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Summary

This dissertation deals with the use of model-based super-resolution reconstruction (SRR)
with joint patient motion estimation for the purpose of improved quantitative magnetic
resonance imaging (qMRI), which can provide accurate, precise, and accessible biomarkers
for clear numerical differentiation of brain disease states. The manuscript consists of eight
chapters, which are divided over three main parts. In Part I (Prologue), the main motivation
and existing challenges of qMRI as a medical imaging technique are introduced. Part II
(Background) provides the necessary background material to the research areas in which
the contributions of this work are situated, namely, magnetic resonance imaging (MRI), the
extension of MRI to qMRI, and SRR as an advanced imaging tool. Part III (Contributions)
then provides an overview of the main contributions of this thesis.

Prologue

In Chapter 1, a comprehensive overview is provided regarding the positioning of this thesis
research within the realm of modern medical imaging applications, particularly focusing
on brain MRI. With society experiencing rapid growth and aging, there is a heightened
prevalence of neurodegenerative disorders and age-related diseases. This accentuates the
urgent need for methods that enable timely disease detection, monitor disease progression,
and evaluate the effectiveness of new therapies. This urgency underscores the need for
reliable and easily accessible quantitative biomarkers capable of identifying diseases prior
to the onset of clinical symptoms. While MRI is renowned for its exceptional soft tissue
contrast and inherent patient safety, its widespread utilization as a biomarker detection
tool encounters a critical challenge. Conventional MRI relies on qualitative image contrast
evaluation, complicating the quantitative comparison of tissue properties within and between
scans or subjects. Transitioning to quantitative MRI (qMRI) is imperative to overcome
these limitations, enabling absolute quantification of tissue characteristics independent of
experimental design, thereby enhancing diagnostics. Unfortunately, the dissemination of
qMRI faces challenges such as low spatial resolution, low signal-to-noise ratio (SNR), and
long scan times. These extended scan times, required to compensate for the low SNR and
spatial resolution, can impact patient comfort and compliance, increase the risk of motion
artifacts, and reduce patient throughput. To address the need for rapid MRI techniques
without compromising spatial resolution or SNR, this thesis explores the use of model-based
SRR. The application of SRR for qMRI is challenging, however, and a number of technical
hurdles remain, which this thesis aims to tackle.
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Background

A solid grasp of the basic principles of MRI is crucial for understanding the contributions
presented in this thesis. Starting from an overview of the historical advancements in MRI,
Chapter 2 therefore briefly explains some fundamental principles and key concepts about
MRI. In particular, the phenomenon of nuclear magnetic resonance is considered, which is
rooted in quantum mechanical considerations yet interpretable through a classical lens when
analyzing the interaction of a large number of hydrogen atoms in and width an external
magnetic field, radio frequency (RF) waves and magnetic field gradients. The chapter
also introduces crucial concepts such as excitation and relaxation of magnetic spins, with
a focus on parameters vital for quantitative neuroimaging research, including T1 and T2
relaxation times. Furthermore, it outlines the process of signal generation and detection in
MRI, highlighting elements pertinent to the modalities and methodologies employed in this
thesis. In particular, the use of 2D multi-slice and 3D acquisition strategies is described,
pinpointing their respective advantages and disadvantages. Finally, the chapter provides a
detailed list of the specific MRI pulse sequences used for the acquisition of the in vivo whole
brain data in the research contributions.

Chapter 3 outlines the significance of quantitative MRI (qMRI) in response to short-
comings of and as an addition to conventional MRI. First, the chapter provides a succinct
overview of the fundamental concept of qMRI, focusing on T1 relaxation parameter mapping.
Subsequently, it delves into several key clinical advantages of qMRI, including enhanced tissue
and pathology characterization, early detection of pathophysiological changes, longitudinal
patient monitoring, and multi-centric assessment. Moreover, the chapter examines MR
relaxometry and arterial spin labeling (ASL) MRI as two pivotal clinical applications of qMRI,
used to quantify relaxation times and tissue perfusion, respectively. Each application’s under-
lying principle is thoroughly elucidated, providing essential insights into both the acquisition
of contrast-weighted data for qMRI and the quantification of resultant qMRI parameters.
Moreover, existing limitations of MR relaxometry and ASL are explained, with this thesis
aiming to propose viable solutions. Additionally, the chapter underscores the clinical relevance
of each application. Finally, recognizing the centrality of parameter estimation in qMRI, the
chapter concludes by introducing basic principles of parameter estimation, essential for the
accurate and precise derivation of biophysical quantitative parameters from contrast-weighted
MRI scans.

In Chapter 4, the role of super-resolution reconstruction is elaborated. Starting with a
general discussion on the challenges of resolution in MRI and the consequent demand for
resolution-enhancing methods, the general concept of SRR is introduced. In addition to the
fundamental principle of this technique, the key components are highlighted necessary for
SRR application in MRI. Particularly, the choice of an appropriate acquisition strategy, the
selection of an accurate imaging model that realistically models both the acquisition and
noise, and finally, the model-based reconstruction process addressing technical aspects such
as regularization and hyperparameter selection. At the end of this chapter, the need for
robust motion compensation is also briefly touched upon, which is indispensable for ensuring
the spatial alignment of the low-resolution image set on which SRR is performed.
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Contributions

Chapter 5 presents an extensive Monte Carlo simulation study on small-image ‘checkerboard’-
like phantoms in which for the first time model-based SRR for qMRI is augmented with
joint motion estimation, leveraging T1 mapping as an MR relaxometry model of choice.
A joint Maximum Likelihood estimation framework is employed, optimizing motion and
relaxometry parameters estimates alternately. Additionally, this chapter combines downsam-
pling and blurring with a rectangular slice profile in one and the same forward operator to
streamline computational efficiency. The proposed SRR framework, featuring joint motion
estimation, is extensively compared against a framework without motion estimation and
a previously documented SRR T1 mapping method employing a motion pre-registration
strategy. This chapter serves as an initial proof-of-concept for model-based SRR with joint
motion estimation in qMRI applications, setting the stage for further development of a
large-scale and more computationally intensive model-based SRR framework tailored for
whole-brain in vivo images, as detailed in the subsequent chapter.

Chapter 6 expands the previous simulation study and proof-of-concept demonstration further
towards a widely applicable framework for model-based super-resolution reconstruction
with joint estimation of motion parameters and isotropic, high-resolution 3D quantitative
MRI parameter maps from motion-corrupted, low-resolution 2D multi-slice MRI scans.
Representing the pinnacle of this dissertation’s contributions, this chapter combines all
important technological developments into one polyvalent and robust estimation framework.
Central to this framework is a Bayesian approach that leverages prior knowledge of
the tissue and noise statistics, in which special attention is given to realistic modeling
of noise and data distributions by use of a Rician probability distribution in the likelihood
function of the magnitude MR data. The framework’s potential is demonstrated in both
simulations and real data experiments, using T1 and T2 mapping as carrying examples.
Attention is also given to the experimental design of the acquisition protocols for relaxometry
mapping, in which contrast weighting and (geometric) distribution of the individual images
in the quantitative image series is subject to restrictions inherent to the MR acquisition
sequence of interest. Specifically, this chapter explores the use of a multi-echo spin-echo
(MESE) sequence for acquisition of a 2D multi-slice super-resolution image series for T2
mapping, while also acknowledging limitations of such a sequence. It should be highlighted
that the chapter’s sections and formulas are written with modularity in mind, facilitating
substitution of alternative quantitative signal and/or noise models. In fact, this modularity
in signal and noise model was demonstrated in the subsequent chapter, where a perfusion
model with a Gaussian noise model is combined within the framework. The appendices of
this second contribution chapter compile essential mathematical components, a.k.a ’building
blocks’, and tools that were developed for the implementation of the proposed motion-robust
super-resolution reconstruction framework for qMRI. Key aspects include implementing linear
operators that constitute the super-resolution forward model, qMRI signal models describing
the relationship between signal intensity and underlying tissue parameters in a voxel, and
practical considerations for solving a large-scale parameter estimation problem with joint
estimation of qMRI and motion parameters. Finally, the chapter showcases some use cases
of anatomical and quantitative SRR in musculoskeletal MRI, reconstructed with the proposed
framework. As opposed to brain MRI, musculoskeletal (MSK) MRI focuses specifically on
joint structures, including wrists, ankles, knees, etc. It is demonstrated that SRR can also
play an important role to improve existing 3D resolutions of MSK MRI without significantly
increasing the scan time of clinical protocols.
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Chapter 7 presents a novel super-resolution reconstruction framework to estimate 3D
isotropic high-resolution quantitative cerebral blood flow (CBF) maps from a series of
single-post-labeling-delay (single-PLD) pseudo-continuous Arterial Spin Labeling (ASL)
control-label image pairs, each acquired with low through-plane resolution and rotated slice-
encoding direction in a 2D multi-slice readout scheme. Building upon the SRR framework
introduced in Chapter 6, motion between control and label images was jointly estimated
in a Bayesian estimation framework, enabling accurate and precise CBF quantification
without propagation of pre-registration errors, while optimally exploiting prior knowledge
of tissue properties and noise statistics. The rotation of the slice-encoding direction for
each control-label image pair as well as the lower through-plane resolution ensures a more
uniform distribution of the PLD throughout the brain and increases the effectiveness
of background suppression. Combined, this significantly improves the SNR compared to
conventional 2D multi-slice readout with direct high through-plane resolution, where CBF
quantification has traditionally been hampered by detrimental perfusion SNR slice dependence
in sequentially acquired slices. The proposed method was validated both qualitatively and
quantitatively in synthetic whole brain simulations and on in vivo human brain data. It
has been demonstrated that the framework provided superior CBF estimation in terms of
root-mean-square error compared to a state-of-the-art approach using a conventional 2D
multi-slice readout strategy with ascending slice order and isotropic resolution in the same
scan time, even when additional hardware acceleration techniques like multiband are applied
in the latter.

Finally, Chapter 8 concludes the thesis and outlines potential future research directions.
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Samenvatting

Deze dissertatie behandelt het gebruik van modelgebaseerde superresolutie-reconstructie
(SRR) met gezamenlijke schatting van patiëntenbeweging, voor de verbetering van kwantita-
tieve magnetische resonantiebeeldvorming (qMRI). Deze qMRI techniek kan nauwkeurige,
precieze en toegankelijke biomarkers genereren voor een duidelijke numerieke differentiatie
van de toestand van hersenziekten. Het manuscript bestaat uit acht hoofdstukken, die
verdeeld zijn over drie delen. In Deel I (Proloog) worden de belangrijkste motivatie en
bestaande uitdagingen van qMRI als medische beeldvormingstechniek geïntroduceerd. Deel
II (Achtergrond) biedt het noodzakelijke achtergrondmateriaal voor de onderzoeksgebieden
waarin de bijdragen van dit werk zich situeren, namelijk magnetische resonantie beeldvorming
(MRI), de uitbreiding van MRI naar qMRI, en SRR als geavanceerde beeldvormingstechniek.
Deel III (Bijdragen) geeft vervolgens een overzicht van de belangrijkste bijdragen van dit
PhD onderzoek.

Proloog

In Hoofdstuk 1 wordt een uitgebreid overzicht gegeven van de positionering van het onderzoek
van dit proefschrift binnen het domein van moderne medische beeldvormingstoepassingen,
met specifieke focus op MRI van de hersenen. Door de snelle groei en veroudering van de
samenleving neemt de prevalentie van neurodegeneratieve aandoeningen en leeftijdsgebonden
ziekten toe. Dit onderstreept de dringende noodzaak voor methoden die niet alleen vroeg-
tijdige ziektedetectie mogelijk maken, maar ook het verloop van ziekten kunnen monitoren
en de effectiviteit van nieuwe therapieën kunnen evalueren. Deze urgentie benadrukt de
behoefte aan betrouwbare en gemakkelijk toegankelijke kwantitatieve biomarkers die
in staat zijn om ziekten te identificeren vóór aanvang van klinische symptomen. Hoewel MRI
bekend staat om zijn uitzonderlijke contrast in zacht weefsel en intrinsieke veiligheid voor
patiënten, stuit het wijdverbreide gebruik ervan als een biomarkerdetectietool op een kritieke
uitdaging. Conventionele MRI vertrouwt op kwalitatieve evaluatie van beeldcontrast, wat
de kwantitatieve vergelijking van weefseleigenschappen binnen en tussen scans of proefper-
sonen compliceert. De overgang naar kwantitatieve MRI (qMRI) is essentieel om deze
beperkingen te overwinnen, zodat absolute kwantificering van weefselkenmerken onafhankelijk
van experimenteel ontwerp mogelijk is, en daarmee de diagnostiek wordt verbeterd. Helaas
wordt het gebruik van qMRI geconfronteerd met uitdagingen zoals lage spatiale resolutie,
lage signaal-ruisverhouding (SNR), en lange scantijden. Deze verlengde scantijden,
nodig om de lage SNR en spatiale resolutie te compenseren, kunnen het patiëntencomfort
en -conformiteit beïnvloeden, het risico op bewegingsartefacten vergroten, en de dage-
lijkse doorstroom van patiënten verminderen. Om te voldoen aan de behoefte aan snelle
MRI-technieken zonder de spatiale resolutie of SNR in gevaar te brengen, onderzoekt dit
proefschrift het gebruik van modelgebaseerde SRR. De toepassing van SRR voor qMRI is
echter niet vanzelfsprekend, en een aantal technische uitdagingen blijven bestaan, welke dit
proefschrift beoogt op te lossen.
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Achtergrond

Het begrijpen van de basisprincipes van MRI is een voorwaarde om de bijdragen in dit
proefschrift te bestuderen. Vanuit een overzicht van de historische vooruitgang in MRI,
verklaart Hoofdstuk 2 kort enkele fundamentele principes en sleutelconcepten over MRI.
In het bijzonder wordt het fenomeen van nucleaire magnetische resonantie beschouwd, dat
zijn basis vindt in kwantummechanische overwegingen maar interpreteerbaar is vanuit een
klassieke benadering wanneer de interactie van een groot aantal waterstofatomen in en met
een extern magnetisch veld, radiofrequentie (RF) golven en magnetische veldgradiënten wordt
beschouwd. Het hoofdstuk introduceert ook cruciale concepten zoals excitatie en relaxatie
van magnetische spins, met een focus op parameters die essentieel zijn voor kwantitatief
neuroimaging-onderzoek, waaronder T1- en T2-relaxatietijden. Verder schetst het hoofdstuk
de processen van signaalgeneratie en -detectie in MRI, waarbij elementen worden benadrukt
die relevant zijn voor de modaliteiten en methodologieën die in dit proefschrift worden
gebruikt. In het bijzonder wordt de toepassing van 2D multi-slice en 3D-acquisitiestrategieën
beschreven, waarbij hun respectievelijke voor- en nadelen worden benadrukt. Tot slot biedt
het hoofdstuk een gedetailleerde lijst van de specifieke MRI-pulssequenties die zijn gebruikt
voor de opnames van de in vivo data van het brein in de onderzoeksbijdragen.

Hoofdstuk 3 schetst het belang van kwantitatieve MRI (qMRI) als reactie op tekortkomin-
gen van en als aanvulling op conventionele MRI. Allereerst biedt het hoofdstuk een beknopt
overzicht van het fundamentele concept van qMRI, met de nadruk op T1 relaxatieparameter
mapping. Vervolgens gaat het in op verschillende belangrijke klinische voordelen van qMRI,
waaronder verbeterde weefsel- en pathologiekarakterisering, vroegtijdige detectie van pa-
thofysiologische veranderingen, longitudinale patiëntenmonitoring en multi-center evaluatie.
Bovendien onderzoekt het hoofdstuk MR relaxometrie en arteriële spin labeling (ASL) MRI als
twee cruciale klinische toepassingen van qMRI, die respectievelijk worden gebruikt om relaxa-
tietijden en perfusie te kwantificeren. Het onderliggende principe van elke toepassing wordt
grondig toegelicht, waardoor essentiële inzichten worden verkregen in zowel de verwerving van
contrast-gewogen scans voor qMRI als de kwantificering van resulterende qMRI parameters.
Bovendien worden bestaande beperkingen van MR relaxometrie en ASL toegelicht, waarbij dit
proefschrift streeft naar het voorstellen van haalbare oplossingen. Daarnaast benadrukt het
hoofdstuk de klinische relevantie van elke toepassing. Ten slotte, in erkenning van de centrale
rol van parameter schatting in qMRI, concludeert het hoofdstuk door de basisprincipes van
parameterschatting te introduceren, essentieel voor de nauwkeurige en precieze schatting
van biofysische kwantitatieve parameters uit contrast-gewogen MRI-scans.

In Hoofdstuk 4 wordt de rol van superresolutie-reconstructie uitgewerkt. Beginnend
met een algemene discussie over de uitdagingen van beeldresolutie in MRI en de daaruit
voortvloeiende vraag naar resolutieverbeterende methoden, wordt het algemene concept
van SRR geïntroduceerd. Naast het fundamentele principe van deze techniek worden
de belangrijkste componenten belicht die nodig zijn voor de toepassing van SRR in MRI.
Met name de keuze van een geschikte acquisitiestrategie, de selectie van een nauwkeurig
beeldvormingsmodel dat zowel het acquisitieproces als de ruis realistisch modelleert, en tot
slot het modelgebaseerde reconstructieproces dat technische aspecten zoals regularisatie
en hyperparameterselectie behandelt. Aan het einde van dit hoofdstuk wordt ook kort
ingegaan op de noodzaak van robuuste bewegingscompensatie, die onmisbaar is voor het
waarborgen van de spatiale uitlijning van de lage-resolutie beeldenset waarop SRR wordt
uitgevoerd.
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Bijdragen

Hoofdstuk 5 presenteert een uitgebreide Monte Carlo-simulatiestudie op kleine ‘schaakbord’-
achtige fantomen waarin voor het eerst modelgebaseerde SRR voor qMRI wordt uitgebreid
met gezamenlijke bewegingsschatting, waarbij gekozen wordt voor T1-mapping als MR-
relaxometriemodel. Een gezamenlijk Maximum Likelihood-schattingsraamwerk wordt
toegepast, waarbij afwisselend bewegings- en relaxometrieparameters worden geoptimaliseerd.
Daarnaast combineert dit hoofdstuk downsampling en blurring met een rechthoekig sliceprofiel
in één en dezelfde voorwaartse operator om de computationele efficiëntie te verbeteren.
Het voorgestelde SRR-raamwerk, met gezamenlijke bewegingsschatting, wordt uitgebreid
vergeleken met een raamwerk zonder bewegingsschatting en een eerder beschreven SRR
T1-mappingmethode die een pre-registratiestrategie gebruikt. Dit hoofdstuk dient als een
eerste proof-of-concept voor modelgebaseerde SRR met gezamenlijke bewegingsschatting
in qMRI-toepassingen, en vormt de basis voor verdere ontwikkeling van een grootschalig en
meer rekenintensief modelgebaseerd SRR-raamwerk dat is afgestemd op in vivo beelden van
een volledig brein, zoals gedetailleerd beschreven in het volgende hoofdstuk.

Hoofdstuk 6 breidt de voorgaande simulatiestudie en proof-of-concept-demonstratie verder uit
naar een breed toepasbaar raamwerk voor modelgebaseerde superresolutie-reconstructie
met gezamenlijke schatting van bewegingsparameters en isotropische, hoge-resolutie 3D-
kwantitatieve MRI-parametermappen uit door beweging aangetaste, lage-resolutie 2D-multi-
slice MRI-scans. Als hoogtepunt van de bijdragen van deze dissertatie combineert dit
hoofdstuk alle belangrijke technologische ontwikkelingen in één polyvalent en robuust schat-
tingsraamwerk. Centraal in dit raamwerk staat een Bayesiaanse benadering die gebruik
maakt van voorkennis van de weefsel- en ruisstatistieken, waarbij speciale aandacht
wordt besteed aan realistische modellering van ruis- en dataverdelingen door gebruik te
maken van een Riciaanse kansverdeling in de waarschijnlijkheidsfunctie van de magnitude
MRI data. Het potentieel van het raamwerk wordt gedemonstreerd in zowel simulaties
als in experimenten met echte hersendata, waarbij T1- en T2-mapping als belangrijke
voorbeelden dienen. Er wordt tevens aandacht besteed aan het experimenteel ontwerp van
de acquisitieprotocollen voor relaxometrische mapping, waarbij contrastweging en (geome-
trische) verdeling van de individuele beelden in de kwantitatieve beeldenreeks onderworpen
zijn aan beperkingen inherent voor de gekozen MR-pulssequentie. Specifiek onderzoekt dit
hoofdstuk het gebruik van een multi-echo spin-echo (MESE)-sequentie voor de acquisitie
van een 2D-multi-slice superresolutie-beeldreeks voor T2-mapping, terwijl ook beperkingen
van een dergelijke sequentie worden erkend. Het is belangrijk om te vermelden dat de tekst
en formules van dit hoofdstuk zijn geschreven vanuit een modulair oogpunt. Hierdoor is de
methodologie ook eenvoudig transfereerbaar naar alternatieve kwantitatieve signaal- en/of
ruismodellen. Meer nog, deze modulariteit in signaal- en ruismodel wordt gedemonstreerd in
het volgende hoofdstuk, waarin een perfusiemodel met een Gaussisch ruismodel binnen het
raamwerk wordt gecombineerd. De appendices van dit tweede Hoofdstuk 6 bundelen essenti-
ële wiskundige componenten, zogenaamde ‘bouwstenen’, en tools die zijn ontwikkeld voor de
implementatie van het voorgestelde bewegingsrobuuste superresolutie-reconstructieraamwerk
voor qMRI. Belangrijke aspecten zijn onder meer de implementatie van lineaire operatoren
die het superresolutie-voorwaartsmodel vormen, qMRI-signaalmodellen die de relatie tussen
signaalintensiteit en onderliggende weefselparameters in een voxel beschrijven, en praktische
overwegingen voor het oplossen van een grootschalig parameterschattingsprobleem met
gezamenlijke schatting van qMRI- en bewegingsparameters. Tot slot toont het hoofdstuk
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enkele specifieke toepassingen van het gebruik van anatomische en kwantitatieve SRR in
musculoskeletale MRI, gereconstrueerd met het gepresenteerde raamwerk. In tegenstelling
tot hersen-MRI richt musculoskeletale (MSK) MRI zich specifiek op gewrichtsstructuren,
inclusief polsen, enkels, knieën, enz. Het wordt aangetoond dat SRR ook een belangrijke rol
kan spelen om de bestaande 3D-resoluties van MSK MRI te verbeteren zonder de scantijd
van klinische protocollen aanzienlijk te verhogen.

Hoofdstuk 7 presenteert een nieuw superresolutie-reconstructieraamwerk om 3D-isotrope
hoge-resolutie kwantitatieve cerebrale bloedstroom (CBF) mappen te schatten uit een
reeks post-labeling-delay (single-PLD) pseudo-continue Arteriële Spin Labeling (ASL)
controle-label beeldparen, elk verworven met een lage through-plane resolutie en gedraaide
slice richting in een 2D-multislice uitleesschema. Voortbouwend op het SRR-raamwerk geïn-
troduceerd in Hoofdstuk 6, wordt de beweging tussen controle- en labelbeelden gezamenlijk
geschat in een Bayesiaans schattingsraamwerk, waardoor nauwkeurige en precieze CBF-
kwantificatie mogelijk wordt zonder propagatie van pre-registratiefouten, terwijl optimaal
gebruik wordt gemaakt van voorkennis van weefseleigenschappen en ruisstatistieken. De
rotatie van de slice richting voor elk controle-label beeldpaar, evenals de lagere through-plane
resolutie, zorgt voor een meer uniforme verdeling van de PLD over het hersengebied
en verhoogt de effectiviteit van achtergrondonderdrukking. Gecombineerd verbetert
dit aanzienlijk de SNR in vergelijking met conventionele 2D-multislice uitlezing met directe
hoge through-plane resolutie, waar CBF-kwantificatie traditioneel wordt gehinderd door
nadelige perfusie-SNR-slice-afhankelijkheid in sequentieel verworven slices. De gepresenteerde
methode werd zowel kwalitatief als kwantitatief gevalideerd in synthetische volledige her-
sensimulaties en op in vivo menselijke hersendata. Er wordt aangetoond dat het raamwerk
superieure CBF-schatting biedt in termen van root-mean-square error in vergelijking met
een state-of-the-art aanpak die een conventionele 2D-multislice uitleestrategie hanteert met
oplopende slicevolgorde en isotrope resolutie in dezelfde scantijd, zelfs wanneer aanvullende
hardwareversnellende technieken zoals multiband worden toegepast in de laatstgenoemde
methode.

Tot slot worden in Hoofdstuk 8 de conclusies van deze thesis gebundeld en worden potentiële
toekomstige onderzoekspaden aangestipt.
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1.1 Introduction

With nearly 100 billion neurons and 100 trillion connections, the human brain remains one
of the most intriguing mysteries in science and one of the greatest challenges in medicine.
Through multiple studies, science is trying to unravel the highly complex anatomy and
functions of both healthy and diseased brains. Whereas originally information about the
neural architecture and functionality of the human brain could only be obtained through
histological post-mortem studies, it is now possible to study the human brain completely in
vivo. Thanks in part to advanced developments in medical imaging techniques, with magnetic
resonance imaging (MRI) playing a prominent role, the brain puzzle has been systematically
further unravelled. However, the medical world is not standing still and new insights into
brain disorders remain necessary, coupled with new expectations for technological progress.
Hence, this prologue briefly outlines a number of important components in contemporary MRI
research, and provides a general view of the overarching motivation for a physicist, scientist,
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and modern-day PhD researcher to dive into the field of MRI. Part of that motivation
undeniably stems from the conviction to answer stringent questions in a society and world in
which the fraction of the elderly population rises significantly year after year, and where the
call for large-scale screening and early detection of age-related diseases is getting increasingly
louder. Healthcare organization needs to be thoroughly rethought in the upcoming decades,
and MRI can play a central role in this transition. However, some critical technological
hurdles have to be overcome, which will be touched upon in the next paragraphs. At the end
of this introductory consideration, the main contributions of this thesis are summarized, and
the structure of the thesis manuscript is briefly explained.

1.2 The need for biomarkers for neurodegenerative
diseases

We are protagonists in an aging era. While we are facing historical challenges of COVID-19,
we are also facing significant challenges of a fast-growing aging society. According to a
United Nations report, 1 in 10 people was over 65 in 2022 and by 2050 the ratio will be almost
doubled to 1 in 6 (United Nations, Department of Economic and Social Affairs, Population
Division, 2022). As the global population ages, the prevalence of neurodegenerative
disorders and age-related diseases (NDAD) is fast increasing. Examples of NDAD
include Alzheimer’s disease and related dementias, Parkinson’s disease, and motor neuron
diseases (Deuschl et al., 2020; Feigin et al., 2020). Moreover, neurological disorders are
the leading cause of disability worldwide, and the second leading cause of death globally,
accounting for approximately 9 million deaths per year (World Health Organization, 2022).
The World Health Organization estimates that half of the worldwide economic impact of
disability will be due specifically to brain-related conditions by 2030 if we do not change this
trajectory (Mathers & Loncar, 2006). In low- and middle-income countries, which have a
higher population growth rate, age-related diseases and disorders will pose an even more
severe threat to their development (Winkler, 2020). The impact of age-related diseases on
individuals living with a disease and their caregivers, families, and the society at large cannot
be underestimated given its physical, psychological, social, and economical burden.

Timely detection of NDAD before the manifestation of clinical symptoms is paramount to
prevent or delay their progression. Considering that prevention, delay, and/or treatment
is more likely to be successful for patients in the earliest phases of their disease, it is
important to discover reliable and accessible biomarkers that can detect NDAD prior
to the manifestation of the disease. Indeed, an early detection is necessary to maximize
the therapeutic window or to enroll such patients in clinical trials to promote the steady
progression of treatment development and evaluation (Hansson, 2021). In recent years,
large efforts have been made to discover biomarkers that identify neurodegenerative diseases
earlier, more easily, and more accurately. Here, the term biomarker refers to ‘objective
characteristics that are measured as an indicator of normal biological processes, pathogenic
processes, or responses to an exposure or intervention, including therapeutic interventions’
(Hockings et al., 2020). However, current diagnostic biomarkers for NDAD, including MRI
markers, are often invasive, require specialized personal or expensive hardware (Hansson,
2021; Teunissen et al., 2022). These constraints, together with financial and logistical issues
limit broad-based implementation of these biomarkers for wide application for screening in
primary care settings. The growing responsibility of primary care physicians and care teams
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in the screening and detection of diseases is imperative in this era of an aging population.
Therefore, to promote the early detection of at-risk individuals, there is a need to identify
accessible and scalable biomarkers of brain health that can be obtained regularly in the general
population at point-of-care facilities.

1.3 Towards absolute quantification of biomarkers

Magnetic resonance imaging (MRI) is a powerful, noninvasive, medical imaging modality
distinguished by its ability to provide excellent image contrast in soft tissues. Consequently,
MRI is prominently used in diagnostic medicine and biomedical research. Unlike other medical
imaging modalities such as computed tomography (CT) or positron emission tomography
(PET) imaging, MRI does not require the use of ionizing radiation, making it a relatively safe
imaging modality for human study. As the name implies, MRI scanners rely on the use of
strong magnetic fields, both static and dynamic, together with radio frequency (RF) waves,
to generate images. Due to its harmless nature, MRI is used extensively as a diagnostic tool
for scientific research. It is therefore not surprising that MRI scanners can be found in almost
all major hospitals in the Western world. MRI is also a very versatile technique. By using
dedicated acquisition sequences, MRI is able to display a variety of physical phenomena and
provide good contrast for some specific organs or tissue types. Examples include: imaging
of brain activity (functional MRI), blood vessels (MR angiography), metabolic changes
(MR spectroscopy), directional information of tissue structures (diffusion MRI), biochemical
structure specific relaxation properties of tissue (MR relaxometry), and blood perfusion
(perfusion MRI). The latter two are of particular interest in this thesis.

Conventional, anatomical MRI consists of the qualitative evaluation of image contrast –
i.e. relative local signal intensity differences in images. This image contrast depends on
many different factors, including not only the underlying biophysical tissue properties of
interest, but also the MRI hardware and software. This does not hinder visual inspection
of anatomy, but it makes conventional MRI subjective: the expertise of radiologists plays a
key role in the evaluation of contrast-weighted images for disease diagnosis and monitoring.
Moreover, conventional MRI hampers quantitative comparison of tissue properties within a
scan, between successive scans, and between subjects.

A long-standing goal in the magnetic resonance (MR) community has been quantitative
imaging, where properties of interest are quantitatively mapped, and image interpretation is
both anatomical and numerical. Quantitative MRI (qMRI) enables absolute quantification
and mapping of biophysical tissue characteristics, completely independent of experimental
design (Deoni, 2010). These characteristics, i.e. parameters, which are extracted from
a set of MR images with varying contrast settings, can be expressed as numbers with
absolute physical units. As such, this allows for a more objective comparison (across subjects,
protocols, sites, or over time). For this reason, qMRI has the potential to make a great
clinical impact on diagnostics by providing quantitative biomarkers for clear numerical
differentiation of NDAD disease states, complementing or replacing invasive biopsies.
qMRI can enable earlier detection of disease, and increases the quality of information available
to artificial intelligence algorithms for predicting prognosis or therapeutic response (Tsehaie
et al., 2017; Keenan et al., 2019).
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1.4 The unmet need for technical development

Unfortunately, clinical adoption and dissemination of qMRI is lagging behind, which
is mainly due to its long scan time requirements. As will be more extensively discussed
in Chapter 3, the root cause of these long scan times for qMRI is the acquisition of
multiple contrast weighted images that are required to extract quantitative parametric
maps with adequate accuracy, precision, and spatial resolution. Alas, long scan times are
disadvantageous for medical MRI:

• From a diagnostic perspective, long scan times increase the likelihood of patient motion
during the MRI scan which typically leads to loss of spatial resolution and/or artefacts
in the resulting MRI image, and which in turn are detrimental for accurate diagnosis.

• From an economical perspective, long scan times reduce the patient throughput, i.e.
the number of patients that can be scanned in a hospital or point-of-care facility per day.
Ideally, scan time is short, such that waiting times for a scan are almost nonexistent
and large-scale regular screening of patients becomes feasible.

• From a patients perspective, long scan times lead to problems with patient comfort
and compliance. Hence, it is important that scan time is limited for routine clinical use.

Given the need for rapid imaging techniques, the development of accelerated MRI methods
has sparked in recent years. For example, methods have been proposed that enable recon-
struction from highly under-sampled images and hence speed up image acquisition, such as
model-based reconstruction (Maier et al., 2019), low-rank approaches (Zhang et al., 2015), or
the imposition of sparsity constraints (Zhao et al., 2012). However, these methods generally
come at the cost of either a lower precision or a lower spatial resolution of the reconstructed
(parametric) MR images. Therefore, MRI research has been focused on the development
of innovative technologies to optimize this trade-off between SNR, spatial resolution,
and scan time. The contributions and research in this thesis are specifically focused on the
use of so-called model-based super-resolution reconstruction (SRR) techniques, that
directly estimate high-resolution (HR) images or HR quantitative parameter maps from sets
of low-resolution (LR) contrast-weighted MR images (Poot et al., 2010; Plenge et al., 2012;
Poot et al., 2013; Van Steenkiste et al., 2016, 2017). As will be shown throughout this
thesis, the use of SRR techniques in the context of MRI offers great potential to balance the
existing trade-off between SNR, spatial resolution, and scan time. More elaborate background
information on the theory behind SRR, which has also proven its strengths in many other
imaging applications (Park et al., 2003), is provided in Chapter 4.

Furthermore, as will be discussed in Chapter 3, qMRI extends upon conventional anatomical
MRI by introducing biophysical, often nonlinear, signal models in addition to conventional
image reconstruction models. These signal models typically describe a voxel-wise relation
between the HR image and several biophysical tissue parameters of interest (e.g., T1 and T2
relaxation times). Often these signal models also depend on a set of acquisition parameters
(e.g., inversion times, echo times, ...) to be chosen in optimal accordance with the MRI
experiment at hand. As a result, qMRI is no longer a mere imaging problem that tries
to estimate voxel intensities of the 3D HR image, but it develops into a complicated
multi-parameter estimation problem in which it must be examined how underlying tissue
parameters can be accurately and precisely estimated from a series of MR images. As such,
qMRI also requires a well-structured statistical estimation framework for large-scale parameter
estimation based on MR input data acquired within a preferably short scan time.
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As mentioned, MRI is also subject to external factors that can complicate the imaging process.
These factors include e.g. the presence of noise, magnetic field inhomogeneity issues inherent
to some specific MR sequence types, or RF nonuniformity of particular head coils. In addition,
unwanted patient motion can also have a major impact on the final outcome of an MRI
scan, as it results in unwanted ghosting and blurring artefacts (Zaitsev et al., 2015). As
such, there exists a need for motion compensation techniques that can correct motion
artifacts either prospectively, i.e. by obtaining real-time tracking data of the position and
orientation of the subject during a scan, or retrospectively, i.e. by modification of the MR
image data during reconstruction of a scan (Godenschweger et al., 2016). As will be explained
in Chapter 3, the use of motion correction strategies in combination with qMRI parameter
estimation problems requires careful consideration. Conventional qMRI methods usually
correct for motion by performing image registration routines as a pre-processing step, prior to
the estimation of the HR parameter maps (Studler et al., 2010; Bron et al., 2013; Guyader
et al., 2015; Van Steenkiste et al., 2016, 2017), where the latter step is often preceded by an
intermediate step of HR image reconstruction (Scherrer et al., 2012; Poot et al., 2013). A
downside to such multi-step approaches is the lack of a feedback mechanism that connects
the motion compensation routine with the final estimation of the HR parameter maps. As a
result, registration errors may propagate into the parameter estimation step, possibly leading
to inaccurate (i.e., biased) estimates which do not reflect the underlying tissue (Nachmani
et al., 2019). To avoid error propagation, image registration needs to be integrated in a
joint motion/qMRI parameter estimation framework. That is, by providing an explicit
model for the patient’s motion during scanning, the corresponding motion parameters of
that model can be estimated simultaneously with the qMRI parameters.

Now, it becomes even more challenging when you add up all these components - SRR, qMRI,
and joint retrospective motion correction - in one widely-applicable MRI framework. This
combination is not trivial, and while building a combined framework the level of complexity
of the framework will gradually increase. Therefore, a crucial aim of this thesis is to study to
what extent a combined framework for motion-robust quantitative MRI using super-resolution
reconstruction can be developed, without compromising any of the individual components.
As such, the innovations in this work can help with bringing accelerated motion-robust
quantitative MRI within reach of patients to overcome some of the existing technological
barriers in qMRI.

1.5 Thesis contributions

The primary objective of this dissertation is:

To provide a model-based super-resolution reconstruction framework with joint
estimation of inter-scan patient motion, that can be applied in a variety of clinical
applications in which quantitative MRI and motion correction are both desirable.
Specifically, this framework is intended for medical imaging applications where
the use of thick-slice contrast-weighted MRI data is current clinical practice due
to scan time limitations or other inherent requirements of the imaging modality.

Several challenges needed to be overcome in this context, which mainly revolved around the
three key technical components mentioned in the previous section:
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1. Robust and accurate patient motion correction.

2. Accurate and precise estimation of quantitative MRI parameters.

3. Robust model-based super-resolution reconstruction to balance the trade-off between
resolution, SNR, and scan time.

As such, the framework will be capable of estimating high-fidelity, high-resolution 3D quanti-
tative parameter maps from a set of contrast-weighted low-resolution MRI scans.

The highlights of the main contributions presented in this thesis are summarized hereafter.
Note that the contributions in this thesis were arranged in the order in which their de-
velopments fit the timeline of this PhD. This means that the gradual expansion of the
SRR framework, by adding more accurate physical models or introducing more efficient
implementations, is visible throughout the chapters. In particular, as a proof-of-concept study
the estimation of motion and quantitative MRI parameters was first applied to small-image
phantoms using T1 mapping as an MR relaxometry model of choice (Chapter 5), followed by
more advanced reconstructions using both real-size whole brain phantoms and in vivo brain
data while also exploiting prior knowledge about the tissue and noise statistics (Chapter 6).
Finally, the general applicability of the super-resolution framework for a more advanced MRI
modality such as Arterial Spin Labeling (ASL) MRI was demonstrated (Chapter 7).

Contribution 1: Joint Maximum Likelihood estimation of motion and
T1 parameters from magnetic resonance images in a super-resolution
framework: a simulation study

A super-resolution framework for joint Maximum Likelihood estimation of motion and T1
parameters from magnetic resonance images is proposed, which is tested by means of an
extensive Monte Carlo simulation study.

Highlights of this contribution:

• Proof-of-concept study in which extensive Monte Carlo simulations are performed
on T1-weighted small-image phantoms to demonstrate the potential of augmenting
model-based SRR for quantitative T1 mapping with joint inter-image motion estimation.

• A joint maximum likelihood estimator is used to optimally exploit knowledge about the
data distribution of the low-resolution images. The measured low-resolution images
are assumed to be Gaussian distributed.

• The proposed SRR method is benchmarked against three alternative approaches,
including SRR without motion estimation, SRR using (multi-level) mutual information
based registration as a preprocessing step, and a previously reported SRR T1 mapping
approach using a loop-wise pre-registration scheme.

• Performance is analysed for different SNR values of the input data sets, and measured
in terms of relative bias, relative standard deviation, relative root-mean-square error,
and motion component root-(mean)-mean-square error. Histograms of the voxel data
distribution of the reconstructed T1 parameter maps are also visually compared.

• The extension of super-resolution reconstruction with simultaneous motion estimation
yields more accurate T1 maps compared to a previously reported SRR-based T1
mapping approach in which motion registration is applied as a preprocessing step.
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Contribution 2: Model-based super-resolution reconstruction with joint
motion estimation for improved quantitative MRI parameter mapping

A general model-based super-resolution reconstruction framework with joint motion estimation
for improved quantitative MRI parameter mapping is proposed, that was specifically used
to study T1 and T2 brain mapping on synthetic whole brain phantoms and in vivo brain
data.

Highlights of this contribution:

• A general model-based super-resolution reconstruction framework with joint estimation
of motion parameters and isotropic, high-resolution 3D quantitative MRI parameter
maps from motion-corrupted, low-resolution 2D multi-slice MRI scans.

• A Bayesian estimation approach to maximally exploit prior knowledge of the tissue
and noise statistics, introducing an upwind Total Variation prior on the high resolution
parameter maps to be estimated. The measured low-resolution images are assumed to
be Rician distributed.

• The framework is validated and benchmarked using whole brain Monte Carlo simulations
with realistic spatially varying noise and magnitude MR specific data distributions (Rician
distribution).

• Demonstration of the clinical potential of the presented reconstruction framework for
two MR relaxometry quantitative mapping protocols to directly map high-resolution 3D
T1 or T2 relaxation maps from whole brain in vivo MRI data with low through-plane
resolution, i.e. with thick slices.

• Superior accuracy compared to quantitative MRI with motion pre-compensation is
demonstrated.

Contribution 3: A super-resolution reconstruction framework for quanti-
tative brain perfusion mapping using pseudo-continuous Arterial Spin
Labeling

This contribution introduces a model-based super-resolution reconstruction framework for
single post-labeling delay (single-PLD) pseudo-Continuous Arterial Spin Labeling (pCASL)
MRI, building on a joint Bayesian estimation framework that aims to estimate motion-
corrected 3D isotropic HR quantitative cerebral blood flow (CBF) maps from a set of 2D
multi-slice pCASL control-label image pairs acquired with low through-plane resolution and
rotated slice-encoding direction. By improving upon existing disadvantages of 2D multi-
slice readout for pCASL, the proposed framework provides a promising alternative to the
recommended segmented 3D readout schemes, which to date remain sensitive to inter-shot
motion and through-plane blurring due to T2 decay along the long echo trains.

Highlights of this contribution:

• Isotropic, high-resolution 3D quantitative cerebral blood flow (CBF) mapping from 2D
multi-slice single-post-labeling-delay (single-PLD) pseudo-continuous ASL data.

• Joint estimation of CBF and inter-image motion between ASL control-label images.

9



CHAPTER 1

• A Bayesian estimation approach to exploit prior knowledge of the tissue and noise
statistics, in which the estimation of CBF parameter maps is formulated as an efficient
linear estimation problem.

• Validation and benchmarking using whole brain Monte Carlo simulations and in vivo
brain data.

• More optimal background suppression and post-labeling delay compared to conventional
2D multi-slice readout.

Software contributions

In order to support the research presented in this thesis and to facilitate collaboration with
fellow researchers within or outside academia, the developed concepts for motion-robust
model-based super-resolution reconstruction for multi-slice (q)MRI were bundled in two soft-
ware packages. A first package (https://github.com/qbeirinckx/Super-Resolution-
Reconstruction) contains all the MATLAB code that was used for the simulation ex-
periments and real data reconstructions in this thesis. Particularly, the software package
includes individual coding modules for the forward and transpose operators (warping, blurring,
resampling) in the SRR forward model introduced in contribution chapter 6, as well as
implementations for three-dimensional regularization/prior terms on image or tissue param-
eter maps (both Total Variation and Laplacian regularization are currently implemented,
cf. contribution chapters 5-7). Further, different log-likelihood functions for magnitude
MRI data (assuming e.g. Gaussian or Rician distributed data) can be selected during the
estimation process to create Maximum Likelihood or Bayesian estimators. Finally, the user
can select a preferred signal model of choice (T1, T2, diffusion, arterial spin labeling, two-
or many-parameter models, etc.), making the code versatile and multi-usable for qMRI re-
construction. A second package, called STORM, acronym for Super-resolution Tomographic
Reconstruction for MRI (https://github.com/qbeirinckx/STORM), provides a general
Python toolkit for anatomical super-resolution reconstruction with joint motion estimation.
This package provides an efficient warping operator implementation and has already been
used to improve multiple sclerosis lesion segmentation from retrospective data (Giraldo
et al., 2023), while it also enables the use of SRR in follow-up Artificial Intelligence (AI) and
learning-based method development where Python is the preferred software language.

1.6 Thesis organisation

This thesis is structured in 8 chapters. In the current chapter (Prologue), the motivation
and existing technical challenges behind the work in this thesis were briefly introduced. The
need for discovery of reliable and accessible biomarkers for detection of neurodegenerative
diseases in an aging era was pointed out, and how qMRI as a medical imaging modality can be
a crucial protagonist by providing quantitative biomarkers for clear numerical differentiation
of disease states. The different technical needs that come with bringing qMRI to the clinic
were highlighted. In particular, the combination of innovative technologies that break the
traditional MRI trade-off between resolution, precision, and acquisition time, while also
providing robust motion/qMRI parameter estimation.

Understanding the basic principles of MRI is a prerequisite to studying the contributions in this
thesis. Starting from an overview of the historical advancements in MRI, the second chapter
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(Magnetic Resonance Imaging: The basics) therefore briefly explains some fundamental
principles and concepts about MRI. In particular, the phenomenon of nuclear magnetic
resonance is considered, which is grounded in quantum mechanical considerations, but which
benefits from a classical interpretation when the interaction of a large number of hydrogen
atoms in an external magnetic field is considered. In addition, fundamental concepts such
as excitation and relaxation of magnetic spins are introduced. Since the relaxation process
is typically characterized by parameters of great importance for quantitative neuroimaging
research, e.g. T1 and T2 relaxation times, extra attention is paid to these phenomena. Next,
a short overview of signal generation and detection in MRI is given, highlighting aspects that
are of particular interest to the MRI modalities and methods used in this thesis. In particular,
the use of 2D multi-slice and 3D acquisition strategies is described, pinpointing some of the
advantages and disadvantages of both strategies. Finally, the chapter provides a detailed list
of the specific MRI pulse sequences used for the acquisition of the in vivo whole brain data
in the research contributions.

The third chapter (The Advent of Quantitative MRI) outlines the importance of quantitative
MRI in response to shortcomings of and as an addition to conventional MRI. MR relaxometry
and arterial spin labeling MRI are presented as two important clinical applications of qMRI,
for which this thesis provides new methods to answer existing technical needs. Finally, in the
context of qMRI, the basic principles of parameter estimation are introduced.

In the fourth chapter (Super-resolution reconstruction as prime protagonist for accelerated
(q)MRI), the role of super-resolution reconstruction is elaborated. Starting with a general
discussion on the challenges of resolution in MRI and the consequent demand for resolution-
enhancing methods, the general concept of SRR is introduced. In addition to the fundamental
principle of this technique, the key components are highlighted necessary for SRR application
in MRI. Particularly, the choice of an appropriate acquisition strategy, the selection of an
accurate imaging model that realistically models both the acquisition and noise, and finally,
the model-based reconstruction process addressing technical aspects such as regularization
and hyperparameter selection. At the end of this chapter, the need for robust motion
compensation is also briefly touched upon, which is indispensable for ensuring the spatial
alignment of the SRR image set.

Next, the remaining chapters discuss the main contributions of this thesis, where the fifth
chapter (Joint Maximum Likelihood estimation of motion and T1 parameters from magnetic
resonance images in a super-resolution framework : a simulation study) describes an extensive
Monte Carlo simulation study on small-image ’checkerboard’-like phantoms in which for the
first time model-based SRR for qMRI is augmented with joint motion estimation, using T1
mapping as an MR relaxometry model of choice. A joint Maximum Likelihood estimation
framework is used in which motion and relaxometry parameters are optimized alternately. Also
in this contribution, downsampling and blurring with a rectangular slice profile are combined
in one and the same forward operator to ease the computational burden. The proposed SRR
framework with joint motion estimation is extensively benchmarked against a framework
without motion estimation and a previously reported SRR T1 mapping approach with a
motion pre-registration strategy. This contribution chapter provides a first proof-of-concept
study for model-based SRR with joint motion estimation for qMRI applications, and lays
the foundations for the further development of the large-scale and computationally more
demanding SRR framework for application to whole brain in vivo images, as described in
more detail in the subsequent chapter.
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The sixth chapter (Model-based super-resolution reconstruction with joint motion estimation
for improved quantitative MRI parameter mapping) expands the simulation study and proof-
of-concept demonstration further towards a widely applicable framework for model-based
super-resolution reconstruction with joint estimation of motion parameters and isotropic,
high-resolution 3D quantitative MRI parameter maps from motion-corrupted, low-resolution
2D multi-slice MRI scans. This chapter describes the magnum opus of this dissertation in
which all important technological developments are combined in one polyvalent and robust
estimation framework. Among other things, a Bayesian estimation framework is used to
maximally exploit prior knowledge of the tissue and noise statistics, in which special attention
is given to realistic modeling of noise and data distributions by use of a Rician probability
distribution in the likelihood function of the magnitude MR data. The framework’s potential
is demonstrated in both simulations and real data experiments, using T1 and T2 mapping
as carrying examples. Attention is also given to the experimental design of the acquisition
protocols for relaxometry mapping, in which contrast weighting and (geometric) distribution
of the individual images in the quantitative image series is subject to restrictions inherent to
the MR acquisition sequence of interest. In particular, it is investigated how a multi-echo
spin-echo (MESE) sequence can be used for acquisition of a 2D multi-slice super-resolution
image series for T2 mapping, while also discussing limitations of such a sequence. It should
be highlighted that the sections and formulae in this chapter have been written in such a
way that it should be straightforward to substitute other quantitative signal and/or noise
models into the framework. In fact, this modularity in signal and noise model was illustrated
in the following chapter in which a perfusion model with a Gaussian noise model is combined
under these considerations. The appendices of this second contribution chapter bundle the
different mathematical components, a.k.a ’building blocks’, and tools that were developed
in the reconstruction of the motion-robust super-resolution reconstruction framework for
qMRI. An important part is dedicated to the implementation of the linear operators that
constitute the super-resolution forward model, and the qMRI signal models that describe
the relation between the signal intensity and the underlying biophysical tissue parameters
in a voxel. In addition, some practical considerations are discussed for solving a large-scale
parameter estimation problem with joint estimation of qMRI and motion parameters. Finally,
some examples of use cases for anatomical and quantitative SRR applied in musculoskeletal
MRI are presented, which were reconstructed with the developed framework. As opposed
to brain MRI, musculoskeletal (MSK) MRI focuses specifically on joint structures, including
wrists, ankles, knees, etc. It is demonstrated that SRR can also play an important role to
improve existing 3D resolutions of MSK MRI without significantly increasing the scan time
of clinical protocols.

In the seventh chapter (A super-resolution reconstruction framework for quantitative brain
perfusion mapping using pseudo-continuous Arterial Spin Labeling), a super-resolution recon-
struction framework was proposed that estimates 3D isotropic high-resolution quantitative
cerebral blood flow (CBF) maps from a series of single-post-labeling-delay (single-PLD)
pseudo-continuous Arterial Spin Labeling (ASL) control-label image pairs, each acquired with
low through-plane resolution and rotated slice-encoding direction in a 2D multi-slice readout
scheme. Building upon the SRR framework introduced in Chapter 6, motion between control
and label images was jointly estimated in a Bayesian estimation framework, enabling accurate
and precise CBF quantification without propagation of pre-registration errors, while optimally
exploiting prior knowledge of tissue properties and noise statistics. The rotation of the
slice-encoding direction for each control-label image pair as well as the lower through-plane
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resolution ensures a more uniform distribution of the PLD throughout the brain and increases
the effectiveness of background suppression. Combined, this significantly improved the SNR
compared to conventional 2D multi-slice readout with direct high through-plane resolution,
where CBF quantification has traditionally been hampered by detrimental perfusion SNR
slice dependence in sequentially acquired slices. The proposed method was validated both
qualitatively and quantitatively in synthetic whole brain simulations and on in vivo human
brain data. It has been demonstrated that the framework provided superior CBF estimation in
terms of root-mean-square error compared to a state-of-the-art approach using a conventional
2D multi-slice readout strategy with ascending slice order and isotropic resolution in the
same scan time, even when additional hardware acceleration techniques like multiband are
applied in the latter.

Finally, the eighth chapter (Conclusions and Future Perspectives) concludes the thesis and
outlines potential future research directions.

At the end of the thesis manuscript, a list of abbreviations and a concise academic CV at
the time of writing are also provided.
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2.1 Introduction

Since this thesis contains several contributions on MRI, it is worthwhile to clearly state
the general idea behind this versatile imaging technique. Starting from an overview of the
historical advancements in MRI, this chapter briefly explains some fundamental principles and
concepts about MRI. In particular, the phenomenon of nuclear magnetic resonance (NMR)
is considered, which is grounded in quantum mechanical considerations, but which, as will
be emphasized, also benefits from a classical physical interpretation when the interaction of
a large number of hydrogen atoms in an external magnetic field is considered. In addition,
fundamental concepts such as excitation and relaxation of magnetic spins are introduced.
Since the relaxation process is typically characterized by parameters of great importance
in a clinical context, especially T1 and T2 relaxation times, extra attention is paid to
these phenomena. In addition to generating and detecting the MR signal, this section also
explains how an image is created through a well-thought-out spatial coding of the MR
signal. Furthermore, the use of 2D multi-slice and 3D acquisition strategies is described, also
pinpointing some of the advantages and disadvantages of both strategies. Finally, a detailed
list is provided of the particular MRI pulse sequences used in this thesis to obtain the in vivo
whole brain data sets.
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2.2 A brief history of MRI

The historic journey of MRI began in the 1930s when the American physicist Isodor Isaac
Rabi first described the phenomena of nuclear magnetic resonance (NMR) (Rabi et al., 1938).
He showed that one can manipulate and identify atomic nuclei, which behave like spinning
tops whose orientation axes are aligned with an externally magnetic field, by exposing them
to radio-waves. Recognition for this pioneering work followed in 1944, when he was awarded
the Nobel Prize in Physics.

