the rBias and
the rSTD maps, corresponding with the slice locations of Fig. 5, are
included in Figs. S5-S6 of the supplementary material. Furthermore, to
appreciate resolution enhancements and to ease a qualitative and visual
comparison of the CBF map estimated by each method, the supple-
mentary file also includes two additional figures, Fig. S3 and Fig. S4.
These figures show orthogonal slice views of the simulated 2D control
images for each simulated dataset in comparison with the estimated
HR CBF map per framework, and zoomed close-ups of this CBF map in
comparison with the ground truth CBF map as a reference, respectively.
Additionally, to demonstrate that the potential of SRR is not confined to
a particular resolution, a simulation experiment was performed where
a 2 × 2 × 2 mm3 CBF map was super-resolution reconstructed from LR
CASL images with a resolution of 2 × 2 × 16 mm3. Acquisition settings
nd results for this additional simulation experiment are summarized
n Table S1 and Fig. S7 of the supplementary file.

Next, Fig. 8 shows the average estimated CBF values against the

eference CBF values in a 2D scatter plot for BASIL (left), C-pCASL
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Fig. 3. Coronal mid-slices of the CBF estimates and the corresponding quantitative performance measures for the whole brain simulation experiment without motion. The first
row shows the numerical ground truth (left), followed by the estimated CBF maps for each method. Next, rows 2–4 show the absolute value of the relative bias, relative standard
deviation, and relative RMSE, respectively, computed from the 𝑁MC = 100 simulations.

Fig. 4. Coronal mid-slices of the CBF estimates and the corresponding quantitative performance measures for the whole brain simulation experiment with motion. The first row
shows the numerical ground truth (left), followed by the estimated CBF maps for each method. Next, rows 2–4 show the absolute value of the relative bias, relative standard
deviation, and relative RMSE, respectively, computed from the 𝑁MC = 100 simulations.
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Table 4
Quantitative performance measures with standard error (SE) for the whole brain simulation experiment with motion, calculated over 𝑁MC = 100 reconstruction results for CBF
mapping, for each respective readout scheme and reconstruction framework. For each performance measure, the value of the best performing strategy is highlighted in bold.

BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB

Value SE Value SE Value SE Value SE Value SE Value SE

SSIM 0.9705 1e−4 0.9845 1e−4 0.9920 1e−4 0.9825 1e−4 0.9900 1e−4 0.9936 1e−4
PSNR [dB] 28.56 0.02 30.79 0.01 31.54 0.01 30.41 0.03 31.86 0.01 32.29 0.01
arBias [%] 15.86 0.05 6.27 0.02 5.51 0.02 12.92 0.04 4.61 0.02 5.37 0.02
rSTD [%] 10.41 0.03 17.30 0.03 11.70 0.02 8.35 0.02 13.85 0.02 9.87 0.02
rRMSE [%] 20.75 0.05 18.95 0.03 13.54 0.02 16.55 0.04 15.07 0.02 11.84 0.02

RMMSE Value SE Value SE Value SE Value SE Value SE Value SE

𝑡𝑥 [mm] 0.2 0.1 0.0016 3e−4 0.0020 3e−4 0.3 0.1 0.0021 3e−4 0.0028 4e−4
𝑡𝑦 [mm] 0.11 0.03 0.0034 4e−4 0.017 1e−3 0.18 0.03 0.0006 2e−4 0.0094 8e−4
𝑡𝑧 [mm] 0.27 0.06 0.0015 2e−4 0.019 1e−3 0.56 0.09 0.0019 3e−4 0.042 2e−3
𝛼 [deg] 0.8 0.2 0.0004 1e−4 0.0106 9e−4 0.8 0.2 0.0005 2e−4 0.021 1e−3
𝛽 [deg] 0.20 0.05 0.0004 1e−4 0.0019 4e−4 0.3 0.1 0.0004 1e−4 0.0042 6e−4
𝛾 [deg] 0.5 0.2 0.0014 3e−4 0.0022 3e−4 0.8 0.2 0.0010 2e−4 0.0043 6e-4
Fig. 5. Top left: locations of the transverse slices for the whole brain simulation experiment (shown in Fig. 6). Bottom left: locations of the transverse slices for the real data
experiment (shown in Fig. 11). In addition, coronal mid-slice views of the slice-dependent effective PLD matrix are shown for each approach, reflecting the increase in PLD along
the slice-encoding direction, starting from a PLDbase value of 1.8 s. Since for SRR-pCASL the effective PLD matrix rotates with the slice orientation of each LR image (see Fig. 1),
only the effective PLD matrix corresponding with a slice orientation angle of 90◦ is shown for SRR-pCASL and SRR-pCASL-MB, consistent with an ascending slice order. Note that
missing data in the bottom panel is due to these scans not being acquired in the real data experiment.
(mid), and SRR-pCASL (right) without (top) and with (bottom) MB. As
indicated by the narrower distribution (i.e. better precision) and the
higher number of voxels that match the ground truth values (i.e. bet-
ter accuracy), SRR-pCASL and SRR-pCASL-MB outperformed the other
methods. Finally, Table 5 summarizes the overall SNR gains between
the different methods. SRR-pCASL outperformed the other methods in
terms of SNR of the estimated CBF map, as illustrated by the overall
SNR gains over BASIL and C-pCASL, even if these methods exploited
MB during acquisition. The SNR gain was maximal when SRR-pCASL
was combined with MB.