Apart from Rabi’s work, several key researchers made foundational discoveries. The Serbian-
Croatian scientist Nikola Tesla first observed the principles of magnetic resonance as early as
1896 (Roguin, 2004), laying the groundwork for future explorations into electromagnetic fields
and resonance phenomena. In the early 1940s, Soviet physicist Yevgeny Zavoisky working at
Kazan State University made significant contributions by detecting electron paramagnetic
resonance (Zavoisky, 1945), a technique closely related to NMR. Dutch physicist Cornelis
Gorter, whose experiments on paramagnetic relaxation in solid paramagnetic salts inspired
Zavoisky, also made notable contributions (Gorter, 1936). Additionally, Dutch scientist Pieter
Zeeman played a crucial role in understanding the magnetic properties of materials. Zeeman’s
discovery of the spectral line splitting (see section 2.3.1), for which he received the Nobel
Prize in 1902, was pivotal in developing spectroscopic techniques (Zeeman, 1897).

In the aftermath of the Second World War, when developments in radar and electronic
technologies were extensively explored, the groups of Felix Bloch and Edward Mills Purcell
independently demonstrated that any solid or liquid can be placed in a magnetic field to identify
its specific atoms, without affecting it in any perceptible way using the NMR phenomena
(Bloch, 1946; Purcell et al., 1946). They were jointly awarded the Nobel Prize in Physics
in 1952. During the next decades, NMR grew into a widely used application for structural
analysis of materials. However, it was not until the 1970s that NMR signals could be used to
generate two-dimensional (2D) images. Paul Lauterbur expanded upon the work of Herman
Carr to develop spatial information encoding principles (Carr & Purcell, 1954; Lauterbur,
1973). Peter Mansfield developed a method, currently known as ‘echo planar imaging’ (EPI)
to acquire such 2D images in only a few seconds (Mansfield, 1977). Both scientists received
the Nobel Prize in Physiology and Medicine in 2003 for their seminal contributions, which
led to the applications of magnetic resonance in medical imaging. However, the Nobel Prize
ensued some controversy (Dreizen, 2004). Why was Raymond Damadian not honored by
the Nobel Prize for his contribution to MRI in medicine? The Armenian-American medical
doctor reported that differences among normal tissues and between normal and cancer
tissues can be distinguished in vivo by NMR (Damadian, 1971). Moreover, he was the first
to achieve human whole-body MR images (granted a patent in 1974, (Damadian, 1974)).
Finally, another critical contribution that forever changed the way MRI was done, was made
by Richard R. Ernst. Inspired by the Belgian scientist Jean Jeener (Jeener, 1971; Jeener
et al., 1979), Ernst and coworkers were the first to use the Fourier transform to reconstruct
two-dimensional (2D) NMR images, using switched magnetic field gradients in the time
domain for spatially encoding (Ernst & Anderson, 1966; Kumar et al., 1975). Ernst was
awarded a Nobel Prize in Chemistry in 1991 for his contributions.

Since those early discoveries, modern-day MRI technology has undergone many changes.
For one thing, early marketers decided to drop the word ‘nuclear’ from ‘nuclear magnetic
resonance,’ reasoning that this would allay people’s fears about radiation. What initially
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started with a single MRI scanner and a magnetic field strength of 0.1 Tesla (T) (Damadian,
1974) has grown into an important biomedical technology with more than 65,000 MRI
scanner units used worldwide, which together perform more than 150 million exams per year
(OECD, 2021), operating at different magnetic field strengths; for clinical routine (≤ 3T),
and/or research purposes (≤ 10.5T) (Vaughan et al., 2006; Moser et al., 2012).

However, as already pointed out in the Prologue, MRI also remains an inaccessible imaging
technology, cost-prohibitive given the need for specialized hardware, installation in dedicated
RF-shielded hospital spaces, and highly-trained operators and radiologists. Access is particu-
larly limited in rural areas, and in low- and middle-income countries - thereby contributing to
the current challenges of health disparities. In a world where we are today facing significant
challenges of a fast-growing aging society, with the prevalence of age-related diseases and
disorders rising year after year, recent MRI research is therefore also focusing on improving the
accessibility of MRI and making it more cost-friendly to ease the burden on global healthcare
costs. As an example, the development of low-cost ultra-low-field MRI scanners (∼ mT
range) that can be used for rapid and regular screening of patients in the general population
at point-of-care facilities (Liu et al., 2021), has recently regained interest from the MRI
research community.

2.3 NMR signal generation and detection

2.3.1 Physical principles, nuclear spin and magnetic moment

As mentioned in the previous section, the NMR phenomenon was first described by F. Bloch
and E. Purcell. In short, the NMR phenomenon describes the absorption and subsequent
re-emission of electromagnetic (EM) radiation by a system of nuclei with an odd number
of protons or neutrons in a static magnetic field, when perturbed by a second oscillating
magnetic field with a specifically selected frequency.

If an atomic nucleus possesses an odd number of protons or neutrons, it has an intrinsic
angular momentum J = ℏI, with I the intrinsic spin, a dimensionless vector, and ℏ the
reduced constant of Planck (1.05 · 10−34J · s). Since a nucleus is charged, the intrinsic
angular momentum J is coupled with a magnetic dipole moment µ:

µ = γℏI (2.1)

where γ denotes the gyro-magnetic ratio of the nucleus. In quantum mechanics, the spin
angular momentum operator Ĵ = ℏÎ has eigenvalues ℏ

√
I(I + 1) with I the spin quantum

number. This spin quantum number is an intrinsic property of the nucleus, which is an
integer or a half integer. In this thesis, and in the vast majority of clinical MRI exams, the
considered nucleus is the hydrogen proton (1H). This proton has a high natural abundance in
the human body in the form of water molecules. The spin quantum number of 1H is I = 1

2 ,
while its gyro-magnetic ratio is γ = 2.675 · 108rad/s/T . When a proton is placed in an
external magnetic field B0 directed along the z-axis, the component of Î parallel with the
magnetic field, Îz , has eigenvalues Iz that can take 2I + 1 values: −I,−I + 1, . . . , I. These
eigenvalues Iz are the possible outcomes of a measurement of the angular momentum along
the z-axis. In the case of 1H, there are two possible values: spin up, Iz = +1/2, or spin down,
Iz = −1/2. Considering the linear relation between the intrinsic angular momentum I and
the magnetic moment µ, the proton magnetic moment has only two possible states: + 12γℏ
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or − 12γℏ. Those two discrete magnetic moments of the proton possess opposite potential
energy in an external magnetic field B0:

E = −µ ·B0 = −µzB0 =

{
E↓ = +

1
2γℏB0 spin down (Iz = − 12),

E↑ = − 12γℏB0 spin up (Iz = +
1
2),

(2.2)

where ‘·’ denotes the scalar product, and |B0| = B0. This discrete difference between both
energy levels is referred to as nuclear Zeeman-splitting (Fig. 2.1). The lower energy level,
spin up, corresponds to the z-component of the magnetic moment oriented parallel with B0,
while the higher energy level, spin down, is compatible with the magnetic moment oriented
anti-parallel with B0. The energy difference between both states is given by:

∆E = E↓ − E↑ = γℏB0 = hνL = ℏωL. (2.3)

The above equation is referred to as the resonance condition. It states that energy
transitions from one energy level to another are possible by absorption or emission of a
photon with energy ∆E = γℏB0. Such photons are characterized by an angular frequency
ωL = γB0, commonly referred to as the Larmor frequency (Larmor, 1897). This Larmor
frequency corresponds to the precession frequency of hydrogen spins in a magnetic field,
meaning it is the rate at which the magnetic moments of hydrogen nuclei precess around
the axis of the external magnetic field B0. In a clinical setting, magnetic field strength
ranges typically from 1.5T to 3T, which corresponds to a Larmor resonance frequency in
the radio frequency (RF) part of the EM spectrum. Therefore, RF shielding (cf. Faraday
cage principle) of the MRI scanner is mandatory to prevent external EM radiation from
contaminating/distorting the MR signal, and to prevent EM radiation generated by the MR
scanner from causing interference with medical devices nearby.

Energy

Magnetic field

E↓ = E↑

B0 = 0

E↓ = +
1
2γℏB0

B0 ̸= 0

E↑ = − 12γℏB0

∆E = hν = ℏωL = γℏB0,res

Figure 2.1: Nuclear Zeeman effect for a 1H proton (I = 1
2
) in an external magnetic field B0 = B0ez ,

with ez the unit vector along the z-axis. In the presence of a magnetic field (B0 ≠ 0) a splitting
occurs in two separate energy levels, corresponding to the two nuclear spin states of a I = 1

2
particle.

The energy split is proportional to the magnitude of the applied magnetic field B0.
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2.3.2 Macroscopic effect of the static magnetic field

In practice, the matter being investigated in the MRI scanner consists of a large number of
nuclei, in close proximity of one another. While spin of a single nucleus is a quantum effect,
the presence of an ensemble of nuclei allows to study magnetic resonance as a classical
phenomenon (Hanson, 2008). This is justified by the correspondence principle, which states
that the behaviour of systems described by quantum mechanics follows classical physics in
the limit of large quantum numbers (Bohr, 1976). Since E↑ < E↓, the equilibrium population
of spins in the spin up state (higher stability), N↑, exceeds the population of spins in the spin
down state, N↓. Following classical Boltzmann statistics, the ratio between both population
numbers is given by

P =
N↑
N↓
= exp

(
∆E

kBT

)
> 1, (2.4)

with kB the Boltzmann constant and T the absolute temperature. Since sending EM waves
at the resonance frequency will cause both stimulated absorption and stimulated emission
between the energy states, only a net absorption/emission can be detected. At physiological
temperature (310.15K) and a typical magnetic field strength of 3T, Eq. (2.4) results in
P = 1.0000197. In other words, only about 2 · 10−5 proton spins will contribute to the NMR
signal. Hence, due to this low sensitivity, a large concentration of protons is necessary to
create an NMR signal. Fortunately, for a typical voxel volume in MRI, there are about 1021

protons (Bushberg et al., 2012), so there are 2 · 10−5 · 1021, or approximately 2 · 1016 more
protons in the low-energy state, producing an observable net absorption of RF energy on a
macroscopic scale. In addition, it can be shown, by first-order approximation of Eq. (2.4),
that the difference in occupation of both spin states is given by

N↑ − N↓
N

≈
γℏB0
2kBT

= 9.84 · 10−6 at 3T and 310.15K, (2.5)

with N = N↑ + N↓ equal to the total number of protons. Again, although the difference in
occupation is small, it is sufficient to generate an observable macroscopic magnetization
vector M . Being able to treat the behavior of all spins in the ensemble in terms of a net
magnetization vector M allows a classical description of NMR.

The resulting bulk magnetization, which is the vector sum of all the microscopic magnetic
moments in the object, i.e. M =

∑N
n=1 µn, can be further decomposed in an x , y , and

z-component,

M = Mxex +Myey +Mzez

=

(
N∑
n=1

µx,n

)
ex +

(
N∑
n=1

µy,n

)
ey +

(
N∑
n=1

µz,n

)
ez , (2.6)

where ex , ey , and ez denote the unit vectors along the x , y , and z-axis, respectively. At
equilibrium, both transverse components in Eq. (2.6) will be zero, i.e. Mx = 0 and My = 0,
because of the random phase of the individual magnetic dipole moments when they precess
around the B0 = B0ez field. The z-component, on the other hand, is nonzero:

M = Mzez = M0ez =

 N↑∑
n=1

1

2
γℏ −

N↓∑
n=1

1

2
γℏ

 ez =
1

2
(N↑ − N↓)γℏez , (2.7)
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where we have substituted the two possible states of the proton magnetic moment. Fur-
thermore, by combining Eq. (2.7) with Eq. (2.5), it follows that the magnitude of the bulk
magnetization vector at equilibrium is equal to

|M | = M0 =
γ2ℏ2B0N
4kBT

. (2.8)

Equation (2.8) indicates how the magnitude of M is directly proportional to the strength of
the B0 field and the total number of spins N. The former is characteristic to the object being
imaged and can be used as image contrast to create proton density weighted images, while γ,
ℏ, and kB are constants. Therefore, only B0 or the absolute temperature T are controllable
parameters that can influence |M |. Given that MRI experiments are typically carried out at
room temperature to maximize patient’s comfort, one is limited to changing the magnetic
field strength B0 for an overall increase of the bulk magnetization and NMR signal. This
explains why high magnetic field strengths result in better signal-to-noise ratio (SNR) of the
scans, and why scanning at ultra-low field (ULF) strengths inherently suffers from low
SNR, demanding increased scan times to acquire enough NMR signal.

2.3.3 Excitation

In the previous section, it was stated that the external static magnetic field B0 leads to a net
magnetization vector M that is parallel to the direction of B0. However, this phenomenon
in itself does not allow to detect an NMR signal. To detect the magnetization, an electrically
conducting receiver coil is placed around the subject, perpendicular to the transverse plane,
such that a time-varying rotating transverse magnetization component (Mx,y ) will induce
an (alternating) voltage in the coil (cf. Faraday’s law of induction). The amplitude of the
voltage, ϵ, is proportional to the negative of the rate of temporal variation of the flux1 φ,
which in turn is proportional to the magnitude of the transverse magnetization normal to
the coil (φ ∝ Mx,y ), i.e. ϵ ∝ − dφdt . So, to generate measurable signals in such a receiver
coil, the magnetization vector M should be tilted from the equilibrium position into the
transverse xy -plane. To enable the tilting, an additional time varying magnetic field B1 is
briefly turned on, which is perpendicular to B0, and oscillates with ω1 = ω0. This B1 field is
referred to as the radio frequency (RF) pulse (Rabi et al., 1938), because of its short-lived
effect. Note that B1 is typically about 5 orders of magnitude weaker than B0. In Fig. 2.2,
the motion of the magnetization M is shown when a resonant RF field B1 is applied, both in
the reference laboratory2 frame (Fig. 2.2(a)) and in a reference frame rotating2 at ω0 = ω1
along with M and B1 (Fig. 2.2(b)). In the laboratory frame, the magnetization spirals down

1At higher magnetic field strengths, the magnetization precesses at a higher frequency, and so the value
of dφ
dt

increases. As a result, stronger magnetic fields yield improved signal strength not only because of a
larger nuclear polarization but also because of the additional increase in magnetic flux.

2 Often, it is more convenient to visualize the effects of rotating magnetization vectors in the laboratory
(i.e. stationary) frame of reference (x, y , z) using an alternative reference frame representation (Rabi et al.,
1954). In this rotating frame of reference (x ′, y ′, z ′), the reference frame rotates about the z-axis at angular
frequency ω1 (cf. Fig. 2.2). As such, a magnetization vector rotating at ω1 in the laboratory frame will
appear stationary in the rotating frame of reference. Both reference frames are connected using the following
reference frame coordinate transformation (Tourais et al., 2022):(

x

y

z

)
7→

(
x ′

y ′

z ′

)
: R(t) =

(
cos(ω1t) sin(ω1t) 0

− sin(ω1t) cos(ω1t) 0

0 0 1

)
, (2.9)

with R(t) being a rotation matrix, i.e. R(t)RT (t) = I and det(R(t)) = 1.
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towards the xy -plane on the surface of a sphere with radius |M |. Indeed, |M | remains
constant as the RF field rotates the spin distribution as a whole. In the rotating frame, the
magnetization rotates perpendicular to B1 at angular frequency ω1. Applying the RF pulse
during a time interval ∆t (order ∼ms), flips the magnetization over an angle α = γB1∆t,
termed as the flip angle. In most MR sequences, RF pulses are applied so that flip angles are
90° or 180°.

z

y

x

B0

B1

M
α

(a)

z ′

y ′

x ′

B0

B1

M
α

(b)
Figure 2.2: Evolution of magnetization vector M experiencing a static longitudinal magnetic field
B0 and a transversal time varying magnetic field B1, (a) in the laboratory frame of reference (x, y , z),
and (b) in the rotating frame of reference (x ′, y ′, z ′).

In addition, the motion of the magnetization vector M in the static field B0 from the
moment the RF field B1 is switched off and after the vector has been rotated over a
certain angle α, can be described using classical electromagnetism. Given that there exist no
other interactions than with the static magnetic field B0 along the z-axis, the macroscopic
magnetization M will experience a torque:

dM

dt
= γ (M ×B0)

= γ

∣∣∣∣∣∣
ex ey ez
Mx My Mz
B0,x B0,y B0,z

∣∣∣∣∣∣ = γ
∣∣∣∣∣∣
ex ey ez
Mx My Mz
0 0 B0

∣∣∣∣∣∣
= γB0Myex − γB0Mxey . (2.10)

The components of dM
dt along the x , y , and z-direction are then given by:

dMx
dt
= γB0My ,

dMy
dt
= −γB0Mx ,

dMz
dt
= 0. (2.11)

These differential equations can be solved using the definition of the Larmor frequency
ω0 = γB0, resulting in an expression for the components of M(t) in the laboratory frame of
reference: Mx(t)My (t)

Mz(t)

 =
 cos(ω0t) sin(ω0t) 0

− sin(ω0t) cos(ω0t) 0
0 0 1

Mx(0)My (0)

Mz(0)

 (2.12)

Equation (2.12) denotes that the macroscopic magnetization vector precesses around the
direction of the external static magnetic field, as shown in Fig. 2.3, with angular frequency
ω0, the Larmor frequency.
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Figure 2.3: Schematic representation of the torque on the macroscopic magnetization vector M ,
caused by the static magnetic field B0.

2.3.4 Relaxation

In reality, the free precession of the magnetization vector M , as described by Eq. (2.11)
and Fig. 2.3, happens only temporary: the magnetization will return back to its equilibrium
state parallel to the static magnetic field B0 due to interactions of the spins with their
surroundings. This process is called relaxation. Phenomenologically, the relaxation process
can be added to Eq. (2.10), which results in a general set of equations that describe the
evolution of M in time under the influence of an arbitrary magnetic field B. These equations
are called the Bloch equations (Bloch, 1946):

dM

dt
= γ (M ×B0)−

T−12 0 0

0 T−12 0

0 0 T−11

M +

 0

0

M0T
−1
1

 , (2.13)

where again M0 describes the net magnetization vector at equilibrium, and where T2 and T1
are the transverse and longitudinal relaxation times, respectively. In the reference rotating
(x ′, y ′, z ′)-frame, Eq. (2.13) simplifies to:

dMx ′,y ′

dt
= −
Mx ′,y ′

T2
dMz ′

dt
= −
Mz ′ −M0
T1

,

(2.14)

The longitudinal relaxation time, T1, characterizes the relaxation process of the longitudinal
component Mz ′ , whereas the transverse relaxation time, T2, describes the relaxation curve
of the transverse component Mx ′,y ′ . The causes of relaxation are diverse, though typically,
one distinguishes two prominent types of relaxation processes: spin-lattice relaxation and
spin-spin relaxation.

Spin-lattice relaxation

Spin-lattice relaxation, also known as longitudinal or T1-relaxation, stems from the exchange
of energy with other degrees of freedom in the spin system in order to redistribute the
population of the nuclear spin states. In the NMR jargon, these degrees of freedom are
referred to as the lattice. The energy is dissipated to the surrounding lattice by means of
molecular vibrations (phonons). This interaction with the lattice results in reorientation of
the magnetic moments, causing a redistribution of the spins. When the thermal equilibrium
is restored, more spins will again occupy the lower energy state (spin up), thereby satisfying
Eq. (2.4). Phenomenologically, the spin-lattice relaxation process results in a change of
Mz ′ back to the equilibrium amplitude (Fig. 2.4), which is characterized by T1, and whose

24



2.3. NMR signal generation and detection

evolution is fully determined by Eq. (2.14). After a 90° RF-pulse, the evolution of the Mz ′
component as a function of time t can be written as

Mz ′(t) = M0

[
1− exp

(
−
t

T1

)]
, (2.15)

with M0 the longitudinal magnetization at equilibrium.
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Figure 2.4: T1 relaxation. After a 90° excitation pulse, due to energy dissipation with the surrounding
lattice, the longitudinal component of the magnetization Mz ′ regrows exponentially, over time, to
the equilibrium value M0.

Spin-spin relaxation

Spin-spin relaxation, also called transversal or T2-relaxation, describes the recovery of the
magnetization components Mx ′,y ′ perpendicular to the static magnetic field, which is caused
by a dephasing of spins (Fig. 2.5). The dephasing or loss in phase coherence of the spins is
caused by local fluctuations in the magnetic field which are two-fold. First, the movement
of electrons and nuclei creates rapidly fluctuating magnetic field inhomogeneities leading to
irreversible transverse relaxation termed T2-decay. Second, the static magnetic field B0 is
spatially inhomogeneous, both inherently and due to differences in magnetic susceptibility
between tissue types. These type of inhomogeneities also lead to transverse relaxation. When
both types of field inhomogeneities are considered, a pseudo transversal relaxation time is
introduced, called T ∗2 , which is related to T2 by the following inverse relation (Chavhan et al.,
2009):

1

T ∗2
=
1

T2
+
1

T
′
2

, (2.16)

with 1

T
′
2

= γ∆Binhomo the relaxation rate contribution attributable to magnetic field inhomo-

geneities (∆Binhomo ≥ 0) across a voxel. Note that since γ > 0, T ∗2 is always shorter or equal
to T2, resulting in a faster transversal decay. Furthermore, the solution of Eq. (2.14) for
Mx ′,y ′ has also an exponential form,

Mx ′,y ′(t) = Mx ′,y ′(0) exp

(
−
t

T ∗2

)
, (2.17)

with T ∗2 = T2 when field inhomogeneities are disregarded, and where Mx ′,y ′(0) represents the
transversal component of the net magnetization vector in the RF-rotating frame immediately
after the α = 90° RF-pulse.

The relaxation times T1 and T2 vary among different tissue types and in certain pathological
states. A comprehensive review of reported normal in vivo relaxation times at 3T is provided
by Bojorquez et al. (2017). It is important to note that both T1 and T2 relaxation times
depend on the magnetic field strength; they are not inherent biomarkers of a certain tissue
type (Korb & Bryant, 2002).
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Figure 2.5: T2 relaxation. Exponential decay, over time, of the transverse component of the
magnetization Mx ′,y ′ in the rotating frame of reference. The transverse component recovers to the
equilibrium value zero after excitation . The coherence loss of magnetic moments precessing in the
transverse plane and the corresponding net transverse magnetization Mx ′,y ′(t) is shown right after
the excitation pulse and for two subsequent time points.

2.4 MR image formation and readout strategies

As explained in section 2.3.3, by generating rotating transverse magnetization using an RF
pulse, the MR signal can be detected. However, such a signal is not yet linked to a specific
spatial location. Spatial encoding of the MR signal is an essential step to perform MRI. It
can be achieved by superimposing time dependent magnetic field gradients that vary linearly
in space onto the main magnetic field B0. These gradients can be applied in any direction by
combining the gradient coils, allowing for various strategies of spatial encoding. The most
common method is Cartesian readout along the three orthogonal spatial directions: frequency
encoding (FE) in the x-direction, phase encoding (PE) in the y -direction, and slice encoding
(SE) in the z-direction. This flexibility in gradient application enables different encoding
strategies, most prominently two-dimensional (2D) and three-dimensional (3D) readout. In
2D readout, images are acquired slice by slice, each slice being encoded separately. In 3D
readout, the entire volume is encoded and imaged simultaneously. Both readout strategies
are discussed hereafter.

2.4.1 2D readout

When a slice encoding magnetic gradient Gz is applied along the z-axis, the strength of
the total magnetic field in a plane at location z is equal to B0 + Gzz . This results in the
angular frequency of the precessing spins becoming dependent on the location z . When
such a slice encoding gradient is applied simultaneously with an RF pulse rotating at the
Larmor frequency, that RF pulse will be off-resonant for all spins at locations z ̸= 0, whereas,
theoretically, only spins at z = 0 that are precessing at the Larmor frequency would be
excited. However, a real RF pulse is characterized with a finite bandwidth:

∆ω = γGZ∆z. (2.18)

As a result, spins within the frequency range [ωL − ∆ω/2, ωL + ∆ω/2] will be excited in a
slice with a thickness equal to ∆z . The slice position can be changed by using RF pulses
with a frequency ω1 = ωL + δω, with δω a certain frequency offset.

After slice selection, application of specifically timed frequency encoding gradients Gx and
phase encoding gradients Gy along the x- and y -axis allows to spatially encode the MR
signals within the excited slice (Liang et al., 2000; Bloembergen, 1957):

S(kx , ky ) =

∫ +∞
−∞

∫ +∞
−∞
S(x, y) exp (−i2π(kxx + kyy)) dxdy, (2.19)
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with S(x, y) the magnitude of the magnetization vector at the spatial location with coordinate
(x, y). The wave numbers kx and ky are equal to the temporal integral of the magnetic
gradients applied for spatial encoding. More specifically,

kx =
γ

2π

∫ T
0

Gx(t)dt, (2.20)

ky =
γ

2π

∫ T
0

Gy (t)dt, (2.21)

where T denotes the total time duration to acquire S(kx , ky ), where it is assumed that Gx(t)
and Gy (t) are only nonzero at specific times when the respective gradients are switched on.

(a) Full k-space (b) Subsampling with factor 1/2

(c) Low-pass (d) High-pass

(e) horizontal k-space slab = vertical blurring (f) k-space rotation = image space rotation

Figure 2.6: Six examples that illustrate some basic operations using the Fourier transform (image-
to-k space) and inverse Fourier transform (k-to-image space) in MR imaging. For each example,
the k-space is shown on the left, while the image space is shown on the right.

The MR signals S(kx , ky ) are acquired in so-called k-space. This space can be sampled at
multiple frequencies (kx , ky ) so to obtain a 2D data set in k-space. It follows from Eq. (2.19)
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that the MR signal S(kx , ky ) is the Fourier transform of the spin density S(x, y). Therefore,
an image of the spin density in the so-called spatial or image domain can be obtained by
performing a 2D inverse Fourier transform on the 2D data set in k-space (Kumar et al.,
1975).

Fig. 2.6 illustrates the effect of the (inverse) Fourier transform in MR imaging for a 2D brain
image with an additional high intensity dot in the image. Note that both the k-space (shown
left) and real space image (shown right) are originally complex valued, yet their respective
magnitudes are shown here on a log-scale. Different properties of the Fourier transform are
highlighted. In Fig. 2.6a, the original image is computed as the inverse Fourier transform
of the fully sampled k-space. In Fig. 2.6b, subsampling is performed along the horizontal
dimension by adding zeros every other vertical k-space line, which results in aliasing in the
image space along that dimension. In Fig. 2.6c, the effect of low-pass filtering on the original
k-space domain is illustrated, which maintains only the contrast of the underlying image
in image space. The information of the high spatial frequencies, that contains the details
and contours of the brain, has disappeared. In Fig. 2.6d, high-pass filtering, where only the
high spatial frequencies have been selected in the k-space, is demonstrated, providing only
information about the details and edges of the brain in the image domain. Next, Fig. 2.6e
demonstrates the selection of a horizontal slab in k-space, which reduces resolution in the
vertical dimension in image space. Finally, Fig. 2.6f illustrates how a rotation in k-space
corresponds with a rotation in image space, and vice versa.

Spin echo

The spin echo (SE) sequence is a well-known two-pulse sequence to generate contrast-
weighted images (Hahn, 1950; Carr & Purcell, 1954). It is a fundamental pulse sequence
that forms the basis for many of the more advanced pulse sequences in MRI. As such, it is
illustrative to briefly explain some core principles of MRI acquisition using this sequence. The
SE sequence is schematically represented in Fig. 2.7. It uses a π/2−TE/2−π−TE/2−echo
pulse sequence, where TE represents the echo time, denoting the time between the ex-
citation pulse and the time of the readout. First, a single 90° excitation pulse rotates
the magnetization, within a certain slice, into the (x ′, y ′)-plane. Next, the different spin
packets start to dephase in the transversal plane due to all effects contributing to the T ∗2
relaxation. At t = TE/2, the magnetization is flipped by applying a 180° refocusing pulse.
Finally, after another period of TE/2, the spins are rephasing, thus producing a measurable
echo signal. The signal decay at TE, compared to the start of the experiment, now solely
originates in the T2 relaxation. The time between two repetitions of the SE sequence, is
called the repetition time (TR). TEs are typically in the order of tens of milliseconds, while
TRs range in the order of seconds. Variation of the TR and TE allows to obtain different
contrast-weighted images. For T1-weighted contrast, a short TR and short TE are used.
For proton density-weighted contrast, a long TR and short TE are applied. For T2-weighted
contrast, a long TR and long TE are employed. Depending on the external magnetic field
strength, different TR and TE values are needed to obtain the same contrast-weighted image.
dummytextdummytextdu mmytextdummytextdummy textdummytextdu mmytextdummyt
extdummytext dummytextd ummytextdummyte xtdummytextdummyte xtdummytextdummy-
textdummytextdummytextdumm ytextdummytextd u mmytextdummytextdummy textdum-
mytex tdummytextdummytextd ummytext dummytextdummytextdum
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Figure 2.7: A: Spin Echo (SE) Sequence: The net magnetization vector is tipped into the transverse
plane by a 90° pulse. During a time TE/2, the free-induction decay (FID) signal decays due to
strong T ∗2 dephasing. At time t = TE/2, the magnetization is flipped by a 180° refocusing pulse.
The spin packets continue to rotate, and after a time TE the different magnetization vectors are
again in phase along the −y ′ axis, thereby producing a measurable echo. By acquiring multiple MR
signals (images) at different TEs, the decay of the transversal magnetization towards zero can be
sampled. The time between two repetitions of the spin echo sequence, is called the repetition time
TR. B: Effect of the spin echo sequence on the net magnetization vector as seen in the RF-rotating
frame. B0 represents the external magnetic field vector. (a) Initial net longitudinal magnetization in
alignment with B0, (b) a 90° pulse rotates the magnetization 90° on the y ′ axis, (c) during a time
TE/2 a dephasing of the different spin packets occurs, (d) at t = TE/2 a 180° pulse flips the sign of
the transversal y ′-component of the individual magnetization vectors. (e) The spin packets continue
to precess at the same frequency, and after a time TE the different magnetization vectors are again
in phase along the −y ′ axis. At this point the echo is maximal, and detected in the transversal plane.

Multi-echo spin echo

As an extension of a standard SE sequence, multi-echo spin echo (MESE) sequences have
been proposed (Feinberg et al., 1985), which stimulate the spin system to repeatedly rephase
using a train of 180° pulses (Fig. 2.8). As long as T2 relaxation is not complete and MR
signal is present, this allows to generate extra echoes within a given repetition time. The
amplitude of each echo is progressively smaller due to the T2 decay. Also, the echo time
spacing (TE), i.e. the time between consecutive spin echoes, is inherently fixed. MESE
sequences offer the advantage of acquiring different echoes, i.e. different T2-weighted images,
in a single TR, which makes them suitable for quantitative T2 mapping protocols.

29



CHAPTER 2

RF pulse

Signal
t

90°
180° 180° 180° 180°

T ∗2
T2

TE1
TE2

TE3
TE4

Figure 2.8: Schematic representation of a multi-echo spin echo (MESE) sequence. Compared to a
standard spin echo sequence, the MESE sequence stimulates the spin system with additional 180°
pulses. As long as T2-relaxation is not complete and MR signal is present, this allows to generate
extra echoes within a given repetition time. The amplitude of each echo is progressively smaller due
to the T2 decay. Also, the echo time spacing (TE), i.e. the time between consecutive spin echoes,
is inherently fixed.

Inversion recovery

The gold standard method to create images with T1-weighted contrast is the inversion
recovery (IR) sequence (Drain, 1949; Hahn, 1949), as shown in Fig. 2.9. In this pulse
sequence, the longitudinal net magnetization vector is initially flipped by a 180° inversion
pulse. Next, during an inversion time TI, the longitudinal magnetization component Mz ′
will have partly relaxed to equilibrium according to the Bloch equation Eq. (2.14). Tissues
with different T1 relaxation values recover at different rates, creating a T1 contrast among
them. At time t = TI, the differences in the longitudinal magnetization are converted into
differences in the transverse magnetization, by applying a 90° excitation pulse. Again, similar
as for a spin echo sequence, this gives rise to a free induction decay (FID) signal. The
amplitude of this FID signal depends on the recovery of the longitudinal magnetization
component Mz ′(t) during the period TI, which is given by:

Mz ′(t) = Mz ′(0)

[
1− 2 exp

(
−
t

T1

)]
. (2.22)

By acquiring multiple MR signals (images) at different TIs, the recovery of the longitudinal
magnetization towards its equilibrium value can be sampled.

Inversion recovery fast/turbo spin echo (IR FSE/TSE)

As illustrated in Fig. 2.10, in a fast spin echo (FSE) or turbo spin echo (TSE) sequence an
echo train of evenly spaced refocusing pulses is used to acquire multiple phase encoding lines
of the data, i.e. a different phase encoding line is acquired for each echo. The time between
the successive echoes is called the inter echo spacing (IES). As the refocusing RF pulses
are all evenly spaced in time, also the IES remains fixed. Furthermore, the echo train length
(ETL) or turbo factor (TF) denotes the number of echoes in the spin echo train. When FSE
is combined with an IR module, the maximum number of slices that can be acquired within
one TR will not only depend on the multi-slice readout, but also on the ETL and IES.
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Figure 2.9: A: Inversion Recovery Sequence: The longitudinal net nuclear magnetization vector
is inverted by a 180° pulse. After inversion time TI, the longitudinal component is tipped into
the transverse plane by a 90° pulse, after which the (T1-weighted) MR signal is measured. By
acquiring multiple MR signals (images) at different inversion times, the recovery of the longitudinal
magnetization towards its equilibrium value can be sampled. The time between two repetitions of
the sequence, i.e. the time between the inversion pulses, is called the repetition time TR. B: Effect
of the inversion recovery sequence on the net nuclear longitudinal magnetization vector Mz ′ as
seen in the RF-rotating frame. B0 represents the external magnetic field vector. (a) Initial net
nuclear longitudinal magnetization in alignment with B0, (b) the 180° pulse inverts the longitudinal
magnetization Mz ′ , (c)-(d) the longitudinal magnetization Mz ′ relaxes and recovers to equilibrium,
(e) after an inversion time TI the relaxing longitudinal magnetization Mz ′ is tipped into the transverse
plane by a 90° pulse before readout.
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Figure 2.10: Schematic representation of an inversion recovery fast spin echo (IR-FSE) sequence.
Compared to a standard inversion recovery sequence, the IR-FSE sequence uses an echo train with
multiple refocusing 180° pulses to acquire multiple phase encoding lines of the image in a single
repetition time (TR). The inter echo spacing (IES) is fixed when the refocusing pulses are evenly
spaced in time.
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For sequential IR FSE, the number of slices is given by:

Nslice =
TR

TI+ (IES× ETL)
. (2.23)

For very high ETL, the number of slices is restricted, indicating that a trade-off exists between
the number of slices and the scan time acceleration.

In theory, by using long echo trains, IR FSE provides the opportunity to acquire multiple
T1-weighted images at a high spatial resolution within a short scan time, making it a go-to
sequence for quantitative T1 mapping. However, in practice, the scan time reduction is
somewhat limited by the high specific absorption rate (SAR) that inherently comes with
the high RF energy deposition of the repeated RF pulses in the echo train (Weigel et al.,
2007). SAR levels can be reduced by decreasing the number of slices acquired within one
TR, either by acquiring thicker slices (and decreasing the spatial resolution), or by increasing
the number of excitations (thus increasing the scan time). Clearly, there exists a need for
methods that can increase spatial resolution without sacrificing scan time, and which are not
limited by SAR restrictions.

Echo planar imaging

Single-shot echo planar imaging (ss-EPI) is performed using a pulse sequence in which
multiple echoes of different phase steps are acquired using rephasing gradients as opposed to
repeated 180° RF pulses following a standard spin echo sequence (Mansfield, 1977). ss-EPI
is designed to collect a 2D image as rapidly as possible. After excitation (i.e., slice selection),
the entire 2D k-space is traversed by an efficient use of time-varying gradients Gx and Gy .
The EPI readout strategy is illustrated in Fig. 2.11. After shortly switching on Gy , a line
in the Cartesian coordinate system is sampled during the application of Gx (i.e., different
frequencies kx for a fixed frequency ky ). Subsequent lines for different ky are sampled by
applying the phase encoding gradient for a very short time (a so-called blip), in between the
positive and negative lobes of the frequency encoding gradient. When data from multiple
slices is required, the entire readout procedure is repeated, with slice excitation at different
locations along the z-axis. While EPI has the benefit of being extremely fast, it is prone to
several imaging artifacts. The most prominent ones are ghosting and potential distortions
along the phase-encoding direction (Hu et al., 2020). Nevertheless, ss-EPI remains a method
of choice in diffusion and perfusion imaging. This is partly because it is a highly efficient
method that can produce whole-brain volumes in 10 seconds or less. This enables the
acquisition of tens or even hundreds of image volumes with different diffusion encodings
or post-labeling delay times. Moreover, ss-EPI is fairly robust to in-plane motion, since a
complete slice can be acquired in the order of 100 ms, which effectively "freezes" typical
head motion (Skare et al., 2018).

2.4.2 3D readout

The excitation of a slice, as described in the previous section for 2D readout, can also be
performed for a thicker slab. Indeed, following Eq. (2.18), the thickness of the excited volume
is equal to ∆z = ∆ω/(γGz), and can be increased by increasing the bandwidth ∆ω of the
RF pulse or by reducing the gradient Gz applied during excitation. Once such a thicker slab
is prepared, spatial encoding is performed in the three orthogonal directions: phase encoding

32



2.5. The MRI trade-off

RF pulse

Gy

Gx

Signal

Time

90°
180°

T ∗2

T2

0 TE/2 TE

multiple phase encoding blips

multiple gradient echoes

kx

ky

Figure 2.11: Single-shot EPI sequence: Schematic representation of a ss-EPI readout (left), and
the associated k-space traversal during readout (right).

along the z-axis and y -axis and frequency-encoding along the x-axis (Bernstein et al., 2004).
Thus, MR signals are encoded in the three spatial directions within the excited slab:

S(kx , ky , kz) =

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞
S(x, y , z) exp (−i2π(kxx + kyy + kzz)) dxdydz, (2.24)

with kz the wave number to the temporal integral of the magnetic gradient used for encoding
along the z-axis. In this case, a 3D image of the spin densities is obtained by performing a
3D inverse Fourier transformation on the acquired 3D k-space data set.

Compared to 2D readout, 3D readout is more SNR-efficient because a much larger volume
is excited within a single excitation. When performing the discrete 3D inverse Fourier
transformation instead of the 2D version, more k-space data points contribute to the
generation of each data point in the spatial domain. For a formal comparison of the SNR
efficiency between 2D and 3D readout, the reader is referred to section 11.6.1 in the work of
Bernstein et al. (2004).

2.5 The MRI trade-off

In MRI, a trade-off exists between the scan time, the spatial resolution, and the signal-to-noise
ratio (SNR). Fig. 2.12 shows a visual representation of this trade-off.

MRI allows to record 3D images in high resolution, either using 2D readout (section 2.4.1)
or 3D readout (section 2.4.2). A problem with high resolution imaging is the prolonged
scan time (cf. Fig. 2.12, top left), since multiple RF excitations are required to obtain
sufficiently high SNR values. A certain time is needed between repeated excitations of a
volume (i.e., the TR) and this time depends on the type of acquisition. The TR is especially
long when each new excitation of a specific volume requires T1 relaxation to obtain the
desired contrast, as the T1 relaxation time is of the order of seconds in most tissue types.
With standard 2D readout, every excitation influences only a single slice, so within each
TR, a part of the k-space of all slices can be recorded. However, when the slices are very
thin for high resolution imaging, the total signal power emitted by the slice is low for a
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Figure 2.12: Visual representation of the MRI trade-off.

short scan time, resulting in a low SNR (cf. Fig. 2.12, bottom). To increase the SNR, it is
possible to average the signal of multiple excitations, requiring scan times that are longer
than the minimal TR for T1 relaxation. This extends the total acquisition time compared to
an acquisition with thicker slices. Often, therefore, a compromise between scan time and
spatial resolution is found in the acquisition of slices that are substantially thicker than the
in-plane resolution, i.e. images are acquired with an anisotropic resolution (cf. Fig. 2.12,
top right). In this way, a good in-plane resolution is combined with a (relatively) short scan
time. The obvious disadvantage is the reduced spatial resolution in the dimension in which
the slices are stacked. In the following sections, each component of the MRI trade-off is
discussed more carefully.

2.5.1 Scan time

The scan time or acquisition time for 2D multi-slice imaging depends on several factors,
such as the number of signal averages NSA, the repetition time TR, the number of phase
encoding steps NPE, and the number of slices Ns when considering a 2D (multi-slice) readout
scheme:

scan time ∝ NSA · TR ·
NPE

NPE/TR
·
Ns
Ns/TR

, (2.25)

with NPE/TR and Ns/TR the number of phase encoding lines and the number of slices that
are acquired within one TR, respectively.

In addition, in-plane acceleration or so-called parallel imaging (PI) offers a robust way to
provide scan time reduction by acquiring a reduced amount of k-space data with an array
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of receiver coils (Deshmane et al., 2012). The undersampled data can be acquired faster,
but the undersampling results in images corrupted by aliasing. To reconstruct MR images
without undersampling artifacts, imaging algorithms such as Sensitivity Encoding (SENSE,
(Pruessmann et al., 1999)) or Generalized Auto-Calibrating Partially Parallel Acquisition
(GRAPPA, (Griswold et al., 2002)) are commonly used. Although PI leads to scan time
reduction, the penalty for acquiring fewer signals using PI is a loss of the SNR in the
reconstructed image, typically by a factor of the square root of the acceleration factor, due
to reduced signal averaging (Robson et al., 2008). Furthermore, image noise in PI is further
amplified by the ill-conditioning of the image reconstruction process. In addition, the noise
amplification is spatially variant and depends on the specific geometry of the RF coil array
being used, making the development of robust noise models more challenging.

In Chapter 7, another more recent approach is mentioned to accelerate the data acquisition.
This technique, referred to as simultaneous multi-slice (SMS) or multiband, allows for the
simultaneous excitation and imaging of several slices using 2D readout (Barth et al., 2016).
The primary benefit is an acceleration in data acquisition that is equal to the number of
simultaneously excited slices. Furthermore, unlike in-plane parallel imaging, SMS only has a
marginal intrinsic SNR penalty, and the full acceleration is attainable at fixed echo time, as is
required for many EPI applications, e.g. for the acquisition of 2D perfusion MRI data.

2.5.2 Spatial resolution

In MRI, the spatial resolution of an image is more accurately defined by the effective width of
the system’s point spread function (PSF), which describes the system’s ability to distinguish
between two point sources. This is often referred to as two-point resolution: the minimum
distance between two point sources that can be distinguished as separate entities. The voxel
size, given by [∆x,∆y ,∆z ], also plays a significant role in determining the spatial resolution,
but it should not be confused with the inherent resolution of the imaging system.

A voxel is the 3D volumetric equivalent of a 2D pixel. The through-plane resolution is defined
by the slice thickness ∆z . The in-plane resolution is defined by:

∆x =
FOVx
NFE

, ∆y =
FOVy
NPE

, (2.26)

with NFE the number of frequency encoding steps, NPE the number of phase encoding steps,
and FOV is the field of view, which refers to the area over which an MR image is acquired
(or displayed). The image matrix size is defined as NFE × NPE.

The through-plane spatial resolution can be improved by reducing the slice thickness, either
by using a stronger slice-encoding gradient or a narrower RF pulse bandwidth. Thinner slices
are less susceptible to partial volume effects, i.e. the effect where a voxel with nominal
resolution will consist of a mixture of signals stemming from different anatomical structures
at smaller resolution scale. Thinner slices will also contain fewer proton spins and thus will
emit less signal. Moreover, decreasing the slice thickness increases the number of slices
needed for a full coverage of the subject, which in turn might increase the acquisition time.
In practice, the voxel size and resolution are constrained by the gradient strength, acquisition
time, and targeted SNR.

Moreover, the through-plane PSF in MRI is significantly influenced by the Fourier relationship
between the slice profile and the finite duration of the slice selection pulse (see also Fig. 3.3
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in section 3.4.6.4 hereafter) (Noll et al., 1997). This relationship determines the effective
width of the PSF, which affects resolution in the through-plane direction. Specifically, the
slice profile in k-space, derived from the temporal profile of the RF pulse and gradient
characteristics, defines how frequencies are encoded along the slice direction.

Spatial resolution and k-space

A key difference between MRI and other medical imaging modalities is the control the
user has over how the data is acquired, manipulated and reconstructed into an image. By
adjusting, among other things, the timing of the pulses in an MR sequence, the order of
data acquisition, or the strengths and gradients of the auxiliary magnetic fields, the user can
change the resolution, the field of view (FOV), the contrast, the acquisition time, and so on.
As explained in section 2.4, the agent of this control is k-space, the abstract platform onto
which data are acquired, positioned, and then transformed into the desired image (Mezrich,
1995). No such flexible agent exists for X-ray imaging, ultrasound, or positron emission
tomography, which prevents these methods from supporting a rich interaction between the
user and the image, similar as with MRI. However, the price for this rich interaction in
MRI is the need for an intuitive understanding of the concepts and mechanisms of k-space
manipulation.

For research that intends to improve the spatial resolution of images or parameter maps, as
investigated in this thesis, it is important to understand the relationship between k-space
and spatial resolution. Fig. 2.13 illustrates this relationship in more detail.

To avoid loss of information, the sampling interval, i.e. the distance between two k-space
points (∆kx along the frequency-encoding direction, and ∆ky along the phase-encoding
direction) has to satisfy the Nyquist criterion3. In addition, the k-space sampling is finite,
i.e. the signal S(kx , ky ) is not sampled for |kx | > kmax,x and |ky | > kmax,y , with kmax,x =

(NFE/2)∆kx and kmax,y = (NPE/2)∆ky the maximum frequency sampled in the frequency
and phase encoding direction, respectively. Therefore, according to the Nyquist criterion, the
largest acceptable pixel size of the image is given by (Mezrich, 1995):

∆x =
1

FOVk,x
, ∆y =

1

FOVk,y
, (2.27)

with FOVk,x = 2kmax,x and FOVk,y = 2kmax,y . Since FOVx = NFE∆x and FOVy = NPE∆y ,
the FOV will thus be determined by the sampling interval:

FOVx =
1

∆kx
, FOVy =

1

∆ky
. (2.28)

In Figs. 2.13(c)-(d) the inverse relationship between the spacing of the data samples (∆kx
and ∆ky ) and the FOV is shown. When the spacing between the acquired data points is
increased, the resulting image will have the same pixel size, but the FOV will be smaller.
Since the Nyquist criterion is not fulfilled, the edges of the brain which fall outside the
smaller FOV will wrap over the sides of the reconstructed images. This phenomenon is called
aliasing.

3The Nyquist criterion, a.k.a. Nyquist-Shannon theorem, defines the minimum sample rate for the highest
frequency that you want to measure. The Nyquist rate should be two times (2×) the given frequency to be
measured accurately. If the Nyquist theorem is not met, higher frequency information is acquired in too low a
sample rate, resulting in aliasing artifacts.
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2.5. The MRI trade-off

Figure 2.13: Relation between k-space sampling and image resolution/FOV. From a fully sampled
k-space (a) the corresponding MRI image (b) can be computed. Undersampling of the k-space (c)
results in aliasing in the image space (d). Decreasing the maximum sampled frequency (e), decreases
the spatial resolution of the corresponding image (f).
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Figs. 2.13(e)-(f) visualize the inverse relationship between the pixel size and the range of
sampled frequencies in k-space. The sampling rate and spacing (∆k) is kept constant, but
the NFE and NPE are reduced, which reduces the maximum acquired frequency kmax as well.
This manipulation of k-space results in an increase of the pixel size (∆x,∆y). Thus, sampling
high frequencies in k-space is required to achieve a high spatial resolution in MRI.

2.5.3 Signal-to-noise ratio

When an MRI scan is performed, the acquired data is known to be affected by several sources
of quality deterioration due to limitations in the hardware, scanning time, or movement of
patients. One source of degradation that affects most of the acquisitions is noise. The
term noise in MRI can have different meanings depending on the context. It has been
applied to degradation sources such as physiological and respiratory distortions in some MR
applications and acquisitions schemes, or even acoustic sources (the sound produced by
the pulse sequences in the magnet). In this section, the term noise is strictly limited to
the thermal noise introduced during data acquisition, also known as Johnson-Nyquist noise
(Aja-Fernández et al., 2016).

The principal source of thermal noise in most MR scans is the subject (or object to be
imaged) itself, followed by electronic noise during the acquisition of the signal in the receiver
chain (Edelstein et al., 1986; Jezzard et al., 1993; Krüger & Glover, 2001). It is produced by
the stochastic motion of free electrons in the RF coil, which is a conductor, and by eddy
current losses in the patient, which are inductively coupled to the RF coil (Aja-Fernández
et al., 2016). The presence of noise over the acquired MR signal not only affects the visual
assessment of an image, but it also may interfere with any post-processing steps such as
segmentation, registration, functional MRI analysis, and in particular, with the numerical
estimation of quantitative parameters in the context of qMRI applications. To this extent,
image-derived metrics are typically used to compare the level of an expected signal to the level
of noise corrupting the measurement of that signal. One such metric is the signal-to-noise
ratio (SNR) of the MR scan. As its name suggests, it takes the ratio of the (power of the)
signal and the (power of the) unwanted noise.

In MRI, the signal intensity depends on the specific pulse sequence and associated sequence
parameters being used during acquisition, as well as on the spatial resolution or voxel
dimensions (Edelstein et al., 1986):

signal ∝ ∆x∆y∆zFsequenceFB0 (2.29)

with Fsequence a sequence-dependent factor incorporating the influence of signal relaxation, i.e.
Fsequence depends on chosen sequence parameters such as TE and TR, as described in section
2.4. Furthermore, as discussed in section 2.3.2, the magnitude of the bulk magnetization
vector is directly proportional to the strength of the magnetic field B0, meaning that the
observed signal will be larger for increased magnetic field strengths. This proportionality on
B0 is incorporated in the factor FB0 .

The noise, on the other hand, is related to the bandwidth (BW) and a set of pulse sequence
parameters NSA, NPE, NFE (Dietrich et al., 2007):

noise ∝
√

BW√
NSANPENFE

. (2.30)
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Briefly put, the bandwidth corresponds to the range of frequencies captured during readout
of the k-space. Typically, the speed with which the k-space is traversed is proportional to
the bandwidth. Hence, a larger bandwidth means that more information can be collected in
a single readout, speeding up the acquisition. Alas, also the thermal noise power in the coil is
proportional to the bandwidth, which means that an increased bandwidth leads to an increase
of the noise level (Redpath, 1998). On the other hand, a low bandwidth increases the risk of
chemical shift artefacts (Babcock et al., 1985). In addition, the selection of an appropriate
RF receiver coil is essential to prevent noise amplification, e.g. nowadays dedicated head
coils with 32 or even 64 transmitter/receiver channels are commonly used for brain MRI
(Keil et al., 2013).

Given the aforementioned definitions of signal and noise, the SNR of a multi-slice MR image
is given by:

SNR ∝
∆x∆y∆zFsequenceFB0

√
NSANPENFE√

BW
. (2.31)

Since ∆x , ∆y , and ∆z define the spatial resolution (see section 2.5.2), and NSA, NPE, and
NFE define the scan time (see also Eq. (2.25)), it follows that the SNR is dependent on
spatial resolution and scan time, i.e.:

SNR ∝ (voxel size)
√

scan time. (2.32)

As such, there exists a trade-off between SNR, spatial resolution, and scan time which
complicates acquisition of an MRI image.
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The Advent of Quantitative MRI
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3.1 Introduction

Since the early 1980s, when magnetic resonance imaging (MRI) first became clinically
available, advances in magnetic resonance (MR) scanners and the development of tailored
MR acquisition protocols have led to widespread availability of MRI in clinical practice. MRI
offers remarkable soft tissue contrast and the benefit of non-ionizing radiation, making it a
safe and highly valuable imaging modality for disease diagnosis and preoperative planning for
a wide variety of clinical applications. To date, MRI is considered the gold standard imaging
technique for diagnosis and monitoring of many neurological diseases.

Conventional (anatomical) brain MRI images are qualitative in nature, showing signal intensi-
ties that depend on many different factors, including not only the underlying biophysical tissue
properties of interest, such as the longitudinal relaxation time (T1), the transverse relaxation
time (T2), or the proton density, but also the MRI acquisition technique (pulse sequence)
and the chosen acquisition parameters (e.g., flip angle, repetition time, echo time, inversion
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time, etc.). A trained neuroradiologist can interpret the relative intensity values (i.e., with
respect to a control/reference region) in these images to define hyper- or hypo-intensive
structures and to decide on any diagnosis. However, this makes conventional qualitative MRI
inherently subjective, i.e. there is no absolute and objective quantification (or measurement)
of biophysical tissue parameters, which increases the risk of an erroneous diagnosis.

When using MRI images for clinical diagnosis and prognosis of brain disorders, it is imperative
that images be quantitative, reproducible (i.e. precise), indicative of tissue parameters, and
independent of imaging sites or scanner vendors. In this way, biological changes in the disease
states and their response to possible treatments can be carefully detected and progressively
monitored. As such, MRI can evolve from a process of picture-taking, where observations
are made on the basis of unusually bright, dark, small or large structures, to a measurement
process where a whole range of objective quantities can be tested to see whether they lie in a
normal range and whether they have changed from the time of a previous examination (Tofts,
2004). The plethora of MRI techniques aimed at absolute quantification of biophysical
tissue parameters is termed quantitative MRI, which will be abbreviated as ‘qMRI’ in the
remainder of this thesis. As will be shown in this chapter, qMRI replaces qualitative images
with quantitative parameter maps. While these quantitative parameter maps appear similar
to a contrast-weighted MRI scan, they are conceptually different with voxel values having a
biological meaning rather than representing signal intensity on an arbitrary scale.