4.1.2. Simulation experiments with motion
Table 4 summarizes the obtained quantitative performance mea-

sures for the whole brain simulation CBF mapping experiments with
motion. It follows from Table 4 that the need to estimate unwanted
motion during the CBF reconstruction degrades the average SSIM,
PSNR, 𝑎𝑟𝐵𝑖𝑎𝑠, and 𝑟𝑅𝑀𝑆𝐸 value for each method. This effect is
most pronounced for BASIL and BASIL-MB, where motion between
the pCASL images was corrected using a registration routine prior
to CBF quantification. Without any exception, the addition of MB
provided consistent improvement for each performance measure for
each method. Similar to the simulations without motion, C-pCASL-MB
yielded the lowest 𝑎𝑟𝐵𝑖𝑎𝑠 value of all methods, and performed best in
terms of overall accuracy. For BASIL and BASIL-MB, the 𝑎𝑟𝐵𝑖𝑎𝑠 value
10
decreased by more than a factor of 2 compared to the simulations
without motion, indicating a considerable drop in accuracy. In terms
of overall precision, quantified by the 𝑟𝑆𝑇𝐷 value, C-pCASL and SRR-
pCASL performed very similar compared to the simulations without
motion (Table 3), whereas BASIL and BASIL-MB showed a noticeable
improvement in 𝑟𝑆𝑇𝐷. In terms of overall RMSE, SRR-pCASL clearly
outperformed the other approaches without MB, having an 𝑟𝑅𝑀𝑆𝐸
value that is about 34% and 28% smaller than that of BASIL and C-
pCASL, respectively. A similar observation is true when MB was added,
with SRR-pCASL-MB outperforming the other methods in terms of over-
all RMSE, having an 𝑟𝑅𝑀𝑆𝐸 value that is about 24% and 21% smaller
than that of BASIL-MB and C-pCASL-MB, respectively. For BASIL and
BASIL-MB, which apply an adaptive spatial smoothing to the estimated
perfusion image, the increased precision (reduced 𝑟𝑆𝑇𝐷) somewhat
compensates for the reduced accuracy (increased 𝑎𝑟𝐵𝑖𝑎𝑠), compared
to the simulations without motion (Table 3). This compensating effect
also follows from Fig. 4, which shows coronal mid-slices of the CBF
estimates and the corresponding quantitative performance measures for
the simulation experiment with motion. As indicated by the coronal
mid-slice of the arBias (second row of Fig. 4), a clear bias could be
noted for BASIL and BASIL-MB in all areas of the brain, whereas a
reduced precision could be observed from the rSTD map (third row of
Fig. 4), most notably for gray matter voxels.

In addition, Table 4 also summarizes the motion component RMMSE
for each of the six rigid motion components. The proposed framework
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Fig. 6. Relative RMSE maps for CBF, calculated from the reconstruction results of the whole brain simulation experiment without motion. For each method, five transverse slices
are shown, corresponding with the slice letter convention in Fig. 5. Overall relative RMSE values are summarized in Table 3. The numerical ground truth CBF map is shown in
column 1. Both hyperperfusion lesions are indicated by white arrow marks in slice B of this ground truth CBF map.
Table 5
The overall SNR gain (𝛤𝑋,𝑌 ) with standard error (SE) between reconstruction methods as assessed by the whole brain simulation experiment without motion, calculated over
the 𝑁MC = 100 reconstruction results for CBF mapping. Note that row labels refer to method 𝑋, while column labels refer to method 𝑌 , in line with the definition of 𝛤𝑋,𝑌 in
Section 3.1.3.
𝛤𝑋,𝑌 BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB

Value SE Value SE Value SE Value SE Value SE Value SE

BASIL 1.000 0.000 1.047 0.001 0.709 0.001 0.845 0.001 0.859 0.001 0.623 0.001
C-pCASL 0.973 0.001 1.000 0.000 0.686 0.001 0.822 0.001 0.831 0.001 0.604 0.001
SRR-pCASL 1.446 0.001 1.505 0.001 1.000 0.000 1.200 0.001 1.217 0.001 0.875 0.001
BASIL-MB 1.252 0.001 1.310 0.001 0.870 0.001 1.000 0.000 1.017 0.001 0.754 0.001
C-pCASL-MB 1.251 0.001 1.302 0.002 0.867 0.001 0.998 0.001 1.000 0.000 0.750 0.001
SRR-pCASL-MB 1.674 0.001 1.748 0.002 1.153 0.001 1.371 0.001 1.389 0.001 1.000 0.000
using joint motion estimation clearly outperformed the BASIL reference
method in terms of the motion component RMMSE, with C-pCASL
(without and with MB) performing best. Although RMMSE values for
C-pCASL are lower than for SRR-pCASL, this does not result in lower
𝑟𝑅𝑀𝑆𝐸 values, indicating that the benefits of a SRR acquisition with
rotated slice-encoding and low through-plane resolution, i.e. more
optimal BS and more constant PLD across slices, can outplay small
inaccuracies/imprecision in motion estimation. The effect of an im-
proved estimation of motion parameters is also visible from Fig. 9,
where C-pCASL and SRR-pCASL, without and with the use of MB, result
in a narrower distribution (i.e. better precision) and a higher number
of voxels that match the ground truth values (i.e. better accuracy),
compared to BASIL.

Finally, as can be seen from Table 6, which summarizes the overall
SNR gains between the different methods for the simulation experiment
with motion, SRR-pCASL outperformed C-pCASL and C-pCASL-MB.
However, BASIL and BASIL-MB outperformed the proposed approach in
terms of SNR of the estimated CBF map, with a maximal SNR gain for
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when BASIL was combined with MB. The increased SNR of BASIL may
be attributed to the increase in spatial regularization as a result of its
adaptive smoothing prior, which also explains the increased precision
(lower 𝑟𝑆𝑇𝐷) and reduced accuracy (higher 𝑎𝑟𝐵𝑖𝑎𝑠) in Table 6. To
further support this observation and indicate the increased smoothness
in the reconstruction results of BASIL, particularly for gray matter, Fig.
S8 of the supplementary material shows orthogonal slice views with
zoomed close-ups of the HR CBF maps estimated with the different
approaches, compared to the ground truth CBF map as a reference.

4.2. Real data experiment

Fig. 10 shows orthogonal mid-slice views of an HR-MB 2D EPI
control image acquired with high through-plane resolution (3 × 3 ×
3 mm3) and MB, and an LR 2D EPI control image with low through-
plane resolution (3 × 3 × 12 mm3) acquired with a slice orientation
angle of 0◦, corresponding with the acquisition settings summarized in
Table 2. Fig. 10 also shows the HR CBF map estimates obtained with
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Fig. 7. Relative RMSE maps for CBF, calculated from the reconstruction results of the whole brain simulation experiments with motion. For each method, five transverse slices
are shown, corresponding with the slice letter convention in Fig. 5. Overall relative RMSE values are summarized in Table 4. The numerical ground truth CBF map is shown in
column 1. Both hyperperfusion lesions are indicated by white arrow marks in slice B of this ground truth CBF map.
Fig. 8. 2D histograms between reference values and estimated values for all methods, as assessed by the whole brain simulation experiment without motion. CBF values are
given in mL/100 g/min. The dashed line represents identity. Points below correspond to underestimation and points above to overestimation, compared to the reference value.
For each method, values were averaged over the 𝑁MC = 100 estimates.
BASIL-MB, C-pCASL-MB, and SRR-pCASL, respectively. Note that for
the LR 2D EPI in vivo data set, SRR-pCASL successfully recovered the
fine details from the set of LR images.
12
In addition, a series of transverse slices at different locations in
the brain of the estimated HR quantitative CBF maps is shown in
Fig. 11 for BASIL-MB, C-pCASL-MB, and the proposed SRR-pCASL. The
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Fig. 9. 2D histograms between reference values and estimated values for all methods, as assessed by the whole brain simulation experiment with motion. CBF values are given
in mL/100 g/min. The dashed line represents identity. Points below correspond to underestimation and points above to overestimation, compared to the reference value. For each
method, values were averaged over the 𝑁MC = 100 estimates.
Fig. 10. Orthogonal slice views for the real data experiment showing an HR-MB 2D EPI control image acquired with high through-plane resolution (3 × 3 × 3 mm3) and multiband
(first column), and a LR 2D EPI control image with low through-plane resolution (3 × 3 × 12 mm3) corresponding with a slice orientation angle of 0◦ (column 4), compared with
the HR CBF map estimates obtained with BASIL-MB (second column), C-pCASL-MB (third column), and SRR-pCASL (column 5), respectively.
Table 6
The overall SNR gain (𝛤𝑋,𝑌 ) with standard error (SE) between reconstruction methods as assessed by the whole brain simulation experiment with motion, calculated over the
𝑁MC = 100 reconstruction results for CBF mapping. Note that row labels refer to method 𝑋, while column labels refer to method 𝑌 , in line with the definition of 𝛤𝑋,𝑌 in
Section 3.1.3.
𝛤𝑋,𝑌 BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB

Value SE Value SE Value SE Value SE Value SE Value SE

BASIL 1.000 0.000 1.872 0.003 1.273 0.002 0.888 0.001 1.537 0.003 1.086 0.002
C-pCASL 0.589 0.001 1.000 0.000 0.694 0.001 0.497 0.001 0.830 0.001 0.592 0.001
SRR-pCASL 0.863 0.001 1.489 0.001 1.000 0.000 0.719 0.001 1.207 0.001 0.849 0.001
BASIL-MB 1.253 0.002 2.203 0.003 1.487 0.002 1.000 0.000 1.741 0.002 1.252 0.002
C-pCASL-MB 0.758 0.001 1.291 0.001 0.874 0.001 0.608 0.001 1.000 0.000 0.734 0.001
SRR-pCASL-MB 1.049 0.002 1.810 0.002 1.210 0.001 0.863 0.001 1.445 0.001 1.000 0.000
locations of these transverse slices are highlighted on a coronal view
of the CBF map reconstructed with BASIL-MB in Fig. 5 (bottom left).
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As indicated in Fig. 5, slices A and B correspond with later acquired
slices in the first MB segment for BASIL-MB and C-pCASL-MB, while
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Fig. 11. Transverse slices at different locations in the brain of the estimated HR (3 × 3 × 3 mm3) CBF maps for the different real data approaches. In the first row the estimated
CBF map is shown for the proposed SRR-pCASL on the LR dataset (SRR-pCASL), and in the following rows the estimated CBF map is shown for C-pCASL on the HR dataset with
multiband factor 2 (C-pCASL-MB), and BASIL on the HR dataset with multiband factor 2 (BASIL-MB), respectively. The CBF maps estimated with SRR-pCASL all have comparable
CBF values, which reflects the relative uniformity in average SNR throughout all regions in the brain as a consequence of acquiring the LR images with a rotational acquisition
strategy. C-pCASL-MB and BASIL-MB, on the other hand, suffer from low SNR in the posterior slices of the first multiband segment (Slice A and B) due to longer effective PLDs
and limited background suppression. Slice positions correspond with those given in Fig. 5.
the other four slices are acquired relatively early in the second MB
segment. When comparing the different methods, two aspects stand out.
First, as can be observed in Fig. 11, the HR CBF maps reconstructed
using SRR-pCASL, C-pCASL-MB and BASIL-MB are comparable in terms
of absolute values and visualized anatomical structures. This clearly
demonstrates the feasibility of combining SRR with single-PLD pCASL.
Second, the reconstructed slices shown in Fig. 11 for the proposed
SRR-pCASL approach all have comparable CBF values, reflecting the
relative uniformity in SNR throughout all regions in the brain. The CBF
maps obtained from the conventional HR MS data using C-pCASL-MB
and BASIL-MB, on the other hand, clearly suffer from low SNR in the
superior slices of the first MB segment (slices A and B in Fig. 11). For
these slice locations, the proposed SRR-pCASL outperforms C-pCASL-
MB and BASIL-MB in terms of reconstruction quality of the underlying
anatomy.

As stated above, simulation experiments were performed for BASIL-
MB and C-pCASL-MB, mimicking the same MB factor of 2 as in the real
data HR pCASL experiment. Note that the stability of the CBF values
across slices in SRR-pCASL (see Fig. 11) is consistent with the uniform
RMSE of CBF estimation from LR MS data shown in the simulation
experiment (see Fig. 6). Furthermore, the higher quality of the CBF
map obtained using SRR-pCASL compared to that of BASIL-MB or C-
pCASL-MB in regions of the brain that were imaged last within the MB
segment (see the first two slices shown in Fig. 11) matches with the
difference in RMSE of CBF estimation between both methods in those
same regions as predicted in the simulation experiment (see Fig. 6).
While it is difficult to compare a qualitative assessment (real data) with
a quantitative measurement of RMSE (simulation data), it is reasonable
to assume both effects are correlated. It serves as an indication of the
validity of the simulation experiment.

5. Discussion

In this work, we introduced a model-based SRR framework for
single-PLD pCASL MRI. The framework, which integrates inter-image
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motion estimation, provides direct whole brain 3D isotropic high res-
olution CBF mapping from a set of 2D multi-slice control-label image
pairs with a low through-plane resolution and slice orientations that are
pair-wise rotated around a common phase encoding axis. Simulation
and real data results showed that this SRR acquisition strategy enables
improved CBF mapping compared to the conventional 2D MS single-
PLD pCASL acquisition scheme in which control-label image pairs are
directly acquired at the target isotropic resolution with equal acquisi-
tion settings for each image pair, while using the same scan time. Our
findings are discussed in more detail below.