In what follows, section 3.2 of this chapter briefly repeats the basic principles of quantitative
MRI, illustrating its concept for quantitative T1 mapping. Next, section 3.3 highlights
some clinical interests of qMRI, so that the reader gets a clear understanding how qMRI
can contribute to new impactful scientific insights. Subsequently, sections 3.4 and 3.5
provide a more in-depth explanation of two important qMRI applications relevant for study
of neurological diseases, namely MR relaxometry and Arterial Spin Labeling MRI, aimed
at quantitative measurements of relaxation and perfusion parameters, respectively. Particular
attention is given to existing technical needs that prevent routine clinical use of these qMRI
applications. Both qMRI applications will be further investigated in the contributions of this
thesis. Finally, section 3.6 elaborates on the process of absolute quantification and statistical
parameter estimation in the context of qMRI.

3.2 Basic concept of quantitative MRI:

qMRI is a technique for estimating biophysical properties of (brain) tissue, such as the T1
and T2 relaxation times, the proton density (PD), the mean diffusivity (MD), the apparent
diffusion coefficient (ADC), the magnetic susceptibility, or perfusion measures such as
the cerebral blood flow (CBF) and the arterial transit time (ATT). The estimation (or
quantitative parameter mapping) of these properties typically consists of two steps (Tofts,
2004; Karakuzu et al., 2022):

1. Collecting multiple MRI images, where the contributions of effective1 micrometer-level
MRI parameters, such as local T1 and T2 values, are systematically manipulated by
adapting specific acquisition parameters.

1For water protons, the nm-level quantum-mechanical couplings typically average out to produce effective
µm-level parameters, such as the local T1 and T2 values and the local diffusion coefficient (Novikov et al.,
2018).
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2. Voxel-wise fitting a (biophysical) signal model to the resultant voxel intensity variations
across the images.

These steps result in one or multiple quantitative maps of the estimated tissue properties
across the imaged volume. Because the tissue properties can be indicators of the biological
state of the tissue and their change during disease, their precise and accurate estimation is
of high importance. The number of acquired images in a qMRI images series is variable, with
typically five to over a hundred images being acquired, depending on the tissue properties of
interest. Fig. 3.1 illustrates the concept of qMRI for a T1 relaxation signal model.
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Figure 3.1: Schematic illustration of the concept of qMRI using T1 mapping as a carrying example.
On the top two rows a series of eight contrast-varying images of a brain is shown. Each image
is characterized by a unique T1 contrast-weighting as a result of a different acquisition parameter
(in this example the inversion time (TI) within an inversion recovery sequence). The yellow dots
indicate one specific pixel location x in each of the images, for which the corresponding intensities
are plotted in the graph below. The signal model m(ϑ) is fitted to these pixel intensities, where
ϑ contains the tissue properties of interest (in this example the T1 relaxation time). The model
is fitted for each pixel in the image so that a map of the element(s) in ϑ can be created (in this
example a T1 map). Such a map is shown in the bottom right.
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By providing quantitative measurement of tissue parameters, qMRI not only offers additional
information for radiologists, but also provides an opportunity for improved harmonisation and
calibration between scanners and as such it is well-suited to large-scale investigations such
as clinical trials and longitudinal studies (Cashmore et al., 2021). Realising these benefits,
however, also comes with its own challenges. When measuring a parameter quantitatively,
it is crucial that the reliability2 and reproducibility2 of the technique are well understood.
From a scientific point of view, a numerical result of a measurement is meaningless unless
it is accompanied by a description of the associated measurement uncertainty. Therefore,
parameter estimation and the monitoring of estimation uncertainties are an important part
of qMRI research. As the process of determining a physical property from the raw MR signal
is complicated and multistep, estimation of uncertainty is challenging and there are many
aspects of the MRI process that require validation and research, most notably: signal model
selection (i.e., selecting the appropriate model and parameter dependencies), motion and
artefact correction, noise model selection (i.e., choosing a valid noise model for the data
corresponding with the MR coil setup), and optimal experiment design (i.e., choosing the
optimal number of contrast-weighted images and acquisition parameter settings).

3.3 Clinical interests of quantitative MRI

Early attempts at quantitative MRI date back to the late 70’s (Gupta, 1977), and were
primarily designed for the mapping of a single parameter, e.g. the T1 or T ∗2 relaxation
time. Since then, the field has witnessed many waves of impactful developments, driven by
technological advances and emerging trends in MRI research (Stikov et al., 2019). In addition
to the technological developments associated with the roll-out of qMRI, it is useful to briefly
highlight in which areas qMRI can be interesting from a clinical point of view:

Improved characterization of tissues and pathologies The acquisition of PD, T1, or T2
’maps’ using qMRI can facilitate improved characterization of tissue, enhance image
tissue contrast, and provide a more direct link between the observed signal changes
and the micro-anatomical alterations distinguished via histochemistry and histology
(Tofts, 2004; Cheng et al., 2012). Particularly, alterations between healthy and affected
tissue can be detected locally with high specificity and sensitivity, the extent of tissue
injury can be characterized, or the temporal evolution of both individual lesions and
the overall disease activity can be monitored. All of the above can provide a greater
understanding of the natural history of diseases and associated pathological changes,
potentially paving the way towards effective treatment or therapy.

Earlier detection of pathophysiological changes The detection of neurodegenerative dis-
eases and cancer (NDAC) before the manifestation of clinical symptoms is paramount
to prevent or delay its progression. Considering that prevention, delay, and treatment
is more likely to be successful for patients in the earliest disease phases, it is important

2Reliability relates the magnitude of the measurement error in observed measurements to the inherent
variability in the true underlying level of the quantity between subjects. High reliability means small mea-
surement errors compared to true differences between subjects, enabling clear distinction between subjects
based on error-prone measurements. Low reliability occurs when measurement errors are large compared
to true differences, leading to potential confusion between genuine differences in true values and errors
in measurements. Reproducibility refers to the consistency of measurements. It is the extent to which a
measurement tool can produce the same result when used repeatedly under the same circumstances. For a
more elaborate discussion of both concepts, the reader is referred to (Bartlett & Frost, 2008).
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to discover reliable and accessible biomarkers that can detect NDAC prior to its clinical
manifestation. However, current diagnostic biomarkers, including MRI markers, are
often invasive and require specialized personal or expensive hardware. These constraints,
together with financial and logistical issues limit broad-based implementation of these
biomarkers for wide application for screening, in primary care settings. The growing
responsibility of primary care physicians and care teams in the screening and early
diagnosis of NDAC is imperative in this era of an aging population, combined with a
shortage of specialists such as geriatricians (Rowe, 2021). Therefore, to promote the
early detection of at-risk individuals, there is a need to identify accessible and scalable
biomarkers of brain health that can be obtained regularly in the general population at
point-of-care facilities. By establishing a unique relationship between MR parameter
maps and physiology to provide a noninvasive surrogate for biopsy and histology, qMRI
has attracted increased interest as a method to discover potential biomarkers for
the detection of subtle or diffuse pathophysiological changes (Cheng et al., 2012).
Particularly, various studies have shown that quantification of relaxation time variation
can be important for the early diagnosis and progress monitoring of diseases in the
human brain, e.g. in studies concerning autism (Deoni, 2011), dementia (Erkinjuntti
et al., 1987; Tang et al., 2018; Knight et al., 2019), Parkinson’s disease (Baudrexel
et al., 2010; Vymazal et al., 1999), multiple sclerosis (Larsson et al., 1989; Stevenson
et al., 2000; Parry et al., 2002; Gracien et al., 2016), epilepsy (Okujava et al., 2002;
Townsend et al., 2004), stroke (Bernarding et al., 2000), and tumors (Just & Thelen,
1988; Badve et al., 2017; Chekhonin et al., 2023).

Objective quantification as a prerequisite of precision medicine The increased empha-
sis on evidence-based and precision medicine requires physicians to integrate data
from clinical examinations, laboratory tests, and imaging studies when deciding on
patient care, and to assess and alter treatment plans as necessary. Data integration
from multiple sources is becoming increasingly automated, and this requires that input
data be inter-operable, machine-readable, and, ideally, quantitative. By providing clear
numeric differentiation of disease states, qMRI increases the quality of information
available to artificial intelligence algorithms for automated decision-making (Keenan
et al., 2019). It is important to note that this comes with the requirement that
parametric quantification using qMRI is reproducible and standardized, so to limit
variability of quantitative values derived from radiological images (Keenan et al., 2019;
Hagiwara et al., 2020).

Longitudinal follow-up and multi-centric evaluation The quantitative measurement of
tissue parameters without the confounding influence of other (hardware-specific) MR
parameters allows to directly compare qMRI maps across subjects and in time, for
proper follow-up study. As an example, in addition to providing early diagnosis, qMRI
relaxometry is used to follow cartilage repair treatment (Matzat et al., 2013), or to
detect muscle changes following acute muscle tear in soccer and rugby players, and
predict the return-to-sport time for such injuries (Biglands et al., 2020). Moreover,
quantitative results facilitate group comparisons in which data from multiple MRI
centers or hospitals is combined and evaluated (Voelker et al., 2021). This is not
possible for conventional MRI, which is prone to inter-site and intra-site variability
of scans, even when the same sequence is used on different scanners with the same
subject (Voelker et al., 2016).
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3.4 MR Relaxometry

3.4.1 Introduction

In the context of quantitative MRI, MR relaxometry refers to the plethora of methods that
are aimed at the quantitative measurement of the intrinsic T1, T2, or T ∗2 relaxation times
of a particular tissue (Deoni, 2010). As explained in the preceding sections of this chapter,
relaxation times are unique per tissue type and reflect changes in tissue density or chemical
composition. Therefore, MR relaxometry can add sensitivity to conventional MRI scans and
detect abnormalities not observed with conventional MRI. In what follows, the biophysical
basis of T1 and T2 relaxation in neuroimaging is briefly reflected on. Next, some relevant pulse
sequences for the acquisition of T1 or T2 weighted images are provided, followed by a brief
recap of the basic principle of MR relaxometry parameter mapping, as already introduced in
section 3.2. Additionally, some of the main clinical applications of T1 and T2 relaxometry are
highlighted. Finally, at the end of this section on MR relaxometry, some existing bottlenecks
and issues in MR relaxometry are discussed.

Parametric signal models for quantitative MR relaxometry mapping, as used in this thesis,
are explained in the respective contribution chapters (T1 mapping: chapters 5-6, and T2
mapping: chapter 6).

3.4.2 Biophysical basis of relaxation

Biological basis of T1 relaxation

Fluctuating magnetic fields, largely arising from the motion of molecules near magnetic
moments, play a significant role in the recovery of T1. Consequently, the T1 relaxation
process is frequently linked to water mobility and structural density, indicative of water
molecule binding. In the brain, T1 has also been shown to be strongly correlated with myelin
or macromolecular volume content, both in gray matter (Stüber et al., 2014), and white
matter (Mezer et al., 2013). As a result, researchers often leverage T1 contrast in brain
studies, exploiting the fact that myelin causes white matter to exhibit a shorter T1 compared
to gray matter, thereby creating a distinct contrast.

Moreover, T1 can change due to pathologies. For instance, edema around tumors or
inflammatory acute multiple sclerosis (MS) lesions leads to an increase in T1 (Brück et al.,
1997). Chronic MS lesions also exhibit an increased T1, likely attributed to the reduction of
myelin and an increase in water content. At the rim of active MS lesions, T1 is reduced due to
the presence of cell debris that forms extra-relaxation centers in the fluid. Other alterations,
such as myelination of developing brain (Paus et al., 2001), or decrease in myelination due
to aging can benefit from T1 quantification (Cho et al., 1997). A comprehensive review of
T1 values in normal and pathological tissues over a range of field strengths can be found in
(Bottomley et al., 1987; Bojorquez et al., 2017).

Biological basis of T2 relaxation

In the brain, the degree of binding and water compartmentalization is reflected by T2. For
example, research in premature human neonates previously revealed a decrease of T2 as the
brain underwent maturation (Ferrie et al., 1999). During brain maturation, tissue water
decreases, myelin precursors such as cholesterol and proteins appear, glial cells proliferate and
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Figure 3.2: A structural T1-weighted and T2-weighted MRI of a brain showing the white matter
(WM), the gray matter (GM) and the cerebrospinal fluid (CSF).

differentiate, and a number of biochemical cell membrane changes occur. These alterations
increase the ratio of bound to free water, consequently shortening the T2 relaxation time
(Dobbing & Sands, 1973). While T1 relaxation times also decrease during brain maturation,
especially with the onset of myelination, the decrease in T2 occurs at a faster rate. Hence,
T2 has been proposed as a particularly interesting biomarker for assessing the developmental
stages of the brain (Tofts, 2004).

A number of studies have demonstrated that gray matter has a longer T2 relaxation time than
white matter (Bojorquez et al., 2017). This distinction is believed to be due to differences in
water compartmentalization, vascularity and iron concentration. The paramagnetic nature of
iron shortens proton relaxation times. For instance, earlier research reported a shorter T2
in areas such as substantia negra, in globus pallidus and putamen in Parkinson’s patients
(Vymazal et al., 1999).

3.4.3 Methods for T1 and T2 measurements

There are multiple MR pulse sequences that provide T1 or T2 contrast-weighted images (see
Fig. 3.2). Some relevant sequences are listed below (Tsialios et al., 2017; Boudreau et al.,
2020; Dortch, 2020):

T1-weighted imaging

Inversion recovery based sequences The gold standard method to measure T1 relies on
inverting the longitudinal magnetization (by applying a 180° RF pulse), sampling its
recovery at different time points (referred to as TI), and then fitting an exponential
model of magnetization recovery to the data (see Fig. 3.1). This basic inversion
recovery (IR) approach is known for its high accuracy and precision (Drain, 1949; Hahn,
1949). However, this approach is not used in a clinical setting because of its long total
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acquisition time, since it requires a repetition time (TR) approximately five times longer
than T1 to allow complete recovery of the longitudinal magnetization. Nonetheless,
IR is continuously used as a reference measurement during the development of new
techniques, or when comparing different T1 mapping techniques.

Look-Locker methods The Look-Locker (LL) method (Look & Locker, 1970) improves
the efficiency of the IR technique by sampling multiple TIs per repetition, using a
train of low-angle RF readout pulses. The problem with LL is that it is particularly
sensitive to RF pulse errors. The effect of the readout pulses is to hasten the recovery
of the magnetization. This means that the magnetization recovers at an apparent
T1, or T ∗1 . The conversion between T ∗1 and T1 requires accurate knowledge of the flip
angles, making the LL sequence sensitive to inhomogeneities in the applied RF field
(B1) (Kaptein et al., 1976). Furthermore, the small flip angles of the LL method result
in a low SNR (Crawley & Henkelman, 1988).

Variable flip angle methods The variable flip angle (VFA) method (Christensen et al.,
1974), also known as driven equilibrium single pulse observation T1 (DESPOT1) (Homer
& Beevers, 1985), can generate a T1 map from spoiled gradient echo (SPGR/FLASH)
images at two or more flip angles with constant repetition time (Deoni et al., 2003,
2005). Whole-brain coverage can be achieved at high resolutions and reasonable scan
times. Indeed, DESPOT1 enables the acquisition of a T1 map with 1 mm3 resolution
in approximately 7 minutes (Deoni et al., 2003). However, the precision and accuracy
are low (∼10%). Also, DESPOT1 suffers from a strong dependence on excitation flip
angle (Deoni, 2007; Yarnykh, 2007), and is highly sensitive to proper SPGR sequence
spoiling (Yarnykh, 2010), which may require the use of large gradients and increase
the overall time of the technique.

Dictionary-based methods Dictionary-based qMRI techniques use numerical dictionaries –
databases of pre-calculated signal values simulated for a wide range of tissue and proto-
col combinations – during the image reconstruction or post-processing stages. Notable
examples of dictionary-based techniques are MR Fingerprinting (MRF) (Ma et al.,
2013) and Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE)
(Marques et al., 2010). MRF typically leverages information redundancy from para-
metric data to assist in accelerated imaging, while MP2RAGE uses dictionaries to
estimate quantitative maps using the MR images after reconstruction. MP2RAGE, an
extension of the conventional MPRAGE pulse sequence (Haase et al., 1989; Mugler
III & Brookeman, 1990), is increasingly adopted as a standard pulse sequence for T1
mapping on many MRI systems. It can be seen as a hybrid between the inversion
recovery and VFA pulse sequences (Boudreau et al., 2020): a 180° inversion pulse is
used to prepare the magnetization with T1 sensitivity at the beginning of each TR,
and then two images are acquired at different TIs using gradient recalled echo (GRE)
imaging blocks with low flip angles and short repetition times. Because two images
at different TI times are acquired, information about the T1 values can be inferred,
thus making it possible to generate quantitative T1 maps using this data. Typically,
MP2RAGE does not use a conventional minimization algorithms to fit a signal model
to the observed data. Instead, to limit post-processing times, it uses pre-calculated
signal values for a wide range of T1 parameter values, and then interpolation is done
within this dictionary of values to estimate the T1 value that matches the observed
signal.
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Saturation pulse modified sequences The need to wait for a full recovery of the magneti-
zation in inversion recovery (IR) methods may be circumvented by the introduction
of a saturation pulse followed by a delay before each inversion pulse, combined with
appropriate modifications of the T1 fitting procedure (Deichmann et al., 1999). The
saturation pulse ensures that the longitudinal magnetization is always in a fixed state
when the inversion pulse is applied. A very fast and accurate T1 mapping method,
dubbed TAPIR (T1-mApping-with-Partial-Inversion-Recovery), is based on this ap-
proach (Shah et al., 2001). TAPIR combines the LL sequence with a pre-saturation
scheme and an advanced multislice, multi-time point data acquisition protocol. Using
TAPIR, the whole brain can be covered by acquiring 13 slices with 8 mm thickness,
with 12 time points in 5 min 44 s and 1 mm in-plane resolution. TAPIR has been shown
to deliver sub 1% accuracy (Shah et al., 2001). Unfortunately, the through-plane
resolution is very low and increasing it while maintaining the in-plane resolution would
unavoidably increase the acquisition time. For example, the total acquisition time for a
T1 map with volume coverage of 4 slices with a slice thickness of 4 mm is about 17
minutes (TR=12ms and 40 time points, FA=25°) (Möllenhoff et al., 2010).

T2-weighted imaging

Spin echo sequences Gold standard methods to produce T2 maps rely on spin echo (SE)
measurements at different echo times (TEs) and fitting them to an exponential model
of signal decay. Typically, a 90° excitation pulse is followed by a 180° refocusing pulse
at time TE/2, and signal is measured at time TE where the spin-echo is formed and
effects of inhomogeneity in the main magnetic field (B0) are eliminated (cf. also section
2.4 of Chapter 2). T ∗2 measurements are similar to T2, except that an 180° refocusing
pulse is not used. Unfortunately, single SE acquisitions require extremely long scan
times, extending on the order of tens of minutes. As an alternative, multi-echo spin
echo (MESE) sequences have been proposed (Feinberg et al., 1985), which stimulate
the spin system with repeated 180° pulses. As long as T2 relaxation is not complete and
MR signal is present, this allows to generate extra echoes within a given repetition time.
The primary drawback of multi-echo methods is their use of multiple refocusing pulses,
which results in signal contributions from non-spin-echo pathways (i.e., stimulated
echoes) that can contaminate the signal decay and bias T2 estimates, even in the
presence of relatively minor B0 and B1 imperfections (Dortch, 2020).

Accelerated T2 mapping More recently, to accelerate T2 quantification and subsequent
generation of synthetic T2-weighted image contrast for clinical research and routine,
model-based approaches for rapid T2 and proton density (PD) quantification have
been developed. For instance, a technique called GRAPPATINI has been proposed,
in which a model-based approach for high-speed T2 and PD quantification based on
k-space subsampling (Model-based Accelerated Relaxometry by Iterative Non-linear
Inversion, MARTINI) (Sumpf et al., 2011), was complemented by parallel imaging
(generalized autocalibrating partially parallel acquisition, GRAPPA) (Griswold et al.,
2002) to provide a high-resolution T2 mapping of the whole brain within 1:44 min
(Hilbert et al., 2018). Moreover, this approach also provides synthetic T2-weighted
images with different echo times at no additional acquisition time (Hilbert et al., 2018).
These synthetic images have already been evaluated for pediatric (Kerleroux et al.,
2019) and musculoskeletal (Roux et al., 2019) applications, and recently also in brain
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imaging (Gruenebach et al., 2023). A downside of GRAPPATINI is that it introduces
additional noise in the resulting T2 maps, due to the use of GRAPPA undersampling.
In particular, it is well known that the SNR of parallel imaging acquisitions scales
with 1/g × 1√

AF
(where AF denotes the acceleration factor, and g being impacted

by coil design) when undersampling an MRI dataset (Breuer et al., 2009). When not
considering any effect of regularization during the reconstruction, a loss of 30% in
SNR was experimentally observed when adding the additional GRAPPA (Hilbert et al.,
2018).

Combined T1 and T2-weighted imaging

Apart from the sequences above that are tailored to provide T1-weighted or T2-weighted
contrast separately, some techniques exist that can generate multiple contrast-weighted
images simultaneously. For instance, inversion recovery TrueFISP (Fast Imaging with
Steady Precession) acquires T1-weighted, T2-weighted, and proton density-weighted images
together (Schmitt et al., 2004). It uses an inversion pulse to adjust T1 contrast, utilizes
the steady-state free precession (SSFP) sequence for inherent T2 contrast sensitivity, and
captures proton density-weighted information from steady-state magnetization, all in one
MRI sequence. As such, this method enhances efficiency by reducing scan time while also
improving consistency across different tissue contrast images in MRI exams.

3.4.4 Quantitative relaxometry mapping

The objective of quantitative MR relaxometry mapping is to estimate a relaxation time at
different spatial positions of the scanned object, thereby generating a spatial map of the
relaxation parameter of interest.

To achieve this, three crucial ingredients have to be present:

1. Pulse sequence and signal model selection – First, a specific MR pulse sequence has
to be selected. The applied pulse sequence disturbs the net magnetization vector out
of equilibrium, inducing the spin ensemble system to enter the relaxation phase (see
Chapter 2). Here, different pulse sequences result in different ways of magnetization
recovery, which in turn obey different (relaxation) signal models (Barral et al., 2010;
Bojorquez et al., 2017). These models, which typically involve nonlinear exponential
decay functions, depend on the relaxation time and also on user-defined acquisition
parameters such as specific timings (echo time, inversion time, repetition time) or flip
angles.

2. Signal variation over time – A set of contrast-weighted images needs to be created.
As the relaxation times needs to be probed at different spatial positions, spatial encoding
of the images is pivotal. Hence, k-space data is acquired as described in Chapter 2, and
the corresponding magnitude MR images are reconstructed. Crucial in the acquisition
process is that the different images in a set are obtained using different time points
or flip angles, so that the contrast-weighting changes per image (i.e., different signal
intensities per image), and the signal model of interest can be optimally sampled over
time. See also the schematic illustration in Fig. 3.1, demonstrating this concept for T1
mapping as a carrying example.
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3. Voxel-wise model fitting – Finally, the relaxation time parameters, which parameterize
the signal change over time, are estimated from the set of contrast-weighted images
by voxel-wise fitting the selected signal model to the acquired data points. It is crucial
that accuracy and precision of the estimation framework are carefully monitored. Once
the quantitative relaxation parameter maps are estimated, they can be used to assess
tissue properties and potentially diagnose or characterize diseases, as will be highlighted
in the next section.

3.4.5 Clinical applications

In addition to the list of clinical interests of qMRI introduced in section 3.3, the current section
briefly highlights some clinical applications of MR relaxometry, focusing on neuroimaging in
particular (Deoni, 2010).

Multiple sclerosis In the study of patients with multiple sclerosis (MS), quantitative MR
relaxometry has shown to be an invaluable tool for studying changes in myelin and
iron content in the brain and spinal cord. MS is a disabling neurodegenerative and
neuroinflammatory disease affecting over 400.000 persons in Europe. MS is hallmarked
by characteristic hypo (T1) and hyper (T2) intense macroscopic lesions on spin echo
MRI images as well as changes in diffusion characteristics caused by destruction of
myelin and axons. Disease modifying drugs have become available, but the success of
these drugs relies on early diagnosis and adequate tools for therapy monitoring (Noyes
& Weinstock-Guttman, 2013). In recent years, MRI-derived biomarkers for diagnosis of
MS in clinical practice have been launched (Jain et al., 2015, 2016; Sima et al., 2017).
These biomarkers rely on analysis of weighted MRI images to extract for example
the (total) volume of T2 lesions. A limitation of such volumetric biomarkers is the
necessity of macroscopic lesions, whereas the underlying pathology first manifests itself
at the microscopic level. Volumetric measures intrinsically only detect (irreversible)
tissue-damage, typically occurring in a late stage when treatment options are limited.
Increasing evidence suggests that MR relaxometry has the ability to detect subtle
microscopic tissue damage during early neurodegeneration. For instance, in MS both
normally appearing gray and white matter have shown prolonged relaxation times
(Vrenken et al., 2006; Roosendaal et al., 2009; Papadopoulos et al., 2010). These
observations support the hypothesis that MR relaxometry could lead to sensitive early
biomarkers of MS. By facilitating the accessibility to quantitative MR sequences on
novel MRI scanners and by improving the robustness of relaxation parameter mapping
methods, qMRI will likely play a fundamental role in the upcoming decades as a
sensitive tool to quantitatively assess brain damage in patients with MS, with relevant
implications for prognostic stratification and treatment-response evaluation (Tranfa
et al., 2022).

Epilepsy Epilepsy is one of the most common neurological diseases. Epileptic seizures
may occur as a result of intercurrent events such as fever, hypoglycemia (low blood
sugar levels), acute central nervous system infections and the like, and are then
termed occasional seizures. When they recur spontaneously without known cause,
they constitute epilepsy (Achten, 2001). It is a chronic condition in which occasional
seizures tend to occur repeatedly as a result of either structural brain damage or
of an intrinsic functional propensity to have seizures. The most common cause of
temporal lobe epilepsy is hippocampal sclerosis (HS), or atrophy of the hippocampus
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(Winston et al., 2017). Although HS is typically associated with increased signal
intensity in T2-weighted images, the ambiguity of conventional T2-weighted signal
changes hinders definitive diagnosis (Reutens et al., 1996). At this point, quantitative
T2 mapping in normal and pathological hippocampal tissue allows for a more objective
and improved effectiveness of the detection and monitoring of hippocampal structure
changes (Jackson et al., 1993; Rodionov et al., 2015).

Dementia and Alzheimer’s disease Alzheimer’s disease (AD) is an irreversible neurode-
generative disorder affecting millions of people each year. AD is characterized by a
progressive accumulation of two toxic proteins, the amyloid-beta and hyperphosphory-
lated tau, inducing neuronal loss, cognitive impairment, and dementia (van den Berg
et al., 2022). Due to an aging society, an increasing number of people are expected
to suffer from this disorder, which entails enormous economic and social burdens to
society. Currently, more than 55 million people are living with AD or related dementia’s
worldwide, and its prevalence is expected to grow exponentially over the next few
decades (World Health Organization et al., 2017). Furthermore, AD is the cause of
approximately 70% of all dementia’s, and dementia is currently the seventh leading
cause of death and one of the major causes of disability and dependency among older
people globally3. In low- and middle-income countries, which have a higher population
growth rate, dementia will pose an even more severe threat to their development in the
near future (World Health Organization et al., 2017). The early detection of AD before
the manifestation of clinical symptoms is paramount to prevent or delay the progression
of the disease by targeting new interventions, including modification of risk factors,
enrolling in clinical trials, or using disease-modifying drug therapies. Unfortunately,
AD has an insidious onset that makes early diagnosis challenging (Coupé et al., 2015;
Scheltens et al., 2016; Villemagne & Chételat, 2016). Research is therefore increasingly
focusing on biomarkers for early diagnosis, disease progression monitoring and potential
treatment response predictions. Neuroimaging biomarkers play a crucial role in this
field, including regional structural alterations on structural MRI, metabolism alterations
on Positron Emission Tomography (PET), detection of amyloid plaque deposits on
amyloid PET, and brain function alterations on blood oxygenation level dependent
(BOLD) functional MRI (Dustin et al., 2016; Villemagne & Chételat, 2016). However,
these methods are invasive, not widely accessible, very expensive, and show high
variability that challenges the interpretation of longitudinal studies. These limitations
impede the large-scale implementation of such biomarkers. In contrast, quantitative
T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of
AD, in which alterations are believed to not only reflect AD-related neuropathology
but also cognitive impairment (Tang et al., 2018). Further, accumulating evidence
suggests that AD pathology affects biological properties of white matter beginning from
pre-symptomatic stages of AD, where AD disrupts integral white matter properties
involving axonal transport and packaging, axonal density, axonal tract myelination,
and macromolecular lipid composition (Fingerhut et al., 2022). It has been shown
that quantitative relaxometry is able to characterize specific biological properties of
white matter tissue in vivo (Gozdas et al., 2021), and as such provide biomarkers
for AD non-invasively and longitudinally. In addition, therapy monitoring of recent

3In Belgium, the number of people with dementia was estimated at 192,926 in 2018 (1.69% of total
population), with an expected growth to 210,974 in 2025 (1.79% of total population) (Alzheimer Europe,
2019).
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FDA approved drugs for AD such as aducanumab (or Aduhelm), an amyloid-beta
directed antibody, requires regular examination leveraging MRI, with current guidelines
requiring up to four MRI sessions in between drug infusions (Cummings et al., 2022).
To get the most information out of such routine MRI scans and to follow the disease
development longitudinally, qMRI and MR relaxometry are expected to gain importance
in the coming years. Moreover, such regular MRI follow-up examinations also create a
clear technological need for regular, fast, and accessible qMRI scans so that patients
with AD can be treated in a timely manner in an aging society.

Neurodevelopment Another area of increasing clinical interest is brain development in early
infancy. A possible explanation for a variety of psychiatric disorders, including autism,
developmental delay, and attention deficit, is disrupted or abnormal connectivity of the
complex neurological systems that underlay higher order emotional, social or behavioural
functions (Hughes, 2007). Mediating this connectivity are the myelinated white matter
pathways of the brain, which develop throughout the first years of life. Quantitatively
monitoring the maturation of these pathways using MR relaxometry parameter mapping,
in association with behaviour monitoring, may offer new insights into the spatial
and temporal origins of these disorders. Particularly, it has been demonstrated that
conventional T1 and T2 weighted MRI brain scans over the first life year highlight
progressive changes in white and grey matter contrast (Ballesteros et al., 1993; Huang
et al., 2006). It is believed that the observed decrease in both T1 and T2 throughout the
first years reflect to the increased presence of lipids, cholesterol and other constituents
of the myelin sheath, as well as an increased water compartmentalization of the brain.
However, hardware dependent signal profile inhomogeneities inherent to qualitative
weighted MRI scans make appreciation and comparison of tissue signal and contrast
changes difficult and ambiguous. Quantitative evaluation of T1 and T2 relaxation times
throughout neurodevelopment can provide a less ambiguous appreciation of age related
change and maturation (Deoni et al., 2011).

3.4.6 Existing problems in MR relaxometry

The potential of MR relaxometry is undisputed, however its application remains subject to a
number of difficulties, largely attributable to the need to include multiple contrast-weighted
scans to provide a voxel-wise fit of the chosen signal model. Some of these existing problems
are explained below.

3.4.6.1 Motion

It goes without saying that accurate and precise estimation of a relaxation parameter map
via voxel-wise fitting of the relevant signal model to the data is only possible if the different
contrast-weighted scans are spatially aligned and assume an anatomical correspondence
between the scans. However, due to unavoidable patient motion, physiological motion such
as cardiac or respiratory motion, and/or geometric distortions caused by the acquisition,
small misalignment will occur at the voxel level. This may lead to erroneous parameter
estimation, especially at tissue boundaries. Misalignment can be reduced during acquisition by
using methods such as gating or breath-holding (van Heeswijk et al., 2012). However, such
approaches do not always give the desired effect and can increase the acquisition time. The
most common solution is to spatially align the images prior to the voxel-wise signal model
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fitting. This alignment can be achieved with image registration techniques. However, image
registration for MR relaxometry (and qMRI) imposes three main challenges:

Contrast variation A typical data set for MR relaxometry consists of scans with different
contrast-weightings, complicating image registration based on the image intensities.
To deal with these contrast changes a pairwise registration approach is commonly used
in which all images are registered to a chosen reference image using a metric based on
mutual information4 (MI), because this metric is robust against intensity changes in
the images (Bron et al., 2013; Mangin et al., 2002). However, it has been shown that
the choice of reference image can influence the result of the registration (Huizinga
et al., 2016).

Multi-image registration Often more than two images need to be co-registered. To cir-
cumvent the need to choose a reference image and perform a pairwise registration,
group-wise registration approaches have been proposed that simultaneously register
all images to a mean reference space. This offers the advantage that information
of all images is taken into account during the registration process, which improves
consistency compared over a pairwise registration approach (Bhatia et al., 2007; Metz
et al., 2011; Wachinger & Navab, 2013; Hallack et al., 2014; Huizinga et al., 2016).

Propagating errors Many qMRI estimation routines compensate for motion by using a
separate processing step in which the motion parameters of the individual images are
updated once after registration (Studler et al., 2010; Bron et al., 2013; Guyader et al.,
2015; Van Steenkiste et al., 2016, 2017), prior to the voxel-wise fitting of the signal
model. A downside to such an approach is the lack of a feedback mechanism that
connects the motion compensation routine with the final estimation of the biophysical
parameters. As a result, potential propagating registration errors will not be corrected
for and may lead to inaccurate (i.e., biased) tissue parameter maps. As an example,
the unfavorable effects of motion correction interpolation in model blind registration
techniques have been discussed for quantitative T1 mapping, showing substantial
errors in the T1 estimation (Nachmani et al., 2019). A possible retrospective5 motion

4Mutual information, which is a measure originating from information theory (Maes et al., 1997; Wells
et al., 1996), uses entropy as its underlying concept. The entropy of an image can be thought of as a
measure of dispersion in the distribution of the image gray values. Given two images A and B, the definition
of the mutual information MI(A,B) of these images is MI(A,B) = E(A) + E(B) − E(A,B) with E(A)
and E(B) the entropies of the images A and B, respectively, and E(A,B) their joint entropy. The joint
entropy E(A,B) measures the dispersion of the joint probability distribution p(a, b): the probability of the
occurrence of gray value a in image A and gray value b in image B (at the same position), for all a and b in
the overlapping part of A and B. The joint probability distribution should have fewer and sharper peaks when
the images are matched than for any case of misalignment. Therefore maximization of mutual information
should correspond to the optimal affine transformation describing the motion between both images.

5Different motion compensation methods have been proposed in literature, which can be classified into
three groups: motion correction based on k-space trajectories, prospective motion compensation techniques,
and retrospective motion correction. Motion correction based on k-space trajectories relies on specially
designed and implemented trajectories (Bookwalter et al., 2010; Liu et al., 2004), which limits the flexibility
of these techniques and often increases the inherent acquisition time. Prospective motion compensation is
achieved by obtaining real-time tracking data of the position and orientation of the object. This tracking data
is then passed to the scanner with minimal delay, to allow adaptive adjustments of the MR pulse sequences
such that the imaging volume follows the object movements (Maclaren et al., 2013; Callaghan et al., 2015).
Retrospective motion correction methods modify the MR image data during reconstruction, which typically
requires more complex mathematical considerations and understanding of the MR physics at hand (Loktyushin
et al., 2013; Anderson III et al., 2013). A more elaborate overview of existing motion correction methods for
MRI of the brain is given in (Godenschweger et al., 2016).
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correction strategy to avoid such propagating errors, is to introduce an explicit object
motion model in a model-based estimation framework, and estimate the corresponding
motion parameters of this model jointly with the tissue relaxation parameters. In
particular, it was demonstrated that by combining models of T1 relaxation, motion, and
noise into one unified statistical framework, one is able to obtain substantially more
accurate motion and tissue parameter estimates, as compared to a conventional two-
step approach in which motion registration precedes the T1 estimation (Ramos-Llordén
et al., 2017). This idea will prove useful later in this thesis, when motion compensation
is to be combined with model-based super-resolution reconstruction for qMRI.

3.4.6.2 Specific absorption rate

The specific absorption rate (SAR) is a measure of the absorption of electromagnetic energy
in the body (in watts per kilogram [W/kg]). The SAR describes the potential for heating
of the patient’s tissue due to the application of the RF energy to produce the MR signal.
It is proportional to the square of the static magnetic field amplitude (B0), the square of
the flip angle α and the duty cycle D, which corresponds to the fraction of duration of the
sequence during which the RF waves are transmitted (Bottomley et al., 1985; Bernstein
et al., 2004):

SAR ∝ B20α2D. (3.1)

For some MR pulse sequences, such as the TSE sequences (cf. section 2.4.1 of the previous
chapter) which are typically used to accelerate the readout for T1-mapping (IR-TSE), the
echo train of the RF pulses deposits a high amount of RF energy, resulting in high SAR
values (Oshio & Feinberg, 1991; Weigel et al., 2007). Consequently, to allow practical use,
SAR is often reduced by decreasing either the number of slices acquired within one TR, or
by acquiring thicker slices (thus reducing spatial resolution), or by increasing the number of
excitations (thus increasing the scan time). Once again, this highlights the need for qMRI
approaches that can balance imaging trade-offs, in this case between spatial resolution, scan
time, and SAR.

3.4.6.3 Acquisition time constraints

An inherent disadvantage of qMRI is the need to record multiple contrast-weighted images.
The total scan time of a qMRI acquisition is as such proportional to the number of acquired
images and the scan time per image. Extending the scan time in MRI examinations should
be avoided, as it increases costs and reduces patient comfort. Moreover, it increases
the likelihood of motion artefacts during the scans which can be detrimental for accurate
diagnosis.

As an example, consider a single T1-weighted image acquired with IR TSE, for which the
total scan time Tscan is equal to (Bernstein et al., 2004):

Tscan =
TR× NPE × NEX

ETL
, (3.2)

with NPE the number of phase encoding lines, ETL the echo train length and NEX the number
of times the sequence has to be run to have full slice coverage, i.e. the total number of
slices divided by the number of slices acquired per TR. The ETL in Eq. (3.2) is equal to one
for a standard IR spin echo. Since the IR sequence demands long TR to allow complete
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recovery of the longitudinal magnetization, it is inherently slow. As already discussed in the
previous chapter, one can reduce scan time to some extent by using fast readout approaches
such as TSE and single-shot EPI. However, these respective methods come at the cost
of either a significant increase in SAR (Weigel et al., 2007) or an increased sensitivity to
geometric distortions due to the low bandwidth in the phase-encoding direction and B0-field
inhomogeneity. The latter can be reduced to some extent by using a segmented simultaneous
multi-slice acquisition, combined with slice order shifting across multiple acquisitions (Sanchez
Panchuelo et al., 2021). Often, though, the total scan time is reduced either by reducing
the number of T1-weighted acquisitions or by reducing the number of phase encoding lines
NPE and slices in a scan. However, this comes at the expense of a reduction of the precision
or spatial resolution of the T1 parameter mapping, respectively.

3.4.6.4 Slice profile variation

As explained in section 2.4.1 of the previous chapter, a slice encoding gradient is applied
in 2D readout to provide spatial encoding along the z-axis. Ideally, 2D imaging would be
performed using a series of contiguous thin slices where the corresponding slice-selective
RF pulse should be able to excite a narrow slab by using a perfect rectangular slice profile,
also known as a boxcar function (see Fig. 3.3). However, the Fourier transform of a boxcar
function is a sinc function with infinite support. Since hardware components can only store a
finite number of values, actual sinc RF pulses must be truncated (see Fig. 3.3). A truncated
RF pulse will cause some parts of the slice, such as the center, to be excited as desired, but
other areas, such as the edges of the slice, will be excited either more or less than expected.
In addition, there may be excitation outside the slice. Consequently, variations in the flip
angles across slices or B1 field inhomogeneities can occur (Kingsley et al., 1998; Dowell &
Tofts, 2007). In addition, imperfect slice profiles may lead to cross-talk between adjacent
slices in a 2D multi-slice readout (Bernstein et al., 2004), i.e. there might be a loss of MR
signal in one slice due to pre-excitation of an RF pulse meant for an adjacent slice. To
prevent this from happening, 2D multi-slice images are often acquired with an inter-slice gap.
However, as some parts of the subject are not fully sampled, inter-slice gaps lead to a loss of
information.

3.4.6.5 Need for protocol standardization and metrology

Quantitative MR relaxometry necessitates the standardization of acquisition protocols to
ensure consistent and comparable results across different scanners and institutions (Hagiwara
et al., 2020). This standardization is crucial because vendor-specific differences can lead
to variations in the resulting images, even when the same sequence is applied. Different
MRI manufacturers, such as Siemens, General Electric, and Philips, have unique methods for
calculating and setting parameters, which can result in significant discrepancies in the acquired
MRI scans, affecting the accuracy and reliability of quantitative measurements. Establishing
standardized protocols and calibration procedures is therefore essential to minimize these
variations, enabling more accurate comparisons and reproducibility of quantitative MRI data
across different platforms and clinical settings. As an example, standardizing image acquisition
protocols across scanners before commencing a multicenter study has been shown to be
a valuable tool to increase the statistical power and reduce the required sample sizes for
detecting disease-related neuroanatomical changes (George et al., 2020).
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Figure 3.3: (a) Slice profile of a rectangular excitation RF pulse centered at frequency ωsl, with an
excitation bandwidth ±ωsl, and (b) its corresponding temporal profile, an infinitely long sinc pulse.
(d) Example of a time-limited RF pulse, obtained by truncating a sinc pulse with a rectangular
window. This causes ripples at the edge of the slice profile (so-called Gibbs ringing) (c). This figure
was adapted from the work of Tourais et al. (2022).

On top of that, it is crucial that standardization of reporting formats and analysis
methods is established to avoid incomplete or inaccurate reporting of parameters. The latter
would complicate quantification, analysis, and sharing of data, particularly for studies across
multiple sites, platforms, and methods. Standardization can occur in different ways, e.g.
by establishing community consensus on (open-source) data standards such as the Brain
Imaging Data structure (BIDS), for the organization of data and metadata for particular
neuroimaging modalities. As an example, qMRI-BIDS has been proposed as an extension to
the BIDS specifically aimed at quantitative magnetic resonance imaging data (Karakuzu et al.,
2022), thereby reducing the entrance barrier for qMRI in the field of neuroimaging. Also for
other modalities such as Arterial Spin Labeling (cf. Chapter 7), a specific ASL-BIDS data
structure extension has been released (Clement et al., 2022b). Such BIDS extensions can
act as a catalyst of convergence between qMRI method development and application-driven
neuroimaging studies to facilitate the development of quantitative biomarkers.

With the many advantages that MR relaxometry offers and with the emergence of a multitude
of new qMRI techniques, it remains important for MRI practitioners to consider the reliability
and reproducibility of such techniques (Keenan et al., 2019; Cashmore et al., 2021). Measuring
a quantitative parameter is one thing, but estimating the measurement uncertainty this
entails is just as important. As the process of determining a physical property from the raw
MR signal is complicated and multi-step, estimation of uncertainty is challenging and there
are many aspects of the MRI process that require validation. For that reason, there is a
clear and urgent need for metrology in qMRI and health care in general (Smith et al., 2020).
Metrology is the study of measurement processes. A key idea of metrology is traceability,
i.e. the chain of comparisons which directly relates any given measurement to the primary
standard determination of that unit (e.g. metre, second, etc.) (Cashmore et al., 2021).
Without understanding the traceability of a quantitative measurement, there is no way of
making a meaningful comparison between values. Furthermore, without an evaluation of the
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measurement uncertainty, there exists no way of knowing whether a quantitative difference
observed with qMRI is significant. This is why, alongside the development of qMRI techniques,
a requirement exists to develop new procedures and methods that perform independent
validation of qMRI techniques to determine their accuracy, repeatability and reproducibility.
For example, specific phantoms from the U.S. National Institute of Standards and Technology
(NIST), that model human physiology, are being developed to calibrate (q)MRI devices
and techniques (Gunter et al., 2009; Keenan et al., 2016, 2019). International consortia
such as the Quantitative Imaging Biomarkers Alliance (QIBA) metrology groups (Sullivan
et al., 2015; RSNA, 2020) and the European Imaging Biomarkers Alliance (EIBALL) (ESR,
2020) are being launched to establish standards on which to base quantitative image-based
measurements, with collaborations between industry, research institutions and healthcare
(Cashmore et al., 2021). Furthermore, inter-site comparisons are critical to determine
how accurately image-based biomarkers can be measured. For example, a multi-site study
comparing MRI T1 measurements showed considerable variation and vendor-dependent bias
using a gold standard inversion recovery protocol (Keenan et al., 2021), clearly demonstrating
the need to define uncertainty intervals in image-based biomarker measurements obtained
using MR relaxometry.

3.5 Arterial Spin Labeling

3.5.1 Introduction

Our brains are made up of a collection of neurons and glial cells, with a population of some
100 billions each (Herculano-Houzel, 2009). The cell bodies of the neurons are mostly
located at the periphery of the brain or in particular locations, and form the gray matter,
whereas the so-called white matter consists of the neuron’s axons, which allow the exchange
of information and communication between different areas of the gray matter. (see Fig. 3.2).
Interestingly, the brain lacks almost any form of energy storage and therefore all energy
needs to be transported into the brain by means of cerebral perfusion (Raichle, 2006), i.e.
the biological process during which the different brain cells are supplied with oxygen and
nutrients through the blood. It occurs largely via the microcirculation blood flow through the
capillaries, the smallest vessels within the brain blood supply system.

An important parameter for quantifying the cerebral perfusion process is the cerebral blood
flow (CBF), which denotes the volume of blood delivered to a certain brain tissue volume
within a certain amount of time, typically expressed in units of millilitres of blood per 100
grams of brain tissue per minute (mL/100g/min). It is a physiological parameter and potential
biomarker of high interest in a number of brain disorders, such as stroke, neurodegenerative
diseases, epilepsy, and cancer (Alsop et al., 2015; van Osch et al., 2018). Typical CBF values
range from 50 to 70 mL/100g/min in cortical gray matter and about 20 mL/100g/min in
white matter in young and healthy adults (Parkes et al., 2004).

There exist several methods that try to monitor cerebral perfusion and CBF, yet often with
distinct disadvantages. Cerebral perfusion can be measured with 15O PET (Herscovitch
et al., 1983), xenon-computed tomography (Gur et al., 1982) and CT perfusion, but these
techniques involve ionizing radiation. Dynamic susceptibility contrast (DSC) MRI is widely
used in clinical routine, where perfusion is visualized by injecting a bolus of gadolinium chelate
contrast agent and by subsequently imaging it as it passes through the cerebral capillary bed
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(Villringer et al., 1988; Belliveau et al., 1990; Rempp et al., 1994; Østergaard et al., 1996b,a).
However, the major drawbacks of DSC MRI are the invasiveness of the contrast injection
and the difficulty to attain absolute quantification of perfusion (Calamante et al., 2002).
Intravoxel incoherent motion (IVIM) is another method that postulates the measurement of
tissue perfusion by modeling it as a pseudo-diffusion process by exploiting motion sensitizing
gradients (Le Bihan et al., 1986). Yet, the use of IVIM in the brain is challenging, mainly due
to low cerebral blood volume fractions and modeling issues (Jezzard et al., 2018). Finally,
17O-water MRI is capable of absolute quantification of perfusion (Pekar et al., 1991), but
the high cost of the label is a stumbling block for large-scale use.

The above list is not exhaustive. An alternative MRI method that allows absolute CBF
quantification while being completely non-invasive, is Arterial Spin Labeling (ASL) MRI.
ASL is based upon the use of blood as an endogenous tracer by employing spatially selective
labeling of the inflowing blood that inverts its longitudinal magnetization. The technique was
originally introduced in the early 1990s to assess rat brain perfusion (Williams et al., 1992;
Detre et al., 1992). In the next 25 to 30 years, however, thanks to the many developments
in MRI hardware, sequence optimization, post-processing and interpretation, ASL expanded
into a full-fledged technique for human brain perfusion imaging (Jezzard et al., 2018). Yet,
clinical adoption of ASL was hindered by the large amount of implementation options, both
in terms of signal generation and perfusion quantification. This changed with the publication
in 2014 (early view publication; printed version available early 2015) of the consensus paper
by the ISMRM Perfusion Study Group and the EU-COST action ’ASL in dementia’ on
the recommended clinical implementation of ASL perfusion MRI (Alsop et al., 2015). The
publication of this consensus paper was instrumental in the adoption of ASL brain imaging in
the clinic and provided a common reference for researchers. Moreover, it provided expert
guidelines for ASL sequence implementation for the major MR manufacturers, who since
then all offer the same labeling strategy (pseudo-continuous ASL) and similar readouts (3D
gradient-and-spin-echo (GRASE)). Consequently, clinical applications of ASL have increased
significantly, and a benchmark for comparison of future developments was established.

Since 2015, a range of new technical developments and advances in ASL MRI have been
developed, which are regularly reviewed by the ISMRM Perfusion Study Group (Hernandez-
Garcia et al., 2022). In line with these new developments, a specific contribution of this thesis
was dedicated to the combination of model-based super-resolution reconstruction with an
ASL signal model for direct quantitative mapping of CBF. As a background to the respective
contribution chapter 7, ASL’s basic principle, its current recommended implementation,
and a number of important technological concepts are explained in sections 3.5.2-3.5.3.
Furthermore, a brief list of some recent clinical applications of ASL is given in section
3.5.4, and some of of the remaining challenges in today’s ASL perfusion MRI landscape are
highlighted in section 3.5.5.

3.5.2 Basic principle

ASL is a non-invasive magnetic resonance perfusion imaging technique that allows the
quantification of cerebral blood flow throughout the vascular system of the brain. ASL uses
arterial blood as an endogenous tracer. Before diving into the detailed facets of ASL signal
generation, labeling, and readout schemes, it pays to define the core concept of ASL and to
identify the various steps involved in the ASL imaging protocol.

61



CHAPTER 3

Fig. 3.4 provides a schematic overview of the basic principle behind ASL imaging. First, RF
pulses are applied in the large neck vessels in a plane at the level of the carotid arteries, to
invert the magnetization of the hydrogen nuclei of arterial blood water. At this point, the
inflowing blood is magnetically labeled. Subsequently, this label will continue to flow, and
if one makes a scan at different times, the labeled blood can be seen to move through the
vascular tree of the brain. This angiographic measurement of the supplying arteries provides
a great insight into how the brain is supplied with blood, but it does not explain exactly how
much blood flows to the brain tissue. Interestingly, the latter can be measured by waiting a
little longer before acquisition of a scan after the labeling of the blood. During this waiting
time of about 2 seconds, which is referred to as the post-labeling delay (PLD), the label
flows to the capillaries of the brain, where the labeled water will flow out of the vascular bed
and into the brain tissue to accumulate there. After this PLD, a fast readout imaging module
is employed to map the brain magnetization. This results in a so-called label image. Besides
a label image, also a control image is acquired that is identical to the label condition except
for the absence of inversion of inflowing blood. After subtraction of the label image from the
control image, an image of the labeled blood that has reached the brain tissue is obtained.
Because signal differences due to labeled blood water account for at most 5% of the raw
ASL image intensity, the signal-to-noise ratio (SNR) of a single control-label subtraction is
usually low (Mehranian et al., 2020; Clement et al., 2022a). In order to increase this SNR,
multiple interleaved control-label image pairs are acquired, followed by pair-wise subtraction
and subsequent averaging of the resulting subtraction images. The averaged and unitless
subtraction image (also referred to as perfusion-weighted image) can be further quantified
to obtain a CBF-map when the temporal width of the bolus of labeled spins, the labeling
efficiency, and T1 of tissue are taken into account, and by correcting for the decay of label
due to longitudinal T1 relaxation.

Its non-invasive and quantitative nature makes ASL especially attractive for vulnerable patient
populations, such as the elderly, oncological patients with difficult venous access, and patients
with renal insufficiency (Grade et al., 2015). ASL is also favourable for pediatric populations,
as it avoids the technical difficulties and ethical problems of contrast agents and radiation
exposure with CT and nuclear medicine techniques (Wang et al., 2003). Moreover, ASL
is repeatable and reproducible, which makes it a suitable quantitative imaging modality for
longitudinal evaluation and monitoring of CBF changes and disease progression (Wolf &
Detre, 2007; Wang et al., 2011; Mutsaerts et al., 2014). For example, ASL is often used to
follow dynamic changes in CBF during functional challenges, such as a CO2 inhalation test,
which is used to assess cerebrovascular reactivity (Tancredi et al., 2012).

The main drawback of ASL is the low SNR. This increases the total necessary scan time,
making the technique particularly sensitive to motion artefacts (Petersen et al., 2006). In
addition, flow quantification can be complex, as the signal is dependent on a number of
physiological parameters (Petersen et al., 2006; Bladt et al., 2020a). Also, post-acquisition
processing of ASL images and their preparation for voxel-wise statistical analysis is complex
and multi-step, requiring standardization of processing pipelines and adequate training for
researchers (Clement et al., 2022a).
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Figure 3.4: Conceptual overview of the ASL experiment. The acquisition of a so-called label image
consists of three subsequent parts: magnetic labeling of arterial blood proximal to the brain, a single
post-labeling delay time to allow the labeled blood to flow to and exchange with the brain tissue, and
finally acquiring an image of the brain. Besides label images, control images without prior labeling
are acquired. The difference between control and label images originates from the labeled spins
delivered to the brain tissue by perfusion, thus resulting in a perfusion-weighted image. Finally, by
means of a quantification model, a CBF map can be obtained.

3.5.3 Recommended implementation

As mentioned earlier, many new developments and improvements have been proposed to
augment the ASL imaging protocol over the years. In what follows, some of the main
implementation details recommended by the ASL consensus paper by Alsop et al. (2015)
are briefly summarized. A distinction is made between aspects related to the generation of
the ASL signal and the subsequent quantification of the perfusion-weighted image to a CBF
map.

3.5.3.1 Signal generation

As highlighted in Fig. 3.4, the acquisition of a label image consists of three subsequent steps.
First, the hydrogen nuclei of the arterial blood water proximal to the brain are magnetically
labeled. Second, a post-labeling delay is used to allow the labeled blood to flow to and
exchange with the brain tissue. Third, a brain image is acquired using a fast readout scheme.
In what follows, a detailed description of these subsequent steps is provided.
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Labeling strategies

Over time, multiple labeling strategies have been proposed, which can be grouped into
different categories. The major clinically applied techniques for magnetic labeling of the
hydrogen nuclei of arterial blood water are spatially-selective pulsed labeling (PASL) and
continuous labeling strategies. Continuous labeling methods are typically further divided
into true continuous labeling (CASL) and pseudo-continuous labeling (pCASL). The
latter has been put forward as the recommended labeling technique, due to its high labeling
efficiency combined with its ease of implementation and hardware specifications for clinical
scanners (Alsop et al., 2015). Fig. 3.5 shows a schematic representation of these three
spatially-selective labeling strategies.

Figure 3.5: Schematic representation of spatially-selective labeling strategies. Both in pulsed
and continuous labeling, arterial blood is labeled proximal to the imaging volume. In PASL, labeling
is performed using a single short RF pulse (in the order of milliseconds) that inverts the arterial
blood magnetization within a whole slab of tissue below the brain, which includes the supplying
large arteries (Kwong et al., 1995; Kim, 1995; Wong et al., 1998). In continuous labeling methods,
labeling is performed for a longer period (in the order of seconds) by applying continuous RF energy
to a labeling plane which inverts the magnetization of arterial blood as it flows through that plane, a
process known as flow-driven adiabatic inversion. The difference between continuous ASL (CASL)
and pseudo-continuous ASL (pCASL) lies in the way continuous RF energy is established. In CASL,
adiabatic inversion is established by means of a constant gradient and a constant RF pulse (Detre
et al., 1992; Williams et al., 1992). In pCASL, the same effect as in CASL is created by a long
pulse train of slice-selective RF and gradient pulses (Dai et al., 2008). Note that the figure also
indicates the position of two inversion pulses for when background suppression is applied as an option
to suppress physiological noise. Furthermore, τ denotes the labeling duration and PLD (or TI for
PASL) denotes the post-labeling delay, i.e. the time between the end of the labeling pulse (train)
and the readout. Note that the total repetition time (TR) to acquire a single label-control image
pair is subdivided into two parts (one with and one without labeling) of length TR/2.

More recently, velocity-selective labeling has been proposed as an alternative labeling strategy,
which labels blood based on its velocity and creates a magnetic bolus immediately proximal to
the microvasculature within the imaging volume (Wong et al., 2006). It provides a significant
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innovation over traditional labeling approaches as it eliminates arterial transit time confounds
and can provide a significant boost in SNR. As the description of this labeling strategy is quite
extensive and not the scope of this thesis, the reader is referred to the original publication and
a recent review paper of the ISMRM Perfusion Study Group on the topic of velocity-selective
ASL (VSASL) (Qin et al., 2022).

In the remainder of this thesis, if not mentioned otherwise, pCASL labeling is implictly
assumed as the labeling strategy of choice.

Labeling duration

An optimal choice of the labeling duration τ (see Fig. 3.5) in pCASL is important because it
determines the final precision of the estimation of the perfusion parameters. Two considera-
tions influence this choice. First, extending the labeling duration is beneficial as it increases
the ASL signal and pCASL SNR. Note however that the SNR increase with a longer labeling
duration is limited, because for a labeling duration much longer than the T1 relaxation time
of blood the signal gain decreases. Typically, for the T1 of blood, one assumes a population
average of 1.65 s at 3T (Lu et al., 2004). Second, a longer labeling duration increases the
TR per label-control image pair, and as such reduces the number of label-control image
pairs (i.e. number of averages) that can be acquired per unit time. Clearly there exists a
trade-off: a longer labeling duration increases the SNR, which has a positive effect on the
estimation precision, however, it reduces the amount of label-control image pairs per unit
time, which reduces the number of averages and thus has a negative effect on estimation
precision.

Given this trade-off, a labeling duration of 1.8 s was recommended in the consensus paper
(Alsop et al., 2015). However, this choice is a pragmatic compromise, the labeling duration
remains an acquisition parameter that is in the best case optimized as a function of the
estimation precision (Bladt et al., 2020a).

Single-PLD and multi-PLD acquisitions

In pCASL, the time between the end of the labeling pulse train and the start of the readout
module is referred to as the post-labeling delay (PLD) (see Fig. 3.5). pCASL acquisitions
are typically classified into so-called single-PLD and multi-PLD acquisitions:

Single-PLD In this ASL protocol, each control-label image pair is acquired with the same
acquisition settings, thus also using the same PLD. It implies that the entire scan time
is used to create repetitions of control-label image pairs with fixed acquisition settings,
often referred to as averaging. Single-PLD pCASL was advised by the consensus
paper (Alsop et al., 2015), using a PLD at least as long as the longest estimated
arterial transit time (ATT), i.e. the time it takes for the labeled bolus to travel from
the labeling plane through the arterial vascular tree towards a certain part of brain
tissue. Like the CBF, the ATT is a biophysical parameter and potential biomarker
that varies between different regions of the brain, between individuals and between
healthy and pathological tissue (Petersen et al., 2010). By using a recommended
PLD>ATT, it is ensured that the labeled bolus reaches the capillaries in the tissue,
largely avoiding remaining ASL signal in large supplying arteries which would show
up in the perfusion images as bright spots, mimicking hyperperfusion. Moreover, it
(theoretically) guarantees the arrival of the entire bolus in the microcirculation of the

65



CHAPTER 3

target tissue throughout the brain, reducing the dependence of perfusion quantification
on the underlying local ATT (Alsop & Detre, 1996). Since the velocity of blood is
different in children, adults or clinical patients, the PLD has to be adapted accordingly.
Table 3.1 summarizes recommended PLD values (Alsop et al., 2015).

Multi-PLD pCASL In contrast to single-PLD, this protocol acquires ASL images with a
different PLD per control-label image pair, which allows to sample the ASL perfusion
process dynamically at multiple time points (Gonzalez-At et al., 2000; Wang et al.,
2013). On the one hand, this allows for a direct parameter estimation of both CBF and
ATT. It has been shown that CBF estimation accuracy depends on the ATT (Alsop
et al., 2015; van Osch et al., 2018; van der Thiel et al., 2018), especially when the
ATT varies over a large range in a subject or in the studied population (van Osch
et al., 2018; van der Thiel et al., 2018), so estimating both parameters simultaneously
is advantageous. On the other hand, multi-PLD pCASL has the disadvantage of a
reduced SNR for the perfusion-weighted image for a given PLD, as the number of
control-label image pairs per PLD is reduced compared to single-PLD, obeying a similar
clinically acceptable total scan time.

Table 3.1: Recommended PLD values for single-PLD pCASL (Alsop et al., 2015).

Subject PLD value [ms]

neonates 2000
children 1500
healthy subjects < 70 years 1800
healthy subjects > 70 years 2000
adult clinical patients < 70 years 2000

While multi-PLD methods provide additional information, they are more complex and require
more measurements and processing. At the present time, therefore, single-PLD methods
are recommended as the default ASL method (Alsop et al., 2015).

Background suppression

As stated in section 3.5.2, image intensities between control and label images only differ by
at most 5%. As a consequence, the ASL signal has a relatively low SNR. Therefore, the use
of background suppression (BS) is often recommended as a way to significantly increase the
overall SNR of the ASL signal (Garcia et al., 2005; Maleki et al., 2012).

To understand the core concept of BS, it is crucial to distinguish the different noise compo-
nents that occur in MR images. Generally, when speaking about noise in MRI, one considers
either thermal noise or scanner induced noise components, which combined constitute the
raw noise component with standard deviation σ0. This raw noise is proportional to the static
magnetic field strength B0 and independent of the MR-signal intensity (Edelstein et al.,
1986). However, as highlighted by Krüger & Glover (2001), there exist also noise components
that are signal-dependent, denoted as physiological noise, described by a standard deviation
σP = c · S, with c a constant and S the MR-signal intensity. Such physiological noise stems
from different factors, including local motion artifacts caused by cardiac and respiratory
function and magnetic field modulations (Krüger & Glover, 2001). Taking into account both
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signal-independent and signal-dependent noise components, the total image noise can thus
be described by the following standard deviation:

σ =
√
σ20 + σ

2
P . (3.3)

For a certain signal intensity S, which is constant over time in the case of repeated acquisition
of control-label image pairs when using a fixed PLD, the SNR can be formally defined as
(Krüger & Glover, 2001):

SNR =
S

σ
=

S√
σ20 + σ

2
P

=
SNR0√
1 + c2SNR20

(3.4)

with SNR0 = S/σ0 the signal-to-raw-noise ratio in the absence of physiological noise.

Knowing that physiological noise scales with the image signal intensity, it can be significantly
reduced by suppressing the signal intensity. In the case of ASL, if the background signal S in
the label and control images (which is theoretically equal in both images) can be suppressed
without gravely affecting the ASL signal, it could significantly increase the SNR of the ASL
signal in the eventual difference image. Indeed, if we assume the signal intensities in the
unsubtracted images to be Gaussian distributed, the SNR of the ASL signal can be written
as (Bladt, 2020):

SNRASL =
SASL√

2 ·
√
σ20 + σ

2
P

(3.5)

Clearly, the SNRASL will increase as σP , which scales with the background signal S, re-
duces.

BS can be achieved using a combination of a saturation pulse and a certain number of
inversion pulses applied to the imaging volume (Garcia et al., 2005; Maleki et al., 2012). By
timing the inversion pulses correctly, the longitudinal magnetization of the background tissue
will pass through zero at the time of readout. Note, however, that while significantly improving
the overall SNR of the ASL signal, BS is subject to two main limitations. First, there exists
a trade-off in the amount of inversion pulses to be used. Increasing this amount ensures
suppression of the static tissue signal over an increasing range of T1 values. Unfortunately,
due to inevitable imperfections in the inversion pulses, the labeling efficiency decreases by
approximately 5% for each extra inversion pulse, resulting in unwanted ASL signal loss. In
order to balance this trade-off, background suppression with two inversion pulses is
recommended (Alsop et al., 2015). Second, the longitudinal magnetization of static tissues
is only canceled at a given time point, making BS well suited for 3D readout which uses a
single excitation per TR, but making it suboptimal for 2D multi-slice readout which uses a
separate excitation pulse for every slice. This second limitation is more extensively discussed
in contribution chapter 7.

Readout sequence and spatial resolution

The original ASL consensus paper (Alsop et al., 2015) put forward segmented 3D se-
quences, such as 3D GRASE (Günther et al., 2005; Fernández-Seara et al., 2005), as
the recommended readout method, followed by single-shot 2D multi-slice (EPI) readout
as a back-up choice. Recently, another review/recommendation paper from the ISMRM
Perfusion Study Group confirmed this choice, also highlighting a number of anticipated
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readout improvements (Hernandez-Garcia et al., 2022). The 2D EPI multi-slice readout,
which was used for the acquisition of the real data in contribution chapter 7, has already
been described in section 2.4.1.

In most ASL works, segmented 3D readout is preferred because of three main advantages over
single-shot 2D readout. First, as the entire image is acquired in one excitation, background
suppression can be maximal for the entire volume by timing it correctly with the readout
excitation (Ye et al., 2000; Krüger & Glover, 2001; Garcia et al., 2005; Maleki et al., 2012;
Paschoal et al., 2021). In 2D readout methods, there is an excitation for the acquisition
of each slice. In that case, background suppression can only be optimal in the first slice
and will become less effective in each subsequent slice. This can be considered the most
important reason for choosing 3D over 2D readout in ASL. Second, 3D acquisition is less
susceptible to magnetic field inhomogeneities. Third, the total readout time for a volume is
generally lower for 3D readout. However, this effect is limited, as the labeling duration and
PLD take up most time of the TR. At the same time, it is worth noting that a considerable
downside of 3D readout is its sensitivity to subject motion during acquisition. Any movement
that occurs during 3D readout, which takes 300-450 ms for whole-brain coverage using
the recommended spatial resolution (Vidorreta et al., 2013, 2014), cannot be untangled
afterwards in postprocessing. On the contrary, 2D multi-slice readout is less sensitive to
motion as the acquisition time per slice is very short (∼50 ms) (Vidorreta et al., 2013). Finally,
another downside of 3D readout is its use of long echo trains, resulting in through-plane
blurring due to T2 decay along the echo train and in-plane blurring due to T ∗2 decay between
refocusing pulses. Splitting the readout into more segments can reduce this blurring, but
at the cost of a longer acquisition time and increased sensitivity to inter-shot motion and
physiological fluctuations (Hernandez-Garcia et al., 2022).

The intrinsically low SNR of ASL difference images can be partially mediated by choosing
a low spatial resolution for readout. For this reason, it has been recommended to use a
spatial resolution of 3-4 mm in-plane and 4-8 mm through-plane (Alsop et al., 2015).
An obvious downside of a low spatial resolution is the occurrence of partial volume effects
(PVE) which result in a loss of fine anatomical details in the ASL perfusion-weighted images
as well as in the quantified perfusion parameter maps. Correcting for these PVEs in ASL MRI
has been actively studied (Asllani et al., 2008; Chappell et al., 2011; Liang et al., 2013). Very
often, resolution enhancement is based upon the use of additionally acquired high-resolution
structural images to assist the reconstruction (Meurée et al., 2019; Mehranian et al., 2020).
A downside to the latter is the requirement of accurate co-registration and/or distortion
correction to guarantee a spatial correspondence between the high-resolution structural
and the low-resolution ASL acquisitions, and to correct for differences in readout methods
between both type of images. When image registration and other corrections are performed
separately from the final perfusion parameter estimation, this could potentially result in
propagating errors. Therefore, in contribution chapter 7 of this thesis, the potential benefit
of combining single-PLD ASL with model-based super-resolution reconstruction and joint
motion estimation has been extensively explored as a robust idea to provide both resolution
enhancement and accurate motion compensation.

3.5.3.2 Perfusion parameter quantification

In MR relaxometry and most other qMRI applications, a given signal that changes over time
is sampled at multiple time points and quantitative parameters, which parameterize the signal
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change over time, are estimated by fitting a suitable signal model to the acquired data points
(cf. section 3.2). In that sense, the concept of a single-PLD pCASL experiment is markedly
different, as the dynamic pCASL signal is only sampled at one time point. Based on such
data, only one parameter, the CBF, can be quantified in a unique way. It also simplifies
the estimation process considerably; data acquired at one time point allows for parameter
quantification by means of a closed-form expression between the data and the parameter to
be quantified. This closed-form expression is often referred to as the ASL ‘quantification
formula’, which can be derived from a more general single-compartment model. As will be
highlighted hereafter, this derivation comes with a number of assumptions that should be well
understood as they impact the final accuracy and precision of the CBF quantification.

Quantification formula

The most simple model describing the pCASL signal is the single-compartment model.
The central assumption in this model is that, when the magnetically labeled water molecules
reach the tissue voxel, there is unrestricted transfer of water molecules between the blood
compartment and the tissue compartment. In other words, upon arrival in the tissue
voxel, there is an immediate equal concentration of labeled water molecules in the blood
compartment and the tissue compartment. Therefore, the tissue voxel can be seen as a
single compartment. This concept is visualized in Fig. 3.6.

The single-compartment dynamics can be described in two ways: using modified Bloch
equations (Detre et al., 1992; Parkes & Tofts, 2002), or by convolution of a labeled spin
bolus function with a tissue response function (Buxton et al., 1998). In what follows, we use
the derivation from modified Bloch equations.

Figure 3.6: Single-compartment model. Labeled arterial blood enters the tissue voxel with magnetiza-
tion ma and perfusion rate f , and leaves with magnetization mv . The tissue voxel has magnetization
Mz and longitudinal relaxation time T1,tissue. Figure adapted from Parkes & Tofts (2002).

As already introduced in section 2.3.4 of Chapter 2, a Bloch equation can be used to describe
the change in longitudinal magnetization (cf. Eq. (2.14)). For convenience, let us repeat this
Bloch equation for a certain longitudinal magnetization Mz in a certain tissue voxel:

dMz(t)

dt
=
M0 −Mz(t)
T1,tissue

, (3.6)

with T1,tissue the longitudinal relaxation time of tissue. In pCASL imaging, labeled spins
will enter and leave the tissue voxel with a perfusion rate f . Under the assumption of a
single compartment model, and ignoring magnetic transfer contrast effects, Eq. (3.6) can be
modified to include the inflow and outflow of magnetization (Detre et al., 1992; Parkes &
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Tofts, 2002):
dMz(t)

dt
=
M0 −Mz(t)
T1,tissue

+ f ma(t)− f mv (t), (3.7)

with ma(t) the inflowing magnetization from the labeled bolus and mv (t) the venous outflow
of labeled spins. The unrestricted and instantaneous equilibration of the concentration of
labeled spins between the vascular and tissue compartments when the labeled bolus enters the
tissue voxel means that the blood leaving the tissue carries the same concentration of labeled
spins as the water within the tissue voxel (Buxton et al., 1998). Consequently, the outflowing
magnetization mv (t) is proportionate to the tissue magnetization Mz(t), weighted with the
ratio of water content between tissue and blood, denoted as λ (Buxton et al., 1998; Parkes
& Tofts, 2002):

dMz(t)

dt
=
M0 −Mz(t)
T1,tissue

+ f ma(t)− f
Mz(t)

λ
. (3.8)

This ratio λ is often referred to as the blood–brain partition coefficient of water. Since, in
(conventional) pCASL a label image is subtracted from a control image, Eq. (3.8) can be
adapted to (Parkes & Tofts, 2002):

∆
dMz(t)

dt
= ∆
M0 −Mz(t)
T1,tissue

+ ∆f ma(t)− ∆f
Mz(t)

λ
, (3.9)

where ∆ represents the signal difference between the control and label image. Under the
reasonable assumption that M0, T1,tissue, λ and f do not change between the acquisition of
both images, Eq. (3.9) can be further simplified as:

d∆Mz(t)

dt
= −
∆Mz(t)

T1,tissue
+ f ∆ma(t)− f

∆Mz(t)

λ

= −
∆Mz(t)

T ′1
+ f ∆ma(t), (3.10)

with 1/T ′1 = 1/T1,tissue + f /λ. This differential equation can be solved if ∆ma(t), the
difference in arterial magnetization flowing into the tissue voxel between the label and control
image, is known. If uniform plug flow is assumed for the labeled bolus as it travels from the
labeling plane to the tissue voxel, it can be described as (Buxton et al., 1998):

∆ma(t) =


0 t < ∆t,

2M0bα exp
(
− ∆tT1b

)
∆t < t < ∆t + τ,

0 t > ∆t + τ,

(3.11)

with τ the pseudo-continuous labeling duration, ∆t the ATT between the labeling plane
and the tissue voxel, M0b the equilibrium magnetization of arterial blood in a unit voxel,
and α the inversion efficiency of the labeling. The factor exp (−∆t/T1b) describes the
magnetization loss due to longitudinal relaxation in the arterial blood compartment during
the travel time from the labeling plane to the tissue voxel. Note that the factor 2 originates
from the fact that Eq. (3.11) describes the difference in magnetization between the label
and control image, which is equal to twice the equilibrium magnetization of blood at t = 0
due to the 180° inversion of the arterial magnetization at the labeling plane. When
Eq. (3.11) is substituted in Eq. (3.10), the following expression is found for the difference
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magnetization:

∆M(t) =


0 t < ∆t,

2M0bαf T
′
1 exp

(
− ∆tT1b

)(
1− exp

(
− t−∆tT ′

1

))
∆t < t < ∆t + τ,

2M0bαf T
′
1 exp

(
− ∆tT1b

)
exp

(
− t−∆tT ′

1

)(
exp

(
− τT ′

1

)
− 1
)
t > ∆t + τ,

(3.12)
which is commonly referred to as the single-compartment model. As follows from Eq. (3.12),
this model consists of three distinct phases: no signal as long as the labeled bolus has not
yet reached the tissue voxel (t < ∆t), a build-up of the pCASL signal as labeled spins flow
into the tissue voxel (∆t < t < ∆t + τ), followed by a phase where the entire labeled bolus
has arrived in the tissue voxel and longitudinal relaxation exponentially decays the pCASL
signal (t > ∆t + τ). An example is shown in Fig. 3.7.

Often, two important additional assumptions are made that further simplify Eq. (3.12) to
arrive at a quantification formula for single-PLD pCASL:

PLD is longer than the arterial transit time. This assumes that the entire labeled bolus
arrives at the tissue voxel. Since for the PLD it holds that PLD = t − τ , the
assumption that PLD > ∆t means that the pCASL signal is described by the third
regime of Eq. (3.12).

The blood vessels are impermeable. This means that the labeled spins remain in the blood
compartment within the tissue voxel. In that case, the difference magnetization ∆M
decays with the blood longitudinal relaxation time T1b instead of T1,tissue.

Figure 3.7: An example of the difference magnetization ∆M as a function of time t according to the
single-compartment model for a labeling duration τ = 1.8 s. Physiological parameters were chosen
to represent a gray matter voxel: f = 50 mL/100g/min, ∆t = 0.6 s, T1,tissue = 1.4 s, T1b = 1.65 s,
λ = 0.9. Values for T1,tissue and T1b are given assuming a static magnetic field strength B0 = 3.0 T.
Also, α and M0b were assumed equal to 0.85 and 1, respectively.
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Given these two additional assumptions, the third regime of Eq. (3.12) simplifies to:

∆M(t) = 2M0bαf T1b exp

(
−
∆t

T1b

)
exp

(
−
t − ∆t
T1b

)(
exp

(
−
τ

T1b

)
− 1
)

(3.13)

= 2M0bαf T1b exp

(
−
t − τ
T1b

)(
1− exp

(
−
τ

T1b

))
. (3.14)

It follows that with PLD = t−τ and with M0b approximated by the equilibrium magnetization
in the tissue voxel SPD divided by the blood-brain partition coefficient λ, i.e. M0b = SPD/λ,
rearranging Eq. (3.14) as a function of the CBF f , results in the so-called recommended
quantification formula (independent of the ATT) (Alsop et al., 2015; Buxton et al.,
1998):

CBF = 6000 ·
λ exp

(
PLD
T1b

)
2αT1b

(
1− exp

(
− τ
T1b

)) · ∆S
SPD
, (3.15)

with λ the blood-brain partition coefficient in mL/g, ∆S the averaged difference
between the label and control signals, T1b the longitudinal relaxation time of blood,
α the labeling efficiency, SPD the proton density signal (which is obtained from
a separately acquired calibration image), τ the labeling duration, PLD the post-
labeling delay time, and a factor of 6000 to convert the units of the CBF from
mL/g/s to mL/100g/min.

Recommended CBF quantification formula

Accuracy and precision of the recommended quantification

In essence, the CBF value in Eq. (3.15) can be seen as a multiplication of the relative
single-PLD pCASL perfusion signal ∆S by a certain prefactor consisting of a large number of
parameters. The latter are typically either assumed to be known or determined through an
additional experiment. The PLD and labeling duration τ are parameters that are known and
chosen by the practitioner. The proton density signal SPD is acquired as a separate image,
which needs to be spatially aligned, i.e., co-registered, to the control-label pCASL image pairs.
The remaining parameters are either fixed to population means, in the case of T1b and λ, or
to experiment repetition means, in the case of α. Specifically, in the recommendations by
Alsop et al. (2015), the following assumptions are made: λ = 0.9 mL/g, T1b = 1.65 s at 3.0
T, and α = 0.85. As these parameters can vary significantly between individuals or between
repetitions of the experiment, they are a potential source of bias. The effects of such a
bias are being extensively studied in literature (Bladt et al., 2020b; Bladt, 2020).

The recommended quantification formula in itself is also a source of inaccuracy, as it is based
on assumptions that are approximations of reality. Of course, to some point, this is true
for any chosen perfusion model, as it is unlikely any model exactly describes the physiology
underlying the pCASL perfusion process. Furthermore, in terms of the PLD, efforts have
been made in the recommended implementation to minimize bias when quantifying the
CBF with Eq. (3.15). However, optimal single-PLD selection is difficult for accurate CBF
quantification. In particular, it has been shown that when the ATT varies over a large range
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in a subject or in a studied population, single-PLD pCASL remains vulnerable to under or
overestimation of CBF (van Osch et al., 2018; van der Thiel et al., 2018).

While single-PLD pCASL quantification clearly suffers from potential low accuracy (which
could be mitigated by the use of more complex multi-PLD pCASL (cf. section 3.5.3.1)), its
strong suit is a high precision. Firstly, the use of repeated measurements of control-label
image pairs at the same time point greatly increases the SNR of the ASL signal in the
eventual averaged ASL difference image ∆S. As all other parameters on the right hand side
are known or assumed to be known, error propagation dictates that the precision of CBF
quantification scales with the SNR of the averaged ASL difference image ∆S. Secondly,
unlike in a nonlinear multi-PLD pCASL model where the number of parameters to estimate is
increased to enhance model accuracy, the reduced number of parameters in the single-PLD
model may contribute to improved precision.

3.5.4 Clinical applications

As a versatile complement to other medical imaging modalities, ASL imaging can provide
insightful information to establish diagnosis, to monitor the evolution of pathologies, or to
characterize disease states. In this section, a brief list of some recent applications of ASL is
given, paying particular attention to neuroimaging applications. For a more elaborate list,
the reader is referred to some excellent reviews in literature (Detre et al., 2012; Grade et al.,
2015; Hernandez-Garcia et al., 2019).

Cerebrovascular disease ASL has emerged as a valuable tool in the assessment of cere-
brovascular disease, offering non-invasive insights into perfusion alterations (Alsop
et al., 2015). As an example, Wang et al. (2012) demonstrated the efficacy of pCASL
in detecting regional CBF changes associated with ischemic strokes, aiding in the early
identification and characterization of affected brain regions.

Dementia In the realm of dementia research, pCASL has proven instrumental in evaluating
cerebral perfusion patterns associated with neurodegenerative disorders. Johnson et al.
(2005) utilized pCASL to investigate perfusion abnormalities in Alzheimer’s disease,
highlighting its potential as a sensitive imaging technique for early detection and
monitoring disease progression.

Neuro-oncology The application of pCASL in neuro-oncology has been pivotal in delineating
tumor-related perfusion characteristics. Specifically, ASL is able to distinguish between
high-grade and low-grade gliomas (i.e, tumor cells that start growing in the brain or
spinal cord) based on perfusion patterns, offering valuable information for treatment
planning and prognosis assessment (Alsaedi et al., 2019).

Psychiatric disease Preliminary studies exploring the use of pCASL in psychiatric diseases
have shown promise in uncovering cerebral perfusion alterations associated with condi-
tions such as schizophrenia and mood disorders. As an example, Oliveira et al. (2018)
used pCASL imaging to identify regional perfusion abnormalities in schizophrenia.

Epilepsy In the field of epilepsy, pCASL has been employed to investigate CBF changes
associated with seizure activity. Pendse et al. (2010) demonstrated the utility of
pCASL in detecting focal hypoperfusion in areas implicated in epileptogenesis (i.e., the
gradual process by which a typical brain develops epilepsy), providing valuable insights
for presurgical evaluation and treatment planning in epilepsy patients.
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3.5.5 Existing problems in ASL

From the previous section, it is evident that pCASL imaging holds significant promise for the
assessment of cerebrovascular diseases and neurological disorders in today’s clinical routine.
However, several technological barriers persist, hindering its full potential.

Inherent low SNR Like with any MRI technique, the trade-off between SNR, scan time, and
spatial resolution is present. Notably, as mentioned earlier, pCASL difference images
intrinsically have a low SNR. Consequently, one typically proceeds to the acquisition
of multiple image pairs with lower spatial resolution, after which a signal increase
is achieved through averaging. Although this increases the SNR, it introduces some
other difficulties. First, the required scan time increases. Due to averaging with
single-PLD pCASL, the total scan time becomes a multiple of the scan time for one
control-label image pair. Preferentially, such extended scan time is to be avoided for
clinical routine where scanning protocols (which often include other MRI contrasts
in addition to pCASL) are limited in time for the patient’s comfort and to maximize
patient throughput. In addition, as a larger number of images are recorded, the risk of
artifacts stemming from patient motion also increases.

Motion correction and quantification A spatial correspondence of the individual pCASL
images is crucial for voxel-wise signal averaging. This requires a robust motion correction
strategy to align the different image pairs. Additionally, the recommended quantification
formula for single-PLD pCASL also demands the acquisition of an extra proton density
weighted calibration image, which is required to convert CBF values in arbitrary units
to absolute perfusion units of mL/100g/min. To allow a voxel-wise division with this
calibration image (cf. Eq. (3.15)), a co-registration of the calibration image with the
lower-resolution (LR) pCASL control and label images is required.

Partial volume effects Due to the inherently low spatial resolution and large voxel size of
pCASL images, partial volume effects (PVE) occur, where perfusion of different
tissues contribute to the observed perfusion signal in a voxel (Petr et al., 2018; Chappell
et al., 2021). However, for quantitative perfusion analysis of the brain, it is crucial
that the CBF estimates derived from the pCASL images can be assigned to specific
brain tissue types (gray matter, white matter, etc.), ideally at a high-resolution level.
Therefore, it is customary to apply partial volume (PV) correction as a post-processing
step of the ASL MRI experiment, so that perfusion can be separated from structural
effects when computing the mean perfusion for a certain tissue type. Generally, the
tissue volume is obtained using high-resolution (HR) PV maps obtained from the
segmentation of a HR T1-weighted (T1w) structural image acquired in the same
scanning session as the lower-resolution control-label ASL image pairs (Clement et al.,
2022a). Typically, the HR PV maps are co-registered and then downsampled to match
the LR ASL image space. It is important to be alert to the differences in readout
methods between the T1w and ASL images during this resampling process from HR
to LR image space (Petr et al., 2018). For example, prior to downsampling, it is
common to perform a Gaussian pre-smoothing step on the HR PV maps as an additional
post-processing step to take into account differences in acquisition PSFs between both
readout types (Cardoso et al., 2015).
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Multi-step processing and potential error propagation It is evident that pCASL imaging
demands many separate post-processing steps involving image registration, segmenta-
tion, quantification, and so on. Although on the one hand these steps are required to
arrive at a correct final perfusion estimate, such multi-step processing also entails the
danger of propagating errors in the subsequent steps, resulting in a biased end result.
That is why throughout the pCASL world (and in qMRI more generally) there exists
a stringent need for joint estimation frameworks and ideas that provide single-step
approaches to minimize potential propagation errors.

Intravoxel dephasing, also known as phase dispersion, refers to the phenomenon where the
phase coherence of the magnetization within a voxel is disrupted, resulting in a signal
decay due to the destructive interference of magnetization signals from different nuclei
within that voxel (Chen & Wyrwicz, 1999). E.g., the transverse magnetization of nuclei
within a voxel can lose coherence in regions of magnetic field inhomogeneity, at tissue
interfaces with differing magnetic susceptibilities, or due to variations in blood velocities
within the voxel (Amukotuwa et al., 2016; Özsarlak et al., 2004). This leads to a
decrease of the net signal from that voxel, compromising the accuracy of the acquired
ASL data. Some brain structures which are characterized by a more complex vascular
network, such as the cerebellum, are more sensitive to intravoxel dephasing since blood
velocity changes occur more frequently, like turbulent or accelerating blood flow in small
curved arteries. The risk of phase dephasing can be mitigated by using small TE’s, to
permit the signal to be detected before the magnetization has had time to dephase.
Another approach to reduce intravoxel dephasing is the use of smaller voxels, such that
the amount of magnetization that is permitted to combine incoherently is reduced,
thus limiting potential signal loss. However, as pointed out earlier, ASL inherently
needs larger voxels to obtain enough SNR. Clearly, intravoxel dephasing poses another
trade-off dimension to be considered alongside SNR, spatial resolution, and scan time.

Blurring artefacts The utilization of 3D readout methods such as the recommended 3D
GRASE sequence comes with an increased risk of blurring artefacts that arise due to T2
and T ∗2 relaxation effects during the long pulse echo trains, resulting in signal decay and
through-plane blurring in the acquired images (Vidorreta et al., 2014; Zhao et al., 2018).
Such blurring artefacts can compromise the spatial resolution and interpretability of the
acquired data. Splitting the readout into more segments can reduce this blurring, but
at the cost of a longer acquisition time and increased sensitivity to inter-shot motion
and physiological fluctuations (Hernandez-Garcia et al., 2022). In addition, the long
readout time of a 3D imaging sequence holds an increased risk of motion artefacts
(Alsop et al., 2015). As a viable alternative to 3D readout, single-shot 2D multi-slice
readout methods based on EPI have been suggested (Alsop et al., 2015). Compared to
3D readout, these 2D readout methods are less susceptible to spatial blurring due to T2
decay (Vidorreta et al., 2013). However, as will be highlighted in contribution chapter
7, the use of a separate excitation pulse for every slice in 2D readout complicates
background suppression. In practice, background suppression can be optimal for only
one slice and will be progressively less efficient for other slices (Alsop et al., 2015).

Furthermore, it is important that the ASL community continues to clearly communicate
guidelines and agreements on the so-called ’best practices’ in the use of pCASL imaging, so
that results can be interpreted unambiguously and without implementation bias.
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3.6 Parameter estimation

The signal models, described in the previous sections on MR relaxometry and ASL, are
mathematical relations that describe the contrast-weighted MR images in terms of physical
parameters. By using such models, interesting properties of the object under study can
be obtained by estimating the quantitative parameters from a series of acquired contrast-
weighted MR images. However, acquired MR signals are disturbed by noise and are, as such,
random (or stochastic) variables. The random variable is best described by its probability
distribution function (PDF) over the continuous range of its possible outcomes. Knowledge
about PDFs and statistical parameter estimation is indispensable for a contemporary qMRI
researcher. In the contribution chapters of this thesis, the PDFs describing the intensity of
magnitude MR images will be more thoroughly discussed. In this chapter, a more general
introduction to statistical estimators, i.e. methods to extract information about model
parameters from noisy measurements, is provided. Some important estimators are the
least squares (LS) estimator, the maximum likelihood (ML) estimator and maximum a
posteriori (MAP) estimator, which will be used in part III of this thesis, when the different
contributions are elaborated. In what follows, the general properties of these estimators,
their strengths, and limitations will be briefly discussed. For a more detailed explanation of
statistical parameter estimation, the reader is referred to the works of van den Bos (2007)
for a general introduction to parameter estimation, and Gelman et al. (1995) for more
information on Bayesian data analysis.

3.6.1 Statistical parameter estimators

An estimator can be defined as any function of the observed data, thereby providing an
estimate of an unknown (physical) quantity of interest. In mathematical terms, this can be
expressed as:

θ̂N = g(y1, y2, . . . , yN). (3.16)

Here, y = (y1, y2, . . . , yN)
T denotes a vector of N random samples, or observations. The

probability density function (PDF) that describes the observations is assumed to be parametric
in the true parameter vector θ0. Note that in general θ0 is unknown, except for simulation
experiments. The estimator is then any function g, while θ̂N denotes the estimator of θ0
specifically.

Estimators can be characterized by certain properties that will allow us to distinguish between
“good” and “bad” estimators. Since the observations are stochastic variables, so is the
estimator. Therefore, just as the observations, the estimator will also have an expectation
value E

[
θ̂N
]

and a variance var
(
θ̂N
)
. In this thesis, both θ̂N and θ0 are assumed to be

real-valued in RP×1, however, the definitions in this section can easily be extended to include
complex-valued parameters.

3.6.1.1 Accuracy and precision

Important properties of estimators, which might be used to compare different estimators,
are the accuracy and precision, see Fig. 3.8. An estimator is said to be accurate when the
estimates are on average close to the true value of the parameter in which we are interested.
Another way of saying this, is that the estimator has a small bias, which is defined as (van den
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Bos, 2007):
bias

(
θ̂N
)
= E

[
θ̂N
]
− θ0. (3.17)

An estimator is unbiased, and thus perfectly accurate, if its bias equals zero, or equiva-
lently:

E
[
θ̂N
]
= θ0. (3.18)

Moreover, an estimator can also be asymptotically unbiased when its bias goes to zero in
the limit of N →∞:

lim
N→∞

E
[
θ̂N
]
= θ0. (3.19)

The bias defines and quantifies the accuracy or, equivalently, the systematic error of an
estimator. The larger the absolute value of E

[
θ̂N
]
− θ0, the larger the bias, the lower the

accuracy of the estimator. Bias may have different sources, including a systematic deviation
of the estimator caused by fluctuations of the observations (i.e., the MRI data), a mismatch
between the estimation model and the underlying true process, or an insufficient number of
observations (van den Bos, 2007).

Low accuracy
Low precision

Low accuracy
High precision

High accuracy
Low precision

High accuracy
High precision

Figure 3.8: Visual representation of the concepts of accuracy and precision of an estimator. The
black ×’s denote the estimates θ̂N for different noise realizations. The underlying ground truth
parameters θ0 are assumed to coincide with the bullseye. Precision is associated with random errors,
accuracy is associated with systematic errors.

Precision, on the other hand, is a desirable property of an estimator that relates to the
statistical variability of the estimates, i.e. how much the estimates will vary when the
experiment is repeated. The precision of an estimator is generally quantified by its variance,
i.e. the diagonal elements of the corresponding covariance matrix of the estimator:

cov
(
θ̂N
)
= E

[(
θ̂N − E

[
θ̂N
]) (

θ̂N − E
[
θ̂N
])T ]

. (3.20)

Note that the precision of the estimator for a certain parameter is inversely related to the
variance of the estimator for that same parameter; the higher the variance, the lower the
precision. Variance is related to nonsystematic errors of an estimator, which are caused by
unpredictable fluctuations in the observations (i.e., noise in the data) (van den Bos, 2007).
Additionally, the precision of an estimator is directly related to the amount of observations
and the noise in the data.

3.6.1.2 (Root) mean squared error

Obviously, a good estimator is characterized by a high precision (or low variance), and high
accuracy (or low bias). An overarching measure to compare the performance, comprising
both accuracy and precision, of different estimators is the mean squared error (MSE). First,
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we define the error ϵ of the parameter estimator as the difference between the estimator θ̂N
and the true value θ0:

ϵ = θ̂N − θ0. (3.21)

Then, the MSE, as its name implies, is equal to the expected value of the squared error.
Assuming a scalar-valued parameter θ, the MSE can be expressed as:

MSE
(
θ̂N
)
= E

[(
θ̂N − θ0

)2]
= E

[(
θ̂N − E

[
θ̂N
]
+ E

[
θ̂N
]
− θ0

)2]
= E

[(
θ̂N − E

[
θ̂N
])2]

+ E
[(
E
[
θ̂N
]
− θ0

)2]
+ 2E

[(
θ̂N − E

[
θ̂N
]) (
E
[
θ̂N
]
− θ0

)]
= E

[(
θ̂N − E

[
θ̂N
])2]

+
(
E
[
θ̂N
]
− θ0

)2
+ 2

(
E
[
θ̂N
]
− E

[
θ̂N
]) (
E
[
θ̂N
]
− θ0

)
= var

(
θ̂N
)
+
[
bias

(
θ̂N
)]2
, (3.22)

where we have used that θ0 and E
[
θ̂N
]

are constants, and that the expected value of a
constant equals the constant itself. Clearly, it follows from (3.22) that the MSE of an
estimator is equal to its variance plus the square of its bias. When vector-valued parameters
are considered, the MSE can be further defined as:

MSE
(
θ̂N
)
= trace

[
E
[(

θ̂N − θ0
) (

θ̂N − θ0
)T ]]

=

P∑
i=1

var
(
θ̂i
)
+

P∑
i=1

bias
(
θ̂i
)2
.

(3.23)

Here, θ̂i denotes the ith component of the vector θ̂N . Consequently, the MSE of a vector-
valued parameter is equal to the sum of the MSEs of each of its components. The MSE is
always non-negative, where values closer to zero are better. As the MSE is measured in units
that are the square of the target parameter, it is often more explanatory to take the root of
the MSE and obtain the so-called root mean squared error or RMSE, which is measured in
the same units as the target parameter:

RMSE
(
θ̂N
)
=

√√√√ P∑
i=1

var
(
θ̂i
)
+

P∑
i=1

bias
(
θ̂i
)2
. (3.24)

3.6.2 Maximum likelihood estimators

Assuming the probability distribution function of vector y is known and given by py (y|θ)
with θ as set of parameters, then a general estimation method with optimal (asymptotical)
statistical properties, both in terms of accuracy and precision can be developed. This method
is known as the maximum likelihood (ML) estimator. As its name suggests, the ML estimator
maximizes the likelihood function. The likelihood function is typically denoted as L(θ|y) and
closely related to the probability distribution function (PDF). While py (y|θ) describes the
probability of finding a certain set of observations y given a known set of model parameters
θ, the likelihood function considers the inverse. It describes how "likely" a certain set of
parameters θ is to produce the set of observations y. In other words, the likelihood function
is a function of the model parameters, whereas the probability distribution function is a
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function of the observations. However, note that mathematically, both the likelihood function
and the probability distribution function are equal. For a given set of observations y, the ML
estimator is defined as:

θ̂ML = argmax
θ
L(θ|y). (3.25)

When the observations y = (y1, y2, . . . , yN)
T are statistically independent, the joint PDF

is the product of the PDFs of the set of observations, and Eq. (3.25) can be rewritten
as

θ̂ML = argmax
θ

N∏
i=1

L(θ|yi)

= argmin
θ

N∑
i=1

Li(θ|yi),

(3.26)

with Li(θ|yi) = − logL(θ|yi) the negative log-likelihood function. Both expressions in
Eq. (3.26) lead to the same outcome since the logarithmic function is monotonically increasing.
However, the minimization of the negative log-likelihood function is more convenient because
most nonlinear optimization software tools include optimizers that minimize a cost function
criterion.

The ML estimator is known to be asymptotically efficient unbiased, which implies that it
is an unbiased estimator that reaches the Cramér-Rao lower bound (i.e., a lower bound on
the maximal attainable precision of an unbiased estimator) as the number of data points
increases (van den Bos, 2007). In some cases, asymptotically efficient unbiased estimators
may already behave asymptotically for unexpectedly small numbers of observations (van den
Bos, 2007). In addition, the ML estimator is consistent; as the number of data points
increases, the set of estimates of repeats of the experiment converges in probability to the
underlying ground truth θ0 (van den Bos, 2007). These properties are related to the fact
that the distribution of the data is exploited in the ML estimator. Knowledge about the
distribution of MRI data is therefore important to be able to derive the ML estimator and
benefit from its statistical properties.

3.6.3 Least squares estimators

Another class of estimators which is often used are so-called least squares (LS) estimators.
The least squares method determines the optimal set of parameters θ̂LS of the model of
interest f , by minimizing the sum of the element-wise squared residuals ϱ of the data:

θ̂LS = argmin
θN

N∑
i=1

ϱ2i . (3.27)

In the above equation, it is assumed that the data are disturbed by noise. A residual is defined
as the difference between a measurement yi , and the predicted value of this measurement by
the model f (x,θN), given a set of parameters θN and corresponding independent variables
x:

ϱ = y − f (x,θN). (3.28)

Note the subtle, though important, difference between residuals (ϱ) and errors (ϵ) of the
data, the latter can be written as:

ϵ = y − f (x,θ0), (3.29)
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with θ0 the vector of ground truth model parameters. In general, it is assumed that the
independent variables x are known exactly and are thus noise-free.

When the function f is a linear function of θ, Eq. (3.27) is termed the Linear LS (LLS)
estimator, while if the function f is a non-linear function of θ, Eq. (3.27) is termed the
Non-Linear LS (NLLS) estimator. Since practically all of the models considered in this PhD
thesis are non-linear, we will focus on the NLLS case. For a more elaborate introduction to
LLS estimators, the reader is referred to the work of van den Bos (2007).

In addition, the squared differences in Eq. (3.27) are sometimes multiplied by deterministic
values wi in order to weight the contribution of every residual differently. In that case, the
term weighted (N)LLS is used. Unweighted (or equivalently, uniformly weighted) (N)LLS
estimators are sometimes called ordinary (N)LLS estimators to make the distinction more
clear.

3.6.4 Bayesian estimators

The ML and LS estimators introduced above are typically referred to as frequentist approaches,
since these type of estimators consider an event’s probability as the limit of its relative
frequency in a large number of trials. In the frequentist approach, unknown parameters
are treated as having a fixed but unknown value. Consequently, this obviates parameters
to be treated as random variables in any sense, i.e. there is no probability about the
parameters.

The Bayesian approach, on the other hand, interprets probability as a reasonable expectation
representing a total state of knowledge. Although a bit philosophical, in essence this means
the Bayesian approach treats the unknown parameters as random variables and allows to
associate probabilities with these parameters, thereby representing the experimenter’s belief
that a given value of the parameter is true.

3.6.4.1 Bayes theorem

Central to the entire statistical branch of Bayesian inference is Bayes’ theorem, named after
the 18th-century English Reverend Thomas Bayes. Bayes’ theorem describes the conditional
probability of an event by accounting for prior knowledge of conditions that might affect
this event, thereby providing a way to revise existing predictions or theories given new or
additional evidence. In its most general form, Bayes’ theorem states that:

P (A|B) =
P (B|A)P (A)
P (B)

, (3.30)

where P (A|B) represents the conditional probability of the likelihood of event A occurring
given that B is true (and vice versa for P (B|A)), while P (A) and P (B) represent the marginal
probabilities of, respectively, observing A or B independent of each other. When interpreted
specifically in terms of parameter estimation, Eq. (3.30) can be written as:

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (3.31)

with p(θ|y) the posterior distribution of the parameters, p(y|θ) = L(y|θ) the likelihood
function, as introduced in section 3.6.2, and p(θ) and p(y) the prior distributions of θ and
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y, respectively. The posterior distribution function is arguably the most interesting from a
parameter estimation point of view, as it describes everything known about the parameter θ

after the experimental outcome y has been observed. The prior p(θ) encompasses everything
known about the parameter vector θ before the actual observations are made. The prior
distribution of the data p(y), on the other hand, is typically just a scalar positive constant,
and can consequently often be ignored for the purpose of parameter estimation. So, from a
Bayesian point of view, the likelihood function and prior distribution of the parameters define
the statistical model for the estimation problem, whereas the posterior distribution contains
its solution. Given that the parameters are regarded as random variables, the posterior
density can be used to deduce any characteristic of the PDF of the parameters, given the
data. Hence, the posterior density should always be regarded as the most general solution to
the estimation problem.

3.6.4.2 Maximum a posteriori estimator

The Maximum a Posteriori (MAP) estimator is a popular Bayesian estimator that maximizes
the posterior distribution p(θ|y) w.r.t. the parameters θ:

θ̂MAP = argmax
θ
p(θ|y)

= argmax
θ
[p(y|θ)p(θ)] ,

(3.32)

By maximizing p(θ|y) w.r.t. θ, the MAP estimator equals the mode of the posterior
distribution p(θ|y) (see Fig. 3.9). The mode represents the parameter set θ that is most
likely to be sampled. For symmetric unimodal distributions, such as the normal distribution,
the mean, median, and mode all coincide. However, for asymmetric unimodal distributions,
such as the Rician distribution which describes noise in magnitude MR images (Gudbjartsson
& Patz, 1995; den Dekker & Sijbers, 2014), the mode may differ from the mean or
median.

Figure 3.9: Geometric visualization of the concept of the mode of a distribution, as compared to
the median and mean of an arbitrary probability density function.

The MAP estimator is an appropriate estimator for problems where prior knowledge about
the parameters is available, e.g. some prior belief distribution over the possible values
that the parameters could take on. In contrast, the ML en LS estimators, i.e. frequentist
approaches, estimate parameters based on data alone.

Similar as for the ML estimator in section 3.6.2, one typically optimizes Eq. (3.32) in the
(negative) log domain to facilitate the use of modern-day optimization software tools that
include optimizers that minimize a cost function criterion. More specifically, it follows from
Eq. (3.32) that:

θ̂MAP = argmin
θ

- [log(p(y|θ)) + log(p(θ))] , (3.33)
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where we have used that the logarithmic function is monotonically increasing and that the
logarithm of a product of distributions is equal to the sum of the logarithms.
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Super-resolution reconstruction as prime

protagonist for accelerated (q)MRI
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Up to this point of this thesis, we have introduced the imperative for absolute quantification of
biomarkers for neurodegenerative diseases, and coupled with that the need for technological
advancements that can facilitate such quantification. In the preceding chapter, we introduced
the strengths of quantitative MRI, and highlighted two pivotal qMRI applications: MR
relaxometry and Arterial Spin Labeling. At the same time, it was discussed how the
dissemination of quantitative MR imaging methods into clinical routine is complicated by the

93



CHAPTER 4

fundamental consideration of how to optimally balance spatial resolution, signal-to-noise
ratio (SNR), and scan time in these methods. In particular since those three imaging
parameters are highly interdependent (Plenge et al., 2012): higher spatial resolution allows
one to observe smaller details, but typically reduces SNR, and/or increases scan time. Yet, a
certain minimum level of SNR is required to distinguish the signal of interest from system
noise. In addition, minimizing scan time is paramount, as MRI resources are limited and
costly, and long scan times are uncomfortable for the patient. Furthermore, long scan times
increase the risk of motion artifacts and distortions in the images.

In this chapter, the concept of super-resolution reconstruction (SRR) is introduced, which
offers the potential to balance the trade-off between spatial resolution, SNR, and scan time
in MRI. As will be elucidated, this technique and its fundamental idea have been around since
the early 1980’s, finding applications in various imaging domains. However, as is often the
case with pioneering scientific efforts, the initial proof-of-concept serves as a stepping stone
to a multitude of new innovations that can surpass the original idea’s potential, particularly
when translated into practical societal applications. In light of this notion, the contributions
in this thesis focus on advancing SRR in combination with qMRI and joint patient motion
correction.

4.1 Introduction

4.1.1 Resolution challenges in MRI

The fundamental goal of MRI is to create detailed images of the internal structures of
the body based on the signals emitted by hydrogen nuclei in an external magnetic field
(cf. Chapter 2). While there is often a preference for obtaining a high-resolution three-
dimensional (3D) volumetric image for accurate medical diagnosis, the limitations imposed
by acquisition time constraints and hardware constraints can render direct full 3D
acquisition infeasible or ineffective. In such cases, it is common practice to acquire a
set of two-dimensional (2D) slices, and combine these in a so called 2D multi-slice image.
The advantage of 2D multi-slice images, compared to full 3D acquisitions, is that it is
possible to interleave the acquisition of slices. That is, while waiting for the relaxation of
the magnetization of a slice, (a part of) the k-space of the other slices can be excited and
recorded. In general, when the repetition time (TR) of a sequence is limited by the T1 decay,
it is possible to acquire 2D multi-slice images significantly faster than full 3D images with
the same resolution (Zimmerman et al., 2000). Moreover, 2D multi-slice images might be
less influenced by object motion.

Still, MRI acquisitions are bound to the trade-off between spatial resolution, SNR, and scan
time. Acquiring a 2D multi-slice image at high resolution (i.e. smaller voxel size) might allow
observation of finer details, but typically results in a reduction of the SNR, as the power of
the signal scales approximately linearly with the imaged volume. Yet, a minimum level of
SNR is required to distinguish the signal of interest from the noise. Improving SNR can be
achieved through signal averaging across multiple acquisitions. However, this extends the
acquisition time, incurring additional costs, causing discomfort for the patient, and inducing
motion artifacts in the images. Additionally, the slice thickness in a 2D multi-slice image is
constrained by the slice-selection pulse, which is determined by hardware limitations coupled
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with pulse sequence timing considerations, making the acquisition of thin slices not always
feasible. Consequently, 2D multi-slice images are often acquired with high in-plane
resolution but lower resolution in the slice-selection (through-plane) direction, resulting
in anisotropic voxels (see Fig. 4.1). On the one hand, the acquisition of thick slices is
beneficial as it increases the SNR, again since the signal scales approximately linearly with the
imaged volume. On the other hand, however, thick slices give rise to partial volume effects
(PVEs) (see Fig. 4.1), meaning that multiple tissues within an imaged voxel contribute to the
observed signal of that respective voxel. In such instances, the voxel intensity not only depends
on the pulse sequence and tissue characteristics but also on the proportions of each tissue
type present in the voxel. Hence, these PVEs can introduce significant errors in quantitative
brain measurements, such as estimates of brain (tissue) volumes (González Ballester et al.,
2002).

Figure 4.1: Illustration of in-plane resolution and through-plane resolution in a 2D multi-slice
acquisition. Column (a): A high-resolution image with isotropic resolution , column (b): a low-
resolution multi-slice image acquired with slice selection along the z-axis, and column (c): a
low-resolution multi-slice image acquired with slice selection along the y -axis. Notice how the axial
slice view of column (a) appears more noisy compared to the axial view of the low-resolution image
in column (b), due to the lower SNR of the high-resolution scan, as signal intensity scales linearly
with the voxel size. As a consequence of partial volume effects, also a blurring of intensities at tissue
boundaries occurs in the low-resolution images (b) and (c).
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4.1.2 Resolution enhancement techniques

In an attempt to address the challenge of achieving high-resolution isotropic 3D MRI images,
several approaches have been introduced that try to enhance spatial resolution. Hardware
improvements, such as increasing the number of receiver coils or increasing the main
magnetic field strength, directly increase the observed MR signal and intrinsic SNR (cf.
section 2.5.3, Eqs. (2.29)-(2.31)). According to Eq. (2.31) in section 2.5.3, it follows that
for a similar SNR value, scanners with a high B0 value or a high number of coil receiver
channels can reduce the ∆x , ∆y , and ∆z voxel dimensions, thereby producing images with
higher spatial resolution and contrast (Regatte & Schweitzer, 2007). As an example, ultra-
high field (UHF) MRI scanners for human MRI are being developed with B0 = 7 T (Feinberg
et al., 2023), B0 = 9.4 T (Ivanov et al., 2023), or even B0 = 11.7 T (Boulant et al., 2023)
reporting resolutions in the µm3 range, as opposed to common MRI resolutions in the mm3

range at B0 = 3 T. However, such scanners are expensive and their strong magnetic fields
pose an increased risk of physiological effects, including transient sensory side effects such as
nausea, dizziness, metallic taste, and light flashes (Ladd et al., 2018), impeding their clinical
use.