5.1. Differences with existing techniques

We would like to point out that this work differs noticeably from
another multi-image super-resolution resolution study for (pC)ASL, pre-
sented by Shou et al. (2021). In that work, the SLIce Dithered Enhanced
Resolution (SLIDER) super-resolution technique proposed by Setsom-
pop et al. (2015) is integrated with 2D SMS pCASL and a constrained
slice-dependent background suppression (CSD-BS) scheme (Shao et al.,
2018). Our approach improves upon the method presented by Shou
et al. (2021) in various aspects. First, SLIDER relies on sub-voxel
spatial shifts in the slice direction, whereas in our approach the slice
orientations are rotated around the phase-encoding axis, which yields
a more effective sampling of the 𝑘-space (Plenge et al., 2012). Previous
studies that compared translational (i.e., sub-voxel shift) and rotational
SRR schemes confirmed the superiority of the latter (Shilling et al.,
2009; Nicastro et al., 2022). Furthermore, unlike our method, the
SLIDER-SMS pCASL method of Shou et al. (2021) does not estimate CBF
directly from the LR images, nor does it integrate simultaneous motion
estimation, which may introduce a bias due to error propagation.
Moreover, the SLIDER-SMS pCASL method models the slice profile
as a box function, whereas our SRR-PCASL method models it as a
more realistic smoothed box function (Poot et al., 2010). In addition,
the long total scan time and lack of motion compensating steps of
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Fig. 12. A schematic representation of 2D MS readout with a high (left) and a low (right) through-plane resolution, both with an ascending acquisition order, as recommended
for ASL (Alsop et al., 2015). Assuming the acquisition of an HR and an LR slice take up the same amount of scan time, the highlighted slices in green in both readout schemes
will have the exact same effective PLD and level of BS. Regardless of the difference in SNR due to the difference in spatial resolution, the overall shorter effective PLD and the
overall higher level of BS in the LR readout scheme will result in a higher SNR of the ASL signal on average throughout the brain.
the SLIDER-SMS pCASL method increase the susceptibility to motion
artifacts, which Shou et al. (2021) identify as a limitation of their study.
As demonstrated in this work, the proposed SRR-pCASL framework
integrates an inter-image motion model making it less susceptible to
motion artifacts.

5.2. Improved CBF quantification from single-PLD pCASL data

Comparing the CBF estimation of the different approaches in the
simulation experiment without motion, the proposed SRR-pCASL
framework for LR MS pCASL data showed superior CBF parameter
mapping RMSE compared to both C-pCASL and BASIL for processing
of conventional HR MS pCASL data (see Figs. 3, 6 and Table 3). In
addition, our results showed that SRR-pCASL consistently resulted in
higher average SSIM and PSNR values compared to C-pCASL and BASIL
(see Table 3), indicating a better perceived image quality compared
to the ground truth CBF map. Next, it was also demonstrated that the
SRR-pCASL acquisition strategy, when combined with a MAP estimator,
provides high resolution CBF maps with a more uniform and on average
higher precision than CBF maps obtained with C-pCASL and BASIL (see
Table 3, Fig. 3, and Fig. S6 of the supplementary file). This increased
precision can be attributed to a two-fold gain in SNR, as provided
by SRR-pCASL. First, SRR images are acquired with a low through-
plane resolution, which increases the SNR as signal strength scales
with the slice thickness (Delbany et al., 2019). Second, using a low
through-plane resolution reduces the number of slices that need to be
acquired to cover the same field-of-view (FOV) compared to higher
through-plane resolution. As a result, for each LR image, the average
effective PLD is shorter and the average level of BS improves compared
to standard 2D MS acquisitions (see Fig. 12), which boosts the SNR
throughout the entire volume. By augmenting each method with a MB
factor of 2, which accelerates image acquisition and hence provides a
more constant and on average better BS as well as a more constant
PLD across slices, the SNR gain could be further maximized resulting
in an additional improvement in CBF parameter mapping precision
and RMSE for each method (see Fig. S6, Fig. 6, Tables 3 and 5). As
calculated from our simulations without motion, this SNR gain was
maximal when SRR-pCASL was combined with MB, relative to the other
methods, with the non-MB version of SRR-pCASL even outperforming
the MB versions of BASIL and C-pCASL in terms of SNR gain (see
Table 5). Apart from the improved SNR, and although the labeling
duration and the PLD inherently account for most of the time of the
pCASL sequence, another advantage of lowering the spatial resolution
in SRR-pCASL readout is a reduction of the scan time of an individual
image, allowing to acquire more images within a certain amount of
time compared to the acquisition of images with high spatial resolution.
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5.3. Joint estimation of CBF and motion parameters

Besides the potential of SRR-pCASL to improve the traditional
SNR/resolution/scan-time trade-off in ASL, the integration of a motion
model and the single-PLD quantification model in the proposed SRR-
pCASL reconstruction framework allows motion parameters and CBF
parameters to be estimated directly and simultaneously. As such,
a conventional two-step approach is avoided where HR perfusion-
weighted images are reconstructed prior to voxel-wise quantification
of CBF values. This benefit of the joint estimation of the motion
and CBF parameters to avoid propagating errors originating from pre-
registration routines (Beirinckx et al., 2022), was confirmed in the
simulation experiment with motion, where it was shown that the
proposed framework using joint motion estimation outperformed BASIL
with FSL’s mcflirt as a pre-registration routine in terms of motion com-
ponent RMMSE (see Table 4). We also observed slightly better RMMSE
values for C-pCASL than for SRR-pCASL, even when both approaches
used the same Bayesian optimization framework with the same toler-
ance settings and regularization parameter selection. This may be the
result of a combination of factors including cost function complexity,
i.e. large-angle rotations are involved the SRR-pCASL forward model
to compensate for the rotational acquisition, and sub-optimal hyper-
parameter selection, but further research is required to investigate this
discrepancy. Nevertheless, SRR-pCASL consistently resulted in lower
CBF mapping RMSE values compared to C-pCASL in the simulations
with motion (see Figs. 4, 7, and Table 4), indicating that the benefits
of an SRR acquisition with rotated slice-encoding direction and low
through-plane resolution, i.e. more optimal BS and more constant PLD
across slices, provides a gain in precision that can compensate for small
remaining inaccuracies in motion estimation compared to C-pCASL.

Although a thorough evaluation of BASIL and FSL’s mcflirt was not
the main scope of this work, it is worth emphasizing that default usage
of these tools on motion corrupted pCASL data should be done with
some precaution. As discussed in section S1.2 of the supplementary
material, for one control-label image pair of the simulated HR pCASL
data sets corrupted with realistic motion, we noticed consistent outliers
in the motion parameter component estimation that resulted from the
pre-registration routine using mcflirt. This forced us to consider this
image pair as an outlier and to discard it from the CBF quantification
using BASIL. The obligatory use of outlier correction steps, and the
added question on the basis of which criteria such correction steps
should be evaluated, constitutes another unnecessary step towards ac-
curate CBF quantification. The advantage of estimating CBF and motion
parameters in a single integrated approach without any form of outlier
correction, as proposed in this work, offers clear added value in that
respect.
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Further, we also observed an increased adaptive smoothing of BASIL
in the simulations with motion, which resulted in an increased rSTD
precision measure for BASIL (see Fig. 4, Fig. S10, and Table 4). As
a result, BASIL and BASIL-MB outperformed the proposed approaches
in terms of SNR gain (see Table 6). However, as indicated by our
results, this over-smoothing of BASIL resulted in a significant reduction
in accuracy, as confirmed by the arBias measure (see Fig. 4, Fig. S9, and
Table 4), and a significant deterioration of BASIL in terms of RMSE
compared to the simulation experiment without motion (see Fig. 7).
In conclusion, similar to the simulations without motion, SRR-pCASL
clearly outperformed BASIL and C-pCASL in terms of overall RMSE (see
Figs. 4, 7 and Table 4).