In addition, various image post-processing techniques have been introduced that try to
enhance spatial resolution after the image acquisition (Kang & Chaudhuri, 2003; Park et al.,
2003; Farsiu et al., 2004; Greenspan, 2009; Van Reeth et al., 2012). In most MRI machines,
standard interpolation (usually zero-padding) of the k-space data is available to reduce the
voxel size of the images. Applying this interpolation facilitates the visualization but several
artifacts such as blur and contrast loss are added, while no new information is introduced
into the image (Van Reeth et al., 2012). Furthermore, there is a growing focus on resolution
enhancement through artificial intelligence (AI)-based methods, including the development of
deep learning techniques to enhance MRI image resolution (Ding et al., 2020; Roy et al., 2023;
Chen et al., 2023). The effectiveness of such learning-based methods hinges on the quality
of the training datasets and the machine learning models. Often these algorithms require
large datasets for training. The diversity and size of these datasets are crucial in developing
robust AI models that can generalize well to new, unseen images. For learning-based methods
targeting resolution enhancement it is crucial that high-resolution isotropic data is available.
However, obtaining high-resolution data for training is often challenging, as most existing
acquisition protocols prioritize data acquisition with non-isotropic resolution to minimize total
scan time.

Efforts have also been made to employ techniques that reduce scan time, thus enabling
higher resolutions within the same time frame. Accelerated acquisition techniques in-
clude parallel MRI (Griswold et al., 2002; Heidemann et al., 2003; Pruessmann, 2006),
PROPELLER (Pipe, 1999), compressed sensing (Lustig et al., 2007), and simultaneous
multi-slice imaging (Setsompop et al., 2012; Feinberg & Setsompop, 2013; Feinberg et al.,
2013). However, the drawback of SNR loss persists, partly due to scanning with smaller
voxel sizes and partly due to the more complex reconstruction algorithms associated with
these techniques, which inherently involve potential SNR loss. For instance, it is known that
parallel MRI results in a loss of SNR in the reconstructed images by a factor equal to the
square root of the parallel acceleration factor, owing to reduced signal averaging (Robson
et al., 2008). dummytextdummytextdummytextdummytextdummytextdummytextdummy-
textdummytextdummytextdummytextdummytextdummytextdummytext dummytextdummy-
textdummytextdummy textdummytextdummytext dummytextdummytextdummy
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4.1.3 Super-resolution reconstruction

Another very promising approach to enhance spatial resolution, is to use signal processing
techniques to obtain a high-resolution (HR) image from multiple observed low-resolution
(LR) images. One particular method that has been actively studied, and which was first
introduced around the early 1980s as an idea to improve the resolution of image sequences
in video applications (Tsai & Huang, 1980; Kim et al., 1990), is called super-resolution
reconstruction (SRR) (Van Reeth et al., 2012):

The general idea of (multi-frame) super-resolution1 reconstruction states that
multiple low-resolution images of the same object, acquired with slightly different
imaging conditions, can be combined to reconstruct a high-resolution image
that contains additional frequency content. Each of the low-resolution images
transforms and samples the high-resolution scene in a distinct fashion, such that
aliased frequency content between the images can be retrieved. As such, the
spatial resolution can be enhanced beyond the inherent capabilities of the imaging
system (Park et al., 2003; Kang & Chaudhuri, 2003; Tian & Ma, 2011).

Over time, SRR has developed in a research field of its own, with applications in many
real-world problems in different fields, from satellite and aerial imaging to medical imaging,
remote sensing, image or video forensics, and many other fields. A comprehensive survey
of super-resolution (SR) methods, including an algorithm taxonomy classification, has been
given by Nasrollahi & Moeslund (2014), and some noteworthy review papers have been
published over the years (Park et al., 2003; Van Reeth et al., 2012; Plenge et al., 2012; Yue
et al., 2016)

Generally, SRR methods can be categorized based on the number of LR images involved,
the imaging domain employed and the corresponding reconstruction method. In terms of
the number of the LR images involved, single-frame (or single-image) SR and multi-frame
SR methods, can be distinguished. In single-frame SR, an HR image is reconstructed from
a single LR image. Mostly some learning algorithms are employed that try to hallucinate
the missing information of the super-resolved images using the relationship between the
LR image and the HR image from a training database (Dong et al., 2015). However, also
other single-frame SR approaches exist, such as interpolation-based methods (Zhang & Wu,
2006) or reconstruction-based methods (Candocia & Principe, 1999). While single-frame
SR methods present the benefit of a reduced computational complexity and smaller data
storage needs, the ill-conditioned2 nature of the SR problem makes the recovery of the HR
image from a single LR image challenging.

To overcome the drawbacks of single-image SR, multi-frame SR methods have been proposed.
Such methods estimate an HR image by exploiting complementary information from multiple

1Note that the geometric SRR methods discussed in this thesis, should not be confused with super-
resolution restoration or super-resolution fluorescence microscopy. The former referring to the use of
algorithms that operate on a single image in an attempt to recover information beyond the diffraction cut-off
frequency by extrapolation (without changing the amount of pixels/voxels of the original image) (Andrews &
Hunt, 1979), while the latter refers to the range of techniques in optical microscopy that enable imaging
beyond resolutions imposed by the diffraction limit, which is due to the diffraction of light, e.g., the Nobel
Prize winning research of E. Betzig, W.E. Moerner and S. Hell (Betzig et al., 2006; Moerner & Kador, 1989;
Hell & Wichmann, 1994).

2In layman’s terms, an ill-conditioned problem is one where, for a small change in the inputs (the
independent variables) there is a large change in the answer (or dependent variable). This implies that
pinpointing the correct solution or answer to the equation is challenging.
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LR images (Farsiu et al., 2004; Shilling et al., 2009; Poot et al., 2010). Usually these
multi-frame SR methods assume that there is a targeted HR image and the observed LR
images have some relative geometric and/or photometric displacements from the targeted
HR image. These algorithms then exploit the differences between the LR observations to
reconstruct the targeted HR image, and hence are referred to as reconstruction-based
SR algorithms (Nasrollahi & Moeslund, 2014). Reconstruction-based SR algorithms treat
the SR problem as an inverse problem and therefore, like any other inverse problem, need
to construct a forward model. In the case of MRI, this forward model should describe
the imaging process or acquisition of an LR image, as will be elaborated in section 4.2.3.2
hereafter. In contrast to single-frame SR, where the inverse problem is ill-posed3 because the
HR image obtained from the LR image is non-unique or unstable, multi-frame SR techniques
generate superior results (i.e. the recovery of true high frequency content) provided that the
inter-frame motion between the LR images is estimated or known with high accuracy.

Typically, two basic types of multi-frame methods can be distinguished: frequency domain
(Kim et al., 1990; Kim & Su, 1993) and spatial domain (Van Reeth et al., 2012) methods.
Although frequency domain methods can be very efficient, they are not able to incorporate
prior knowledge about the spatial domain in their formulation. Consequently, many spatial
domain methods have been developed (Nasrollahi & Moeslund, 2014), including approaches
based on non-uniform interpolation (Nguyen et al., 2001), iterative back projection (IBP)
(Irani & Peleg, 1993; Greenspan et al., 2002), projection onto convex sets (POCS) (Shilling
et al., 2006, 2009), maximum likelihood (ML) (Elad & Feuer, 1996, 1997; Beirinckx et al.,
2019, 2020), and maximum a posteriori (MAP) estimation (Elad & Feuer, 1996, 1997;
Beirinckx et al., 2022, 2024). The last two methods are of particular interest in this
work.

In the contribution chapters of this thesis, super-resolution reconstruction as a multi-frame
spatial domain approach is studied and applied to medical MRI imaging. The next section
will delve into some specific aspects and considerations essential for the application of SRR
to MRI.

4.2 Super-resolution reconstruction applied to MRI

The first example of SRR applied to MRI was described in a 2001 patent (filed in 1997)
(Fiat, 1997). While SRR has been studied in MRI for different applications, most work
has concentrated on brain MRI (Peled & Yeshurun, 2001; Greenspan et al., 2002; Peeters
et al., 2004; Zhang et al., 2008; Rousseau et al., 2006, 2010; Gholipour et al., 2010). The
reason for this being the fact that SRR is highly dependent on accurate registration of the
different LR images (Robinson & Milanfar, 2006; Lin & Shum, 2004), and because relatively
simple global motion models can be applied to brain MRI, as opposed to MRI of objects that
exhibit more complex often non-rigid motion, e.g. muscle contraction and relaxation in some
organs.

3In mathematics, a well-posed problem is one for which the following properties hold (Hadamard, 1902):

- The problem has a solution.
- The solution is unique.
- The solution’s behavior changes continuously with the initial conditions.

Problems that are not well-posed in the sense above are termed ill-posed.
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4.2.1 Concept and definition

In the context of MRI, the goal of super-resolution reconstruction can be defined as:

The goal of super-resolution reconstruction in MRI is the estimation of a high-
resolution MR image (or high-resolution parameter map(s)) with isotropic resolu-
tion from a set of 2D multi-slice MR images, with a low through-plane resolution
and with varying slice-encoding directions.

Note that for the application to MRI, SRR demands the use of a 2D multi-slice pulse
sequence to provide aliasing via the slice-selection profile along the slice-encoding (i.e.,
through-plane) direction. More specifically, the rationale of SRR is that spatial aliasing
occurring along the slice-encoding direction of a 2D multi-slice image can be exploited
to achieve an increase in resolution along that same dimension (Greenspan et al., 2002;
Van Reeth et al., 2012). Here, aliasing refers to high spatial frequency information that is
being disguised as low frequency information in the 2D multi-slice readout sampling process.
A more detailed description of the theory behind sampling and aliasing in the slice-encoding
direction can be found in the works of Noll et al. (1997) and Pipe (1998). Retrieving aliased
content is the major advantage of SRR over standard interpolation techniques.

4.2.2 Historical misconceptions

Historically, efforts were initially made to employ SRR in both the in-plane (frequency-encoded)
and through-plane (slice-encoding) dimensions of 2D multi-slice MRI acquisitions (Peled &
Yeshurun, 2001; Carmi et al., 2006; Tieng et al., 2011). However, subsequent findings revealed
that while SRR techniques could enhance through-plane resolution, achieving resolution
enhancement in the in-plane dimensions within 2D multi-slice or 3D readouts was
not feasible (Scheffler, 2002; Peled & Yeshurun, 2002; Greenspan et al., 2002; Poot et al.,
2010; Uecker et al., 2011; Plenge et al., 2012). This limitation arises from the Fourier
encoding scheme’s band-limited nature in the frequency and phase encoding directions,
inherently excluding aliasing. Therefore, when defining SRR as the recovery of high-
frequency components corrupted by aliasing (Kang & Chaudhuri, 2003), true resolution
enhancement using SRR is not possible in-plane in 2D readout, nor in 3D readout. The
only viable method for enhancing resolution in the in-plane directions involves the acquisition
of data beyond the k-space span (Luong, 2009), i.e. the k-space coverage as defined by
[−kmax, kmax], with kmax the highest measured frequency.

Whereas the individual slices in a 2D slice stack are Fourier encoded without aliasing, in the
slice-encoding direction there are no inherent limitations on the frequency spectrum,
and aliased frequencies may potentially be recovered. The amount of aliasing depends
on the slice profile which ideally is a rect function for non-overlapping slices (cf. Chapter 3,
section 3.4.6.4). However, since the slice profile is determined by the Fourier transform of
the finite length slice selection pulse, it will be only an approximation of the rect function.
Because of the aliasing present when the object is convoluted with this slice profile, SRR is
possible in the slice-encoding direction.
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4.2.3 Key components

Generally, a number of essential aspects are key when studying SRR. Namely, the choice of SR
acquisition strategy to obtain the images with low through-plane resolution (section 4.2.3.1),
providing an accurate imaging model of the acquisition process (section 4.2.3.2), and the
implementation of an appropriate model-based reconstruction technique to estimate the HR
image (or HR tissue parameter maps) from the acquired LR images (section 4.2.3.3).

4.2.3.1 Acquisition strategies

Since the spatial resolution can only be improved in the through-plane direction, the in-plane
resolution (i.e. in-plane voxel size) is usually chosen higher than the through-plane resolution
(i.e. through-plane voxel size) when acquiring a set of images for SRR. Consequently, the
spatial resolution of the acquired LR images for SRR is anisotropic (see Fig. 4.1). It is
customary to define the latter property in terms of an associated anisotropy factor (AF),
which can be defined as the ratio of the through-plane resolution and the in-plane resolution
(see Fig. 4.4).

Over the years, a plethora of SRR acquisition strategies for MRI have been developed, some
strategies more effective than others. In what follows, the main multi-frame super-resolution
acquisition strategies for MRI are highlighted.

Sub-voxel shift in the through-plan direction In this approach, the LR acquisition matrix
is shifted by sub-pixel distances along the slice-encoding direction for subsequent images
(Greenspan et al., 2002; Ben-Ezra et al., 2009), see also Fig. 4.2. In this sampling
scheme, all LR images sample the same part of k-space, causing the SRR to rely
exclusively on recovering the aliased frequencies in the slice-encoding direction. A
drawback of this method is that the highest frequency regions of k-space are not
sampled in all dimensions (Plenge et al., 2012).

scan 1

scan 2

scan 3

low resolution images

SRR high resolution image

slice encoding direction

Figure 4.2: Schematic representation of the sampling strategy using sub-pixel shifts along the slice
encoding direction. To reach isotropic resolution, a minimum of N low-resolution images is required,
whereby N is equal to the ratio of the through-plane and in-plane resolution.
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Orthogonal slice orientations A second approach consists of acquiring a set of multi-slice
images for which the slice-encoding direction is chosen along the three orthogonal
directions (Souza & Senn, 2008; Gholipour et al., 2010), see also Fig. 4.3. In essence,
this approach improves upon the sub-voxel shift method in terms of coverage of high-
frequencies in 3D k-space. However, for large anisotropy factors, some high-frequency
regions are still not uniformly sampled. This is a dummy line. This is a dummy line.
This is a dummy line. This is a dummy line.

scan 3

scan 2

scan 1

Figure 4.3: Schematic representation of the sampling strategy using three orthogonal multi-slice
image scans for SRR. The coloured box represents the isotropic resolution of the to be reconstructed
HR image.

Slice orientations around a common frequency-encoding axis To guarantee a more uni-
form sampling of higher k-space frequencies, LR images can be acquired with rotational
increments of the slice-encoding direction around a common phase- or frequency-
encoding direction (Shilling et al., 2009; Poot et al., 2010; Plenge et al., 2012). This
is illustrated in Fig. 4.4. As highlighted in Chapter 2, rotation in image space results in
a rotation in frequency domain. As such, acquiring the LR images with different slice
orientations ensures that each LR image covers a different part of k-space. When the
rotation is only performed about one fixed axis (frequency or phase encoding direction),
the k-space can only be sampled in a cylinder with radius 1a , with a the voxel size in
phase or frequency encoding direction (see Fig. 4.4). To limit scan time, the minimal
number of slice orientations that maximally covers the k-space by rotating about the
center, is chosen. Preferably, the cylinder is completely sampled while the overlap
between the different k-spaces is as small as possible. Hence the number of different
slice orientations, N, needed to fill the k-space of the HR imaged object with a minimal
overlap is given by (Plenge et al., 2012):

N = ⌈
π

2
× AF⌉, (4.1)

where ⌈x⌉ denotes the ceiling function that maps x to the smallest integer greater
than or equal to x . The N images are then acquired rotated about the chosen axis
with rotational increments of 180°/N. For example, for AF = 4, this means that
N = ⌈6.2831 . . . ⌉ = 7 different slice orientations are required.
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Figure 4.4: Schematic comparison between image space and k-space (2D and 3D view) for a
multi-orientation low resolution acquisition. The anisotropy of the voxels in image space is defined
by the anisotropy factor, AF = b

a
with b, the slice thickness, and a, the voxel size in the frequency

encoding direction (and phase encoding direction). Since we choose to rotate only around the phase
encoding axis, the k-space can only be sampled in a cylinder with diameter 1

a
.

Which of these acquisition strategies is most optimal?

Recent work by Nicastro et al. (2022), which evaluated the estimation performance of
shift-based and rotated-based multi-slice SR acquisition strategies in a Bayesian framework,
has demonstrated the superiority of the rotated acquisition scheme in terms of accuracy,
precision, and Bayesian mean squared error. Moreover, the rotation-based acquisition scheme
proved to be more resilient to motion. Therefore, in the remainder of this thesis, the
acquisition strategy with rotation of the slice-encoding direction around a common
frequency encoding (or phase encoding) axis will consistently be used. For EPI imaging,
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which is susceptible to geometric distortions along the phase-encoding direction due to its
long readout and low-frequency bandwidth in that dimension, rotation around a common
phase encoding axis is preferred. This approach ensures that geometric distortions and
associated acquisition artifacts occur consistently across all images, minimizing additional
blurring in the super-resolution reconstructed (SRR) result. It also reduces the need for
corrective steps to address varying distortion directions.

4.2.3.2 Imaging model

Since SRR is an inverse problem, it requires a proper imaging model or observation model
that relates the underlying HR image (or HR parameter maps) to the observed LR images.
This imaging model consists of two main parts: a forward model of the physical acquisition
process, and a statistical model that appropriately describes the noise in the observed
magnitude LR data.

Forward model of physical acquisition

Let s = {sn}Nn=1 be the set of the N vectorized noiseless LR 2D multi-slice contrast-
weighted magnitude images, where sn = {snl}Ns

l=1 ∈ RNs×1 is sampled at the LR grid points
yn = {ynl}Ns

l=1 ∈ R3×Ns with Ns the number of anisotropic voxels per LR image. Furthermore,
let rn = {rnj}Nr

j=1 ∈ RNr×1 represent the virtual, noise-free HR image assumed to be acquired
with the same contrast-weighting settings as sn and defined at the targeted HR grid points
x = {xj}Nr

j=1 ∈ R3×Nr , with Nr the number of isotropic voxels of the HR image. Finally, let
An ∈ RNsn×Nrn be a linear operator that defines the transformation of the high resolution
image rn to the low resolution image sn. Then, in its most general form, each sn can be
modelled using the following SRR forward model:

sn = Anrn, (4.2)

or for equal contrast-weighting settings per LR image sn, i.e. when the underlying virtual, noise
free HR image r is assumed identical and anatomical (i.e., scalar) SRR is considered:

sn = Anr, (4.3)

or when the transformation operator An is further decomposed:

sn =DBGnMθnr, (4.4)

where Mθn ∈ RNr×Nr , Gn ∈ RNr×Nr , B ∈ RNr×Nr , and D ∈ RNs×Nr are linear operators
that describe unwanted motion, a known geometric transformation, spatially invariant blurring,
and down-sampling, respectively (see also Fig. 4.5). Each of these operators needs to be
further specified in the context of MRI.
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Figure 4.5: The SRR acquisition forward model.

Unwanted motion A crucial requirement for multi-frame SRR to succeed is that inter-frame
motion between the LR images is known with high accuracy. In addition to the known
geometric transformation resulting from the chosen acquisition strategy (see below),
small unforeseen spatial motion in the LR scans, e.g., due to patient motion, must
also be integrated into the forward model. This unforeseen (or unwanted) motion is
modelled by operator Mθn . The unknown and thus to be estimated motion parameters
are represented by θ = {θn}Nn=1. For the latter, various 3D rigid-body parametrizations
are possible, e.g., using Euler angles (3 translations, 3 rotation angles) or quaternions.
More details about motion compensation are provided in section 4.3 of this chapter
and in the contribution chapters where motion correction is combined with SRR.

Geometric transformation The operator Gn models a known affine4 transformation rep-
resenting the geometric deformation or mapping of the points in the HR space to
the points in the LR space of image sn. Geometric deformation, often called image
warping, is crucial in SRR, since it provides the different views of the same object,
bringing in additional information. Luckily, for MRI, the affine spatial transformations
that serve as input for Gn are known in advance from the chosen acquisition strategy
(cf. section 4.2.3.1). Particularly, the orientation and position of the field-of-view of
the individual LR images is registered during acquisition in the ‘world’ (or scanner)
coordinate system. After reconstruction of the k-space data to image space, the voxel
intensities of the LR image are saved in a standard MRI file format (e.g., DICOM
or NIfTI) and the associated low-resolution-voxel-to-world spatial coordinate trans-
formation (Tn,lrv2w) is stored as a 4 × 4 affine transformation matrix together with
the metadata information of the scan (patient identification, study time, acquisition
info, etc.). Furthermore, as indicated in Eqs. (4.2)-(4.4), the MRI images for SRR are
parameterized as vectors of (anisotropic) voxels, and operators acting on these image
vectors operate through matrix-vector multiplication in so-called voxel space. For

4An affine coordinate transformation between two coordinate systems x ∈ Rn×1 and y ∈ Rn×1 is a
geometric transformation that preserves collinearity and parallelism (i.e., sets of parallel lines remain parallel
after transformation). It is composed of a linear transformation (rotation, scaling/reflection or shears) and a
translation:

y = Hx+ t, (4.5)

where H ∈ Rn×n specifies the linear transformation matrix in n dimensions, and t ∈ Rn×1 specifies the
translation part of the transformation. Alternatively, the augmented affine transformation can be specified
using a single matrix multiplication following an augmented matrix-vector representation:[

y
1

]
= T

[
x
1

]
, with T =

[
H t
0 1

]
. (4.6)
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4.2. Super-resolution reconstruction applied to MRI

operator Gn, the associated transformation should therefore be defined as a voxel-to-
voxel affine transformation. In brief, to accomplish this, it typically suffices to choose
a virtual HR template reconstruction grid5 with isotropic resolution and define its
associated high-resolution-voxel-to-world transformation (Thrv2w). Next, the required
high-resolution-voxel-to-low-resolution-voxel affine transformation can be created from
concatenating both voxel-to-world affine transformations, i.e. (operators acting from
right to left): Tn,hrv2lrv = T−1n,lrv2wThrv2w. Finally, since operator Gn ∈ RNr×Nr inherently
operates in HR space, an additional affine transformation is necessary to create the
corresponding high-resolution-voxel-to-high-resolution-voxel transformation. For this,
both the scaling of the voxel sizes and a small additional translation resulting from the
voxel center shift between a low and high-resolution voxel needs to be compensated
for: Tn,hrv2hrv = Tn,scale-centershiftTn,hrv2lrv, where Tn,scale-centershift is further defined as

Tn,scale-centershift =


vn,1/w1 0 0 (vn,1/w1 − 1)/2
0 vn,2/w2 0 (vn,2/w2 − 1)/2
0 0 vn,3/w3 (vn,3/w3 − 1)/2
0 0 0 1

 (4.7)

with vn = {vn,j} ∈ R3×1 the 3D voxel size of LR image sn (in mm), and w = {wj} ∈
R3×1 the 3D voxel size of the virtual HR image r (in mm).

Blur and PSF modeling The blurring operator B represents the amount of blur added
during the overall acquisition process, and is therefore often assimilated to the blur
introduced by the imaging system. For 2D multi-slice acquisitions that sample a
rectangular part of k-space, the point spread function (PSF) can be assumed separable
and therefore modeled as the product of three separate one-dimensional (1D) PSFs that
are applied in the three orthogonal directions aligned with the MR image coordinate
axes (Poot et al., 2010). The PSFs in the frequency and phase encoding direction
are defined by the rectangular part of the k-space that is regularly sampled, and can
thus be modeled by Dirichlet or periodic sinc functions. The PSF in the slice encoding
direction depends on the slice selection profile. Such slice selection is often performed
by applying either a (windowed) sinc or a Gaussian shaped RF pulse. Therefore, the
sampling in the through-plane direction can be modeled by a (smoothed) box or a
Gaussian function, respectively (Poot et al., 2010).

Down-sampling operator This operator D is required to resample the HR grid to LR grid
with the aim of generating the aliased LR images from the warped and blurred HR
image. The down-sampling only proceeds in the slice-encoding direction, not in the
in-plane directions.

Statistical noise model
Next, the acquired LR images are subject to noise:

s̃n = sn + en, (4.8)

5An easy approach to create the virtual isotropic HR reconstruction grid is to resample one of the input
LR images (e.g., the LR image with 0° slice orientation), using MRtrix3 (Tournier et al., 2019). Particularly,
using the following command: $ mrgrid lrimg_0.nii regrid -scale 1,1,AF hrgrid.nii, which assumes
a prior image conversion to NIfTI format and resampling of the (3rd) slice-encoding dimension with anisotropy
factor AF. Conveniently, this command also updates the affine transformation in the metadata accordingly,
creating the required high-resolution-voxel-to-world (Thrv2w) transformation.
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with en ∈ RNs×1 a vector representing the noise. Depending on the acquisition method,
different noise models need to be applied. When magnitude images are reconstructed from
single-coil k-space data, the noisy voxel intensities can be modeled as Rician6 distributed
random variables (Gudbjartsson & Patz, 1995; den Dekker & Sijbers, 2014). For a multi-coil
acquisition, the magnitude data are governed by a non-central chi distribution (Constantinides
et al., 1997; den Dekker & Sijbers, 2014), or they are again Rician distributed for multi-coil
data acquired with SENSE (Aja-Fernández et al., 2014), or with GRAPPA jointly with a
spatial-matched-filter or the Adaptive Combine method (Walsh et al., 2000). Generally, when
the SNR is high enough (> 3), which is a valid assumption when low-resolution voxels with
larger voxel size are acquired, the aforementioned distributions can be well approximated by a
Gaussian distribution (Gudbjartsson & Patz, 1995; Andersen & Kirsch, 1996; Constantinides
et al., 1997). In contribution chapter 6, a Rician noise model will be assumed, while in
chapters 5 and 7, a Gaussian noise model will be assumed. The reader is referred to these
respective chapters for a more in dept description of both data distributions. Generally, the
use of a Rician noise model is more complicated, since it involves the evaluation of modified
Bessel functions of the first kind (Gudbjartsson & Patz, 1995), for which typically some
polynomial approximations have to be used (Abramowitz, 1974; Press et al., 1992).

Finally, the full imaging model and the sampling of all N multi-slice low-resolution MR images
can be combined into a single matrix multiplication,

s̃ = Ar + e, (4.10)

with

s̃ =


s̃1
s̃2
...

s̃N

 , A =


A1
A2
...

AN

 , e =


e1
e2
...

eN

 . (4.11)

4.2.3.3 Reconstruction

Once the anisotropic LR images are acquired and the imaging model is specified, the actual
reconstruction part of SRR can be performed. The goal is to recover an HR image (or HR
parameter maps) with an isotropic resolution from the set of noisy LR images.

Anatomical SRR

As highlighted in section 3.6 of the previous chapter, different choices of estimators exist.
When the distribution of the data is to be taken into account, the maximum likelihood
estimator (MLE) is the go-to estimator. Assuming zero mean, Gaussian distributed noise,
which is a reasonable assumption when the SNR of the magnitude MRI data is sufficiently

6Note that under the assumption of Rician distributed magnitude data the noise is not additive. Instead,
magnitude data M is considered as the result of a nonlinear transformation of two independent Gaussian
distributed variables corresponding with the real and imaginary components of the raw MR images, as recorded
in k-space and both corrupted with zero mean Gaussian distributed noise (here denoted as N1(0, σ) and
N2(0, σ), with σ the standard deviation of the noise):

M = |(x + N1(0, σ)) + i(y + N2(0, σ))| =
√
(x + N1(0, σ))2 + (y + N2(0, σ))2 (4.9)
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4.2. Super-resolution reconstruction applied to MRI

high (> 3) (Gudbjartsson & Patz, 1995; Andersen & Kirsch, 1996), the MLE of r is given
by (Elad & Feuer, 1997):

r̂ML = argmax
r
L (r|s̃) = argmin

r
(s̃−Ar)T R−1ee (s̃−Ar) , (4.12)

with L (r|s̃) the likelihood function of r given the observed input data s̃, and Ree ∈ RNNs×NNs

the autocorrelation matrix of the Gaussian noise. If all voxels in s are statistically independent
and the noise variance σ2 is assumed to be spatially invariant, Ree = σ

2I with I the identity
matrix. Correspondingly, Eq. (4.12) simplifies to the unweighted least-squares solution:

r̂ML = argmin
r
(s̃−Ar)T (s̃−Ar) . (4.13)

As this solution satisfies the normal equation, the MLE can be written as a closed-form
expression:

r̂ML =
(
ATA

)−1
AT s̃. (4.14)

Unfortunately, for realistic MR image dimensions, the matrices in Eq. (4.14) will be too large
to store explicitly, even as sparse matrices. Therefore, Eq. (4.13) is typically solved by using
iterative optimization algorithms. In time, different iterative optimization algorithms for
SRR have been studied (Plenge et al., 2012), yet no particular method outperformed the
others. For anatomical, linear SRR, the conjugate gradient method7 is a widely used option
that generally reaches convergence quickly (Poot et al., 2010), but also gradient descent
methods using Barzilai-Borwein step size selection are known to exhibit fast convergence
rates (Barzilai & Borwein, 1988). As will also be highlighted in the contribution chapters, to
reduce memory and to increase computational efficiency, the matrix vector multiplications
that are required in these methods are typically evaluated by a function, without storing the
operator matrices explicitly.

Regularized SRR

While the use of iterative reconstruction techniques along with efficient strategies for
implementing forward operator A ∈ RNNs×Nr make SRR feasible from a computational
point-of-view, Eq. (4.13) remains a badly conditioned or even under-determined problem
due to the high resolution at which the image is set to be reconstructed. Certain high
spatial frequencies in the HR grid will not be present in any of the acquired LR images,
which is the reason for Eq. (4.13) being potentially ill-conditioned. In order to remedy this, a
regularization term can be added to Eq. (4.13), which reduces the variance of the solution
(but also introduces a small bias to the solution):

r̂ = argmin
r

[
(s̃−Ar)T (s̃−Ar) + rTKTKr

]
, (4.15)

with K ∈ RNr×Nr specifying the regularization term. As some high frequencies will not be
present in the acquired LR images, a suitable regularization is one that constrains these high
frequencies. In some previous SRR works (Poot et al., 2013; Van Steenkiste et al., 2016,
2017), the squared Laplacian operator was used as a regularization term:

r̂ = argmin
r

[
∥s̃−Ar∥22 + λ∥∆r∥22

]
, (4.16)

7An efficient MATLAB implementation of the conjugate gradient least squares (CGLS) method is
that of M. Saunders et al., adapted from (Paige & Saunders, 1982), which can be found at: https:
//web.stanford.edu/group/SOL/software/cgls/
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with ∆ the Laplace operator, and λ a hyperparameter that determines the weight of the
regularization. The net effect of this type of regularization is a spatial smoothing of the
reconstructed image.

The addition of a regularization term can also be understood within a Bayesian framework,
as will be highlighted in contribution chapters 6 and 7. In Bayesian statistics, regularization
corresponds to incorporating prior knowledge about the solution. The regularization term
rTKTKr of Eq. (4.15) then acts as a prior, penalizing unlikely solutions and thus guiding
the reconstruction towards more plausible outcomes. This approach reduces the solution’s
variance by imposing prior beliefs about the image’s characteristics, such as smoothness or
sparsity, while introducing a small bias consistent with these beliefs. By solving the problem
in this Bayesian context, the regularization not only addresses the ill-conditioned nature
of Eq. (4.13) but also integrates prior knowledge to produce more reliable and robust HR
reconstructions.

Apart from a squared Laplacian prior in Eq. (4.16), which was implemented for contribution
chapters 5 and 7 of this thesis, other regularization types have been proposed, e.g. Total
Variation (TV) based regularization (Rudin et al., 1992; Chambolle et al., 2011), which
assumes that MR images consist of areas which are piecewise constant. Such TV regular-
ization was used in contribution chapter 6. The main benefit of TV models is that they
are very well suited to remove random noise or incoherent noise-like artifacts from random
sub-sampling, while preserving the edges in the image (Knoll et al., 2011). In some practical
MRI situations, however, the assumption of piecewise constancy is not necessary valid due to
the inhomogeneities of the exciting B1 field and the receive coils. Moreover, the use of TV
may lead to staircasing artifacts with unnatural appearance (Knoll et al., 2011). In an attempt
to eliminate the aforementioned restrictions, higher order total generalized variation (TGV)
has been proposed by Bredies et al. (2010), which has been applied in MRI reconstruction
problems to improve the image quality over conventional TV based regularization (Knoll
et al., 2011). Although this type of regularization was not explicitly used in this work, it is
worth noting to the reader.

Other regularization types exist for ill-conditioned image restoration problems, such as
L1-norm wavelet transform regularization. The underlying idea of wavelet regularization
is that natural images such as MRI images tend to be sparse in the wavelet domain. By
minimizing the L1-norm of the wavelet transform, the regularization enforces sparsity in the
reconstructed images, favoring results with only a few significant wavelet coefficients. The
connection between L1 regularization and sparsity has garnered attention in MRI due to
its use in Compressed Sensing (Donoho, 2006; Lustig et al., 2007; Gamper et al., 2008).
Additionally, L1 wavelet regularization has proven effective in other rapid MRI reconstruction
problems (Liu et al., 2008; Guerquin-Kern et al., 2009, 2011).

In addition to the type of regularization model, a reliable method is required to determine
the optimal regularization hyperparameter λ, which plays an important role in balancing
the so-called data-fidelity term and regularization term in Eq. (4.16). When the parameter
λ is too small, the reconstructed HR image will fit the observed LR images properly but
retain noise in homogeneous regions. When the parameter λ is too large, the reconstructed
HR image will be over-smoothed, not only suppressing the noise but also eliminating details
in the HR image. By adjusting the parameter λ, a compromise is achieved to suppress the
noise and preserve the original HR image.
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4.2. Super-resolution reconstruction applied to MRI

Different methods exist for regularization hyperparameter selection, including the L-curve
criterion (Hansen, 1992), Generalized Cross Validation (GCV) (Galatsanos & Katsaggelos,
1992), the unbiased predictive risk estimator (UPRE) (Vogel, 2002), or Morozov’s discrepancy
principle (Morozov, 1966). As an example, Fig. 4.6 demonstrates the hyperparameter
selection using the discrepancy principle, which can be used when some extra information is
available about the variance of the noise vector e. More specifically, Morozov’s discrepancy
principle suggests to choose the regularization parameter λ such that the norm of the residual
corresponding to the regularized solution rλ is approximately equal to the assumed bound
for the noise level δ in the data:

∥s̃−Ar̂λ∥2 ≈ δ, (4.17)

where the left side of the equation refers to the so-called ‘discrepancy’. The discrepancy
principle requires extra information about the noise, which poses a restriction on its us-
ability. Under the (earlier) assumption of Gaussian distributed data with spatially invariant
noise variance σ2, Eq. (4.16) can be extended to the following unconstrained regularized
problem:

r̂λ = argmin
r

[
∥s̃−Ar∥22
σ2

+ λ∥∆r∥22
]
. (4.18)

It can be shown that the expected value of the data fidelity evaluated in the true underlying
HR image follows a chi-squared distribution with M degrees of freedom (Mead, 2020):
E
[
1/σ2∥s̃−Ar∥22

]
∼ χ2M . Since the expected value of any χ2M distributed value x is given

by E [x ] = M, this allows to construct the following constrained optimization problem:

r̂ = argmin
r
∥∆r∥22, subject to

∥s̃−Ar∥22
σ2

= M. (4.19)

Consequently, an appropriate selection of λ is obtained by solving:

λ̂ = argmin
λ

∣∣∥s̃−Arλ∥22 −Mσ2
∣∣ , (4.20)

where rλ follows from Eq. (4.18) and where the degrees of freedom M correspond with the
number of LR voxels in the SRR problem. A drawback of this example is that the reconstruc-
tion in Eq. (4.18) needs to be solved for different values of λ, which can be computationally
demanding and inefficient for large scale reconstruction problems. Consequently, in many
research publications, λ is heuristically set and scaled to the actual SNR of the acquired
data.

Model-based SRR

Up to this point, the assumption was made that the only real difference between the LR
images and the to be reconstructed HR image is spatial resolution and grid orientation.
However, SRR can also be applied for quantitative MRI and be combined with a certain
parametric model for direct quantification of HR parameter maps from a set of contrast-
weighted LR images. The potential of SRR for HR isotropic quantitative parameter mapping
from LR images has been shown for relaxometry (Van Steenkiste et al., 2017; Bano et al.,
2020; Beirinckx et al., 2019, 2020, 2022), diffusion MRI (Van Steenkiste et al., 2016), and
perfusion MRI (Bladt et al., 2017, 2020; Beirinckx et al., 2024). Conceptually, the application
of SRR for qMRI can be seen as an extension of the anatomical acquisition forward model as
described in Eq. (4.4). In particular, a parametric signal model is introduced describing the
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Figure 4.6: Regularization hyperparameter selection using Morozov’s discrepancy principle. The
green annotated reconstruction corresponds with the most optimal selection for λ, as predicted by
Eq. (4.20). Note that for this anatomical SRR example 7 noisy LR images (dimensions 128×128×32,
AF = 4) were generated from a numerical brain phantom (Brainweb, (Cocosco et al., 1997)), with
zero-mean, Gaussian distributed noise, where M corresponded to the number of LR voxels and
σ = s̃1/SNR, with s̃1 the mean signal intensity of the first image and SNR = 4.5.

relationship between the to be estimated parameters and the HR contrast-weighted image.
As highlighted in the previous chapter on qMRI, often such parametric signal models are
nonlinear, so they cannot be represented by a linear matrix operator. Therefore, the MLE
for the SR reconstructed HR parameter maps is given by:

ϑ̂ = argmin
ϑ

(
s̃− Ãf(ϑ)

)T (
s̃− Ãf(ϑ)

)
, (4.21)
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with ϑ ∈ RNparNr×1 the Npar HR parameter maps lexicographically ordered, Npar the number of
different parameters in the signal model function, f(ϑ) ∈ RNNr×1 the N predicted HR images
obtained from letting the signal model function operate on the parameters ϑ, which describe
the physiological conditions for each of the N acquired LR images, and Ã ∈ RNNs×NNr the
matrix projecting the model predicted HR images to the model predicted LR images.

Similar as for Eq. (4.15), regularization can be added to the equation of the model-based
reconstruction problem:

ϑ̂ = argmin
ϑ

(
s̃− Ãf(ϑ)

)T (
s̃− Ãf(ϑ)

)
+ ϑTKTKϑ, (4.22)

with K ∈ RNparNr×NparNr the regularization matrix, which is applied to the lexicographically
ordered parameter maps ϑ in model-based SRR. Now, in this case, a separate regularization
term for each parameter is required to reduce the variance of the solution:

ϑ̂ = argmin
ϑ
∥s̃− Ãf(ϑ)∥22 +

Npar∑
q=1

λq∥∆ϑq∥22, (4.23)

where ϑq ∈ RNr×1 is an HR parameter map, lexicographically ordered, for one of the Npar

parameters in the model function. The balanced selection of multiple hyperparameters
λq poses an added complexity to model-based SRR compared to the selection of a single
regularization hyperparameter λ in anatomical SRR. In addition, the often nonlinear coupling
of the HR tissue parameter maps in the MRI signal models, e.g. in exponential T1 or T2
relaxation models (see preceding chapters), also creates an extra difficulty in the selection.
Some multiple regularization parameter selection approaches have been proposed, often
extensions of single parameter selection strategies (Belge et al., 2002; Gazzola & Reichel,
2016). However, at the time of writing, the application of these methods for quantitative
model-based SRR has not yet been explored. Furthermore, with the advent of AI and
learning-based techniques, there is also a noticeable shift towards reconstruction techniques
that avoid the use of regularization and associated hyperparameter selection altogether, by
learning prior information directly from the training data provided (Lønning et al., 2019;
Sabidussi et al., 2021, 2023).

4.3 The need for robust motion compensation

A crucial condition for SRR is that no motion is present between the separately acquired
LR images. These LR images should be accurately aligned to a small fraction of a voxel
in a common reference frame. However, patient motion typically occurs when the scanned
subject cannot remain still during imaging. This is notably the case for awake neonates,
involuntary moving adult subjects, and fetuses. Moreover, the risk of motion increases when
many LR images are required, such as for model-based SRR for qMRI, which demands the
acquisition of multiple LR images with varying contrast weightings to sample the parametric
signal model.

While some model-based SRR approaches have been proposed without any motion estimation
(Bano et al., 2020), most model-based SRR methods compensate for motion artefacts by
using a pre-processing routine in which the motion parameters of each LR image are updated
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once after registration (Van Steenkiste et al., 2017):
θ̂reg = argmin

θ
C(θ, s̃moving, s̃ref,fixed)

ϑ̂ = argmin
ϑ
∥s̃− Ã(θ̂reg)f(ϑ)∥22 +

Npar∑
q=1

λq∥∆ϑq∥22
(4.24)

where C(θ, s̃moving, s̃ref,fixed) represents a registration cost function that aligns the (moving)
LR images, s̃moving, to a fixed reference image, s̃ref,fixed, updating the motion parameter
set θ → θ̂reg. In a following step, θ̂reg is then fixed in the model-based SRR problem, as
elaborated in Eq. (4.4). As such, the risk of artifacts occurring from incorrect alignment at
the voxel level can be avoided.

However, a downside to the pre-registration approach is the lack of a feedback mechanism
that connects the motion compensation routine with the final estimation of the biophysical
parameters. Once the motion parameters θ̂reg are fixed, potential propagating registration
errors in the SRR step can no longer be corrected for. Clearly, it is more beneficial to use
integrated methods that combine model-based SRR with the joint estimation of motion
parameters so as to reduce potential propagating errors and to allow the biophysical parameter
maps of interest to be estimated with optimal accuracy and precision, i.e.,

{ϑ̂, θ̂} = argmin
ϑ,θ
∥s̃− Ã(θ)f(ϑ)∥22 +

Npar∑
q=1

λq∥∆ϑq∥22. (4.25)
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CHAPTER 5

ABSTRACT

Magnetic resonance imaging (MRI) based T1 mapping allows spatially resolved quantifica-
tion of the tissue-dependent spin-lattice relaxation time constant T1, which is a potential
biomarker of various neurodegenerative diseases, including Multiple Sclerosis, Alzheimer
disease, and Parkinson’s disease. In conventional T1 MR relaxometry, a quantitative
T1 map is obtained from a series of T1-weighted MR images. Acquiring such a series,
however, is time consuming. This has sparked the development of more efficient T1
mapping methods, one of which is a super-resolution reconstruction (SRR) framework in
which a set of low resolution (LR) T1-weighted images is acquired and from which a high
resolution (HR) T1 map is directly estimated.

In this chapter, the SRR T1 mapping framework is augmented with motion estimation.
That is, motion between the acquisition of the LR T1-weighted images is modeled and
the motion parameters are estimated simultaneously with the T1 parameters. Based on
Monte Carlo simulation experiments, we show that such an integrated motion/relaxometry
estimation approach yields more accurate T1 maps compared to a previously reported
SRR based T1 mapping approach.

The work in this chapter has been published as:

Beirinckx, Q., Ramos-Llordén, G., Jeurissen, B., Poot, D. H. J., Parizel, P. M., Verhoye,
M., Sijbers, J., den Dekker, A. J., "Joint Maximum Likelihood estimation of motion
and T1 parameters from magnetic resonance images in a super-resolution framework:
a simulation study", in Fundamenta Informaticae, Vol. 172, no. 2, pp. 105-128, 2020.
doi: 10.3233/FI-2020-1896
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5.1. Introduction

5.1 Introduction

T1 mapping is a quantitative Magnetic Resonance Imaging (MRI) technique that generates
maps of the tissue-specific spin-lattice relaxation time T1 (Deoni et al., 2003). There
is growing evidence that T1 mapping can be applied to detect subtle microscopic tissue
damage, with potential for earlier diagnosis of various brain diseases including multiple sclerosis
(Larsson et al., 1989; Vrenken et al., 2006; Papadopoulos et al., 2010), epilepsy (Conlon
et al., 1988) and Alzheimer’s disease (Erkinjuntti et al., 1987). Despite these promising
results, T1 mapping currently remains a research tool and is not yet part of routine clinical
assessment. The main obstacle for clinical adaptation of T1 mapping is that conventional
T1 mapping techniques require long scan times to achieve adequate accuracy, precision and
spatial resolution.

The gold standard method for T1 mapping, the inversion recovery method, is presented in
Fig. 5.1. When an object is placed in a strong magnetic field, its nuclear spins align to this
magnetic field, resulting in a net magnetic moment oriented in the so-called longitudinal
direction (i.e., the direction parallel to the external magnetic field, corresponding with the
z-direction in Fig. 5.1). Next, this equilibrium state is disturbed by applying a 180◦ radio
frequency (RF) pulse, which inverts the longitudinal magnetization. After this pulse, the
spins start to relax back towards the equilibrium state with a time constant T1 (Taylor et al.,
2016). After inversion time TI, the longitudinal component is tipped into the transverse
plane by a 90◦ RF pulse, after which the (T1-weighted) MR signal is measured. In this way,
T1-weighted images are acquired at different inversion times. Subsequently, a T1 map is
estimated by voxel-wise fitting a parametric model to these images. Since many images are
required in such an acquisition scheme, conventional T1 mapping suffers from long acquisition
times.

A simple way to reduce acquisition time is to lower the number of T1-weighted images. This,
however, results in a loss of precision in the estimated T1 map. Alternatively, a large number
of T1-weighted images can be acquired in a short acquisition time by reducing the acquisition
time of each individual T1-weighted image by lowering their spatial resolution. Commonly,
this is done by acquiring multi-slice images where the slice-thickness is much larger than the
spatial resolution within the slice, i.e., the through-plane resolution is much lower than the
in-plane resolution. Additionally, increasing the slice thickness increases the signal-to-noise
ratio (SNR) of the T1-weighted images, as signal strength scales linearly with imaged volume.
However, thicker slices also suffer from increased partial volume effects, which arise when
different tissues occur within a single voxel. In summary, reducing the acquisition time in
conventional T1 mapping is clearly a trade-off in which faster scanning comes at the cost of
either a lower precision or a lower spatial resolution and increased partial volume effects, of
the resulting T1 map.

To improve this trade-off, a super-resolution reconstruction (SRR) method was recently
proposed that estimates a 3D high resolution T1 map with isotropic voxel size from a
set of low resolution T1-weighted multi-slice images with different slice orientations and
anisotropic voxel size (Van Steenkiste et al., 2017). These low resolution images are acquired
at a high in-plane resolution and a low through-plane resolution. It was shown that this
method indeed provides a better trade-off between resolution, precision and acquisition time
than direct high-resolution acquisition (Poot et al., 2010). In this approach, motion was
compensated for by adjusting the transformation parameters constituting the motion operator
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Figure 5.1: A: Inversion Recovery Sequence: The longitudinal net nuclear magnetization vector
is inverted by a 180° pulse. After inversion time TI, the longitudinal component is tipped into
the transverse plane by a 90° pulse, after which the (T1-weighted) MR signal is measured. By
acquiring multiple MR signals (images) at different inversion times, the recovery of the longitudinal
magnetization towards its equilibrium value can be sampled. The time between two repetitions of
the sequence, i.e. the time between the inversion pulses, is called the repetition time TR. B: Effect
of the inversion recovery sequence on the net nuclear longitudinal magnetization vector Mz ′ as seen
in the RF-rotating frame. B0 represents the external magnetic field vector. (a) Initial net nuclear
longitudinal magnetization in alignment with B0, (b) the 180° inverts the longitudinal magnetization
Mz ′ , (c)-(d) the longitudinal magnetization Mz ′ relaxes and recovers to equilibrium, (e) after an
inversion time TI the relaxing longitudinal magnetization Mz ′ is tipped into the transverse plane by
a 90° pulse before readout.
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in a preprocessing step, and fixing these parameters in the SR-T1 estimation routine that
followed. Fixing the motion parameters, however, may lead to inaccurate (i.e., biased) T1
maps since no feedback mechanism is present in the SR-T1 estimation routine that can
undo incorrect fixation of motion parameters. As such, errors that potentially exist in the
motion estimation step might propagate into the T1 estimation. At the same time, another
recent work has proposed a unified Maximum Likelihood framework for simultaneous motion
and T1 estimation in non-super-resolution T1 mapping (Ramos-Llordén et al., 2017). It was
demonstrated that the joint incorporation of the relaxation model, the motion model as well
as the data statistics provide substantially more accurate motion and T1 parameter estimates.
In the present chapter, we explore, by means of simulation experiments, the potential of
combining both approaches, resulting into joint Maximum Likelihood estimation of T1 and
motion in a super-resolution framework.

The remainder of this chapter is organized as follows. In Section 5.2, the image acquisition
model, the proposed joint Maximum Likelihood estimator (MLE) and its implementation
are described. Section 5.3 describes the simulation experiments, of which the results are
presented and discussed in Section 5.4. Finally, in Section 5.5 conclusions are drawn.

5.2 Theory

The proposed method starts from a set of N T1-weighted multi-slice images, each with a
different slice direction. The multi-slice images, which are assumed to have a high in-plane
resolution and a low through-plane resolution, will be referred to as the low resolution (LR)
images. That is, the slice thickness, or through-plane voxel size, is larger than the in-plane
voxel size, leading to anisotropic voxels. The method then estimates a high-resolution
(HR) T1 map with isotropic voxels from a set of LR multi-slice T1-weighted images and
simultaneously estimates the motion between the acquisition of these LR images.

In the derivation of the imaging model, we will assume that the LR T1-weighted images are
acquired with a multi-slice inversion recovery (IR) conventional spin echo (SE) sequence,
being the gold standard sequence for T1 mapping (Hahn, 1949; Drain, 1949; Crawley &
Henkelman, 1988).

5.2.1 MR imaging model

Let T1 = (T1(j)) ∈ RNr×1 be the vector containing the values of the unknown T1 map at the
HR grid points {xj} (with xj ∈ R3×1 and j the HR voxel index, j = 1, . . . , Nr ). Furthermore,
let sn ∈ RNs×1, with n = 1, . . . , N, denote the vector containing the intensities of the
noiseless LR T1-weighted multi-slice image with slice direction n, acquired with inversion time
TIn, and sampled at the LR grid points {ynl} (with ynl ∈ R3×1 and l the LR voxel index,
l = 1, . . . , Ns). To derive the mathematical relation between the HR T1 map of interest, T1,
and the LR image sn, we now first introduce the virtual, noise free, HR T1-weighted image
rn = (rn(j)) ∈ RNr×1, which is assumed to be acquired with the same inversion time TIn as
sn and sampled at the (nonrotated) HR grid points of T1.

Then, rn can be modeled as a function of T1 and a quantity ρ = (ρj) ∈ RNr×1, which is
proportional to the proton density (Bernstein et al., 2004):

rn(j) = ρ(j)
(
1− 2e−

TIn
T1(j)

)
, (5.1)
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where we have assumed a perfect inversion pulse of 180◦ and a repetition time TR≫ T1. In
the remainder of this chapter, T1 and ρ will be referred to as relaxation model parameters
to be estimated.

Mathematically, we can now express the LR image sn as the result of applying a sequence of
operators on the virtual HR image rn:

sn =DBGnMθnrn, (5.2)

with Mθn ∈ RNr×Nr , Gn ∈ RNr×Nr , B ∈ RNr×Nr and D ∈ RNs×Nr linear operators
that describe, respectively, unintended motion, a known geometric transformation, spatially
invariant blurring, and downsampling. In this contribution, we assume the unintended motion
Mθn to be rigid, parameterized by

θn = (txn, tyn, tzn, αn, βn, γn)
T , (5.3)

with txn, tyn, tzn the translation parameters and αn, βn, γn the Euler angles of three elementary
rotation matrices that describe rotation around the x , y and z axis, respectively. The
superscript T in Eq. (5.3) denotes the transpose operation. In the present contribution, we
use the same implementation of the rigid motion operator Mθ as in (Ramos-Llordén et al.,
2017), where they used the fact that rotation matrices can be decomposed as the product of
three shear matrices. Each of the shearings can be implemented efficiently with Fast Fourier
Transforms (FFT). Translation is implemented using the FFT as well. The operator Gn
applies a known geometric transformation that models the image acquisition with a specific
slice direction. More specifically, operator Gn models the SRR acquisition, in which multiple
LR T1-weighted images at different orientations are acquired by rotation of the acquisition
plane for each image around one fixed encoding axis. In our implementation, operator Gn is
a simplified version of Mθ that models rotation around one fixed encoding axis. However,
whereas Mθn models the effect of unintended motion, which is unknown and has to be
estimated from the data, the geometric transformation Gn is known and determined by the
prescribed slice direction of the LR image sn.

The blurring operator B describes the point spread function (PSF) of the MRI acquisition
process, which can be modeled as tensor product of the PSF in three orthogonal directions:
the through-plane (i.e., slice-selection) direction and the two in-plane directions, which are
known as the phase- and frequency-encoding direction. We currently consider the PSF in
the through-plane direction only. This through-plane PSF depends on the slice selection
method. In this incipient contribution, the operators B and D describing spatially invariant
blurring and downsampling, respectively, are combined into one operator D that performs
downsampling by averaging along the through-plane direction (Li et al., 2014). Details
about this specific D operator (and corresponding adjoint operator) are given in Appendix
5.A.

For convenience of expression, we define An =DGnMθn , and rewrite (5.2) as

sn = Anrn, (5.4)

with An = (an(l , j)) ∈ RNs×Nr . By combining Eqs. (5.1) and (5.4), the noiseless signal in
voxel l of the LR T1-weighted image can be described in terms of the HR maps T1 = (T1(j))

and ρ = (ρ(j)):

sn(l ;T1,ρ) =

Nr∑
j=1

an(l , j)ρ(j)
(
1− 2e−

TIn
T1(j)

)
. (5.5)
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In this contribution, we will assume that magnitude images are acquired, as is common
for spin echo IR sequences. The voxel intensities of magnitude images reflect only the
magnitude of the longitudinal magnetization, disregarding polarity (Tofts, 2004). Hence, in
the absence of noise, the magnitude images are described by |sn|, with | · | the point-wise
modulus operator.