Following the extensive simulation studies, the SRR-pCASL frame-
work was also validated on in vivo brain data, and compared to a
single-PLD pCASL experiment on conventional pCASL data acquired
with MB directly at HR (see Table 2). When comparing SRR-pCASL to
the conventional HR pCASL experiment, two aspects stand out. First,
the CBF maps reconstructed using SRR-pCASL (Fig. 11, top row), are
comparable in terms of visualized anatomical structures to the CBF
maps obtained from the conventional MS data using BASIL (Fig. 11,
bottom row), and C-pCASL (Fig. 11, middle row), the last two ap-
proaches using data directly acquired at HR. Second, in certain slices
(i.e. slices A–B of Fig. 11), SRR-pCASL appears to even outperform
the conventional HR pCASL experiment in terms of reconstructing the
underlying anatomy. This is a direct consequence of the benefit of
acquiring LR data for SRR-pCASL in terms of SNR. Furthermore, the
reconstructed slices of the CBF map shown in Fig. 11 for the SRR-
pCASL experiment all have comparable signal intensities. This reflects
the relative uniformity in average SNR throughout all regions in the
brain related to the SNR benefits of acquiring LR pCASL images while
using a rotational acquisition strategy. For the CBF map obtained from
the conventional HR MS data, slices A–B shown in Fig. 11 clearly suffer
from the low SNR due to long effective PLDs and limited BS. Similar
as observed in the simulation experiment with motion, the adaptive
regularization of BASIL-MB compensates for the low SNR by over-
smoothing these slices A–B of the estimated CBF map, which were both
acquired at the end of the first multiband (see Fig. 5). In comparison to
BASIL-MB, such an over-smoothing effect was not observed in the CBF
maps reconstructed with C-pCASL-MB (which uses a Laplacian prior)
from the same conventional HR pCASL data set, where higher CBF
intensities in the first multiband could be observed (see the coronal
and sagittal views in Fig. 10). Moreover, the stability of the CBF values
across slices for SRR-pCASL (see Fig. 11) is consistent with the uniform
precision of CBF estimation from LR MS data using SRR-pCASL shown
in the simulation experiment (see e.g. Fig. 4 and Fig. S10). Furthermore,
the higher quality of the CBF map obtained from the SRR-pCASL
experiment compared to that of the HR ASL experiment in regions of
the brain that were imaged latest within the multiband segment (see the
first two slices shown in Fig. 11) matches with the difference in RMSE
of CBF estimation between both methods in those same regions as
predicted in the simulation experiment (see Fig. 7). While it is difficult
to compare a qualitative assessment (real data) with a quantitative
measurement (simulation data), it is reasonable to assume both effects
are correlated. It serves as an indication of the validity of the simula-
tion experiment. Moreover, a qualitatively comparable CBF parameter
mapping occurs for C-pCASL compared to BASIL, clearly indicative of
the validity of using C-pCASL as a benchmark against SRR-pCASL in our
in vivo experiment. Finally, it is worth noting that a closer inspection
of Figs. 10–11 reveals apparently lower WM CBF values in the maps
reconstructed with SRR-pCASL compared to the maps reconstructed
with the other methods. Further research is recommended to explain
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this observation.
5.4. Model assumptions and prospective extensions

It is worth highlighting that the proposed SRR framework is generic
as other ASL models can be incorporated analogously. The current
framework adopts the CBF quantification model prescribed by Alsop
et al. (2015), which assumes that all labeled blood has arrived in
the imaging voxel before the start of the readout (i.e., ATT from the
labeling plane to the readout slice is assumed to be lower than the PLD),
and has stayed intravascularly while decaying with the T1 relaxation
time of blood. However, it has been shown that such model is sensitive
to variations in the ATT of the labeled blood (Alsop and Detre, 1996),
implying the need for sufficiently long PLD. If the PLD is shorter
than the ATT, the risk of macrovascular artifacts (i.e., labeled blood
in proximal arteries rather than the distal capillaries or tissue) and
ASL signal void (i.e., the labeled blood has not arrived yet in distal
voxels resulting in ASL signal loss in these voxels) will increase. To
address such issues, future work could focus on the extension of the
proposed model-based SRR framework with a (nonlinear) multi-PLD
pCASL model. Such a model allows to estimate the ATT parameter
to improve the accuracy of CBF estimation (Buxton et al., 1998),
and has already been applied for direct CBF mapping in combination
with model-based reconstruction (Maier et al., 2021). Furthermore, a
preliminary phantom simulation study in which the potential of SRR
with multi-PLD pCASL was explored, has already been published as
a conference proceeding (Bladt et al., 2017). In such an approach,
each LR MS image is characterized by a unique slice orientation as
well as a unique PLD time, allowing the estimation of both CBF and
ATT. However, given the nonlinear nature of the multi-PLD pCASL
model as well as the increased number of parameters to be estimated,
the computational cost of the optimization is expected to increase.
Note, also, that although such ASL model extensions may improve
the accuracy of the estimated parameter maps, the addition of extra
parameters to be estimated comes at the expense of a reduced precision.
Furthermore, it is often assumed that the reduction in data averaging
when using multiple time point protocols (required when acquiring the
data in a matched scan time with a single-PLD protocol) leads to a
reduction in the precision of the CBF estimates (Alsop et al., 2015; Dai
et al., 2017; Teeuwisse et al., 2014), which could outweigh the benefits
of correcting for ATT effects. At this point, future work could focus
on investigating to what extent this reduction in CBF precision can be
compensated for by the gain in precision associated with the use of
SRR-pCASL. Overall, the effects of accuracy and precision should be
carefully weighed against each other.