Obviously, real-world images will be subject to noise. In this contribution, the noise is assumed
to be additive, zero mean Gaussian noise. It has been shown that this is a valid assumption
when the signal-to-noise ratio of the magnitude data is sufficiently high (> 3) (Gudbjartsson
& Patz, 1995; Andersen & Kirsch, 1996; Constantinides et al., 1997; den Dekker & Sijbers,
2014), which is typically the case for the LR images. Hence, if we denote the acquired LR
magnitude images by s̃n ∈ RNs×1, our image acquisition model can be described as

s̃n = |Anrn|+ en, n = 1, . . . N, (5.6)

with en ∈ RNs×1 a vector containing zero mean Gaussian noise contributions.

5.2.2 The joint Maximum Likelihood estimator

Having derived the imaging model in section 5.2.1, this section will describe the model-based
SRR framework that estimates an HR ρ and T1 map (ρ and T1, respectively) simultaneously
with the motion parameters θn, n = 1, . . . , N, from a set of LR images {s̃1, s̃2, . . . , s̃N},
using a joint Maximum Likelihood estimator (MLE). The MLE is chosen because it is
asymptotically unbiased, efficient (i.e., most precise) and consistent (van den Bos, 2007).
The MLE fully exploits prior knowledge on the statistical distribution of the data. In our case,
the data consists of the voxels of the LR images. These voxels can be modeled as random
variables that, due to the presence of noise, fluctuate about their expected values which
are described by the model |Anrn| that was derived in section 5.2.1. Assuming additive,
zero-mean Gaussian distributed noise, the PDF of a voxel s̃n(l), with l = 1, . . . , Ns , of the
image s̃n is given by:

ps̃n(l)(s̃n(l);T1,ρ,θn) =
1

σ
√
2π
e−
(s̃n(l)−sn(l ;T1 ,ρ,θn))

2

2σ2 , (5.7)

with σ the standard deviation of the noise, which in this contribution is assumed to be spatially
and temporally invariant. Assuming all voxels of all T1-weighted LR images statistically
independent, the joint PDF of all voxels is given by:

ps̃(̃s;T1,ρ,θ) =

N∏
n=1

Ns∏
l=1

ps̃n(l)(s̃n(l);T1,ρ,θn), (5.8)

with s̃ = (s̃T1 , . . . , s̃
T
N)
T and θ = (θT1 , . . . ,θ

T
N)
T . To simplify the notation, let us define the

parameter vector τ = (T T1 ,ρ
T ,θT )T .

To construct the MLE of τ , the likelihood function L(τ |̃s), which is the joint PDF of
(5.8) regarded as a function of the unknown parameter vector τ (with s̃ fixed), is needed.
The MLE τ̂ML of the parameter vector τ from measured data s̃ is that value of τ that
maximizes the likelihood function L(τ |̃s), or equivalently, the so-called log-likelihood function
Ls̃(τ |̃s) ≜ logL(τ |̃s), with respect to τ , i.e.,

τ̂ML = argmax
τ
Ls̃(τ |̃s). (5.9)
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It follows from Eq. (5.8) that the log-likelihood function can be written as

Ls̃(τ |̃s) = −NNs ln
(√
2πσ

)
−
1

2σ2

N∑
n=1

Ns∑
l=1

(s̃n(l)− sn(l ;T1,ρ,θn))
2. (5.10)

Hence, the ML estimator τ̂ML is equal to the ordinary (unweighted) least-squares estima-
tor:

τ̂ML = argmin
τ
J(τ ), (5.11)

with

J(τ ) =

N∑
n=1

Ns∑
l=1

(s̃n(l)− sn(l ;T1,ρ,θn))
2 . (5.12)

The non-linear optimization problem in Eq. (5.11) can be solved using the alternating
minimization method, also known as the cyclic block-coordinate descent (cBCD) method
(Fessler & Kim, 2011; Beck & Tetruashvili, 2013). In this method, the parameter vector
τ is split into blocks and the cost function J(τ ) is successively minimized with respect
to each block in a cyclic order. In our case, we use a split into two blocks that contain
the motion parameters and relaxation model parameters, respectively. In this way, the
large-scale optimization problem in Eq. (5.11) is separated into more easily solvable problems
(Ramos-Llordén et al., 2017). Moreover, it can be shown that this cBCD method assures
a convergence property where J(τ ) decreases at every iteration (Fessler & Kim, 2011).
Convergence to at least a local minimum is guaranteed (Fan et al., 1998). In summary, the
joint MLE is obtained by the following iterative recursive procedure:

θ̂(t+1) = argmin
θ
J(T̂1

(t)
, ρ̂(t),θ) (P.1)

T̂1
(t+1)
, ρ̂(t+1) = arg min

T1,ρ
J(T1,ρ, θ̂

(t+1)) (P.2)

with θ̂(0) = θini, ρ̂(0) = ρini and T̂1
(0)
= T1ini the initial values of the parameters θ, ρ and

T1, respectively. By its definition, this procedure produces a nonincreasing sequence of
cost function values (Beck & Tetruashvili, 2013). The procedure is terminated when the
number of iterations exceeds tmax or when E(t) < Emin, where E(t) = J(τ̂ (t−1)) − J(τ̂ (t)),
and consecutive iterations are started from E(0) = rEmin, with r ∈ R>1. The pseudo-code of
the joint MLE algorithm is presented in Algorithm 1.

5.2.3 Implementation

For the proposed joint MLE algorithm, in which the non-linear optimization problem is solved
in alternating fashion between problems (P.1) and (P.2), the motion estimation problem
(P.1) adopts a particularly simple structure when the relaxation model parameters are fixed.
Assuming no dependence of {θn}Nn=1 through index n, as is done here, the motion estimation
problem can be decoupled into N independent minimization problems that can be evaluated
in parallel. In the absence of additional information, a natural choice for the initialization of
the motion parameters in the first iteration is a zero-motion initial condition such that the
rigid motion operator Mθini = I, with I the identity matrix. Initial values ρini and T1ini were
obtained by voxel-wise NLLS fitting the modulus of the relaxation model in Eq. (5.1) to the
upsampled LR images with a Levenberg-Marquardt (Nocedal & Wright, 2006) algorithm,
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5.2. Theory

Algorithm 1: Joint MLE
Input: LR images s̃ and initial values θini, ρini and T1ini
Output: ML estimates θ̂ML, T̂1ML and ρ̂ML

Set t ← 0 and θ̂(0), T̂1
(0)
, ρ̂(0) ← θini,ρini,T1ini;

E(0) = rEmin, with r ∈ R>1;
while E(t) ≥ Emin and t < tmax do

Solve (P.1) to get θ̂(t+1):

θ̂(t+1) = argmin
θ
J(T̂1

(t)
, ρ̂(t),θ), started from θ ← θ̂(t);

Solve (P.2) to get ρ̂(t+1), T̂
(t+1)
1 :

T̂1
(t+1)
, ρ̂(t+1) = arg min

T1,ρ
J(T1,ρ, θ̂

(t+1)), started from T1,ρ← T̂ (t)1 , ρ̂
(t);

Calculate E(t+1) = J(T̂1
(t)
, ρ̂(t), θ̂(t))− J(T̂1

(t+1)
, ρ̂(t+1), θ̂(t+1));

Set t ← t + 1;
end

θ̂ML = θ̂(t), T̂1ML = T̂1
(t)

and ρ̂ML = ρ̂(t);
return θ̂ML, T̂1ML, ρ̂ML;

using the MATLAB routine lsqnonlin. Upsampling was performed using the adjoint operator
sequence GTnD

T
acting on the LR images s̃n, followed by application of | · |, the point-wise

modulus operator, to regain magnitude images.

The cost functions of LS problems (P.1) and (P.2) were minimized with a trust-region Newton
algorithm using the MATLAB routine fminunc. Explicit analytical gradients were supplied
for LS problem (P.1), while both explicit analytical gradients and implicit Hessian matrix
elements (in the form of a matrix multiplication routine) were supplied for LS problem (P.2).
The matrix multiplications in Eq. (5.2) were implemented by splitting the transformation
operators Mθn and Gn in sets of shear operations, each of which can be efficiently applied
as a filtering operation in the frequency domain (Ramos-Llordén et al., 2017).

The computational complexity of the joint MLE algorithm is primarily defined by the FFT
operations that are part of the implementation of operators Gn and Mθn in Eq. (5.2). Using
that a Q element 1D FFT has computational complexity of O (Q log2(Q)), we derived
that a single step of problem (P.1) required O

(
69M3 log2(M

2) + 5M6 log2
(
M6
))

floating
point operations, given that Gn and Mθn operate on HR images with isotropic dimensions
M ×M ×M. This includes the operations introduced by the explicit analytical expressions
for the gradient of the objective function of problem (P.1) w.r.t. motion parameters θn.
Furthermore, the given number of floating point operations should be multiplied by a factor
N−1, since problem (P.1) is optimized in parallel manner. In addition, a single step of problem
(P.2) requires O

(
N ·
(
48M3 log2(M

2) + 4M6 log2
(
M6
)))

floating point operations. This
number also includes the additional FFT operations introduced by the analytical gradient and
Hessian expression for the objective function w.r.t. the T1 parameters. The computational
requirements of operator D were less demanding with one call of operator D calculated up
to 10 times faster than Gn, and up to 50 times faster than Mθn , for the considered phantom
size.
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5.3 Simulation experiments

In this section, we describe the Monte Carlo (MC) simulation experiments that were carried
out to evaluate the performance of the proposed joint MLE and to compare it with:

• SRR-T1: SR least squares (LS) estimation without motion correction. In this approach,
the motion is simply ignored. That is, the least-squares criterion (Eq. (5.12)) is
minimized with respect to the relaxation model parameters only, while fixing the motion
parameters at θ = 0.

• SRR-T1-MI: Mutual Information (MI) based registration prior to SR LS estimation.
In this approach, the LR images {s̃1, s̃2, . . . , s̃N} are first upsampled by applying the
adjoint operator ATn . Next, the upsampled (HR) images are registered using a mutual
information image similarity metric (Mattes et al., 2003; Pluim et al., 2003). The
motion parameters that result from this procedure are then substituted in the LS
criterion (Eq. (5.12)), which is then minimized with respect to the relaxation model
parameters only.

• SRR-T1-PRE: SRR T1 mapping described in (Van Steenkiste et al., 2017). In this
approach, the motion parameters are estimated in a preprocessing step prior to the
estimation of the HR T1 and ρ map. For this purpose, an iterative model-based motion
correction scheme is used. First, the LR images {s̃1, s̃2, . . . , s̃N} are upsampled by
applying the adjoint operator ATn . The first time that this upsampling is performed,
the motion operator Mθn that co-constitutes A is set equal to the identity matrix.
Next, a T1 and ρ map are estimated by voxel-wise fitting the modulus of model (5.1) to
these upsampled images, using the Levenberg-Marquardt algorithm. Based on the thus
obtained HR T1 and ρ maps, LR images are generated using model (5.5). These LR
images are then rigidly aligned with the LR images {s̃1, s̃2, . . . , s̃N} by minimizing their
mean squared difference. The resulting motion parameter estimates are then used to
update Mθn . All steps are repeated until the stopping criterion is met with Emin = 10

−4.
The motion parameters are then fixed and a HR T1 and ρ map is estimated using a LS
estimator, with as initial values for T1 and ρ the values that resulted from the motion
correction procedure.

Details about the specific simulation settings for each of the described MC simulation
experiments are summarized in Table 5.1. Information about the initialization of (P.1) and
(P.2) is also summarized in Table 5.1 for each simulation experiment. To perform realistically
adequate simulation experiments, a set of 2D multi-slice IR-SE T1-weighted LR images
affected by inter-image motion (as in Eq. (5.6)) and noise was modeled from the ground
truth T1 and proton density maps. These ground truth maps were based on a simple cubic
12 × 12 × 12 numerical phantom that was adopted from (Van Steenkiste et al., 2017).
The phantom maps consisted of distinct regions, representing grey and white matter tissue
parameters that were characterized using reported T1 and ρ (proton density) values in human
brain tissue at 3T (Wright et al., 2008). The ground truth T1 values for grey and white
matter were 1607 ms and 838 ms, respectively, while those for ρ were set at 0.86 and 0.77
for the respective regions. An overview of this numerical phantom, which we refer to as
Phantom 1, is shown in Fig. 5.2.

From these ground truth T1 and ρ maps, a set of N = 14 noiseless LR T1-weighted magnitude
images was simulated using the forward model (5.6). The dimensions of each LR image were
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5.3. Simulation experiments

Table 5.1: Simulation settings for the different Monte Carlo experiments: SR LS estimation without
motion correction (SRR-T1), Mutual information based registration prior to SR LS estimation
(SRR-T1-MI), SRR T1 mapping with preprocessing loop (SRR-T1-PRE), the proposed Joint MLE
(SRR-T1-JMLE).

SRR-T1 SRR-T1-MI SRR-T1-PRE SRR-T1-JMLE

Dimension of HR maps 12× 12× 12 12× 12× 12 12× 12× 12 12× 12× 12
Dimension of LR images 12× 12× 6 12× 12× 6 12× 12× 6 12× 12× 6
Spatial SNR SNR∈[20, 30, . . . , 100]a SNR∈[20, 30, . . . , 100]a SNR∈[20, 30, . . . , 100]a SNR∈[20, 30, . . . , 100]a

Number of images N 14 14 14 14
Inversion times TIn [s] TIn ∈ [0.1, . . . , 8]b TIn ∈ [0.1, . . . , 8]b TIn ∈ [0.1, . . . , 8]b TIn ∈ [0.1, . . . , 8]b

# slice orientations 7 7 7 7
# TI per slice orientation 2 2 2 2
Slice orientation angles [°] 0:(180/7):154.28 0:(180/7):154.28 0:(180/7):154.28 0:(180/7):154.28
Initialization of (P.1) n/a MI registrationc preprocessing loopd zero-motion ICe

Initialization of (P.2) vw-NLLS-LMf vw-NLLS-LMf vw-NLLS-LMf vw-NLLS-LMf

Optim. algorithm of (P.1) n/a n/a, fixedg n/a, fixedg trust-region Newtonh

Optim. algorithm of (P.2) trust-region Newtoni trust-region Newtong,i trust-region Newtong,i trust-region Newtoni

aDuring simulations, nine different SNR values were studied ranging from 20 to 100, sampled with step size 10.
bEach of the LR images {θn}Nn=1, with N = 14, had a unique inversion time TIn. The logarithms of these inversion times
{TIn}Nn=1 were equidistantly spaced between T1 = 0.1s and T14 = 8s.
cThe upsampled LR images are pairwise registered using MATLAB’s imregtform function (MATLAB, 2017). During the
rigid registration process, the number of multi-level image pyramid levels is equal to two, and the first image of the series is
chosen as a reference, hence θ1 = 0. The one-plus-one evolutionary optimizer configuration is used, for which the number
of iterations is set to a very high value (> 5000) to ensure convergence of the motion parameter estimation. The remaining
MI registration parameters are set to the default values of the MATLAB built-in code. Assuming no dependence of the
motion parameters {θn}Nn=1 through the index n, the different pairwise registration problems can be decoupled into N − 1
sub-problems, which can be implemented very efficiently with MATLAB parallel computing tools.
dPreprocessing loop: the iterative model-based motion correction scheme is used, as described in (Van Steenkiste et al.,
2017).
ezero-motion IC: In the absence of additional information, a natural choice for the initialization of the motion parameters in
the first iteration is a zero-motion initial condition (IC) such that the rigid motion operator Mθini = I, with I the identity
matrix.
fvw-NLLS-LM: voxel-wise NLLS fitting the modulus of relaxation model in (5.1) to upsampled LR images with Levenberg-
Marquardt algorithm, using MATLAB’s lsqnonlin routine, with the initial estimate per voxel chosen equal to [ρ, T1] =

[0.5, 1.5]. Upsampling was performed using the adjoint operator sequence GT
nD

T
followed by application of | · |, the

point-wise modulus operator.
gProblem (P.2) is solved for the relaxation model parameters only, while fixing the motion parameters at those that result
from the initialization procedure.
hMATLAB’s fminunc routine, implemented with explicit analytical expressions for the gradient of the objective function.
iMATLAB’s fminunc routine, implemented with explicit analytical expressions for the gradient of the objective function and
implicit Hessian matrix elements (in the form of a matrix multiplication routine).
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Figure 5.2: Phantom 1: Overview of the ground truth HR maps, and visualization of the downsam-
pling along the slice dimension for one LR image.
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equal to 12× 12× 6. The anisotropy factor (AF) was equal to 2. This AF is defined as the
ratio between the through-plane slice thickness and the (isotropic) in-plane voxel size in the
frequency encoding and phase encoding direction, see also Fig. 5.3. For each LR image N,
the translational shifts txn, tyn, tzn and Euler angles αn, βn, γn that define the rigid motion
parameters {θn}Nn=1 in Eq. (5.3) were generated randomly from a uniform distribution on
the interval [−1, 1] (voxel units) and [−5, 5] degrees respectively. The reference image was
chosen to be s̃1, hence θ1 = 0. The same set of randomly generated rigid motion parameters
was used for all simulation experiments. Furthermore, MATLAB’s intrinsic coordinate system
is used to represent 3D images, for which the origin is chosen at the center of the 3D
image.

To account for wraparound artefacts that stem from the use of FFT to perform rotations,
appropriate zeropadding was performed in each direction. Furthermore, it should be noted
that since in our simulations the M ×M ×M discrete sampled image volume to be rotated
had an even number of sampling points in each direction (i.e., M was even), the FFT based
procedure required an extra multiplication with an exponential phase factor to obtain real
values after rotation (Larkin et al., 1997).

To fully recover the HR information, the LR images need to contain complementary informa-
tion about the phantom. Rotation in image space corresponds to a rotation in frequency
domain. As previously argued (Plenge et al., 2012), acquiring the LR images with different
slice orientations ensures that each LR image covers a different part of k-space (Fig. 5.4).
In this way, the LR data will contain high spatial frequencies in all three dimensions. This
approach results in more effective sampling of k-space than shifting the LR images by subpixel
distances along the slice selection direction. In the latter case, the SR reconstruction result
relies heavily on the success of recovering the aliased high frequency in the slice direction,
since the narrow slice selection frequency band covers exactly the same part of the k-space
for each LR image. Similar to the acquisition protocol in (Van Steenkiste et al., 2016, 2017),
the rotation of the LR images was performed around the virtual phase encoding axis in
increments of 180/No degrees, with No the number of slice orientations. Aiming at a short
acquisition time, the number of slice orientations was kept low, but sufficiently high to ensure
that the k-space is maximally covered. In particular, the number of slice orientations was
fixed to 7, corresponding to having two different LR T1-weighted magnitude images per
slice orientation. An overview of the slice orientations and corresponding inversion times
(TI), combined with their coverage of k-space is shown in Fig. 5.4. Each LR T1-weighted
magnitude image had a unique inversion time, with TIn ∈ [0.1, . . . , 8]s, where the TIs were
sampled equidistantly in log-space.

After fixing the motion parameters and acquisition geometry, downsampling by averaging
and the application of the point-wise modulus operator for magnitude images in accordance
with Eq. 5.6, zero mean white Gaussian noise was added to the LR images. The noise level
was chosen to obtain SNR values between 20 and 100, where SNR is the ratio of the spatial
mean of the LR image with the highest TI and the standard deviation of the noise. For each
SNR, NMC = 140 realizations of sets of LR images were generated. For each realization, a
HR T1 and ρ map as well as the motion parameters θ were estimated.

The different simulations experiments were implemented in MATLAB (MATLAB, 2017), and
run on a computer with an Intel i7-6850K hexa-core CPU @ 3.6 GHz and 32 GB of RAM.
The proposed joint MLE simulation experiment for the numerical phantom required around 4
GB RAM (allocated memory usage), and for a fixed tolerance of Emin = 10

−4, on average
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Figure 5.3: Schematic comparison between image space and k-space (2D and 3D view) for a
multi-orientation low resolution acquisition. The anisotropy of the voxels in image space is defined
by the anisotropy factor, AF = b

a
with b, the slice thickness, and a, the voxel size in the frequency

encoding direction (and phase encoding direction). Since we choose to rotate only around the phase
encoding axis, the k-space can only be sampled in a cylinder with diameter 1

a
.

Figure 5.4: Overview of the slice orientations of the LR images and corresponding inversion times
TIn (top row) and the k-space sampling strategy (middle and bottom row). The middle row shows
the k-space sampling of seven individual LR images, each having a different slice orientation, whereas
the bottom row shows the overlap in k-space when those images are combined. The shaded area
denotes the sampled k-space, while the white region is not sampled.
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about 14 alternating MLE iterations were needed to ensure convergence of the optimization
process. In order to run the series of MC simulations quickly and efficiently, the University of
Antwerp’s High Performance Computing core (HPC) facility CalcUA was used.

To assess the performance of each method to estimate the T1 map, the following performance
measures were used (Ramos-Llordén et al., 2017):

(a) Relative bias. The bias quantifies the accuracy or, equivalently, the systematic error
of the estimator (van den Bos, 2007). For each voxel, the relative sample bias was
calculated as ( ¯̂T1−T1)/T1, where ¯̂T1 is the sample mean of the NMC estimates T̂1 and
T1 is the true value. A measure of the overall accuracy of the T1 map was obtained by
calculating the spatial mean of the absolute value of the relative sample bias.

(b) Relative standard deviation. The standard deviation quantifies the precision, or,
equivalently, the non-systematic error of the estimator (van den Bos, 2007). For each
voxel, the relative sample standard deviation was calculated as std(T̂1)/T1, and an
overall precision measure was obtained by taking the spatial mean of these relative
sample standard deviations.

(c) Relative root-mean-square error (relative RMSE). The RMSE is a measure that
incorporates both accuracy and precision. For each voxel, the relative sample RMSE

was calculated as
√
(T̂1 − T1)2/T1. An overall RMSE measure was obtained by

calculating the spatial mean of these relative sample RMSE values.

By substitution of ρ for T1, the performance of each method to estimate the ρ map was
assessed in an identical way using measures (a)-(c).

To assess the ability of the proposed method to estimate motion, the following performance
measure was used:

(d) Motion component root-(mean)-mean-square error (RMMSE), defined as√√√√ 1

N − 1

N∑
n=2

(
[θ̂n]j − [θn]j

)2
, (5.13)

with [θn]j the jth component of θn and [θ̂n]j the sample mean of the NMC estimates
[θ̂n]j .

To supplement the results of Phantom 1, also a second, more challenging phantom was
created (Fig. 5.5), which consisted of distinct grey and white matter tissue regions that
included both uniform regions and checkerboard patterns, combined with horizontal and
vertical planar structures. This second phantom will be referred to as Phantom 2. The same
ground truth T1 values as for Phantom 1 were used to characterize grey and white matter
voxels. The different Monte Carlo experiments were repeated for Phantom 2 for a fixed
spatial SNR = 50, keeping the other simulation settings identical as for Phantom 1. The
reconstruction results of both phantoms were visually compared w.r.t. their respective ground
truth T1 parameter maps. For each phantom and for each method, an average T1 map was
calculated by voxel-wise averaging over all NMC reconstruction results for SNR = 50.
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Figure 5.5: Phantom 2: Overview of the ground truth HR maps, and visualization of the downsam-
pling along the slice dimension for one LR image.

5.4 Results and discussion

Figs. 5.6-5.8 summarize the statistical performance results that were obtained from the
simulation experiments for Phantom 1. Fig. 5.6(a-c) and Fig. 5.7(a-c) show the overall relative
sample bias, standard deviation and RMSE for all considered estimators of, respectively, T1
and ρ, as a function of the SNR. The results clearly show that for the SRR-T1 method
without motion correction, the estimation of the relaxation model parameters performs poorly
in terms of accuracy and precision, with high relative bias and high relative standard deviation,
thereby underlining the importance of a proper motion estimation framework. Furthermore,
SRR-T1-MI also shows a poor performance. In terms of precision, SRR-T1-MI performs
even worse than SRR-T1. This observation is quite remarkable. It may reflect the limitations
of intensity-based image registration when it comes to registering images of largely different
contrast, which have been reported earlier (Xue et al., 2012; Roujol et al., 2015). The poor
performance of the SRR-T1-MI method may also be partly due to its implementation. In our
implementation, the LR magnitude images were naively upsampled using the adjoint operator
ATn followed by application of the point-wise modulus operator. The latter preserves the
magnitude characteristic of the resulting HR images after upsampling. However, information
loss is inherent and unavoidable in this upsampling process, partially due to the non-existence
of an adjoint modulus operation, and this might impede correct intensity-based registration
of these HR images in the next step. Finally, the small size of the images considered in
our simulation experiment may also play a role, as SRR-T1-MI may be more sensitive to
the image size than the other methods considered. Next, the SRR-T1-PRE method clearly
improves the estimation results, both in terms of accuracy and precision. For low SNR
values, this method shows even a better relative standard deviation than the SRR-T1-JMLE
approach, as can be observed from Fig. 5.6(b) and Fig. 5.7(b). However, this lower precision
of the proposed SRR-T1-JMLE is more than compensated by its higher accuracy, resulting in
the superior performance of SRR-T1-JMLE in terms of relative RMSE over the whole range
of SNR values.

Fig. 5.8 shows the motion component RMMSE for each of the six rigid motion components
as a function of the SNR. SRR-T1-JMLE clearly outperforms the other methods (SRR-
T1, SRR-T1-MI, and SRR-T1-PRE) in terms of the motion component RMMSE. This is
particularly visible for the rotation parameter components α,β,γ, in the lower bottom half
of Fig. 5.8. It is worth emphasizing once more that the motion parameter problem in the
SRR-T1-JMLE method was initialized from a zero-motion initial condition, i.e. Mθini = I,
with I the identity matrix. This also highlights the robustness of the SRR-T1-JMLE method
for poor motion initialization scenarios. The quantitative performance measures for Phantom
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2, for a fixed spatial SNR = 50, are summarized in Table 5.2. Results with this new phantom
are very similar to those obtained with Phantom 1, underlining the superior performance of
SRR-T1-JMLE in terms of relative RMSE and motion component RMMSE.
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Figure 5.6: Results of the simulation experiments for Phantom 1: (a) relative T1 bias, (b) relative
T1 standard deviation, (c) relative T1 RMSE, as a function of SNR. Error bars correspond with the
standard error of the spatial mean, but are omitted when their size matches the order of the graph
symbol size.
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Figure 5.7: Results of the simulation experiments for Phantom 1: (a) relative ρ bias, (b) relative
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Figure 5.8: Results of the simulation experiments for Phantom 1, showing the motion component
RMMSE for each of the six rigid motion components, as a function of SNR. Error bars are omitted
when their size matches the order of the graph symbol size.

Table 5.2: Quantitative performance measures for Phantom 2, calculated over all NMC = 140

reconstruction results for SNR = 50, for the different Monte Carlo experiments: SR LS estimation
without motion correction (SRR-T1), Mutual information based registration prior to SR LS estimation
(SRR-T1-MI), SRR T1 mapping with preprocessing loop (SRR-T1-PRE), the proposed Joint MLE
(SRR-T1-JMLE).

SRR-T1 SRR-T1-MI SRR-T1-PRE SRR-T1-JMLE

Overall rel. T1 bias [%] 71± 3 42± 2 6.3± 0.1 1.83± 0.03
Overall rel. T1 std. dev. [%] 8.0± 0.5 46± 2 0.51± 0.01 2.50± 0.03
Overall rel. T1 RMSE [%] 72± 3 67± 3 6.4± 0.1 3.21± 0.04
Overall rel. ρ bias [%] 16.1± 0.3 15.2± 0.3 2.23± 0.04 0.309± 0.005
Overall rel. ρ std. dev. [%] 1.44± 0.05 9.6± 0.1 0.204± 0.001 0.686± 0.005
Overall rel. ρ RMSE [%] 16.4± 0.3 19.1± 0.2 2.25± 0.04 0.772± 0.006
RMMSE of tx [voxel units] n/a 0.59± 0.06 0.06± 0.01 0.014± 0.002
RMMSE of ty [voxel units] n/a 0.53± 0.06 0.10± 0.02 0.011± 0.002
RMMSE of tz [voxel units] n/a 0.54± 0.05 0.05± 0.02 0.010± 0.001
RMMSE of α [degrees] n/a 2.1± 0.1 0.93± 0.07 0.055± 0.004
RMMSE of β [degrees] n/a 1.9± 0.1 0.91± 0.07 0.068± 0.004
RMMSE of γ [degrees] n/a 2.4± 0.1 1.54± 0.09 0.060± 0.005
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Figure 5.9: Visual comparison of the performance of the different SRR methods: SRR-T1 (row
1), SRR-T1-MI (row 2), SRR-T1-PRE (row 3), and our proposed SRR-T1-JMLE (row 4). On the
left, three orthogonal slices of the T1 map obtained by voxel-wise averaging over all NMC = 140

reconstruction results for SNR=50. On the right, histograms showing the voxel data distribution of
the corresponding full 3D T1 parameter map estimates for the different simulation experiments. The
ground truth T1 values for grey and white matter, 1607 ms and 838 ms respectively, are marked
with vertical lines.
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Figure 5.10: SRR-T1-JMLE reconstruction result for Phantom 2: Ground Truth (row 1), SRR-
T1-PRE (row 2), SRR-T1-JMLE (row 3). On the left, three orthogonal slices of the T1 map
obtained by voxel-wise averaging over all NMC = 140 reconstruction results for SNR=50. On the
right, histograms showing the voxel data distribution of the corresponding full 3D T1 parameter map
estimate. The ground truth T1 values for grey and white matter, 1607 ms and 838 ms respectively,
are marked with vertical lines.
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Finally, to provide a visual comparison of the performance of the different methods, for
each method an average T1 map was calculated by voxel-wise averaging over all NMC

reconstruction results for SNR = 50. Fig. 5.9 shows the resulting average T1 maps for
three orthogonal slices (sagittal, axial and coronal planes) of Phantom 1, accompanied by
histograms of the voxel data distribution of the corresponding full 3D average T1 maps.
The number of histogram bins was specified at 200. Note that the grey and white matter
phantoms considered have histograms consisting of two distinct peaks corresponding with
the ground truth T1 values of both tissues. From Fig. 5.9, for Phantom 1, it is clear that
only with SRR-T1-PRE and SRR-T1-JMLE, these peaks can be distinguished. Moreover,
Fig. 5.9 clearly shows that the block-wise homogeneous structure of the phantom is best
reconstructed by SRR-T1-JMLE. The same observations can be made for Phantom 2, for
which the results of the visual comparison are shown in Fig. 5.10.

Overall, the results clearly demonstrate the superior performance of the SRR-T1-JMLE
method in terms of accuracy and relative RMSE for both motion and T1 and ρ estimation.
This is also supported by the visual comparison presented in Fig. 5.9 and Fig. 5.10, where
SRR-T1-JMLE clearly outperforms the other estimation frameworks.

In the outline of the MR imaging model under paragraph 5.2.1, the voxel intensity values of
the HR images rn were modeled by a three-parameter T1 model (Eq. (5.1)) that depends on
T1 and ρ, for given inversion times TIn (Bernstein et al., 2004). It should be noted that if
the assumptions that substantiate the choice of this model, i.e. perfect inversion pulse of
180◦ and a repetition time TR≫ T1, are invalid in practice, the proposed joint MLE method
can still be used, but the model should be extended so as to avoid biased results. Such
an extension may include the introduction of additional unknown model parameters to be
estimated from the data (Barral et al., 2010), which may have a negative influence on the
precision. This well-known trade-off between bias and precision should always been taken
into account in model selection.

According to the computational complexity of the SRR-T1-JMLE algorithm described in
section 5.2.3, increasing the volume size of the images, i.e. choosing a larger region-of-
interest (ROI), will result in longer computation times, as the number of floating point
operations increases. As a possible solution to this problem, the ROI could be split in
several blocks (with overlap to avoid edge artifacts), where the HR relaxation parameters are
reconstructed in each block separately. This would allow parallelization of estimation problem
(P.2), which would considerably reduce the computational complexity, memory consumption
and computation time of the SRR-T1-JMLE method.

5.5 Conclusion

Quantitative MR T1 mapping suffers from long acquisition times with high risk for patient
motion artefacts, resulting in poor accuracy of estimated T1 relaxometry parameters. In this
contribution, we explored the potential of augmenting a recently proposed super-resolution re-
construction method for MRI T1 mapping with simultaneous motion estimation in a maximum
likelihood framework. Super-resolution reconstruction provides a better trade-off between
resolution, precision and acquisition time than conventional direct high-resolution acquisition.
By extending super-resolution reconstruction with simultaneous motion estimation, potential
bias in the estimated T1 map caused by motion can be substantially reduced compared
to motion correction by preprocessing. By means of Monte Carlo simulation experiments,
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our newly proposed method was quantitatively compared against a ground-truth T1 map
together with three other approaches. The results were analysed using statistical performance
measures and by performing a visual comparison. In conclusion, the results of these simulation
experiments demonstrate that our newly proposed joint relaxometry and motion estimation
approach yields more accurate T1 maps than a previously reported SRR based T1 mapping
approach, in which motion registration is applied as a preprocessing step prior to T1 mapping.
Future work will focus on the validation of the proposed joint MLE method on real data
scenarios, the development of advanced blurring operators for the acquisition model, and
the extension of the motion model to non-rigid or affine motion. In addition, it is also
worthwhile to investigate intra-image motion correction strategies and to further customize
the alternating optimization scheme.

Acknowledgments

The authors gratefully acknowledge support of the Industrial Research Fund of the Antwerp
University Association, the European Space Agency and BELSPO Prodex (BrainDTI), the
Research Foundation Flanders (FWO Belgium) through project funding G084217N and
12M3116N.

Appendices

5.A Downsampling and upsampling operators

In the buildup of the forward model (5.4) encapsulated in operator A, operators B and
D describing spatially invariant blurring and downsampling, respectively, are combined into
one operator D that performs downsampling by averaging (Li et al., 2014). Conventionally,
downsampling keeps one sample out of a block and discards the remaining samples, whereas
blurring takes into consideration the point spread functions of the MRI acquisition process.
Downsampling by averaging is used here. For example, downsampling by a factor of 2 in 1D
has matrix form,
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1
2

1
2

1
2

1
2

. . .
. . .





...
x[0]
x[1]
x[2]
x[3]

...


=
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x[0]+x[1]
2

x[2]+x[3]
2
...

 . (5.A.1)

In the spatial (i.e. image) domain, this downsampling from a discrete vector x[n] to y[n]
can be written in more compact form as

y[n] =Dx[n] =
1

M

M−1∑
m=0

x[nM +m], (5.A.2)

where M corresponds with the anisotropy factor AF, defined as the ratio of the through-plane
slice thickness and the (isotropic) in-plane voxel size.
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Implementing the iterative recursive procedure described by problems (P.1) and (P.2) benefits
from having adjoint operators. Interestingly, upsampling is the adjoint of downsampling.
Conventionally, upsampling with zero insertion is used, we use upsampling with replication.
For example, upsampling by a factor of 2 in 1D has matrix form,

1

2



. . .

. . . 1

1

1

1
. . .
. . .




...

y[0]
y[1]

...

 =


...
1
2y[0]
1
2y[0]
1
2y[1]
1
2y[1]

...


. (5.A.3)

The upsampling matrix is the transpose of the downsampling matrix in Eq. (5.A.2). We can
write the upsampled x[n] from y[n] as

x[n] =D
T

y[n] =
1

M
y
[⌊ n
M

⌋]
, (5.A.4)

where the floor function ⌊·⌋ gives the largest integer less than or equal to its argument.
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CHAPTER 6

ABSTRACT

Quantitative Magnetic Resonance (MR) imaging provides reproducible measurements
of biophysical parameters, and has become an essential tool in clinical MR studies.
Unfortunately, 3D isotropic high resolution (HR) parameter mapping is hardly feasible in
clinical practice due to prohibitively long acquisition times. Moreover, accurate and precise
estimation of quantitative parameters is complicated by inevitable subject motion, the risk
of which increases with scanning time. In this chapter, we present a model-based super-
resolution reconstruction (SRR) method that jointly estimates HR quantitative parameter
maps and inter-image motion parameters from a set of 2D multi-slice contrast-weighted
images with a low through-plane resolution. The method uses a Bayesian approach,
which allows to optimally exploit prior knowledge of the tissue and noise statistics. To
demonstrate its potential, the proposed SRR method is evaluated for a T1 and T2
quantitative mapping protocol. Furthermore, the method’s performance in terms of
precision, accuracy, and spatial resolution is evaluated using simulated as well as real brain
imaging experiments. Results show that our proposed fully flexible, quantitative SRR
framework with integrated motion estimation outperforms state-of-the-art SRR methods
for quantitative MRI.

The work in this chapter has been published as:

Beirinckx, Q., Jeurissen, B., Nicastro, M., Poot, D. H. J., Verhoye, M., den Dekker, A. J.,
Sijbers, J., “Model-based super-resolution reconstruction with joint motion estimation for
improved quantitative MRI parameter mapping", Computerized Medical Imaging & Graphics,
Vol. 100, pp. 102071, 2022. doi: 10.1016/j.compmedimag.2022.102071
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6.1. Introduction

6.1 Introduction

In recent decades, magnetic resonance imaging (MRI) has evolved from a qualitative imaging
tool to a quantitative measurement method. Whereas qualitative MRI relies on the subjective
interpretation of tissue contrast, quantitative MRI (qMRI) aims to measure reproducible and
objective maps of biophysical parameters, which allows the comparison of measurements
across subjects and sites, or over time (e.g., longitudinal follow-up of patients). Indeed,
biophysical parameters measured by qMRI, such as relaxation times and diffusion metrics, are
increasingly used as biomarkers for neurological diseases (Seiler et al., 2021), in quantitative
musculoskeletal imaging (de Mello et al., 2019), or in qMRI-guided radiotherapy (van Houdt
et al., 2021). Unfortunately, despite its broad range of potential applications, qMRI is not
widely used in clinical practice. This is mainly because qMRI requires a series of MR images
with different contrast weightings to estimate the biophysical parameter maps of interest
and suffers from long scan times to provide accurate and precise parameter maps at 3D
isotropic high spatial resolution. Methods have been proposed that enable reconstruction
from highly under-sampled images and hence speed up image acquisition, such as model-
based reconstruction (Maier et al., 2019), low-rank approaches (Zhang et al., 2015), or the
imposition of sparsity constraints (Zhao et al., 2012). However, they generally come at the
cost of either a lower precision or a lower spatial resolution of the reconstructed parameter
maps.

To break the trade-off between resolution, precision and acquisition time, super-resolution
reconstruction (SRR) has been put forward (Greenspan et al., 2002; Van Reeth et al., 2012).
In this approach, high-resolution (HR) 3D isotropic images are estimated from a set of
multi-slice images with a high in-plane but low through-plane resolution, where the multi-slice
images are acquired with either sub-voxels shifts in the through-plane direction (Greenspan
et al., 2002), three orthogonal slice orientations (Rousseau et al., 2006; Gholipour et al.,
2010; Scherrer et al., 2012; Sui et al., 2021), slice orientations rotated around a common
frequency encoding axis (Shilling et al., 2009), or arbitrary slice orientations (Poot et al.,
2010b). SRR has indeed been shown to provide a better trade-off between acquisition time,
spatial resolution, and signal-to-noise ratio (SNR) than conventional direct HR acquisition
(Plenge et al., 2012). Meanwhile, SRR has also been successfully applied to different qMRI
modalities, including diffusion MRI (Poot et al., 2013; Fogtmann et al., 2014; Van Steenkiste
et al., 2016), relaxometry (Van Steenkiste et al., 2017; Bano et al., 2020; Lajous et al.,
2020) and arterial spin labeling (Bladt et al., 2020). In some of these approaches, HR images
are individually reconstructed from a set of equally contrast-weighted LR images, prior to
voxel-wise fitting a parametric qMRI signal model (e.g., a diffusion model or relaxation model)
to these reconstructed HR images (Poot et al., 2013; Lajous et al., 2020), whereas in other
approaches the qMRI signal model is included in the reconstruction and HR parameter maps
are estimated directly from the LR images, without first reconstructing the individual HR
contrast weighted images (Fogtmann et al., 2014; Van Steenkiste et al., 2016, 2017; Bano
et al., 2020).

In addition to the challenge of 3D isotropic HR parameter mapping, the long qMRI scan
times come with an increased risk of patient motion. If this motion is not properly accounted
for, the spatial resolution of the obtained parameter maps will be negatively affected. Like
conventional qMRI methods, SRR methods for qMRI usually correct for motion by performing
image registration as a pre-processing step, prior to the estimation of the HR parameter
maps (Van Steenkiste et al., 2016, 2017), where the latter step is often preceded by an

145



CHAPTER 6

intermediate step of HR image reconstruction (Scherrer et al., 2012; Poot et al., 2013). A
downside to this multi-step approach is the lack of a feedback mechanism that connects the
motion compensation routine with the final estimation of the HR parameter maps. As a
result, registration errors may propagate into the parameter estimation step, introducing a
bias (Nachmani et al., 2019).

To avoid error propagation, image registration can be integrated in a joint motion/qMRI
parameter estimation framework. This strategy has already been successfully applied to
correct inter-scan motion in T1 mapping (Ramos-Llordén et al., 2017) or to correct for motion
in multi-shell diffusion MRI (Christiaens et al., 2021). At the same time, methods have been
proposed that combine SRR with joint motion estimation for anatomical (qualitative) MRI
(Rousseau et al., 2006, 2010; Jiang et al., 2007; Gholipour et al., 2010; Fogtmann et al.,
2012; Kainz et al., 2015; Ebner et al., 2020). However, until now, the development of a
unified motion estimation/SRR approach for qMRI has received little attention (Fogtmann
et al., 2014; Beirinckx et al., 2020).

In the present contribution, we propose a multi-frame model-based SRR method for multi-
parametric quantitative MRI with integrated inter-image motion estimation in a Bayesian
Maximum a Posteriori (MAP) estimation framework. As a guiding application, we focus on
MR relaxometry, but the method’s modular construction ensures an easy adaption to other
qMRI modalities. The novelty of the method lies in its unique combination of properties
that makes it stand out from existing SRR methods in qMRI. First, by combining super-
resolution image reconstruction and quantitative parameter estimation in a single integrated
model-based approach, 3D HR biophysical parameter maps are estimated directly from a
set of multi-slice differently contrast-weighted LR images, which distinguishes our method
from two-step qMRI SRR approaches that reconstruct individual HR images from equally
contrast-weighted LR images prior to voxel-wise fitting a qMRI signal model (e.g. a relaxation
model or diffusion model) to these reconstructed images (Poot et al., 2013; Lajous et al.,
2020). Second, the joint estimation of the motion and the biophysical parameters of interest
allows our method to outperform state-of-the-art qMRI SRR algorithms that either do not
correct for motion (Bano et al., 2020), or work with decoupled motion estimation algorithms
(Van Steenkiste et al., 2017). Third, unlike state-of-the-art SRR methods in qMRI that rely
on orthogonal slice orientations and use the same set of contrast weightings for each slice
orientation (e.g., Fogtmann et al., 2014), our method allows for arbitrary slice orientations
and a different contrast weighting for each LR image, offering a much-increased imaging
flexibility. Finally, its Bayesian estimation approach allows our method to optimally exploit
prior knowledge of tissue properties and noise statistics, as opposed to standard regularized
least-squares methods (Poot et al., 2010b; Van Steenkiste et al., 2017; Bano et al., 2020;
Lajous et al., 2020).

To demonstrate its potential, the proposed unified quantitative SRR method is evaluated
for T1 mapping and T2 mapping. Its performance in terms of accuracy, precision and mean
squared error is extensively validated using synthetic whole brain simulations. Finally, the
applicability of the SRR method is demonstrated on in-vivo brain data and its performance
on brain structure delineation (spatial resolution) is evaluated.
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6.2 Theory

This section introduces the forward model of the SRR problem considered in this contribu-
tion. It describes the relation between the LR images and the HR parameter maps to be
reconstructed and accounts for unintended motion. Furthermore, the Bayesian Maximum a
Posteriori (MAP) estimator is introduced that is used to estimate the HR maps jointly with
the motion parameters, accounting for the MR data distribution and using a total variation
(TV) prior for the HR maps and a non-informative prior for the motion parameters.

Remarks on notation - In the following paragraphs, we slightly deviate from the more
conventional notation often used in Bayesian statistics. Typically, random variables are
denoted by uppercase letters (e.g., X), while their realizations are represented by lowercase
letters (e.g., x). However, in this work, we have adopted different conventions, which should
be clear from the context and accompanying explanations. We hope this slight deviation
does not cause any confusion and appreciate your understanding.

6.2.1 Forward model

Let s = {sn}Nn=1 be the set of N vectorized noiseless anisotropic LR multi-slice contrast-
weighted magnitude images, where sn = {snl}Ns

l=1 ∈ RNs×1 is sampled at the LR grid points
yn = {ynl}Ns

l=1 ∈ R3×Ns with Ns the number of voxels per LR image. Then, each sn can be
modelled as:

sn = |DBGnMθnrn| , (6.2.1)

where | · | denotes the pointwise modulus operator and rn = {rnj}Nr

j=1 ∈ RNr×1 represents
the virtual, noise-free HR image assumed to be acquired with the same contrast-weighting
settings as sn and defined at the targeted isotropic HR grid points x = {xj}Nr

j=1 ∈ R3×Nr ,
with Nr the number of voxels of the HR image. Furthermore, Mθn ∈ RNr×Nr , Gn ∈ RNr×Nr ,
B ∈ RNr×Nr , and D ∈ RNs×Nr are linear operators that describe motion, a known geometric
transformation that maps the grid coordinates of the HR image rn to those of the LR image
sn, spatially invariant blurring, and down-sampling, respectively. The motion operator Mθn is
modeled as a parametric function of θn. Assuming rigid inter-image motion, the parameter
vector θn ∈ R6×1 is given by

θn = [txn, tyn, tzn, αn, βn, γn]
T , (6.2.2)

with txn, tyn, tzn the translation parameters and αn, βn, γn the Euler angles of three elementary
rotation matrices that describe rotation around the x , y and z axis, respectively. The operator
Gn models the SRR acquisition scheme. In the SRR acquisition scheme considered in this
work, the LR images each have a different slice orientation, where the different orientations
are obtained by rotating around a fixed encoding axis. Detailed descriptions of the warping
operator Mθn , which is analytically differentiable w.r.t. θn, as well as the operators Gn, B,
and D are included as part of the supplementary material.

In qMRI, one is not so much interested in the voxel intensities of the HR images rn, but
rather in the values of the underlying biophysical tissue parameters in those voxels, such
as the proton densities and T1 and T2 relaxation times. Let ϑ = {ϑq}Qq=1 ∈ RNr×Q be
the biophysical parameter maps to be inferred, with ϑq = {ϑqj}Nr

j=1 ∈ RNr×1 the qth tissue
parameter map and ϑ•j ∈ RQ×1 all tissue parameters of the j th voxel of ϑq. Then, the j th
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voxel of the HR image rn, can be modelled as

rnj = fn(ϑ•j) (6.2.3)

with fn(ϑ•j) : RQ×1 7→ R a relaxometry, diffusion, or perfusion model, or any other qMRI
model that describes the relation between rnj and the underlying biophysical tissue parameters
ϑ•j in the corresponding voxel. In the current contribution, the proposed SRR method is
evaluated for T1 and T2 relaxometry, using the signal models described in section 6.3. The
forward model of the SRR reconstruction problem considered in this contribution is obtained
by substituting Eq. (6.2.3) in Eq. (6.2.1). The parameters to be estimated are the parameter
maps ϑ and motion parameters θ = {θn}Nn=1.

6.2.2 Joint Bayesian estimation framework

6.2.2.1 Bayes theorem

Let s̃ = {s̃n}Nn=1 ∈ RNs×N denote the set of N measured LR multi-slice images with
s̃n = {s̃nl} ∈ RNs×1. Following a Bayesian approach, both the data s̃ and the parameters
{ϑ,θ} to be estimated are modeled as random variables, where Bayes’ theorem gives an
expression for the posterior distribution of the parameters given the data:

p (ϑ,θ|s̃) =
p(s̃|ϑ,θ)p(ϑ)p(θ)

p(s̃)
, (6.2.4)

with p(s̃|ϑ,θ) the likelihood function of the data, p(ϑ) and p(θ) the prior distributions that
encapsulate the prior knowledge about ϑ and θ, respectively, and p(s̃) a scaling factor that
can be ignored since it does not affect the estimator that will be described below.

6.2.2.2 Maximum a posteriori estimator

The MAP estimator maximizes p(ϑ,θ|s̃) w.r.t. the parameters {ϑ,θ}:

{ϑ̂, θ̂} = argmax
ϑ,θ
p(ϑ,θ|s̃). (6.2.5)

Eq. (6.2.5) is typically solved by minimizing the negative logarithm of p(ϑ,θ|s̃).

6.2.2.3 Likelihood function

Without loss of generalization, the measured LR images s̃ are assumed to be Rician distributed,
which is a valid noise model for magnitude images reconstructed from single-coil k-space data
(den Dekker & Sijbers, 2014), for images reconstructed from multi-coil data with SENSE
(Aja-Fernández et al., 2014), or with GRAPPA jointly with a spatial-matched-filter or the
Adaptive Combine method (Walsh et al., 2000). Then, the probability density function (PDF)
of s̃nl is given by:

p(s̃nl |ϑ,θn) =
s̃nl

σ2nl
e
−
s̃2
nl
+s2
nl
(ϑ,θn)

2σ2
nl I0

(
s̃nlsnl(ϑ,θn)

σ2nl

)
u(s̃nl), (6.2.6)

with I0(·) the zeroth order modified Bessel function of the first kind, and σnl the non-
stationary (i.e. spatially-dependent) standard deviation of the Gaussian noise disturbing the
complex data underlying the magnitude MR data. The unit step function u(·) is used to
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indicate that (6.2.6) is non-zero for non-negative values of s̃nl only. Assuming all voxels to
be statistically independent, the joint PDF of s̃ is given by

p(s̃|ϑ,θ) =
N∏
n=1

Ns∏
l=1

p(s̃nl |ϑ,θn). (6.2.7)

When (6.2.7) is viewed as a function of the unknown parameters {ϑ,θ} given the data s̃,
it is called the likelihood function. It follows from (6.2.6) and (6.2.7) that the negative
log-likelihood function Ls̃ ≡ − log p(s̃|ϑ,θ) can be written as (Sijbers et al., 1998)

Ls̃(ϑ,θ|s̃) =
N∑
n=1

Ns∑
l=1

[
− log s̃nl + logσ2nl +

s̃2nl
2σ2nl

+
s2nl(ϑ,θn)

2σ2nl

− log I0
(
s̃nlsnl(ϑ,θn)

σ2nl

)]
. (6.2.8)

Furthermore, it is assumed that the noise standard deviations can be estimated prior to
the construction of the MAP estimator of {ϑ,θ} using tailored noise estimation routines
(Aja-Fernández et al., 2015; Pieciak et al., 2017; Maitra & Faden, 2009; Bouhrara et al.,
2017).

6.2.2.4 Prior distributions

For each of the Q HR tissue parameter maps associated with ϑ, a discretized upwind TV
prior (Chambolle et al., 2011) is chosen. TV is renowned for preserving edges and reducing
noise by penalizing large intensity variations, promoting smooth regions while maintaining
essential structures. In MRI, preserving sharp edges is crucial for accurate diagnosis and
interpretation, and denoising is vital in SRR to enhance resolution without amplifying noise.
The upwind scheme, considering gradient direction, further enhances edge preservation by
accurately capturing discontinuities and avoiding artificial smoothing along edges:

p(ϑq) ∝ exp{−
2

λq
TV(ϑq)}, with q = 1, . . . , Q, (6.2.9)

where λq > 0 denotes the hyperparameter to be selected by the user, as will be discussed in
section 6.2.2.6, and with

TV(ϑq) =
∑
j


√√√√√√ϵ

2 + (∆x,+(ϑqj))
2 + (∆x,−(ϑqj))

2

+ (∆y,+(ϑqj))
2 + (∆y,−(ϑqj))

2

+ (∆z,+(ϑqj))
2 + (∆z,−(ϑqj)

2

− ϵ

 , (6.2.10)

where ∆x,+(ϑqj), ∆x,−(ϑqj), ∆y,+(ϑqj), ∆y,−(ϑqj), ∆z,+(ϑqj), and ∆z,−(ϑqj) represent the
forward (+) and backward (−) first order differences, in the x-, y -, and z-direction, at the
j th HR voxel of the parameter map ϑq. Furthermore, a small value ϵ > 0 is introduced, to
avoid derivative singularities of TV when ϑq is locally constant.

For the motion parameters θ, a non-informative prior p(θ) is adopted, assuming p(θ) to be
uniform over the range of values for which the likelihood function is non-negligible.
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6.2.2.5 Alternating minimization

The nonlinear optimization problem (6.2.5) is solved using the alternating minimization
method, also known as the cyclic block-coordinate descent (cBCD) method (Fessler & Kim,
2011; Beck & Tetruashvili, 2013). In this method, the parameters {ϑ,θ} are split into two
blocks that contain the motion parameters θ and the tissue parameters ϑ, respectively, and
the cost function is successively minimized with respect to each block in a cyclic order:

θ̂(t+1) =argmin
θ
Ls̃(ϑ̂

(t),θ|s̃) (P.1)

ϑ̂(t+1) =argmin
ϑ

[
Ls̃(ϑ, θ̂

(t+1)|s̃) +
Q∑
q=1

2

λq
TV(ϑq)

]
(P.2)

with ϑ̂(0) = ϑini, and θ̂(0) = θini the initial values of the HR tissue parameters ϑ and the
motion parameters θ, respectively. The procedure is terminated when a maximum number
of iterations, tmax, is exceeded, or when a convergence tolerance on the relative difference of
the tissue parameter estimates between consecutive iterations is reached. The pseudo-code
of our proposed MAP estimation framework is presented in Algorithm 1. The initial values
ϑini, and θini are obtained using a while-loop routine consisting of three main steps. First, a
HR magnitude contrast-weighted image is approximated from each LR contrast-weighted
image by applying the adjoint operator MT

θn
GTnBTDT of the SRR forward model (6.2.1) to

each LR image, followed by the application of the pointwise modulus operator | · |, to regain
magnitude images. Second, initial tissue parameter values ϑini are obtained by voxel-wise
nonlinear least-squares (NLLS) fitting the modulus of the signal model (6.3.2) to these
upsampled LR images with a Levenberg-Marquardt algorithm. In a third step, problem (P.1)
is solved to obtain initial estimates for the motion parameters θini, where the tissue parameter
estimates of the second step are kept fixed in the cost function Ls̃(ϑ̂

(t+1), θ̂|s̃).