In this work, the calibration image 𝝆 was acquired from a sep-
arate acquisition at the target resolution, i.e., the resolution of the
reconstructed 𝝑rCBF map, followed by a multi-modal registration step
to align 𝝑rCBF and 𝝆, which then allowed absolute CBF quantification
via voxel-wise division of 𝝑rCBF and 𝝆reg to a HR CBF parameter map
𝝑CBF. An alternative approach could be to integrate the registration
with the calibration image 𝝆 as part of the cyclic block-coordinate
descent optimization scheme in Section 2.3.2, resulting in an additional
set of motion parameters 𝜽𝝆 ∈ R6×1 to be estimated simultaneously
with {𝝑,𝜽}. This approach would avoid a separate calibration step,
and could reduce a potential bias from propagating registration errors.
However, similar to the addition of a multi-PLD model, the effects of
accuracy and precision should be carefully considered as the estimation
of additional motion parameters could come at the cost of a reduced
precision. Furthermore, the benefit of simultaneous estimation of 𝜽𝝆
must be weighed against the extra computational cost associated with
such estimation. In particular, modeling 𝜽𝝆 requires the introduction
of an extra (computationally intensive) image warping operator in the
numerator of the single-PLD pCASL signal model in Eq. (2). While
image operators 𝑴𝜽𝑛 and 𝑮𝑛 are currently combined in one warping
operation to maximize computational efficiency, an additional image
warping operator for 𝜽𝝆 would demand a full operator call for every

forward pass in the cost function. The latter would cause a significant
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increase in the computational cost of the framework. Therefore, in this
work, the decision was made to consider the calibration step separately.
Future work is encouraged to further investigate the impact of joint
calibration on CBF quantification and computation time.

5.5. Limitations

In our current implementation, the signal in the voxels of the LR
images is assumed to be Gaussian distributed, which is a valid assump-
tion for sufficiently high SNR. The MAP estimation then becomes a
least-squares optimization, which can be solved efficiently as a linear
optimization problem. However, other data distributions may apply
when the SNR condition is not met, or when other coil acquisition
setups, e.g. using parallel imaging, are used. In that case, the log like-
lihood can take a nonlinear form, resulting in a nonlinear optimization
problem that requires more advanced computational solvers. Future
work could focus on investigating the impact on CBF estimation when
other data distributions, as well as spatial and temporal variations in
the noise standard deviation maps of the LR images, are used.

The comparison between the considered CBF estimation frame-
works depends on the imposed prior information on the unknown
parameter maps, as well as the tuning of the associated regularization
weights. While the SRR-pCASL framework uses a Laplacian prior (cfr.
Section 2.3.1), and regularization weights can be chosen equally for
SRR-pCASL and C-pCASL, BASIL uses an adaptive non-local spatial
smoothing prior based on CBF variations in the brain, without a priori
user-selected regularization weights. In order to compare the perfor-
mance of the different methods in a reliable manner, ideally, the level
of regularization should be the same in all reconstructions. At the
same time, tuning regularization weights of a multiple regularization
parameter selection problem as proposed, remains a difficult problem.
In the current work, the hyper-parameters of the prior distributions
in Eq. (8) were heuristically selected to be minimally intrusive in the
reconstruction, balancing the trade-off between the data consistency
objective and the regularization objectives of the tissue parameter
maps. This approach may be sub-optimal.

A more fair comparison between SRR-pCASL, C-pCASL-MB and
BASIL-MB in the real data experiments would be achieved when MB
was (not) used in all experiments. One could argue that the current
real data comparison was skewed in favor of the conventional HR ASL
experiment, because MB was only used for HR ASL data acquisition.
However, this choice was made for two reasons. On the one hand,
a MB factor of 2 was used in the HR ASL experiment, as otherwise
there would have been practically no ASL signal remaining in most
of the upper part of the brain. As this was a proof-of-concept study,
being able to verify whether the SRR-pCASL reconstructed CBF maps
showed anatomical details comparable to those of BASIL-MB was more
important than a true one-to-one comparison of the conventional HR
ASL and SRR-pCASL experiment. On the other hand, MB was not used
in the SRR-pCASL experiment, because MB acquisition required a cali-
bration scan to be performed before acquisition of each LR image. This
would have taken up too much of the available total scan time. Future
work that investigates whether the SRR acquisition strategy can be
combined with MB more efficiently, to allow for a more fair comparison
between both strategies, is highly encouraged. As demonstrated in
our simulation study without motion, the use of MB in SRR-pCASL-
MB provided an additional improvement in relative RMSE of about
10% compared to SRR-pCASL, largely contributed to by the increased
estimation precision.

Finally, the SRR-pCASL protocol needs to be validated on more
subjects in order to demonstrate its intra- and inter-subject robustness.
Ideally, data should be acquired repeatedly in individual subjects, in
order to be able to determine sample standard deviations for CBF map
estimates, similarly to the analysis done in simulations. This would
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allow to quantify the performance of SRR-pCASL and C-pCASL in
more detail. In addition, CBF map estimates obtained using our SRR-
pCASL method for 2D MS readout should be further compared with
results obtained using recommended segmented 3D readout schemes.
We anticipate that motion robustness and through-plane blurring are
two effects where the proposed SRR-pCASL method with joint motion
estimation offers potential improvements over segmented 3D readout.

5.6. Anticipated clinical impact and future perspectives

Our research also highlights some advantages that could potentially
have profound clinical impact. The FOV of the LR pCASL data for
SRR-pCASL provides wider coverage in the slice direction (192 mm)
compared to the conventional HR data (120 mm), acquired in the same
total scan time. On the one hand, this wider coverage is required for
SRR because the entire brain has to be within the FOV for each rotation
angle. On the other hand, it offers a potential advantage to applications
where such large coverage is required. An advantage, for example,
is that the labeling plane can be scanned, which is not standard for
conventional ASL acquisitions. Directly visualizing the labeling plane
can offer valuable information for off-resonance correction schemes
that investigate B0 field inhomogeneity distortions in the labeling
plane (Berry et al., 2019). In addition, the larger coverage would
potentially allow perfusion quantification in deep brain structures such
as the brain stem, cerebellum, and even the spinal cord (Shou et al.,
2021). These brain structures are important nodes of the structural and
functional networks of the human brain. However, to date, very few
perfusion measurements have been performed in these structures.

Further, we anticipate that the combination of a rotated SRR ac-
quisition strategy with MB imaging (also known as SMS) offers great
promise to overcome some of the limitations of ultra-high-field (UHF;
7T and higher) ASL techniques (Teeuwisse et al., 2010). The added
value of such a combined acquisition strategy seems twofold. First,
image SNR increases both with field strength (Gardener et al., 2009),
and due to acquisition with low through-plane resolution and increased
effectiveness of BS associated with SRR and MB, as clearly demon-
strated in this work (see also Fig. 12). Second, the combination of SRR
with MB offers an attractive approach to increase the currently limited
spatial coverage at these higher field strengths (Ivanov et al., 2017),
since both several spatially distributed imaging slices are excited and
the through-plane resolution of each slice is increased.