The inter-image motion estimation problem (P.1) adopts a particularly simple structure when
the signal model parameters remain fixed. If no dependence of {θn}Nn=1 through index n
is assumed, the minimization can be decoupled into N optimization problems, which can
be implemented very efficiently by parallel operations. Each of these decoupled problems
is minimized using a trust-region Newton algorithm (Coleman & Li, 1994), with analytical
expressions for the Jacobian to speed up convergence. The derivation of these expressions
is included as part of the supplementary material provided with this work. To solve the
large-scale optimization problem (P.2), a trust-region-reflective Newton algorithm is used
(Coleman & Li, 1994), with analytical expressions for the Jacobian and Hessian, which have
also been included as part of the supplementary material.

6.2.2.6 Regularization parameter selection

The hyperparameters λ1, . . . , λQ of the prior distribution (6.2.9) act as regularization pa-
rameters that balance data consistency (as quantified by the likelihood function) against
the requirement that the parameter maps be smooth (as imposed by the TV prior). The
selection of the regularization parameters of a nonlinear optimization problem like the one
at hand is a challenging task for which no standard procedure exists. Poorly chosen regu-
larization parameters may lead to either over-smoothing or under-smoothing. In this work,
the individual regularization parameters were determined such that the corresponding TV
terms contribute equally to the cost function of (P.2). To this end, each TV term of (P.2)
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Algorithm 1: Model-based SRR with joint motion estimation (SRR-joint)
Input: LR images s̃ and initial values ϑini and θini

Output: MAP estimates ϑ̂MAP and θ̂MAP

Set t ← 0 and ϑ̂(0), θ̂(0) ← ϑini,θini;
E(0) = rEmin, with r ∈ R>1;
while E(t) ≥ Emin and t < tmax do
▷ Solve (P.1) to get θ̂(t+1):

θ̂(t+1) = argmin
θ
Ls̃(ϑ̂

(t),θ|s̃), started from θ ← θ̂(t);

▷ Solve (P.2) to get ϑ̂(t+1):

ϑ̂(t+1) = argmin
ϑ

[
Ls̃(ϑ, θ̂

(t+1)|s̃) +
Q∑
q=1

2

λq
TV(ϑq)

]
, started from ϑ← ϑ̂(t);

▷ Calculatea E(t+1) =
∥∥ϑ̂(t+1) − ϑ̂(t)

∥∥
2
/
∥∥ϑ̂(t+1)

∥∥
2
;

▷ Set t ← t + 1;
end
ϑ̂MAP = ϑ̂(t) and θ̂MAP = θ̂(t);
return ϑ̂MAP, θ̂MAP;

aVectorization of ϑ̂(t+1) and ϑ̂(t) is performed before taking the norm.

is evaluated in the initial estimates of the respective tissue parameter map, and the ratio
of each TV value to the TV value of the first tissue parameter is used to determine the
regularization parameters λ2, . . . , λQ as a function of λ1. More specifically, this leads to
λq =

[
TV(ϑ̂q,ini)/TV(ϑ̂1,ini)

]
· λ1. As such, the multi-parameter regularization selection

problem is cast into a single-parameter regularization problem. The remaining regularization
parameter, λ1, is chosen empirically from repeated reconstructions for progressively increasing
values of λ1, as a compromise between noise removal and image resolution. Special care
is taken to ensure that no in-plane resolution loss occurs due to over-smoothing, thereby
maintaining the integrity of the 2D multi-slice data.

6.3 Materials and Methods

The proposed model-based Bayesian SRR method with joint motion estimation was validated
in whole brain simulations choosing T1 relaxometry as a showcase example. Next, to
demonstrate the ability of the proposed method to improve the quality of reconstructed
parameter maps, a proof-of-concept evaluation was performed for a T1 and T2 quantitative
mapping protocol using two contrast-weighted in vivo brain datasets.

The following parametric signal models were adopted in this contribution:

• T1 relaxation signal model of the gold standard inversion recovery (IR) sequence (Barral
et al., 2010):

fn(ϑ•j) = ρj

(
1− (1− cosα) e−

TIn
T1,j + e

− TR
T1,j

)
, (6.3.1)

with TIn the nth inversion time, α the inversion pulse angle, TR the repetition time and
ϑ•j = [ρj , T1,j ]

T the tissue parameter vector at position xj , in which ρj is a parameter

151



CHAPTER 6

proportional to the proton density and receiver gain and T1,j is the longitudinal relaxation
time. Assuming α = 180° and TR≫ T1, Eq. (6.3.1) simplifies to

fn(ϑ•j) = ρj

(
1− 2 e−

TIn
T1,j

)
. (6.3.2)

• T2 relaxation signal model of a conventional Multi-Echo Spin Echo (MESE) sequence
(Carr & Purcell, 1954):

fn(ϑ•j) = ρje
− TEn
T2,j , (6.3.3)

with TEn the nth echo time, and ϑ•j = [ρj , T2,j ]
T the tissue parameter vector at

position xj , in which ρj is again a parameter proportional to the proton density and
receiver gain and T2,j is the transverse relaxation time. Note that we have assumed a
perfect 90° excitation pulse to tilt the magnetization vector in the transverse plane,
and perfect 180° refocusing pulses to recover multiple spin echoes corresponding with
T2 estimates along the signal envelope.

The proposed SRR method was compared with an SRR approach without motion estimation,
and one in which SRR is preceded by a motion compensation step. To sum up, the following
three frameworks were compared against each other:

1. SRR-static: a model-based SRR framework without motion estimation. This approach
consists of three steps. First, a HR magnitude image is approximated from each LR
image using the adjoint operator GTnBTDT of the SRR forward model (6.2.1), followed
by application of the pointwise modulus operator | · |. Second, voxel-wise NLLS fitting of
the modulus of the signal model is performed using a Levenberg-Marquardt algorithm to
obtain initial parameter map estimates. Finally, problem (P.2) is solved assuming θ̂ = 0.

2. SRR-reg: a model-based SRR framework in which the inter-image motion parameters are
estimated prior to the SRR by means of an advanced registration routine (Van Steenkiste
et al., 2017). In this approach, a registration routine is performed consisting of four
steps, where the first two steps correspond with the first two steps of SRR-static. In a
third step, LR images are simulated using the estimated HR parameter maps from the
previous step and the forward model (6.2.1). As a fourth step, rigid motion parameter
estimates θREG are obtained from pairwise rigid registration using a mean squared error
metric and a regular step gradient descent optimization algorithm (MaxIter = 800,
GradientMagnitudeTolerance = 10−12). In order to obtain rigid motion parameters that
can be used as input parameters of the motion operator Mθn , which is part of the forward
model in problem (P.2), registration needs to be performed on the HR grid. As such, the
simulated and acquired LR image datasets to be co-registered are transformed to the HR
grid using the adjoint operator GTnBTDT of the SRR forward model (6.2.1). Next, steps
1-4 are repeated until a convergence tolerance Emin = 10

−4 on the relative difference of
the tissue parameter estimates between consecutive iterations is met. Finally, problem
(P.2) is solved in which motion parameter estimates θREG obtained from the registration
routine remain fixed.

3. SRR-joint: the proposed SRR framework with joint motion estimation, as described
in section 6.2.2. The pseudo code of this framework is described in Algorithm 1. The
maximum number of iterations and the tolerance criterion to halt the algorithm were
chosen to be tmax = 80 and Emin = 10

−4, respectively.
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For the in vivo experiments described in section 6.3.2, the regularization parameters of SRR-
joint were chosen following the procedure described in section 6.2.2.6, yielding 2/λ1 = 1.1×
10−2 and 2/λ2 = 5.6× 10−3 for the in vivo T1 mapping experiment, and 2/λ1 = 2.4× 10−2
and 2/λ2 = 1.0 × 10−2 for the in vivo T2 mapping experiment, respectively. Next, the
same regularization parameters were used for SRR-static and SRR-reg, to guarantee a fair
comparison. Finally, the same regularization weights as for the in vivo T1 mapping experiment
were also used for the whole brain Monte Carlo simulation experiments described in the next
section.

6.3.1 Whole Brain Simulations

Ground truth T1 and ρ parameter maps for a synthetic whole brain Monte Carlo simulation
experiment were generated from parameter maps obtained after model-based SRR on the
T1-weighted in vivo dataset, further described in section 6.3.2. Both HR parameter maps
were of size 160× 160× 160, with an isotropic voxel size of 1.6 mm.

From these ground truth parameter maps, NMC = 8 Rician distributed realisations of a
LR T1-weighted dataset were simulated. Each dataset consisted of N = 14 images with
log(TIn) equidistant between log(100 ms) and log(3000 ms) (Van Steenkiste et al., 2017).
The LR images were synthesized using the forward model (6.2.1), with an image size of
160× 160× 40 and with an anisotropic voxel size of 1.6× 1.6× 6.4 mm3. The inter-image
motion parameters {θn}Nn=1 were chosen equal to an estimated set of motion parameters
obtained from model-based SRR with SRR-joint on the T1-weighted in vivo dataset to
guarantee realistic head movement. The extreme and mean values for each of the motion
parameters are reported in Table 6.3.1, where the mean value of the k th motion component,
i.e. θk , was calculated as

θk =
1

N

N∑
n=1

θnk . (6.3.4)

Table 6.3.1: Extreme and mean values for each of the motion parameters that were used in the
synthetic whole brain simulation experiments.

tx ty tz α β γ

[mm] [mm] [mm] [degree] [degree] [degree]

extremum 0.517 2.486 2.082 2.890 -0.538 -0.836
θk 0.28 1.69 0.38 0.67 -0.03 -0.54

Similar to the acquisition protocol used in (Van Steenkiste et al., 2016, 2017) and the
acquisition protocol in the in vivo experiments (cfr. section 6.3.2), the LR images were
simulated with different slice orientations, where the rotation was performed around the
phase encoding axis in increments of 180/N0 degrees, with N0 = 7 the number of slice
orientations. Since rotation in image space corresponds to rotation in frequency domain, this
acquisition scheme ensures that each LR image covers a different part of the k-space (as
shown in the top row of Fig. 6.3.1) (Plenge et al., 2012). Two LR images were simulated
for each slice orientation, where each of the thus resulting N = 14 images had a unique
inversion time. An overview of the slice orientations and inversion times of the T1-weighted
LR images, along with their k-space coverage, is given in Fig. 6.3.1.
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Finally, the LR T1-weighted images were corrupted with spatially variant Rician noise, where
the spatially variant noise pattern corresponded with an isotropic Gaussian function to
model the gradual deterioration of the head coil detection towards the center of the brain
(Pieciak et al., 2017). The level of the noise map was adjusted to match that of the in vivo
T1-weighted dataset that will be described in the next section. To this end, the overall SNR,
defined as the ratio of the spatial mean of the signal to the standard deviation of the noise,
where the latter is estimated using the method of Coupé et al. (Coupé et al., 2010), was
calculated in a small homogeneous region of the corpus callosum of the in vivo T1-weighted
image acquired with TI = 100 ms, and observed to be 16. Next, the level of the noise map
of the simulated T1-weighted images was adjusted to match this SNR value in the corpus
callosum of the simulated image sampled at the same inversion time. In all simulation SRR
experiments, the noise standard deviation maps were assumed to be known.

Figure 6.3.1: Overview of the different slice orientations for the LR T1-weighted in vivo (and
simulated) dataset(s), together with a schematic representation of the overlap in k-space when
images are combined. Fourteen 2D IR TSE T1-weighted LR images were acquired with large
slice thickness and a high in-plane resolution. The slice orientation was consecutively altered by
rotation over a specified angle (0°, 25.7°, 51.4°, . . . , 154.2°) around the phase-encoding direction.
As indicated, each T1-weighted LR image was acquired with a unique inversion time.

6.3.2 In Vivo Data

The proposed SRR method was validated using two in vivo human brain datasets suffering
from involuntary patient motion. Both healthy volunteers (adult, male, 28 and 32 years
old) were scanned after written informed consent and approval by the institutional ethics
committee using a 3T MRI scanner (Magnetom PrismaFit, Siemens Healthcare, Erlangen,
Germany) with VE11B software, a maximum gradient amplitude of 80 mT/m, a maximum
slew rate of 200 T/m/s, and a dedicated head-coil with 32 receiver channels. Magnitude
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data was reconstructed from the complex coil images using the adaptive combine algorithm
(Walsh et al., 2000).

The first in vivo LR dataset consisted of a series of T1-weighted LR images with anisotropic
voxel size. In total, 14 repetitions of an interleaved multi-slice IR TSE with low through-plane
resolution (voxel size, 1.0× 1.0× 4.0 mm3), with turbo factor 10, without slice gap, and
with 100% sampling, were acquired. The slice thickness of the LR dataset was chosen to
have whole brain coverage without exceeding SAR limits. The acquisition matrix was equal
to 256× 256, with a total number of slices equal to 40. Furthermore, the bandwidth was
fixed at 305 Hz/pixel, and the TR and echo time (TE) were equal to 5000 ms and 8.8
ms, respectively. No in-plane acceleration was used. Each acquisition was characterized
by a specific rotation around the phase-encoding axis and a unique inversion time, where
the rotation angles and inversion times agree with those used in the simulation study, as
summarized in Fig. 6.3.1. The scan time per anisotropic 2D slice stack was 2 minutes and 3
seconds, resulting in a total scan time of 28 minutes and 44 seconds. SRR was performed at
an isotropic HR grid with a voxel size of 1.0×1.0×1.0 mm3. Spatially variant noise standard
deviation maps were estimated using the method of (Aja-Fernández et al., 2015).

RF pulse

Signal
time

90°
180° 180° 180° 180°

T ∗2
T2

TE1
TE2

TE3
TE4

Figure 6.3.2: Schematic representation of a multi-echo spin echo (MESE) sequence. Compared to
a standard spin echo sequence, the MESE sequence stimulates the spin system with additional 180°
pulses. As long as T2-relaxation is not complete and MR signal is present, this allows to generate
extra echoes, i.e. additional T2-weighted images, within a given repetition time. The amplitude of
each echo is progressively smaller due to the T2 decay. Also, the echo time (TE) spacing, i.e. the
time between consecutive echoes, is inherently fixed.

A second in vivo T2-weighted anisotropic LR dataset was acquired, using 7 repetitions of
an interleaved multislice MESE acquisition with low through-plane resolution (voxel size,
1.75 × 1.75 × 7.0 mm3), without slice gap, using a 3-fold in-plane GRAPPA acceleration
factor with 24 reference lines. A schematic representation of the MESE sequence is given in
Fig. 6.3.2. The acquisition matrix was equal to 128×128, with a total number of slices equal
to 26. The bandwidth was fixed at 227 Hz/pixel. Each MESE acquisition was characterized
by a unique rotation around the phase-encoding axis (rotations similar as in Fig. 6.3.1), and
consisted of 4 unique echo times (Fig. 6.3.3). An overview of the sampled TEs per MESE
acquisition is given in Table 6.3.2. The echo time spacing ∆TE in each MESE was chosen as
such to ensure full coverage of the T2 relaxation curve when all 7 acquisitions are combined.
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This echo time selection is illustrated in more detail in Fig. 6.3.4. The TR = 4320 ms was
kept constant for each MESE acquisition to avoid differences in T1-weighting. In addition,
the first echo of each MESE acquisition was ignored in the SRR reconstruction, which is a
common consideration for MESE acquisitions (Petrovic et al., 2015), to avoid protruding
errors from imperfect refocusing and stimulated (secondary) echoes that disrupt the T2 decay
of the primary SEs. In this way, the total count of sampled TEs was limited to 21. The scan
time per anisotropic 2D MESE acquisition was 4 minutes 11 seconds, resulting in a total
scan time for this proof-of-concept protocol of 29 minutes 17 seconds. SRR was performed
at an isotropic HR grid with a voxel size of 1.75 × 1.75 × 1.75 mm3, and non-stationary
noise standard deviation maps were again estimated using the method of (Aja-Fernández
et al., 2015).
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Figure 6.3.3: Schematic representation of a multi-MESE acquisition strategy for which multiple
MESE acquisitions (see Fig. 6.3.2) are combined. Each individual MESE number is characterized
with a different rotated acquisition geometry. Furthermore, each MESE sequence uses the same
repetition time (TR) to avoid T1-weighting effects.

Table 6.3.2: Distribution of echo times per MESE acquisition for the in vivo T2 mapping experiment.
Slice orientation angles corresponds with those given in Fig. 6.3.1. Gray coloured cells indicate the
first echo times that were ignored to alleviate the effect of stimulated secondary echoes.

Slice orientation angle [°] TE1 TE2 TE3 TE4

MESE 1 0 10.0 20.0 30.0 40.0
MESE 2 25.7 11.8 23.6 35.4 47.2
MESE 3 51.4 19.2 38.4 57.6 76.8
MESE 4 77.1 22.6 45.2 67.8 90.4
MESE 5 102.8 34.0 68.0 102.0 136.0
MESE 6 128.5 36.9 73.8 110.7 147.6
MESE 7 154.2 40.0 80.0 120.0 160.0
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Figure 6.3.4: Echo time selection for the in vivo T2 mapping experiment: Seven different MESE
acquisitions were used to acquire a total of 28 T2-weighted LR images. Each MESE acquisition
was characterized by a unique rotation around the phase-encoding axis (rotation angles similar as in
Fig. 6.3.1). Furthermore, each MESE consisted of 4 unique echo times, which are tabulated (bottom
right), and visualized with the corresponding LR image number (top). The first echo time of each
MESE was ignored in the model-based SRR to alleviate the effect of stimulated secondary echoes.
This effect is clearly distinguishable when plotting the mean signal intensity for each LR T2-weighted
image as a function of the echo time (bottom left).
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6.3.3 Quantitative Image Analysis

The results of the synthetic whole brain Monte Carlo simulation experiment were assessed
quantitatively using the following performance measures (Ramos-Llordén et al., 2017; Beir-
inckx et al., 2020):

(a) Relative bias. The bias quantifies the accuracy of an estimator (van den Bos, 2007).
Relative bias maps were calculated for each framework as (¯̂ϑq − ϑq)⊘ ϑq, where ¯̂ϑq
and ϑq refer to the tissue parameter maps which contain the element-wise sample mean
of the NMC estimates ϑ̂q, and the true reference values, respectively, and where ⊘
denotes the element-wise division operator.

(b) Relative standard deviation. The standard deviation quantifies the precision of an
estimator (van den Bos, 2007). Relative standard deviation maps were calculated for

each framework as
(
NMC
NMC−1(ϑ̂q −

¯̂ϑq) ◦ (ϑ̂q − ¯̂ϑq)
)◦ 1

2

⊘ϑq, where ◦ and the superscript

◦ 12 denote the Hadamard product and element-wise square-root operator, respectively.

(c) Relative root-mean-squared error (relative RMSE). The RMSE is a measure that
incorporates both accuracy and precision. Relative RMSE maps were calculated as(
(ϑ̂q − ϑq) ◦ (ϑ̂q − ϑq)

)◦ 1
2 ⊘ ϑq.

Additionally, the spatial means of the relative bias, standard deviation and RMSE maps were
calculated inside a brain mask, which was extracted from the reference ρ map using the Brain
Extraction Tool (BET) (Smith, 2002).

To assess the ability of the different frameworks to estimate motion, the following performance
measure was used:

(d) Motion component root-(mean)-mean-squared-error (RMMSE), defined as(
1

N

N∑
n=1

(θ̂n − θn) ◦ (θ̂n − θn)

)◦ 1
2

, (6.3.5)

where θn refers to the true reference values and the operator (·) denotes the element-wise
sample mean over the NMC estimates θ̂n.

For the in vivo T1 mapping experiment, results were quantitatively assessed in terms of
spatial resolution and SNR efficiency. Spatial resolution of the obtained parameter maps was
assessed in all 3 image dimensions by measuring the average width over 15 edge profiles. The
sample of edge profiles was selected in one parameter map (Fig. 6.3.5), and then consistently
compared across all the parameter maps of the respective frameworks. The edge width,
defined as the width (in high resolution voxels) from 10% to 90% of the edge height, was
measured by least squares fitting with a sigmoid function:

η(x) = a1 +
a2

1 + exp(−a3(x − a4))
, (6.3.6)

from which the edge width can be derived, given by 4.4/a3 (Greenspan et al., 2002).

Furthermore, SNR measurements were obtained from the in vivo reconstruction results
for each framework. First, volumes-of-interest (VOIs) were manually delineated in uniform
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regions of white matter, CSF, and the caudate nucleus of the ρ map reconstructed with the
SRR-joint framework. For the aforementioned tissue types, the VOIs had volumes equal to
100 mm3, 21 mm3, and 48 mm3, respectively. Next, the same VOIs were selected in the T1
map reconstructed with SRR-joint, and in the ρ and T1 maps reconstructed with SRR-static
and SRR-reg. Subsequently, the SNR was calculated in each VOI as the ratio of the spatial
mean to the standard deviation.
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Figure 6.3.5: Spatial resolution assessment by means of edge profile fitting, drawn across 3 lines-
of-interest for different inserts along each orthogonal plane, and compared for the three SRR
frameworks.

6.3.4 Implementation

All algorithms were written in MATLAB and partially in C++, and run on a computer with
an Intel® CoreTM i7-6850K hexa-core CPU with 15MB of cache clocked at 3.60 GHz,
with 32 GB of RAM. The computational complexity of the proposed SRR-joint algorithm is
primarily defined by the Fast Fourier Transform (FFT)-based image warping operators Mθn

and Gn in the forward model (6.2.1). The FFT-based implementation allows to solve the
inverse SRR problem using exact adjoint image warping, and avoids inaccuracies caused by
an approximate inverse of the motion. Furthermore, Mθn is analytically differentiable w.r.t.
θn. To speed up reconstruction, the FFT’s of these image warping operators are executed
on the GPU, reducing reconstruction time by a factor of 2-6 compared to pure MATLAB
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code, mainly dependent on the number of LR images and corresponding image dimensions.
In addition, as mentioned in section 6.2.2.5, MATLAB parallel computing tools were used
to estimate θn for each value of n separately when solving problem (P.2) of the alternating
minimization method. Similarly, voxel-wise NLLS model fitting during the initialization step
of the different SRR frameworks was performed in a parallel manner. The modified Bessel
functions required to calculate the negative log-likelihood function with Rician PDF and
the upwind TV prior term, as described in sections 6.2.2.3-6.2.2.4, were implemented using
custom C++ MEX-files for use with MATLAB. Also, to avoid excessive memory usage, the
Hessian matrix of problem (P.2) was implemented using a Hessian multiply function, which
gives the result of a Hessian-times-vector product without computing the Hessian directly.
Bearing in mind these implementation details, and given the (rather strict) tolerance criteria
described in section 6.3, the reconstruction using SRR-joint took approximately 8.67 hours
for a simulated LR T1-weighted dataset, 6.43 hours for the in vivo T2-weighted dataset,
and 14.02 hours for the in vivo T1-weighted dataset, respectively. Overall, it is expected
that a more advanced implementation of the framework using only C/C++ and GPU/CUDA
programming will lead to further reduction of the reconstruction time. In particular, we would
like to highlight a CUDA implementation for exact adjoint image warping designed to run on
NVIDIA GPUs (Renders et al., 2021), which could potentially be used to speed up the present
implementation of the SRR-joint framework. Finally, this proof-of-concept implementation
treats Mθn and Gn as separate operators. However, the input of both operators could be
combined to limit the number of FFT’s and improve the computational efficiency.

6.4 Results

6.4.1 Whole brain simulations

Table 6.4.1 summarizes the quantitative performance measures that were obtained from the
whole brain simulation experiment for the frameworks SRR-static, SRR-reg, and SRR-joint.
For each performance measure, the best performing framework is highlighted in shaded
green. It follows from Table 6.4.1 that in terms of accuracy SRR-joint clearly outperforms
SRR-static (with a factor 2) and SRR-reg. In terms of precision, SRR-static outperforms
the other two approaches, as indicated by the lower overall standard deviation. However, in
terms of the overall RMSE, SRR-joint performs best, both for T1 and ρ mapping.

The absence of motion estimation in the SRR framework becomes evident by looking at
maps of the relative RMSE (Fig. 6.4.1), for each of the three SRR frameworks. A closer
look at these maps, shows the improved performance in terms of accuracy of the SRR-joint
framework compared to the other two approaches. Here, the joint estimation of motion
parameters allows for a more accurate estimation of tissue parameters at tissue interfaces,
in particular for interfaces at tissue types with longer T1 relaxation times such as the corpus
callosum, and voxels at the periphery of the brain. Additionally, maps of the absolute
value of the relative bias and of the relative standard deviation are shown in Fig. 6.4.2 and
Fig. 6.4.3.
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Figure 6.4.1: Relative RMSE maps for T1 and ρ, calculated from the reconstruction results of the
synthetic whole brain simulations. For each of the different model-based SRR frameworks orthogonal
mid-slice views are shown. Numbers at the bottom of the images indicate the overall relative RMSE
measure, which was obtained by calculating the spatial mean of the corresponding relative RMSE
map.

Figure 6.4.2: Absolute value of the relative bias maps for T1 and ρ, calculated from the reconstruction
results of the synthetic whole brain simulations. For each of the different model-based SRR
frameworks orthogonal mid-slice views are shown. Numbers at the bottom of the images indicate
the overall relative bias measure, which was obtained by calculating the spatial mean of the absolute
value of the corresponding relative bias map.
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Figure 6.4.3: Relative standard deviation maps for T1 and ρ, calculated from the reconstruction
results of the synthetic whole brain simulations. For each of the different model-based SRR
frameworks orthogonal mid-slice views are shown. Numbers at the bottom of the images indicate
the overall relative standard deviation measure, which was obtained by calculating the spatial mean
of the corresponding relative standard deviation map.

6.4.2 In Vivo Data

Fig. 6.4.4 shows orthogonal mid-slice views of a directly acquired IR TSE T1-weighted image
with low through-plane resolution sampled at TI = 100 ms, and a synthesized T1-weighted
image with high through-plane resolution that was produced from the SRR T1 and ρ parameter
map estimates at the same TI. To ease qualitative comparison, zoomed image regions are
shown indicating noticeable resolution improvements. The corresponding quantitative T1
relaxation and ρ parameter map estimates that were obtained using the proposed SRR-joint
framework are also shown in Fig. 6.4.4. The improved resolution in each orthogonal plane
is clearly visible. In particular, SRR manages to recover the fine details lost due to the
acquisition with low through-plane resolution.

Next, to compare the reconstruction results for the LR-T1w in vivo dataset, Fig. 6.4.5
shows the estimated T1 and ρ parameter maps obtained using SRR-static, SRR-reg, and
SRR-joint, respectively. Fig. 6.4.5 also shows the absolute value of the relative difference
between the reconstructed parameter maps obtained with SRR-static and SRR-reg, taking
the corresponding parameter maps obtained with the SRR-joint framework as a reference.
Based on Fig. 6.4.5, it can be deduced that the joint estimation of motion parameters yields
visible differences at the tissue interfaces, with a noticeably better delineation of the various
brain structures. This is also confirmed by the edge width measurements for the T1 and ρ
parameter maps summarized in Table 6.4.2, where SRR-joint achieves smaller edge widths,
i.e. a higher spatial resolution, for all parameter maps as compared to SRR-static and
SRR-reg. Furthermore, SNR measurements for the selected VOIs in the reconstructed tissue
parameter maps of the in vivo data experiment were consistently higher for SRR-joint as
compared to the other two frameworks, except for the SNR value of CSF in the ρ parameter
map (Table 6.4.2).
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Figure 6.4.4: Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement
for a directly acquired IR TSE T1-weighted image with low through-plane resolution sampled at TI1
(first column), compared to a synthesized T1-weighted image with high through-plane resolution
(second column), that was produced from the SRR T1 and ρ parameter map estimates (columns 3
and 4) sampled at the same inversion time. Note that for the LR-T1w in vivo data set, SRR-joint
can recover the fine details lost to the acquisition with low through-plane resolution. Dashed lines
indicate the slice locations.
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Figure 6.4.5: Reconstruction results for the LR-T1w in vivo dataset showing orthogonal mid-slice
views of the quantitative T1 and ρ parameter maps obtained using SRR-static (left column), SRR-
reg (middle column), and SRR-joint (right column), respectively. For comparison reasons, the
absolute value of the relative difference maps for T1 and ρ is shown, which is calculated using the
SRR-joint reconstruction result as relative reference. Numbers in boxes represent the overall relative
difference measure, which was obtained by calculating the spatial mean of the absolute value of the
corresponding relative difference map.
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In addition, Fig. 6.4.6 shows a directly acquired IR TSE T1-weighted image with low through-
plane resolution compared to synthesized T1-weighted images with high through-plane
resolution, that were produced from the SRR T1 and ρ parameter map estimates for each
framework. Note that SRR-joint outperforms SRR-static and SRR-reg, showing enhanced
delineation of brain structures, as indicated by the yellow arrows for different regions of
interest.

Figure 6.4.6: Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement
for a directly acquired IR TSE T1-weighted image with low through-plane resolution sampled at
TI1 (first column), compared to synthesized T1-weighted images with high through-plane resolution
(columns 2-4), that were produced from the SRR T1 and ρ parameter map estimates for each
framework, sampled at the same echo time.

The reconstruction results for the SRR-joint framework on the in vivo T2-weighted dataset
are summarized in Fig. 6.4.7. This figure shows orthogonal mid-slice views of a directly
acquired MESE T2-weighted image with low through-plane resolution sampled at TE = 42.7
ms, a synthesized T2-weighted image with high through-plane resolution that was produced
from the SRR T2 and ρ parameter map estimates sampled at the same TE, and the obtained
T2 and ρ parameter map estimates, respectively. From Fig. 6.4.7, it can be appreciated that
SRR-joint enhances the spatial resolution, and reduces the partial volume effects present in
the acquired MESE T2-weighted images with low through-plane resolution. As a result, the
interfaces and fine structural details of the different tissue types appear more clear in the
quantitative T2 and ρ parameter maps. Furthermore, to visually compare how the different
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SRR frameworks arrive at different parameter map estimates for the T2-weighted dataset,
Fig. 6.4.9 shows the absolute value of the relative difference between the reconstructed
parameter maps obtained with SRR-static and SRR-reg, taking the parameter maps obtained
with the SRR-joint framework as a reference.

Figure 6.4.7: Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement
for a directly acquired MESE T2-weighted image with low through-plane resolution sampled at TE
= 47.2 ms (first column), compared to a synthesized T2-weighted image with high through-plane
resolution (second column), that was produced from the SRR T2 and ρ parameter map estimates
(columns 3 and 4) sampled at the same echo time. Dashed lines indicate the slice locations.

In addition, Fig. 6.4.8 shows a directly acquired MESE T2-weighted image with low through-
plane resolution compared to synthesized T2-weighted images with high through-plane
resolution, that were produced from the SRR T2 and ρ parameter map estimates for each
framework. As can be appreciated from Fig. 6.4.8, SRR-joint outperforms SRR-static and
SRR-reg, showing enhanced delineation of brain structures and a reduction in noise artifacts.
We recall that identical regularization weights were used for the three SRR frameworks.
Furthermore, it follows from Fig. 6.4.8 that the SRR-joint-T2w image shows improved detail
in the axial view, which is the in-plane orientation of the LR image. This is probably due to
reduced through-slice blurring.

Motion parameter estimates obtained using the SRR-reg and SRR-joint framework on the in
vivo datasets are reported in Fig. 6.4.10. In particular, graphs of the translation and rotation
parameters estimated for each LR image number are plotted. LR image numbers were ranked
in order of acquisition. As indicated by the order of magnitude of the estimated motion
parameters, inter-image rigid motion was less present in the T1-weighted dataset as compared
to the T2-weighted dataset. Although the motion parameter traces look very similar for
SRR-joint and SRR-reg, small differences can still be observed that likely contribute to the
superior performance of SRR-joint compared to SRR-reg.

Furthermore, by construction of the MESE sequence no inter-image motion should exist
between the different LR images (i.e. different echoes) of the same MESE scan in the
T2-weighted dataset. Indeed, it follows from Fig. 6.4.10 that motion parameter estimates
obtained using SRR-joint are consistent for the three LR image numbers corresponding
with each MESE number. For SRR-reg, on the other hand, one can observe nonphysical
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Figure 6.4.8: Orthogonal mid-slice views with zoomed close-ups showing the resolution improvement
for a directly acquired MESE T2-weighted image with low through-plane resolution sampled at TE
= 47.2 ms (first column), compared to synthesized T2-weighted images with high through-plane
resolution (columns 2-4), that were produced from the SRR T2 and ρ parameter map estimates for
each framework, sampled at the same echo time. Dashed lines indicate the slice locations.

differences of the motion parameter estimates for the LR image numbers per MESE number.
This motion stability property can be further quantified by calculating the mean across MESE
scans of the standard deviations across the echoes per individual MESE scan, for each motion
parameter. Table 6.4.3 summarizes these values for SRR-reg and SRR-joint. As summarized
in Table 6.4.3, SRR-joint arrives at significantly lower sample mean values compared to
SRR-reg, indicating superior motion stability performance. Note that, both for SRR-joint
and SRR-reg, a rigid motion parameter set was estimated per individual LR image.

Table 6.4.3: Quantification of motion stability performance for the in vivo T2-weighted data set.
Tabulated values indicate the sample mean across the MESE scans of the standard deviations
calculated across the echoes per individual MESE scan, for each motion parameter, using the
SRR-reg and SRR-joint framework, respectively. Translation values are reported in millimeters,
rotation values in degrees. Lower values indicate better performance.

tx ty tz α β γ

[mm] [mm] [mm] [degree] [degree] [degree]

SRR-reg 0.064 0.205 0.958 0.111 0.123 0.052
SRR-joint 0.004 0.023 0.075 0.020 0.005 0.007

Finally, to evaluate the convergence behavior of the three SRR methods in the in vivo T1
and T2 mapping experiments, Fig. 6.4.11 shows the cost function value and the 2-norm of
the residual between the measured LR images and their predictions based on the estimated
tissue and motion parameters as a function of the number of iterations. For both in vivo
experiments, it can be observed that SRR-joint arrives at lower cost function values and
lower residual values than SRR-static and SRR-reg.
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Figure 6.4.9: Reconstruction results for the LR-T2w in vivo dataset showing orthogonal mid-slice
views of the quantitative T2 and ρ parameter maps obtained using SRR-static (left column), SRR-
reg (middle column), and SRR-joint (right column), respectively. For comparison reasons, the
absolute value of the relative difference maps for T2 and ρ is shown, which is calculated using the
SRR-joint reconstruction result as relative reference. Numbers in boxes represent the overall relative
difference measure, which was obtained by calculating the spatial mean of the absolute value of the
corresponding relative difference map.
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Figure 6.4.10: Graphs of the motion parameter estimates that were obtained for the in vivo
T1-weighted dataset (left column) and T2-weighted dataset (right column), using the SRR-reg and
SRR-joint framework, respectively. The LR image numbers are ranked in order of acquisition. For
the T2-weighted dataset, the MESE numbers are indicated (right column, bottom graph) with their
corresponding LR image numbers. Translation parameters are reported in millimeters, rotation
parameters in degrees.
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Figure 6.4.11: Convergence plots showing the cost function value and the residual norm as function
of the iterations for the in vivo T1 mapping experiment (left column) and T2 mapping experiment
(right column), respectively.

6.5 Discussion

In this contribution, we presented a Bayesian framework for model-based motion-corrected
SRR in qMRI. The framework allows the joint estimation of 3D isotropic HR tissue parameter
maps and inter-image motion parameters from a set of multi-slice magnitude images with a low
through-plane resolution. The framework’s potential was demonstrated in both simulations
and real data experiments, using T1 and T2 mapping as carrying examples. As follows from
Table 6.4.1, the proposed SRR framework with joint motion estimation (SRR-joint) showed
superior motion parameter estimation and, at the same time, improved tissue parameter
mapping RMSE compared to previously published approaches without (SRR-static) and with
(SRR-reg) motion pre-compensation. More specifically, the motion component RMMSE
of SRR-joint was about an order of magnitude smaller compared to that of SRR-reg and
even more for SRR-static. Furthermore, the overall relative RMSE of the tissue parameters
T1 and ρ for SRR-joint was about 20% smaller compared to that of SRR-reg and about
50% smaller compared to SRR-static. Finally, the proposed SRR-joint framework revealed
sharper edges in the real data experiments, providing a noticeably better delineation of brain
structures, as compared to SRR-reg and SRR-static.

Our proposed framework is modular with respect to the signal and noise model describing the
MR data. That is, the T1 or T2 relaxation model used in this work can easily be replaced by
any other quantitative signal model. Examples may include SRR strategies for quantification
T ∗2 -relaxation times of the knee (Smekens et al., 2021), blood flow in single post labeling delay
pseudo-Continuous Arterial Spin Labeling (Bladt et al., 2020), or diffusion (Van Steenkiste
et al., 2016). In addition, the framework is modular with respect to the assumed distribution
of the MR data. Indeed, MR data can be characterized by various noise distributions (other
than the Rice distribution), considering either single-coil or multi-coil acquisition systems
(den Dekker & Sijbers, 2014). Examples include the noncentral chi distribution, which is valid
for magnitude images reconstructed from multi-coil data using the sum-of-squares method
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(Constantinides et al., 1997), or data distributions that occur for parallel MRI techniques
which perform undersampling of the k-space to reduce the acquisition time, such as SENSE
or GRAPPA (Aja-Fernández et al., 2016). Our Bayesian joint motion and tissue parameter
estimation framework can be easily adapted towards any of these data distributions.

Unlike various SRR methods in the literature that rely on orthogonal slice orientations, our
method allows for arbitrary slice orientations, which offers much more flexibility with respect
to sampling of the k-space and setting the contrast weightings. This increased k, q-space
sampling flexibility is a key asset for optimal experiment design studies aimed at the estimation
of quantitative tissue parameters with the highest precision (Poot et al., 2010a; Zhao et al.,
2019; Morez et al., 2023). In future work, we intend to investigate, given a fixed acquisition
time and relying on Cramér-Rao lower bound analysis, the best slice direction and contrast
weighting combination of each of the LR images in terms of the precision with which qMRI
parameters can be estimated with our proposed SRR-joint framework. Preliminary results
of this study for SRR-static have recently been reported by Nicastro et al. (Nicastro et al.,
2020).

The current framework has some limitations. First, while the framework corrects for motion
between the LR multislice images, intra- and inter-slice motion is not yet accounted for. To
compensate for intra-slice motion, our framework could be combined with prospective motion
correction strategies (Gao et al., 2021; Maclaren et al., 2013). Furthermore, inter-slice
motion could be accounted for by adding motion parameters for each individual slice of the
LR images and estimating these parameters jointly with the HR tissue parameter maps. Note,
however, that although such an approach may improve the accuracy of the estimated maps,
the addition of extra parameters to be estimated comes at the expense of a reduced precision.
Hence, both effects should be carefully weighed against each other. The extension of our
framework to include inter-slice motion and the trade-off between accuracy and precision
that comes with it are subject of future investigation.

Second, in this contribution the hyperparameters of the prior distributions (6.2.9) are selected
by casting the Bayesian MAP estimation problem as a regularized optimization problem
of which the regularization weights are chosen empirically, aiming at equal contributions
of the different regularization terms. This approach may be sub-optimal. To the best
of our knowledge, however, there is no consensus on the optimal selection strategy of
regularization parameters in a multi-parameter nonlinear regression problem like the one
at hand. Nevertheless, we hypothesize that choosing the (hyperparameters of the) prior
distributions based on prior acquisitions or learning them from available (q)MRI databases
may be promising alternative approaches, which are subject of ongoing research.

Finally, the existence of fast 2D multi-slice protocols for MR relaxometry parameter map-
ping is crucial to fully exploit the benefits of model-based SRR, and to allow for clinically
acceptable scan times. The proof-of-concept acquisitions in this chapter aim to illustrate
the advantages of joint motion estimation. The combination of model-based SRR with
state-of-the-art sequences applying undersampling strategies to further reduce acquisition
time is subject of future work. As an example, recent work for T2 mapping discussed the use
of GRAPPATINI (Hilbert et al., 2018), a fast prototype sequence allowing for block-based
Cartesian undersampling of k-space combined with additional GRAPPA acceleration. Its
potential for model-based SRR has been previously reported (Bano et al., 2020), albeit
without any appropriate motion estimation routine for SRR. We are convinced that our
contribution can serve as an extension to such an approach and to other model-based SRR
frameworks that only account for motion using pre-compensation routines.
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6.6 Conclusion

In conventional model-based SRR approaches for qMRI, it is common practice to com-
pensate for motion prior to the SRR, e.g. by using a pre-registration routine. However,
as demonstrated in this chapter, this conventional two-step approach lacks high accuracy
motion estimation and leads to biased parameter estimates. Hence, we have proposed
a rigorous unified framework for model-based SRR with joint motion estimation using a
Bayesian Maximum A Posteriori (MAP) estimator. The framework allows the joint estimation
of 3D isotropic HR tissue parameter maps and inter-image motion parameters from a set
of multi-slice magnitude images with a low through-plane resolution. Our SRR framework,
which is modular with respect to the quantitative signal model and the assumed distribution
of the MR data, has been validated in synthetic whole brain simulations and also with two in
vivo human brain data sets, for T1 and T2 mapping, respectively. It has been demonstrated
that the proposed SRR framework provides a more detailed delineation of brain structures
and shows superior motion parameter estimation and improved tissue parameter mapping
RMSE compared to state-of-the-art SRR approaches.
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Appendices

6.A Analytical derivatives for joint MAP optimization

The proposed joint MAP estimation consists of the following iterative recursive procedure
(see section 6.2.2.5):

θ̂(t+1) =argmin
θ
Ls̃(ϑ̂

(t),θ|s̃) (P.1)

ϑ̂(t+1) =argmin
ϑ

[
Ls̃(ϑ, θ̂

(t+1)|s̃) +
Q∑
q=1

2

λq
TV(ϑq)

]
(P.2)

with

Ls̃(ϑ,θ|s̃) =
N∑
n=1

Ls̃n(ϑ,θn|s̃n) = −
N∑
n=1

log p(s̃n|ϑ,θn) (6.A.1)

where the summation runs over all N contrast-weighted low-resolution (LR) images s̃n.
Problems (P.1) and (P.2) are minimized using a trust-region Newton method (Coleman & Li,
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1994). Such a gradient-based optimization algorithm benefits from having analytical expres-
sions for the Jacobian and Hessian to avoid time-consuming finite difference computations.
These analytical expressions are derived hereafter.

Nomenclature In what follows, we rewrite the forward operator sequence as An =DBGn
and its adjoint sequence as ATn = GTnBTDT to ease the notation, unless stated otherwise.
As such, the forward model introduced in Eq. (6.2.1) of section 6.2.1, can be written more
concisely as:

sn = |DBGnMθnrn| = |AnMθnrn| . (6.A.2)

6.A.1 MAP estimation of motion parameters

Assuming no dependence of {θn}Nn=1 through index n, the rigid inter-image motion param-
eter optimization problem (P.1) can be decoupled into N parallel subproblems. In what
follows, the optimization of a single rigid motion set θn corresponding with LR image s̃n is
considered.

The cost function of this estimation problem is given by

Ls̃n(ϑ,θn|s̃n) = − log pn(s̃n;ϑ,θn)

=

Ns∑
l=1

[
− log s̃nl + logσ2nl +

s̃2nl
2σ2nl

+
s2nl(ϑ,θn)

2σ2nl
− log I0

(
s̃nlsnl(ϑ,θn)

σ2nl

)]
.

(6.A.3)

Keeping only terms that are function of the unknown parameter vector θn, as only those are
relevant for the minimization, Eq. (6.A.3) simplifies to

Ls̃n(ϑ,θn|s̃n) ∼
Ns∑
l=1

[
s2nl(ϑ,θn)

2σ2nl
− log I0

(
s̃nlsnl(ϑ,θn)

σ2nl

)]
. (6.A.4)

Assuming inter-rigid motion, the motion parameter vector θn ∈ R6×1 is defined as,

θn = {θnk}6k=1 = [txn, tyn, tzn, αn, βn, γn]
T . (6.A.5)

We then define the gradient w.r.t. the motion parameter θnk by taking the respective
derivative of Eq. (6.A.4):

∇Lnk =
∂Ls̃n(ϑ,θn|s̃n)

∂θnk
= bTn cnk (6.A.6)

where

bn =
∂Ls̃n(ϑ,θn|s̃n)
∂sn(ϑ,θn)

=

sn(ϑ,θn)

σ2n
−

s̃n
σ2n

I1

(
s̃nsn(ϑ,θn)

σ2n

)
I0

(
s̃nsn(ϑ,θn)

σ2n

)


cnk =
∂sn(ϑ,θn)

∂θnk
=
∂|AnMθnrn|
∂θnk

= sgn(AnMθnrn)⊙
(

An
∂Mθn

∂θnk
rn

)
(6.A.7)
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with bn = {bnl}Ns

l=1 ∈ RNs×1, cnk ∈ RNs×1, and where ⊙ stands for point-wise multiplication.
Finally, substitution of Eq. (6.A.7) in Eq. (6.A.6) results in the following expression for
∇Lnk ∈ R

∇Lnk = rTn︸︷︷︸
∈R1×Nr

∂MT
θn

∂θnk
ATn

sgn(AnMθnrn)︸ ︷︷ ︸
∈RNs×1

⊙

sn(ϑ,θn)

σ2n
−

s̃n
σ2n

I1

(
s̃nsn(ϑ,θn)

σ2n

)
I0

(
s̃nsn(ϑ,θn)

σ2n

)


︸ ︷︷ ︸
∈RNs×1


︸ ︷︷ ︸

∈RNr×1

(6.A.8)

The exact implementation of
∂MT

θn

∂θnk
and the SRR forward model operators is further discussed

in Section 6.B hereafter.

6.A.2 MAP estimation of tissue parameters

In contrast to problem (P.1), the tissue parameter estimation problem (P.2) is a large-scale
minimization problem. The cost function of this estimation problem is given by

Ls̃(ϑ,θ|s̃) +
Q∑
q=1

2

λq
TV(ϑq) = −

N∑
n=1

log ps̃n(s̃n;ϑ,θn) +

Q∑
q=1

2

λq
TV(ϑq). (6.A.9)

The tissue parameter maps to be inferred are ϑ = {ϑq}Qq=1 ∈ RNr×Q, with ϑq = {ϑqj}Nr

j=1 ∈
RNr×1 the qth tissue parameter map and ϑ•j ∈ RQ×1 all tissue parameters of the j th voxel
of ϑq. The gradient of the cost function w.r.t. the tissue parameter element ϑqj can be
written as:

∇Lϑqj =
∂Ls̃(ϑ,θ|s̃)
∂ϑqj

=

N∑
n=1

Ns∑
l=1

∂Ls̃nl (ϑ,θn|s̃n)
∂ϑqj

=

N∑
n=1

Ns∑
l=1

bnl
∂snl(ϑ,θn)

∂ϑqj
=

N∑
n=1

Ns∑
l=1

bnlJnl,qj .

(6.A.10)
Here, Jnl,qj denotes the elements of the Jacobian matrix, which can be further expressed
by

Jnl,qj =
∂snl(ϑ,θn)

∂ϑqj
=
∂
∣∣∣∑Nr

j=1AnMθn fn (ϑ•j)
∣∣∣

∂ϑqj
= sgn (ϕn)

Nr∑
j=1

AnMθn

∂fn (ϑ•j)

∂ϑqj
,

(6.A.11)
where we write ϕn =

∑Nr

j=1AnMθn fn (ϑ•j) to ease the notation in what follows.

Furthermore, the upwind Total Variation term TV(ϑq), as described in section 6.2.2.4, is
given by:

TV(ϑq) =
∑
j

[√
ζqj − ϵ

]
(6.A.12)

with
ζqj = ϵ

2 +
∑

m∈{x,y ,z}

[(
∆m,+(ϑqj)

)2
+
(
∆m,−(ϑqj)

)2]
. (6.A.13)
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The derivative of Eq. (6.A.12) w.r.t. element ϑqj is then given by

∂TV(ϑq)
∂ϑqj

=
1

2

∑
j

(ζqj)
−1/2 ∂ζqj

∂ϑqj
. (6.A.14)

Note that a small offset ϵ > 0 is introduced in Eq. (6.A.13) to avoid derivative singularities
of TV when ϑq is locally constant.

The second order derivatives of cost function Ls̃(ϑ,θ|s̃) w.r.t. the tissue parameter elements
ϑqj can be calculated by taking the derivatives one order higher:

HLϑqjϑq′ j ′ =
∂

∂ϑqj

(
∇Lϑq′ j ′

)
=

N∑
n=1

Ns∑
l=1

∂

∂ϑqj
(bnlJnl,q′j ′) =

N∑
n=1

Ns∑
l=1

(
∇bnlϑqjJnl,q′j ′ + bnl∇

Jnl
ϑqj

)
.

(6.A.15)

Using the shorthand notation znl =
s̃nlsnl(ϑ,θn)

σ2nl
, the gradient terms ∇bnlϑqj and ∇Jϑqj are given

by

∇bnlϑqj =
∂bnl
∂ϑqj

=
∂

∂ϑqj

(
∂Ls̃nl (ϑ,θn|s̃n)
∂snl(ϑ,θn)

)
=
∂2Ls̃nl (ϑ,θn|s̃n)
∂s2nl(ϑ,θn)

∂snl(ϑ,θn)

∂ϑqj

=

[
1

σ2nl
−
s̃2nl
σ4nl

[
1−

1

znl

I1 (znl)

I0 (znl)
−
I21 (znl)

I20 (znl)

]]
Jnl,qj , (6.A.16)

∇Jnlϑqj =
∂Jnl,q′j ′

∂ϑqj

=
∂

∂ϑqj

(
∂snl(ϑ,θn)

∂ϑq′j ′

)
=
∂

∂ϑqj
(sgn (ϕn))

Nr∑
j=1

AnMθn

∂fn (ϑ•j)

∂ϑq′j ′
+ sgn (ϕn)

Nr∑
j=1

AnMθn

∂2fn (ϑ•j)

∂ϑqj∂ϑq′j ′

= sgn (ϕn)

Nr∑
j=1

AnMθn

∂2fn (ϑ•j)

∂ϑqj∂ϑq′j ′
, (6.A.17)

where we have used that
d sgn(x)

dx
= 2δ(x).

The partial derivatives ∂fn(ϑ•j )∂ϑqj
and ∂2fn(ϑ•j )

∂ϑqj∂ϑq′ j ′
depend on the signal model of choice. In this

work, a T1-relaxometry signal model was adopted as a showcase example (Barral et al.,
2010):

fn(ϑ•j) = ρj

(
1− 2 e−

TIn
T1,j

)
, (6.A.18)

with ϑ•j = [ρj , T1,j ]
T the tissue parameter vector at position xj . A more extensive description

of this signal model is given in section 6.2.1. The signal model considers Q = 2 tissue
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parameter maps. Keeping track of the HR voxel index j = 1, . . . , Nr, and tissue parameter
index q = 1, . . . , Q, the first and second order derivatives of fn(ϑ•j) w.r.t. the tissue
parameters ϑqj are defined by Eq. (6.A.19) and Eq. (6.A.20), which are given as

∂fn (ϑ•j)

∂ϑ1j
= 1− 2e−

TIn
T1,j ,

∂fn (ϑ•j)

∂ϑ2j
= −2ρje

− TIn
T1,j

(
TIn

(T1,j)
2

)
(6.A.19)

∂2fn (ϑ•j)

∂ϑ21j
= 0,

∂2fn (ϑ•j)

∂ϑ22j
= −2ρje

− TIn
T1,j

(
TIn

(T1,j)
3

)(
TIn
T1,j
− 2
)
,

∂2fn (ϑ•j)

∂ϑ1j∂ϑ2j ′
= −2e−

TIn
T1,j

(
TIn

(T1,j)
2

)
.

(6.A.20)

Finally, we also give an expression for the second order derivative of the upwind Total Variation
prior term in Eq. (6.A.12):

∂

∂ϑqj

(
∂TV(ϑq)
∂ϑq′j ′

)
=
∂

∂ϑqj

1
2

∑
j

(ζqj)
−1/2 ∂ζqj

∂ϑq′j ′


=
1

2

∑
j

[
(ζqj)

−1/2 ∂2ζqj
∂ϑqj∂ϑq′j ′

−
1

2
(ζqj)

−3/2
(
∂ζqj
∂ϑqj

)(
∂ζqj
∂ϑq′j ′

)]
.

(6.A.21)

Please note that for problem (P.2) the Hessian matrix was not explicitly stored in memory,
but was implemented as a Hessian multiply function. This function gives the result of
a Hessian-times-vector product without computing the Hessian directly, and thus avoids
excessive memory usage.