It is worth discussing whether the proposed SRR approach can be
extended to pCASL with 3D readout. Super-resolution reconstruction is
conventionally defined as the recovery of high-frequency components
corrupted by aliasing (Kang and Chaudhuri, 2003). In 2D multi-slice
imaging, aliasing occurs in the through-plane direction, which facili-
tates SRR. However, there is consensus that super-resolution in MRI is
not achievable in-plane (Greenspan et al., 2002; Scheffler, 2002; Plenge
et al., 2012), nor in true 3D acquisitions, since the Fourier encoding
scheme excludes aliasing in frequency and phase encoding directions.
Notwithstanding the aliasing condition, the proposed estimation frame-
work is fully compatible with 3D pCASL data (provided that the slice
selection profile is turned off). In that case, the reconstruction will
mainly benefit from the joint estimation of CBF and motion parameters,
while the potential resolution gain is expected to be marginal. At
the same time, 3D readout remains subject to several disadvantages,
including spatial blurring due to T2 decay and a high sensitivity to
(intra-scan) motion. These disadvantages could complicate resolution
enhancement using LR 3D ASL scans. In particular, it is crucial that such
effects are included in the forward model for (iterative) reconstruction
which connects the ground truth CBF map to the observed data.

Finally, the combination of the proposed SRR acquisition strategy
with alternative ASL labeling approaches, such as Hadamard time
encoding (in the context of multi-PLD pCASL) (Teeuwisse et al., 2014),
and velocity selective encoding (Qin et al., 2022), seems worth inves-

tigating and is suggested as a possible extension of this work.
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6. Conclusion

This work has introduced a model-based super-resolution recon-
struction framework for single-PLD pCASL MRI, building on a joint
Bayesian estimation framework that aims to estimate motion-corrected
3D isotropic high-resolution quantitative CBF maps from a set of 2D
multi-slice control-label image pairs acquired with low through-plane
resolution and rotated slice-encoding direction. The framework has
been validated in synthetic whole brain simulations and on in vivo
human brain data, demonstrating successful CBF quantification while
providing a more uniform distribution of PLD, improved SNR, and
increased effectiveness of BS compared to conventional 2D MS readout
with ascending slice order and isotropic resolution in the same scan
time, even when multiband is applied in the latter. By improving upon
existing disadvantages of 2D MS readout, the proposed framework
provides a promising alternative to the recommended segmented 3D
readout schemes, which to date remain sensitive to inter-shot motion
and through-plane blurring due to T2 decay along the long echo trains.
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Appendix A. Slice-dependent PLD

When using a conventional 2D multi-slice readout strategy for
pCASL with subsequently acquired slices, distal slices will have longer
effective PLDs than proximal slices. This slice-dependent effective PLD
can be represented using a function that maps each ordered triplet
of HR grid coordinates to a voxel value holding the effective PLD,
i.e., 𝐏𝐋𝐃∶ 𝐷 ⊂ N3

0 ↦ R, where 𝐷 = { (𝑖, 𝑗, 𝑘) ∣ 𝑖 = 1,… , 𝑢; 𝑗 =
1,… , 𝑣; 𝑘 = 1,… , 𝑤; and 𝑢, 𝑣,𝑤 ∈ N0 }, with 𝑁𝒓 = 𝑢 × 𝑣 ×𝑤. Assuming
that the base PLD value, PLDbase, increases by a multiple of the slice
readout time, 𝑡read, for ascending slices in a conventional 2D multi-slice
pCASL acquisition, the (𝑖, 𝑗, 𝑘)th voxel value of 𝐏𝐋𝐃 is defined as:

PLD(𝑖, 𝑗, 𝑘) = PLDbase + 𝑡read ⋅ ℎ(𝑘) , (A.1)

with 𝒉∶N0 ↦ N, 𝒉 = {ℎ(𝑘) ∣ 𝑘 = 1,… , 𝑤 and 𝑤 ∈ N0 }, a function that
defines the integer multiplication factor for the 𝑘th slice of 𝐏𝐋𝐃:

ℎ(𝑘) = 1
𝜁
[(𝑘 − 1) mod 𝜚 − ((𝑘 − 1) mod 𝜚) mod 𝜁 ] , (A.2)

where 𝜁 is equal to the anisotropy factor, defined as the ratio of the
through-plane resolution to the in-plane resolution, and with 𝜚 the
number of HR slices per band, i.e. the ratio of the total number of
HR slices to the multiband factor. The application of function 𝒉 is
illustrated in Fig. A.1.

When using a SRR acquisition strategy, 2D multi-slice images are
acquired with anisotropic voxel size, where each LR image samples the
HR scene in a distinct fashion to ensure that the acquired data contains
complementary information about the HR image or HR parameter maps
to be reconstructed. In this work, the LR images are acquired with
varying slice-encoding directions (Fig. 1). Consequently, effective PLD
values will vary according to the assumed slice-encoding direction of
each LR image. Under the assumption that no labeling of cerebral blood
is present at an infinitely long PLD, the effective PLD values of the
𝑛th HR pCASL image 𝒓𝑛 can be modeled using a function 𝐏𝐋𝐃𝑛 =
{PLD𝑛𝑗}

𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1:

𝐏𝐋𝐃𝑛 =

{

∞, if 𝑛 is odd
𝑴−1

𝜽𝑛
𝑮−1

𝑛 𝐏𝐋𝐃, if 𝑛 is even ,
(A.3)

where 𝑴−1
𝜽𝑛

∈ R𝑁𝒓×𝑁𝒓 and 𝑮−1
𝑛 ∈ R𝑁𝒓×𝑁𝒓 denote the exact inverse

warping operators of operators 𝑴𝜽𝑛 and 𝑮𝑛, respectively, which are
required to anticipate image warping in the super-resolution forward
model in Eq. (1). Note that in this work, similar to Ramos-Llordén et al.
(2017) and Beirinckx et al. (2022), image warping is implemented very
efficiently with Fast Fourier Transforms (FFT). With the FFT approach,
𝑴𝜽𝑛 (or 𝑮𝑛) can be shown to be unitary, which means that its inverse
𝑴−1

𝜽𝑛
is equal to 𝑴𝐻

𝜽𝑛
∈ R𝑁𝒓×𝑁𝒓 , where the superscript 𝐻 denotes

the adjoint or Hermitian conjugate. Hence, the warping operator 𝑴𝜽𝑛
is easily reversible, i.e. when applied to an image, the image can be
retrieved by applying 𝑴𝐻

𝜽𝑛
to the output of this operation.

Appendix B. Background suppression

Background suppression (BS) can be used to increase the SNR of
the ASL signal by suppressing the physiological noise component that
Fig. A.1. Illustration of Eq. (A.2) where function 𝒉 operates on a 1-dimensional HR grid vector 𝑘 = 1,… , 12, oriented along the slice-encoding dimension, using an anisotropy
factor 𝜁 = 3, with 𝜚 = 12 (i.e., no SMS), and with 𝜚 = 6 HR slices per band when SMS with multiband factor 2 is modeled.
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scales with the signal intensity in the label and control images. BS can
be achieved using a combination of a saturation pulse and a certain
number of inversion pulses applied to the imaging volume (Garcia
et al., 2005; Maleki et al., 2012). By timing these inversion pulses
correctly with the readout excitation, the longitudinal magnetization
of the static background tissue will pass through zero at the time
of readout. For imaging methods that employ a single excitation per
repetition time (TR), such as the segmented 3D approaches, BS can be
highly effective, as the null point of the magnetization can be timed to
coincide with the excitation pulse. However, in 2D multi-slice readout
for pCASL, used for SRR, an excitation pulse is used for each individual
slice and slices are acquired subsequently resulting in different slice
acquisition times. As a result, BS can be optimal for one slice, but is
progressively less efficient for other slices.

Under the assumption that BS is perfect for the first acquired slice
and that signal in subsequent slices recovers towards equilibrium with
𝑇1 of tissue, the slice-dependent variation of optimal inversion time
points for BS in a conventional 2D multi-slice pCASL acquisition with
ascending slice order, can be represented as a function 𝐓𝐈∶𝐷 ⊂ N3

0 ↦ R,
where 𝐷 = { (𝑖, 𝑗, 𝑘) ∣ 𝑖 = 1,… , 𝑢; 𝑗 = 1,… , 𝑣; 𝑘 = 1,… , 𝑤; and 𝑢, 𝑣,𝑤 ∈
N0 }, with 𝑁𝒓 = 𝑢 × 𝑣 × 𝑤. Similar to the definition of slice-dependent
LD values in Eq. (A.1), it is assumed that inversion times increase by
multiple of the readout time per slice for ascending slice numbers. As

uch, the (𝑖, 𝑗, 𝑘)th voxel value of 𝐓𝐈 is defined as:

I(𝑖, 𝑗, 𝑘) = 𝑇1(𝑖, 𝑗, 𝑘) ⋅ ln(2) + 𝑡read ⋅ ℎ(𝑘) , (B.1)

ith 𝒉 following the same definition as in Eq. (A.2).
For a SRR acquisition, the optimal inversion times for perfect back-

round suppression of each slice will depend on the corresponding
lice-encoding direction of each separate acquisition. Therefore, for
ach HR pCASL image 𝒓𝑛, the corresponding 𝐓𝐈𝑛 = {TI𝑛𝑗}

𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1

can be modeled as:

𝐓𝐈𝑛 = 𝑴−1
𝜽𝑛
𝑮−1

𝑛 𝐓𝐈 . (B.2)

Next, let 𝒃𝑛 = {𝑏𝑛𝑗}
𝑁𝒓
𝑗=1 ∈ R𝑁𝒓×1 represent a vector that models the

𝑇1 relaxation factor for inversion-recovery nulling for BS, assuming TR
≫ 𝑇1 and a perfect 180◦ RF inversion pulse (Barral et al., 2010), with

𝑏𝑛𝑗 = 1 − 2 ⋅ exp
(

−
TI𝑛𝑗
𝑇1,𝑗

)

. (B.3)

Then, Eq. (4) can be extended to include the effect of background
suppression:

𝑟𝑛𝑗 =

{

𝑟1,𝑗𝑏𝑛𝑗 , if 𝑛 is odd
𝑟1,𝑗𝑏𝑛𝑗 − 𝛥𝑟𝑛𝑗 , if 𝑛 is even.

(B.4)

Appendix C. Linear forward model

It follows from Eq. (4) that the HR images 𝒓𝑛 can be modeled as a
inear function of the parameter vector 𝝑 = [𝒓𝑇1 𝝑𝑇

rCBF]
𝑇 ∈ R2𝑁𝒓×1:

𝑛(𝝑) = 𝑨𝑛𝝑 (C.1)

here 𝑨𝑛 ∈ R𝑁𝒓×2𝑁𝒓 represents the block matrix operator:

𝑛 =

⎧

⎪

⎨

⎪

[

𝑰𝑁𝑟
𝟎𝑁𝑟

]

, if 𝑛 is odd
[

𝑰𝑁 diag(𝒗𝑛)
]

, if 𝑛 is even ,
(C.2)
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⎩

𝑟

hose matrix elements are given by

𝑛 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 … 0 0 0 … 0
0 1 ⋱ ⋮ 0 0 ⋱ ⋮

⋮ ⋱ ⋱ 0 ⋮ ⋱ ⋱ 0
0 … 0 1 0 … 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, if 𝑛 is odd

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 … 0 𝑣𝑛,1 0 … 0
0 1 ⋱ ⋮ 0 𝑣𝑛,2 ⋱ ⋮

⋮ ⋱ ⋱ 0 ⋮ ⋱ ⋱ 0
0 … 0 1 0 … 0 𝑣𝑛,𝑁𝒓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, if 𝑛 is even ,

(C.3)

with 𝑰𝑁𝑟
∈ R𝑁𝒓×𝑁𝒓 the identity matrix, 𝟎𝑁𝑟

∈ R𝑁𝒓×𝑁𝒓 the zero
matrix, diag(𝒗𝑛) ∈ R𝑁𝒓×𝑁𝒓 a diagonal matrix with the elements of
𝒗𝑛 = {𝑣𝑛𝑗}

𝑁𝒓
𝑗=1 = {−𝛥𝑟𝑛𝑗∕𝜗rCBF,𝑗}

𝑁𝒓
𝑗=1 =

{

−𝛿−1 exp
(

−PLD𝑛,𝑗∕𝑇1𝑏
)}𝑁𝒓

𝑗=1 ∈
R𝑁𝒓×1 on its diagonal. Consequently, when combining Eq. (C.1) with
the linear SRR forward model operators in Eq. (1), the overall forward
model in SRR-pCASL remains linear, which allows for efficient solving
of (P.1) using linear optimization routines.

Appendix D. Supplementary materials

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.neuroimage.2024.120506.
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