6.B Model operators: implementation and derivatives

6.B.1 Warping operators and derivatives

The proposed SRR framework uses different warping operators in the forward model, de-
scribed by Eq. (6.2.1) in section 6.2.1. The operator Gn describes the known geometric
transformation, extracted from the LR image acquisition header information. This operator
models the SRR acquisition, in which multiple LR contrast-weighted images at different
orientations are acquired by rotation of the acquisition plane for each image around one
fixed encoding axis. A second warping operator Mθn is introduced to model the effect of
unintended rigid inter-image motion. Whereas the motion parameters for Gn are known
from the acquisition, the motion parameters {θn}Nn=1 for Mθn are unknown, and have to be
estimated from the data. The implementation of Gn is identical to that of Mθn , which will
now be discussed.

In what follows, for ease of notation, the LR image index n is dropped. Furthermore,
the elements of a single rigid motion parameter vector θ are indexed numerically as θ =
(θ1, θ2, θ3, θ4, θ5, θ6). In other words, θ1, θ2, θ3 correspond with the rigid translations, and
θ4, θ5, θ6 with the Euler angles of the rigid rotations of Eq. (6.2.2). Similar to (Ramos-Llordén
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et al., 2017; Cordero-Grande et al., 2016), the rigid motion is expressed as a series of linear
phase modulations in k-space:

T (θ1, θ2, θ3) = FHU(θ1, θ2, θ3)F
R1(θ4) = FH2 V tan1 (θ4)F2FH3 V sin1 (θ4)F3FH2 V tan1 (θ4)F2
R2(θ5) = FH3 V tan2 (θ5)F3FH1 V sin2 (θ5)F1FH3 V tan2 (θ5)F3
R3(θ6) = FH1 V tan3 (θ6)F1FH2 V sin3 (θ6)F2FH1 V tan3 (θ6)F1,

(6.B.1)

where F represents the 3D DFT and Fk corresponds with the DFT along dimension d , with
d = 1, . . . , 3, and where the superscript H denotes the Hermitian conjugate. Both transforms
are implemented using MATLAB’s built-in FFT functions. In addition, U ∈ RNr×Nr and
Vd ∈ RNr×Nr are the diagonal matrices that describe, respectively, the applied translation
and applied shear decomposed rotations along different axes (Larkin et al., 1997), and whose
vectors u and vd contain the diagonal elements, which are given by:

u = e−i(θ1k1+θ2k2+θ3k3)

vtan1 = e
i tan(θ4/2)k2◦r3 vsin1 = e

−i sin(θ4)k3◦r2

vtan2 = e
i tan(θ5/2)k3◦r1 vsin2 = e

−i sin(θ5)k1◦r3

vtan3 = e
i tan(θ6/2)k1◦r2 vsin3 = e

−i sin(θ6)k2◦r1 ,

(6.B.2)

where kd is the k-space coordinate vector of the spectral image voxels along dimension d ,
rd is the spatial coordinate vector of the image voxels along dimension d , and ◦ denotes the
Hadamard product.

With this in mind, the rigid motion operator Mθ can then be rewritten as

Mθ = T (θ1, θ2, θ3)R1(θ4)R2(θ5)R3(θ6). (6.B.3)

This helps in defining the partial derivatives of Mθ:

∂Mθ

∂θk
=



∂T (θ1, θ2, θ3)

∂θk
R1(θ4)R2(θ5)R3(θ6), 1 ≤ k ≤ 3

T (θ1, θ2, θ3)R
′
1(θ4)R2(θ5)R3(θ6), k = 4

T (θ1, θ2, θ3)R1(θ4)R
′
2(θ5)R3(θ6), k = 5

T (θ1, θ2, θ3)R1(θ4)R2(θ5)R
′
3(θ6), k = 6,

(6.B.4)

where
∂T (θ1, θ2, θ3)

∂θk
= FH

∂U(θ1, θ2, θ3)

∂θk
F , 1 ≤ k ≤ 3. (6.B.5)

R′1(θ4) = FH2 V
′ tan
1 (θ4)F2FH3 V sin1 (θ4)F3FH2 V tan1 (θ4)F2

+ FH2 V tan1 (θ4)F2FH3 V
′ sin
1 (θ4)F3FH2 V tan1 (θ4)F2

+ FH2 V tan1 (θ4)F2FH3 V sin1 (θ4)F3FH2 V
′ tan
1 (θ4)F2,

(6.B.6)

R′2(θ5) = FH3 V
′ tan
2 (θ5)F3FH1 V sin2 (θ5)F1FH3 V tan2 (θ5)F3

+ FH3 V tan2 (θ5)F3FH1 V
′ sin
2 (θ5)F1FH3 V tan2 (θ5)F3

+ FH3 V tan2 (θ5)F3FH1 V sin2 (θ5)F1FH3 V
′ tan
2 (θ5)F3,

(6.B.7)

R′3(θ6) = FH1 V
′ tan
3 (θ6)F1FH2 V sin3 (θ6)F2FH1 V tan3 (θ6)F1

+ FH1 V tan3 (θ6)F1FH2 V
′ sin
3 (θ6)F2FH1 V tan3 (θ6)F1

+ FH1 V tan3 (θ6)F1FH2 V sin3 (θ6)F2FH1 V
′ tan
3 (θ6)F1.

(6.B.8)
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Finally, the derivatives of the diagonal elements of U and Vd can be summarized as

∂u(θ1, θ2, θ3)

∂θd
= −ikd ◦ u(θ1, θ2, θ3)

∂vtan1
∂θ4

= i
(
1+tan2(θ4/2)

2

)
k2 ◦ r3 ◦ vtan1

∂vtan2
∂θ5

= i
(
1+tan2(θ5/2)

2

)
k3 ◦ r1 ◦ vtan2

∂vtan3
∂θ6

= i
(
1+tan2(θ6/2)

2

)
k1 ◦ r2 ◦ vtan3

∂vsin1
∂θ4

= −i cos(θ4)k3 ◦ r2 ◦ vsin1

∂vsin2
∂θ5

= −i cos(θ5)k1 ◦ r3 ◦ vsin2

∂vsin3
∂θ6

= −i cos(θ6)k2 ◦ r1 ◦ vsin3 .

(6.B.9)

Note that this warping operator Mθn can be shown to be unitary (Ramos-Llordén et al.,
2017), which means that its inverse is given by MH

θn
. Hence, the motion operator Mθn is

reversible, i.e. when applied to an image, this image can be retrieved by applying MH
θn

to the
output of this operation.

6.B.1.1 Extended implementation details

It is important to discuss some additional implementation steps that were required to
use FFT-based image warping with SRR. The following implementation steps were most
prominent:

Large angle extension Based on the original work of Larkin et al. (1997), in which the
FFT is used to perform accurate rotations of sampled images, the warping operator
has previously been used to jointly estimate small rigid 3D motion of patients in a
T1 mapping experiment (Ramos-Llordén et al., 2017). In that work, the rotation
angles that correspond with rigid patient motion in the MRI scanner are small and lie
invariably in the range of −45° < θ ≤ 45°. As discussed by Larkin et al. (1997), this
is the theoretical angular range for which wraparound artefacts have little bearing of
the overall rotated image. However, in SRR, one is also interested in larger rotation
angles when the geometric acquisition of the low-resolution images with rotated
slice-encoding direction is to be modelled. Therefore, as a first extension to the
work of (Ramos-Llordén et al., 2017), the use of input angles outside the theoretical
range was enabled based on geometric considerations, i.e. by applying appropriate
dimensional permutations and flips to the image volume being warped, and by adjusting
the input angles correspondingly. The large angle extensions for θ4, θ5, θ6 are shown in
Algorithms 2-4. Note that for each rotation angle the extension algorithm is applied
prior to calling the corresponding rotation operator in Eq. (6.B.1).

Absence of imaginary component at Nyquist frequency As described in Appendix A of
Larkin et al. (1997), application of the discrete Fourier shift theorem on real images
requires a real, band-limited interpolation function that produces only real components
at the Nyquist frequency1. Consequently, for even image dimensions, i.e. an even

1The Nyquist frequency is the maximum frequency in a FFT of the Nyquist-sampled signal of length N.
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number of sample points, it is necessary to multiply the Fourier transformed and shifted
function by an additional phase factor that sets the imaginary component to zero at
the Nyquist sampling frequency. If this phase factor is not implemented, an imaginary
component is created at the Nyquist frequency, and the interpolation process is no
longer fully reversible. For a more theoretical outline, the reader is referred to Larkin
et al. (1997).

Algorithm 2: Test
Input: rotation angle θ4 and image r

Output: adjusted θa4 and ra

Calculate ζ = |θ4| mod 360;
if 0 ≤ ζ ≤ 45 then
θa4 = θ4;
ra = r;

else if 45 < ζ ≤ 135 then
θa4 = sgn(θ4) (ζ − 90);
if θ4 ≥ 0 then

ra = permute(flip(r,2),[1,3,2]);
else

ra = flip(permute(r,[1,3,2]),2);
end

else if 135 < ζ ≤ 225 then
θa4 = sgn(θ4) (ζ − 180);
ra = flip(flip(r,2),3);

else if 225 < ζ ≤ 315 then
θa4 = sgn(θ4) (ζ − 270);
if θ4 ≥ 0 then

ra = flip(permute(r,[1,3,2]),2);
else

ra = permute(flip(r,2),[1,3,2]);
end

else if 315 < ζ ≤ 360 then
θa4 = sgn(θ4) (ζ − 360);

end
return θa4,r

a;

Algorithm 3: Test
Input: rotation angle θ5 and image r

Output: adjusted θa5 and ra

Calculate ζ = |θ5| mod 360;
if 0 ≤ ζ ≤ 45 then
θa5 = θ5;
ra = r;

else if 45 < ζ ≤ 135 then
θa5 = sgn(θ5) (ζ − 90);
if θ5 ≥ 0 then

ra = permute(flip(r,1),[3,2,1]);
else

ra = flip(permute(r,[3,2,1]),1);
end

else if 135 < ζ ≤ 225 then
θa5 = sgn(θ5) (ζ − 180);
ra = flip(flip(r,1),3);

else if 225 < ζ ≤ 315 then
θa5 = sgn(θ5) (ζ − 270);
if θ5 ≥ 0 then

ra = flip(permute(r,[3,2,1]),1);
else

ra = permute(flip(r,1),[3,2,1]);
end

else if 315 < ζ ≤ 360 then
θa5 = sgn(θ5) (ζ − 360);

end
return θa5,r

a;

Algorithm 4: Test
Input: rotation angle θ6 and image r

Output: adjusted θa6 and ra

Calculate ζ = |θ6| mod 360;
if 0 ≤ ζ ≤ 45 then
θa6 = θ6;
ra = r;

else if 45 < ζ ≤ 135 then
θa6 = sgn(θ6) (ζ − 90);
if θ6 ≥ 0 then

ra = flip(permute(r,[2,1,3]),2);
else

ra = permute(flip(r,2),[2,1,3]);
end

else if 135 < ζ ≤ 225 then
θa6 = sgn(θ6) (ζ − 180);
ra = flip(flip(r,1),2);

else if 225 < ζ ≤ 315 then
θa6 = sgn(θ6) (ζ − 270);
if θ6 ≥ 0 then

ra = permute(flip(r,2),[2,1,3]);
else

ra = flip(permute(r,[2,1,3]),2);
end

else if 315 < ζ ≤ 360 then
θa6 = sgn(θ6) (ζ − 360);

end
return θa6,r

a;

flip(x, n): flips 3D image volume x along dimension n.
permute(x,n): rearranges the dimensions of 3D image volume x so that they are in the order specified by
the 3-element vector n.

Figure 6.B.1: Large angle extension algorithms.

6.B.1.2 Computational complexity analysis

To get an idea of the amount of computing resources that a particular algorithm consumes
when it runs, one can perform a computational complexity analysis. This quantifies the order of
floating point operations needed, and helps to discover particular run time bottlenecks.

For the FFT-based warping operator at hand, we can use the fact that a 1D FFT transforma-
tion has a computational complexity of O (N log2(N)) (order of floating point operations),
with N the dimension of the 1D vector. For 2D, and for a M × N image, this becomes
O (MN log2(MN)). Finally, for a 3D volume of dimensions M × N × P the computational
complexity can be characterized by O (MNP log2(MNP )). If we use isotropic dimensions
in 3D (N × N × N volume), the computational complexity of a 3D FFT can be character-
ized by O

(
N3 log2(N

3)
)
. The computational complexity of the inverse FFT follows similar

conventions.
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As described by Eq. (6.B.1), a single rigid rotation using one of the Euler angles as input, can be
implemented as a series of linear phase modulations in k-space, so called ’shearing’ operations.
For a single rotation in Eq. (6.B.1), we count six 1D FFT (or iFFT) operations, each time
along different dimensions. In fact we have 3 similar 1D FFT (and iFFT) combinations. As
such, the computational complexity of a single rotation can be approximated with a Big-O
definition of O (3Npe · Nf e · Nse log2(Nf e · Nse)) for an overall image size of Npe ×Nf e ×Nse ,
with Npe , Nf e , and Nse the volume dimensions along the phase-encoding, frequency-encoding,
and slice-encoding dimension, respectively. For a simple 12× 12× 12 cubic phantom, similar
to what was used in the Monte Carlo simulation study of chapter 5, this would correspond
to a floating point operation count in the range of 10 to 250 thousand depending on the
amount of zeropadding that was used.

Next, considering all three rigid rotations, as well as the three rigid translations in Eq. (6.B.1),
we recognize a total of 18 1D FFT (or iFFT) operations for the rotations, and one 3D FFT
and one 3D iFFT combination to implement the translations. As such, the computational
complexity of this full warping operator can be approximated with a Big-O definition of:
O
(
9Npe · Nf e · Nse log2(Nf e · Nse) + (Npe · Nf e · Nse)

2 log2 (Npe · Nf e · Nse)
2
)
. Taking again

the example of a simple 12× 12× 12 cubic phantom, typical floating point operation counts
are in the range of 60 million to 14 billion.

As summarized in Eq. (6.B.4), the definition of the partial derivatives of Mθn w.r.t. the rigid
motion parameters uses a large number of FFT operations. In fact, we can count a total
of 108 1D FFT (or iFFT) operations for the rotations, and 8 3D FFT’s (or iFFT’s) for
translational operations. As such, the computational complexity of the first order derivative
of the operator can be approximated with a Big-O definition of:{
∂Mθ

∂θk

}3
k=1

→ O
(
9Npe · Nf e · Nse log2(Nf e · Nse) + (Npe · Nf e · Nse)

2 log2 (Npe · Nf e · Nse)
2
)

∂Mθ

∂θ4
→ O

(
15Npe · Nf e · Nse log2(Nf e · Nse) + (Npe · Nf e · Nse)

2 log2 (Npe · Nf e · Nse)
2
)

∂Mθ

∂θ5
→ O

(
15Npe · Nf e · Nse log2(Nf e · Nse) + (Npe · Nf e · Nse)

2 log2 (Npe · Nf e · Nse)
2
)

∂Mθ

∂θ6
→ O

(
15Npe · Nf e · Nse log2(Nf e · Nse) + (Npe · Nf e · Nse)

2 log2 (Npe · Nf e · Nse)
2
)

SUM O
(
54Npe · Nf e · Nse log2(Nf e · Nse) + 4 (Npe · Nf e · Nse)

2 log2 (Npe · Nf e · Nse)
2
)

For the 12× 12× 12 cubic phantom in our simulations, floating point operation counts are
in the range of 250 million to 60 billion depending on the amount of zeropadding that was
used.

6.B.1.3 Alternative image warping implementations

Image warping operators are crucial to perform the affine transforms that describe the
geometric acquisition of each low-resolution image. Besides the FFT-based warping operator
with its unitary property, introduced in section 6.B.1, there also exist other image warping
operator implementations which have been used successfully in SRR applications.

In the SRR work of Poot et al. (2010b), a warping operator was used that applies an affine
transform Tf by splitting it into a (non unique) Set of 1D SHear transforms (SSH). The
shear transforms T̃j , with j ∈ {1, . . . , 2N}, satisfy Tf =

∏2N
j=1 T̃j , with N the dimensions
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of the problem. Each T̃j differs from the identity matrix only in row dj , so the ND image
is only deformed along its d th

j main axis. This allows for efficient interpolation with a 1D
low pass filter. A general affine transform in N dimensions can thus be split in 2N 1D
low pass filter steps. The complexity of this approach lies in the tuning of the filtering
steps, in particular monitoring their combined effect on the generation of aliasing and
geometric/spectral distortions.

Another type of image warping operators worth mentioning here, are the operators based on
the use of multivariate spline interpolation to interpolate the regular grid data of the image
that is warped. Such operators are linear maps, where each voxel in the warped image is a
linear combination of voxels in the original image. A notable example is the implementation
using tricubic interpolation, i.e. 3D or trivariate spline interpolation using cubic splines, by
Renders et al. (2023). By use of symbolic computer algebra, a list of 64 polynomials can be
generated that allows to compute a matrix representation of trivariate cubic image warping.
By combining an on-the-fly computation of this matrix with a parallelized implementation of
columnwise matrix multiplication, a CUDA accelerated, low memory implementation of the
adjoint action of 3D cubic image warping can be obtained.

6.B.2 Blurring operator

The blurring operator B in Eq. (6.2.1) describes the point spread function (PSF) of the
MRI signal acquisition process. For multislice acquisition methods that sample a rectangular
part of k-space, the 3D PSF is separable and can be modeled as the product of three 1D
PSFs that are applied in the orthogonal directions aligned with the MR image coordinate
axis. The PSFs in the frequency and phase encoding direction are defined by the rectangular
part of k-space that is regularly sampled. In this contribution, an in-plane 2D PSF is
constructed as a convolution of two identical Gaussian functions, with a standard deviation
set to 0.25× ∆in-plane, with ∆in-plane the in-plane resolution (Van Reeth et al., 2015). The
remaining through-plane 1D PSF models the slice selection profile (SSP), as SRR relies on
rotated SSP cross-talk to enhance the through-plane resolution while keeping the in-plane
resolution fixed. In a multislice MRI acquisition, each slice is excited by incorporating a slice
selective gradient which is often generated by applying either a (windowed) sinc or a Gaussian
shaped RF pulse. In this contribution, the SSP in the slice-direction (i.e. the z-direction)
corresponds to a windowed sinc slice excitation, and was modeled as a smoothed box function
(Poot et al., 2010b):

SSP(z ; ∆S) =


1

∣∣ z
∆S

∣∣ ≤ 1
3

1
2 −

1
2 sin

(
3π
(∣∣ z
∆S

∣∣− 12)) 1
3 <

∣∣ z
∆S

∣∣ < 2
3

0 2
3 ≤

∣∣ z
∆S

∣∣ (6.B.10)

where the full width at half maximum (FWHM) of the smoothed box equals the given slice
thickness ∆S of the modeled LR images sn. The spatially invariant blurring of the separable
3D PSF is performed using cyclic convolution, as described in (Hansen et al., 2006), where
the blurring operator B ∈ RNr×Nr and its conjugate transpose BH ∈ RNr×Nr are spectrally
decomposed as:

B = FH3 Λ3F3FH12Λ12F12 (6.B.11)

BH = FH3 ΛH3 F3FH12ΛH12F12 (6.B.12)
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with Λ12 the spectrum of a block-circulant-with-circulant-blocks matrix that describes the
in-plane convolution, and Λ3 a sparse diagonal matrix whose diagonal elements are the
Fourier coefficients of the first column of a circulant blurring matrix created by circularly
shifting the SSP array preceeding row forward. Furthermore, F12 and F3 denote the 2D
unitary DFT along the in-plane dimensions (d = 1 and d = 2) and the unitary 1D DFT
along the through-plane dimension (d = 3), respectively.

6.B.3 Resampling operator

Downsampling along the through-plane direction is required to resample the HR image to a
LR image with increased slice thickness. To allow for noninteger resampling, interpolation
is required. The choice of interpolation paradigm should allow a straightforward transpose
implementation for substitution in the analytical expressions of the Jacobian and Hessian of
the gradient-based SRR optimization routine. Therefore, resampling was performed using
cubic convolution-based interpolation, which was first introduced in (Keys, 1981). As the
original proposition of this type of interpolation is put quite general and extensive, some
extra choices are required regarding its computational implementation. To promote full
reproducibility of our method, these choices will now be discussed.

Cubic convolution-based interpolation (CCI) (Keys, 1981; Meijering & Unser, 2003) of
uniformly sampled data implies the use of an interpolation kernel u : R → R, which
determines the weights to be assigned to the samples fk = f (kT ) of an original function
f : R → R in computing the value of the interpolant g at any arbitrary x ∈ R. In what
follows, for ease of notation, but without loss of generality, we will use T = 1. CCI may then
be described as

g(x) =
∑
k∈Z
fku(x − k). (6.B.13)

As can readily be observed from Eq. (6.B.13), it is required that in order for g to be an
interpolant, the kernel u must satisfy that u(0) = 1 and u(n) = 0 when n is any nonzero
integer. A balanced trade-off between computational cost and accuracy is provided by the
family of cubic convolution kernels that consist of piecewise third-degree polynomials and are
once continuously differentiable. In this contribution, Keys’ third-order cubic convolution
kernel is used (Keys, 1981), which is defined as

u(x) =


3
2 |x |

3 − 52 |x |
2 + 1 if 0 ≤ |x | ≤ 1,

− 12 |x |
3 + 52 |x |

2 − 4|x |+ 2 if 1 ≤ |x | ≤ 2,
0 if 2 ≤ |x |.

(6.B.14)

This kernel has an approximation order of L = 3, which implies that the resulting interpolant
converges to the original function as fast as the third power of the intersample distance.
It also implies that the kernel is capable of reproducing polynomials up to second degree.
Outside the interval (−2, 2), the interpolation kernel u(x) is zero. This means that only four
data samples are used to evaluate the interpolant at some new position x . In practice, the
original function f can only be observed on a finite interval. For values outside this interval,
boundary conditions must be chosen. In our contribution, values outside the image matrix
are assumed to have a zero weight contribution, i.e. fk = 0, indicating that only three values
are used to evaluate the interpolant at the outer background edges of the generated LR
image.
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The HR image r can be thought of as a function

r : [n]× [m]× [o]→ R, (6.B.15)

where n,m, o ∈ N and ∀k ∈ N : [k] = {1, . . . , k}. For each pair of integer coordinates,
it yields a HR voxel value. Following 3D volume considerations, downsampling along the
third [o] through-plane dimension, i.e. the slice selection dimension of r, corresponds with
[n]× [m] repeated one-dimensional CCI operations. A single CCI at a non-integer position a
is given by

x ′(a) = c1x(p1) + c2x(p2) + c3x(p3) + c4x(p4), (6.B.16)

where p1, . . . ,p4 are the four integer valued points surrounding a, and c1, . . . , c4 are the CCI
coefficients obtained by substituting p1, . . . ,p4 in Eq. (6.B.14). The downsampling operator
D transforms HR image r into a LR image s =Dr of which the (i , j, k)-th voxel value is
obtained by

(Dr)(i , j, k) = x ′((i , j, k)). (6.B.17)

Since, by Eq. (6.B.16), Eq. (6.B.17) is a linear combination of voxel values of r, we can
interpret the action of D as a matrix vector product. Where the vectors are the [n]× [m]
one-dimensional HR through-plane arrays. D can be represented by a matrix, with 4 non-zero
coefficients on each row, namely the CCI coefficients of Eq. (6.B.16) at the corresponding
voxel indices separated by the inter-slice distance. The adjoint operator DT is then simply
given by the matrix with the rows of D as its columns. The rows of D or equivalently, the
columns of DT can be computed on the fly, so there is no need to store these matrices
explicitly. If we denote the i-th row of D, i.e. the i-th column of DT by oi , then the action
of DT on a vector s ∈ RN can be implemented as follows:

DTs =

N∑
i=1

sioi . (6.B.18)

With this approach we obtain an exact adjoint operator DT that can be substituted in
the analytical expressions for the Jacobian and Hessian of the gradient-based optimization
routine.

6.B.3.1 Kernel extensions

The original work of Keys (1981) also describes variations of the cubic convolution algorithm.
In particular, the construction of an interpolation kernel which has fourth-order accuracy
(L = 4) and a higher order of convergence (i.e. a measure of how fast the approximation
error goes to zero for decreasing sampling increments), that can be achieved with piecewise
cubic polynomials:

u(x) =


4
3 |x |

3 − 73 |x |
2 + 1 if 0 ≤ |x | ≤ 1,

− 712 |x |
3 + 3|x |2 − 5912 |x |+

15
6 if 1 ≤ |x | ≤ 2,

1
12 |x |

3 − 23 |x |
2 + 2112 |x | −

3
2 if 2 ≤ |x | ≤ 3,

0 if 3 ≤ |x |.

(6.B.19)

Whereas the third-order kernel of Eq. (6.B.14) only requires 4 sample points, the fourth-
order interpolation kernel in Eq. (6.B.19) requires 6 sample points for each query point
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of interpolation, increasing computational demands. Extensive testing of higher-order
interpolation kernels in terms of accuracy and computational efficiency is part of ongoing
research at the time of writing. For more detailed information, the reader is referred to
(Keys, 1981).

6.B.4 Operator validation

In addition to identifying any mathematical or computational operations that could compro-
mise an operator’s computational efficiency, as discussed in section 6.B.1.2 for the FFT-based
warping operator, it is also important to validate the adjoint (i.e. conjugate transpose) im-
plementation of each forward operator. For this purpose, a set of operator tests can be
performed, some of which are briefly explained below.

6.B.4.1 Matrix transpose test

Each linear operator function can be represented by a matrix, that acts (by matrix-vector
multiplication) on an image, represented as a raveled vector. This matrix can also be
extracted explicitly, by application of the operator function to each column of a unit matrix.
In other words, by transforming an image with one voxel set to 1, while all other voxels are
set to 0, we can obtain one column of the operator matrix.

By creating such a matrix explicitly for both the forward and transpose operator function, we
end up with two matrices that should be each other’s transpose, i.e. by interchanging row
and column index for each element both matrices should be identical. It should be noted that
this implementation test is computationally expensive, as the construction of each matrix
representation requires one function operation per voxel. So typically this test is performed
only for smaller phantom-like images.

As an example, consider a test for the resampling operator of section 6.B.3, where we
resample an HR image r with dimensions 10× 10× 10 and voxel size 2× 2× 2 mm3 to an
LR image s with dimensions 5× 10× 4 and voxel size 2.2× 2× 5 mm3. Taking into account
the raveling of both images as column vectors, the resulting forward operator matrix D has
dimensions 200× 1000, and dimensions 1000× 200 for its transpose matrix DT . Fig. 6.B.2
shows both constructed operator matrices visually using a colorbar to indicate the values
of the matrix elements. The same figure also shows the matrix transpose of the operator
by simply interchanging row and column index of each element, denoted as D̃T , and the
corresponding ratio based on element-wise division of DT and D̃T . Note that for a correct
implementation of DT , the ratio test should show values exactly equal to 1 for elements of
D that are different from 0.

6.B.4.2 Dot-product test

Storing the linear operators explicitly as matrices results in extensive computer memory
requirements. Therefore, it is more memory efficient to implement the operators as matrix-
free programming functions. As such, for each operator D and its adjoint DT there are
two functions. The first amounts to the matrix multiplication Dr, while the adjoint routine
computes DTs. The dot-product test allows to verify that the two routines are adjoint to
each other.
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Figure 6.B.2: Matrix transpose test for the resampling operator function of section 6.B.3, showing,
respectively, the constructed forward operator matrix D, the constructed transpose operator matrix
DT , the transpose matrix D̃T by interchanging row and column index of each element of D, and
the ratio matrix created by element-wise division of DT and D̃T . Note that ϵ = 5e−14.

The associative property in linear algebra states that parentheses in a vector-matrix-vector
multiplication are redundant, i.e. the grouping (or association) of the matrices does not
change the result. The parentheses only determine the sequence of computation. Using
symbolic notation:

sT (Dr) =
(
sTD

)
r =

(
DTs

)T
r (6.B.20)

To perform the dot-product test, construct the random vectors r and s with appropriate
dimensions. Using operator function D, compute the matrix-vector product s̃ =Dr, and
using the adjoint operator function DT , compute r̃ =DTs. After substitution of s̃ and r̃ in
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Eq. (6.B.20), it follows that:

sT (Dr)−
(
DTs

)T
r = 0 (6.B.21)

⇔ sT s̃− r̃Tr = 0.

The difference of the scalar values in the left side of Eq. (6.B.21) should be equal to zero
to validate that DT is indeed the exact adjoint operator function of D. In practice, due to
the computer’s inability to represent real numbers with infinite precision, rounding errors
can occur which can decrease the accuracy of the dot-product test. To avoid these errors,
alternative dot-product algorithms have been investigated in the literature (Ogita et al.,
2005).

6.C Applications in musculoskeletal imaging

In addition to neuroimaging, the proposed SRR method with joint motion estimation provides
also a suitable and useful tool for other MRI applications. In particular, it was investigated
how the SRR method can be applied in musculoskeletal MRI, which focuses specifically on
joint structures, including hands, wrists, hips, knees, ankles and so on. A distinction can be
made between the use of SRR in the application of anatomical MRI, where no signal model
is used as part of the SR forward model and the aim is primarily to increase SNR and spatial
resolution without increasing the total scan time, and quantitative MRI, where a signal model
is embedded in the SR forward model to perform a quantitative MRI parameter mapping.
Both types of SRR for musculoskeletal MRI are illustrated hereafter, using knee MRI as a
carrying example. Knee MRI is the most frequently requested musculoskeletal exam, greatly
affecting MRI workflow and patient throughput (Beker et al., 2017).

6.C.1 Anatomical knee MRI

We thank Céline Smekens and the radiology team of the Antwerp University Hospital (UZA) for
their help in acquiring the in-vivo knee dataset that was reconstructed in this appendix section.

Current scanning protocols for knee MRI typically involve 2D intermediate-weighted (IW)
and fat-suppressed T2-weighted turbo spin echo (TSE) sequences. These sequences offer
excellent tissue contrast and high in-plane resolution, but they are commonly acquired with
a large slice thickness, leading to partial volume averaging (Mugler III, 2014; Yao et al.,
2007).

As an alternative to multiple 2D TSE acquisitions, all major MRI vendors have introduced
3D TSE sequences, including fast spin echo Cube (GE Healthcare), volume isotropic TSE
acquisition (VISTA, Philips Medical Systems), and sampling perfection with application opti-
mized contrast using different flip angle evolutions (SPACE, Siemens Healthcare) (Mugler III,
2014). The key advantage of these sequences lies in their capacity to provide a single-slab
isotropic 3D volume covering the entire knee joint, thereby minimizing partial volume effects
and eliminating inter-slice gaps (Yao et al., 2007). Moreover, the source data of these 3D
sequences can be reformatted in any desired orientation, simplifying the depiction of oblique
complex knee structures (e.g., meniscal roots) and obviating the need for multiplanar acqui-
sitions (Mugler III, 2014; Yao et al., 2007; Garwood et al., 2017). Despite these advantages,
current 3D TSE sequences still have limitations in terms of image quality due to the use of
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long echo train lengths (Naraghi & White, 2012). Image blurring, caused by acquiring high
frequencies at later echoes, can be problematic as it diminishes the visibility of low-contrast
structures, such as the menisci, potentially hindering accurate diagnosis (Notohamiprodjo
et al., 2009; Ristow et al., 2009; Subhas et al., 2011). Additionally, compared with 2D
TSE sequences, conventional 3D TSE sequences are characterized by long acquisition times,
increasing the likelihood of motion artifacts (Naraghi & White, 2012; Garwood et al., 2017).
Efforts in knee MRI research have been directed towards developing strategies to achieve
high-resolution isotropic 3D TSE MRI while reducing scan time. For instance, 3D SPACE
with 2D controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)
(Fritz et al., 2016a) and 3D TSE with compressed sensing (CS) (Fritz et al., 2016b; Lee
et al., 2018), have been proposed. Yet, despite their potential, these 3D TSE techniques are
not widely adopted in routine knee MRI.

As an alternative to the blur-sensitive and lengthy direct 3D MRI scans, model-based SRR
could be employed to enhance the MRI trade-off between SNR, spatial resolution, and scan
time (Van Dyck et al., 2020). As a proof-of-concept study and test case for anatomical knee
MRI, the proposed SRR framework with joint motion estimation was applied to 2D TSE
MRI to obtain high-resolution isotropic 3D knee MRI.

Methods A healthy volunteer was scanned on a 3T MR scanner (Magnetom PrismaFit,
Siemens Healthcare, Erlangen, Germany) with a 15-channel knee coil (Quality Electrodynam-
ics, Mayfield Village, OH). The right knee was imaged with a 2D TSE-based SRR protocol,
for which the acquisition parameters are summarized in Table 6.C.1. The protocol consisted
of 7 repetitions of a 2D TSE sequence with a low through-plane resolution (voxel size,
0.5× 0.5× 2.0 mm3). Each acquisition was characterized by a specific rotation around the
phase-encoding axis (i.e., 0°, 26°, 51°, 77°, 103°, 129°, 154°), as illustrated in Fig. 6.C.1.
The scan time per anisotropic 2D slice stack was 1 minute 55 seconds, resulting in a total
scan time of 13 minutes 25 seconds. Model-based super-resolution reconstruction was
performed at an isotropic high-resolution grid with a voxel size of 0.5× 0.5× 0.5 mm3. The
reconstruction was repeated with and without the use of motion estimation, each time using
the same total variation regularization settings.

Table 6.C.1: Acquisition parameters of the 2D TSE sequence used for anatomical SRR

Sequence 2D Turbo Spin Echo (TSE) Slice thickness/gap [mm] 2/0

Orientation Sagittal Voxel size [mm3] 0.5× 0.5× 2.0

TR [ms] 3080 No. excitations 1

TE [ms] 36 Echo spacing [ms] 8.93

Acceleration factor 3 (GRAPPA) Phase encoding direction head to feet

Turbo factor 5 Phase sampling [%] 100

Receiver bandwidth [Hx/pixel] 256 Number of repetitions 7

Flip angle [°] 160 Angles of rotation [°] 0, 26, 51, 77, 103, 129, 154 (*)

Field of view [mm2] 160× 160 Total scan time 13 min 25 s

Matrix size 320× 320

*See Fig. 6.C.1 for a schematic representation of the SR acquisitions.

Results Fig. 6.C.1 and Fig. 6.C.2 display the results of both anatomical super-resolution
reconstructions. Based on a qualitative inspection of these results, it can be observed how
the use of joint inter-image motion correction results in improved sharpness and superior
delineation of knee structures compared to the approach without motion estimation.

189



CHAPTER 6

Figure
6.C

.1:
Schem

atic
representation

of
the

super-resolution
acquisitions

for
the

anatom
icalknee

M
R

I
experim

ent.
Seven

2D
T

SE
data

sets
(LR

1-LR
7)

w
ere

acquired
w

ith
high

in-plane
and

low
through-plane

resolution,
w

hile
rotating

around
the

phase-encoding
axis

over
angles

of
0°,
2
6°,
5
1°,
7
7°,
1
0
3°,

1
2
9°,

and
1
5
4°.

For
com

parison,
the

corresponding
reconstruction

result
after

m
odel-based

S
R

R
w

ith
joint

m
otion

is
show

n
on

the
bottom

right
corner.

190



6.C. Applications in musculoskeletal imaging

Fi
gu

re
6.

C
.2

:
A

na
to

m
ic

al
su

pe
r-

re
so

lu
ti
on

re
co

ns
tr

uc
ti
on

of
th

e
kn

ee
w

it
ho

ut
m

ot
io

n
es

ti
m

at
io

n
(t

op
ro

w
)

an
d

w
it
h

jo
in

t
in

te
r-

im
ag

e
m

ot
io

n
es

ti
m

at
io

n
(b

ot
to

m
ro

w
).

N
ot

e
ho

w
th

e
us

e
of

m
ot

io
n

co
rr

ec
ti
on

re
su

lt
s

in
im

pr
ov

ed
sh

ar
pn

es
s

an
d

su
pe

rio
r

de
lin

ea
ti
on

of
kn

ee
st

ru
ct

ur
es

co
m

pa
re

d
to

th
e

ap
pr

oa
ch

w
it
ho

ut
m

ot
io

n
es

ti
m

at
io

n.

191



CHAPTER 6

Conclusion It was demonstrated that SRR is technically feasible for 3D high-resolution
isotropic IW knee MRI. Furthermore, the addition of joint inter-image motion estimation
to the SRR framework provides a clear advantage over SRR without motion estimation.
Finally, the reader is referred to the work of Van Dyck et al. (2020), which provides a more
elaborate study on the use of SRR for anatomical knee MRI, while using the here proposed
joint motion estimation strategy. Also, the comparison of SRR for 2D TSE images against a
conventional 3D SPACE acquisition is thoroughly investigated using different performance
measures.

6.C.2 Quantitative knee MRI

The work presented in this part of Appendix 6.C was performed in collaboration with Céline
Smekens et al., and was published as an ISMRM conference abstract, receiving a Magna Cum
Laude Merit Award :

C. Smekens*, Q. Beirinckx*, F. Vanhevel, P. Van Dyck, A. J. den Dekker, J. Sijbers, T. Janssens,
and B. Jeurissen, “Super-resolution T ∗2 mapping of the knee using UTE Spiral VIBE MRI”, in
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), Vol. 29,
pp. 3920, 2021. (*Both authors contributed equally.)

Another application of knee MRI where SRR can prove its worth is the noninvasive imaging
of the maturation process of the anterior cruciate ligament (ACL), which can get injured
during sports-related activities where jumping, pivoting and rapid change of direction occurs.
Surgical ACL reconstruction using tendon graft is the standard to treat ACL injuries. However,
little is known about the maturation process of human ACL graft and the role of adjacent
structural abnormalities herein. As such, there currently exists a high clinical need for
improved noninvasive objective measures of ACL graft properties to help inform
return to high-demand activities. Next to anatomical MRI, qMRI techniques, such as T ∗2
relaxometry and diffusion tensor imaging (DTI), have gained interest for musculoskeletal
imaging, as they can provide objective measures of biophysical tissue properties that allow
for monitoring of the tissue microstructure.

To perform T ∗
2 mapping and quantitative evaluation of highly organized collagen-rich knee

structures with short mean transverse relaxation times it is necessary to use ultrashort echo
time (UTE) MRI (de Mello et al., 2019). UTE T ∗2 mapping can estimate ultrashort (< 1.0
ms) and short (1− 10 ms) T ∗2 relaxation times based on data sampled at multiple echo times
(TEs), starting at 0.5 ms or shorter (de Mello et al., 2019; Chang et al., 2015). When
the sampling is extended up to long TEs (> 10 ms), more comprehensive knee T ∗2
maps, including tissues with long mean T ∗2 , can be reconstructed (Williams et al.,
2010). However, this wider T ∗2 sensitivity comes at the expense of higher acquisition times.
Consequently, in vivo validation studies commonly acquire UTE T ∗2 -weighted images with
lower (> 1 mm) through-plane resolution (Chu & Williams, 2019; Breda et al., 2020). Yet,
accompanying partial volume effects may negatively affect the reliability of T ∗2 measurements.
There is thus a need for high-resolution T ∗2 mapping methods that enable accurate and precise
estimation of (ultra)short and long T ∗2 values in a reasonable scan time. This is exactly
where model-based SRR can help in providing a better trade-off between SNR, acquisition
time, and spatial resolution compared to standard 3D relaxometry methods. To improve
the aforementioned trade-off, the proposed SRR framework was applied to the knee as a
proof-of-concept study.
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Methods Three asymptomatic volunteers were scanned on a 3T MR scanner (Magnetom
PrismaFit, Siemens Healthcare, Erlangen, Germany) with a 15-channel knee coil. Per
volunteer, four T ∗2 -weighted datasets were acquired with an accelerated prototypical 3D UTE
Spiral VIBE sequence (Qian & Boada, 2008; Mugler et al., 2015). Acquisition parameters are
listed in Table 6.C.2. As fat suppression leads to increased T ∗2 estimates (Kim et al., 2019),
acquisitions B, C, and super-resolution were acquired without fat saturation and TEs were
chosen as close as possible to the in-phase TEs of water and fat. A TR = 11.40 ms was used
for acquisitions A and B (Kim et al., 2019; Smekens et al., 2020), while a TR = 22.50 ms was
chosen for acquisition C and super-resolution acquisitions to accommodate more and longer
TEs. The super-resolution protocol consisted of five acquisitions with low through-plane
resolution rotated around the frequency-encoding direction (see Fig. 6.C.3).

Table 6.C.2: Acquisition parameters of 4 UTE T ∗2 mapping protocols based on accelerated 3D UTE
Spiral VIBE MRI. A short TR was used for acquisitions A and B (4 TEs in 2 sets), while a longer
TR was used for acquisition C and rotated super-resolution (SR) acquisitions with low through-plane
resolution (10 TEs acquired in 2 (C) or 5 (SR) sets). SPIRiT: iterative parallel image reconstruction
algorithm (Lustig & Pauly, 2010).

Acquisition A Acquisition B Acquisition C SR Acquisition

Slices per slab (#) 176 176 176 60

Acquisition matrix 224×224 224×224 224×224 224×224

Field of view [mm3] 190×190×149.6 190×190×149.6 190×190×149.6 190×190×153.0

Voxel size [mm3] 0.85×0.85×0.85 0.85×0.85×0.85 0.85×0.85×0.85 0.85×0.85×2.55

Fat suppression Yes (Q-fat sat.) No No No

Orientation Sagittal Sagittal Sagittal
Sagittal (0°), 36°,
72°, 108°, 144° (*)

TR [ms] 11.40 11.40 22.50 22.50

TE [ms]
set 1: 0.06, 4.92
set 2: 0.50, 7.38

set 1: 0.06, 4.55
set 2: 0.10, 6.82

set 1: 0.04, 2.29,
6.82, 11.36, 15.90
set 2: 0.10, 4.55,
9.09, 13.64, 18.17

set 1: 0.04, 9.09
set 2: 0.10, 11.36
set 3: 2.27, 13.64
set 4: 4.55, 15.90
set 5: 6.82, 18.17

Flip angle [degrees] 6 6 6 6

Spiral interleaves (#) 212 212 212 184

Spiral duration [µs] 1240 1240 1240 1360

Spiral iPAT factor 2 2 2 2

Reconstruction mode SPIRiT SPIRiT SPIRiT SPIRiT

Total scan time [min:s] 7:14 7:06 14:00 10:20

*See Fig. 6.C.3 for a schematic representation of the SR acquisitions.

For acquisitions A, B, and C, all images were rigidly registered to their respective first
T ∗2 -weighted image (TE1) using the Advanced Mattes Mutual Information metric in Elastix
(Klein et al., 2010; Wu et al., 2020). T ∗2 relaxation times for these acquisitions were
estimated voxel-wise using constrained non-linear least-squares fitting of a mono-exponential
T ∗2 relaxation model. Model-based super-resolution T ∗2 mapping with joint inter-scan motion
estimation was performed on the super-resolution data set using the proposed framework,
using the following mono-exponential T ∗2 relaxation model

fn(ϑ•j) = ρje
− TEn
T∗
2,j , (6.C.1)
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Figure 6.C.3: Schematic representation of the super-resolution (SR) T ∗2 -weighted acquisitions.
Five UTE Spiral VIBE data sets, consisting of two TEs each, were acquired with high in-plane
and low through-plane resolution, while rotating around the frequency-encoding axis over angles of
0°, 36°, 72°, 108°, and 144°.

Figure 6.C.4: Representative T ∗2 and proton density maps estimated from two short (A and B), and
two long (C and SR) acquisition protocols (see Table 6.C.2).

194



References

with ϑ•j = [ρj , T
∗
2,j ]
T the tissue parameter vector at position xj , representing the HR proton

density and T ∗2 relaxation value at that respective position. Regularization hyperparameters
for the total variation terms were heuristically determined.

Results Fig. 6.C.4 displays representative T ∗2 and PD maps from one volunteer corresponding
to the 4 presented acquisitions (A, B, C and super-resolution). Acquisition A provides T ∗2
maps with a noisy appearance and overall higher values than acquisition B, which displays the
lowest T ∗2 values overall. Acquisition C and super-resolution provide similar T ∗2 maps.

Conclusion It could be demonstrated that the T ∗2 maps obtained using the proposed model-
based SRR framework are comparable to maps generated with direct 3D UTE Spiral VIBE
acquisitions, while requiring approximately 25% less scan time. SRR UTE T ∗2 mapping
thus shows great promise for high-resolution quantitative T ∗2 mapping of knee structures
within reasonable scan time.
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CHAPTER 7

ABSTRACT

Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance
imaging technique for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers
from an inherently low signal-to-noise ratio (SNR) and spatial resolution, undermining
its potential. Increasing spatial resolution without significantly sacrificing SNR or scan
time represents a critical challenge towards routine clinical use. In this contribution, we
propose a model-based super-resolution reconstruction (SRR) method with joint motion
estimation that breaks the traditional SNR/resolution/scan-time trade-off. From a set of
differently oriented 2D multi-slice pseudo-continuous ASL images with a low through-plane
resolution, 3D-isotropic, high resolution, quantitative CBF maps are estimated using a
Bayesian approach. Experiments on both synthetic whole brain phantom data, and on in
vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms
state-of-the-art ASL quantification.

The work in this chapter has been published as:

Beirinckx, Q., Bladt, P., van der Plas, M. C. E., van Osch, M. J. P., Jeurissen, B.,
den Dekker, A. J., Sijbers, J., “Model-based super-resolution reconstruction for pseudo-
continuous Arterial Spin Labeling", NeuroImage, Vol. 286, pp. 120606, 2024. doi:
10.1016/j.neuroimage.2024.120506
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7.1. Introduction

7.1 Introduction

Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique to noninvasively
measure cerebral blood flow (CBF), which is a biomarker for various brain disorders (Alsop
et al., 2015; van Osch et al., 2018). ASL uses magnetically labeled arterial blood as
an endogenous tracer, where the labeling is performed by inverting the inflowing blood
magnetization in a plane proximal to the brain. After a specific period of time, called the
post-labeling delay (PLD) time, during which labeled blood travels through the arterial
vascular tree towards the brain tissue, a so-called label image is acquired. Additionally, a
control image is acquired without prior labeling. The difference between the label and control
image yields a perfusion weighted image that isolates the ASL signal. Next, a CBF map
is computed from the perfusion weighted image using a perfusion model and a separately
acquired calibration image (Alsop et al., 2015).

The consensus paper by Alsop et al. recommends pseudo-continuous ASL (pCASL), back-
ground suppression (BS), and segmented 3D readout for clinical implementation of ASL
(Alsop et al., 2015). Segmented 3D acquisition schemes use a single excitation per TR,
which is optimal for BS (Ye et al., 2000; Krüger & Glover, 2001; Garcia et al., 2005; Maleki
et al., 2012; Paschoal et al., 2021). However, 3D readout sequences employ long echo trains,
resulting in through-plane blurring due to T2 decay along the echo train. Splitting the readout
into more segments can reduce this blurring, but at the cost of a longer acquisition time and
increased sensitivity to inter-shot motion and physiological fluctuations (Hernandez-Garcia
et al., 2022). In addition, the long readout time of a 3D imaging sequence holds an increased
risk of motion artefacts (Alsop et al., 2015).

As a viable alternative to 3D readout, single-shot 2D multi-slice (MS) readout methods based
on echo-planar imaging (EPI) have been suggested (Alsop et al., 2015). 2D readout methods
have several advantages over 3D readout methods. First, they have a much shorter readout
and are hence less susceptible to motion during readout (Vidorreta et al., 2013, 2014; Alsop
et al., 2015). Second, they are less susceptible to spatial blurring due to T2 decay (Vidorreta
et al., 2013). Third, they can be used at high field strengths where power deposition limits
prohibit the use of multiple refocusing pulses (Hernandez-Garcia et al., 2022). Finally, 2D
readout methods are readily available on all systems (Alsop et al., 2015).

However, 2D readout approaches also come with disadvantages. First, 2D MS imaging
causes the PLD time to increase in subsequently acquired slices, which results in a significant
degradation of the signal-to-noise ratio (SNR) in the last acquired slices due to longitudinal
relaxation (van Osch et al., 2018). At the same time, however, the slice-wise increase
of PLD can help accommodate unbiased CBF estimation in subjects with arterial transit
time (ATT) values that increase from inferior to superior slices, which can be considered
a consistent finding in most subjects. Second, the use of a separate excitation pulse for
every slice complicates BS. In practice, BS can be optimal for only one slice and will be
progressively less efficient for other slices (Alsop et al., 2015).

In this contribution, which is based on a preliminary study (Bladt et al., 2020), we propose an
alternative 2D MS based image acquisition and parameter estimation method for single-PLD
pCASL that alleviates the main disadvantages of traditional 2D MS imaging, while preserving
its advantages. The method relies on MS super-resolution reconstruction (SRR). In this
approach, a 3D isotropic high resolution (HR) image or parameter map is estimated from
multiple, differently oriented, 2D MS images with a low through-plane resolution. SRR
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has been shown to improve the inherent trade-off between spatial resolution, SNR, and
acquisition time in MRI (Van Reeth et al., 2012; Plenge et al., 2012) and has previously
been applied successfully in anatomical imaging (Poot et al., 2010; Van Dyck et al., 2020),
diffusion MRI (Poot et al., 2013; Fogtmann et al., 2014; Van Steenkiste et al., 2016), and
relaxometry (Van Steenkiste et al., 2017; Bano et al., 2020; Beirinckx et al., 2020, 2022).
The current contribution introduces SRR in the field of ASL, proposing a model-based
MS-SRR framework with joint motion estimation for direct whole brain CBF mapping from
2D MS single-PLD pCASL data. By choosing an SRR acquisition scheme in which low
resolution (LR) label-control image pairs are acquired with varying slice-encoding directions,
the negative effects of fading BS and increasing PLD values in subsequently acquired slices
of the traditional 2D MS readout scheme for pCASL are made independent of location, i.e.
averaged out. To explore its potential in ASL, our newly proposed method is evaluated on
synthetic whole brain perfusion data. Moreover, our pCASL MS-SRR method is combined
with multiband (MB) imaging, also known as simultaneous multi-slice (SMS) imaging, to
accelerate image acquisition and hence provide a more constant and thus on average better
BS as well as a more constant PLD across slices (van Osch et al., 2018). Finally, our
method is validated on in vivo brain data, and compared to a conventional single-PLD
pCASL experiment with 2D MS readout using a widely used Bayesian inference model (BASIL
(Chappell et al., 2009; Groves et al., 2009)) for CBF quantification.

7.2 Theory

In what follows, the components of the proposed ASL SRR framework are discussed, namely
the SRR forward model (Section 7.2.1), the single-PLD pCASL signal model, which encap-
sulates the CBF quantification formula (Section 7.2.2), and the joint Bayesian estimation
framework, for direct CBF mapping with joint motion estimation from LR single-PLD pCASL
data (Section 7.2.3).

7.2.1 Super-resolution reconstruction forward model

Let s = {sn}2Nn=1 be the set of N vectorized, noiseless, anisotropic LR 2D MS control (odd
n) and N label (even n) magnitude images. Each image sn = {snl}Ns

l=1 ∈ RNs×1 is sampled
at the LR grid points yn = {ynl}Ns

l=1 ∈ R3×Ns with Ns the number of voxels per LR image,
and can be modelled as:

sn =DBGnMθnrn (7.2.1)

where rn = {rnj}Nr

j=1 ∈ RNr×1 represents the unknown, noiseless HR image with the same
perfusion-weighting as sn and defined at the targeted isotropic HR grid points x = {xj}Nr

j=1 ∈
R3×Nr , with Nr the number of voxels of the HR image. Furthermore, Mθn ∈ RNr×Nr ,
Gn ∈ RNr×Nr , B ∈ RNr×Nr , and D ∈ RNs×Nr are linear operators that describe unintended
motion, a known geometric transformation that models the image acquisition with specific
slice orientation, spatially invariant blurring, and down-sampling, respectively. The motion
operator Mθn is modeled as a parametric function of θn. Assuming rigid inter-image motion,
the parameter vector θn ∈ R6×1 is given by θn = [txn, tyn, tzn, αn, βn, γn]

T , with txn, tyn, tzn
the translation parameters and αn, βn, γn the Euler angles that describe rotation around the
x , y , and z axis, respectively.
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7.2.2 Single-PLD pCASL signal model

Let ∆rn = {∆rnj}Nr

j=1 ∈ RNr×1, with n even, be the difference image rn−1 − rn and let
ϑrCBF = {ϑrCBF,j}Nr

j=1 ∈ RNr×1 represent the HR relative CBF parameter map to be estimated,
expressed in arbitrary units (a.u.). According to the recommended quantification formula for
single-PLD pCASL data (Alsop et al., 2015), ∆rnj is given by:

∆rnj(ϑrCBF,j) = ϑrCBF,jδ
−1 exp

(
−

PLDnj
T1b

)
, (7.2.2)

with

δ = 6000 ·
λ

2αT1b

(
1− exp

(
− τ
T1b

)) (7.2.3)

a scalar constant that encapsulates the labeling efficiency α, the brain-blood partition
coefficient λ, the labeling duration τ , and the longitudinal relaxation time of blood T1b, which
are all assumed to be known from experiment or fixed at their recommended population
averages. In Eq. (7.2.2), PLDnj is the PLD time that corresponds with the readout time of
the corresponding slice within the label image sn that contains the HR grid point xj . Indeed,
each slice of sn is characterized by a unique PLD that depends on the slice acquisition
order. If the MS acquisition proceeds in ascending slice order with a slice readout time tread,
the effective PLD in the Mth slice is given by: (M − 1) × tread + PLDbase, with PLDbase
the time between the end of the labeling pulse train and the readout. In contrast to a
conventional pCASL MS acquisition scheme, in a rotated SRR acquisition scheme, PLDnj
will depend on the slice direction (Fig. 7.2.1(d)). The mathematical model that describes the
slice-dependent PLDnj is provided in Appendix 7.A. Note that due to the PLD variations, the
virtual HR label images (i.e., rn with n is even) differ from each other, whereas the virtual
HR control images (i.e., rn with n is odd) are all equal when ignoring BS. Consequently, it
follows that the j th voxel of rn can be modelled as:

rnj =

{
r1,j , if n is odd

r1,j − ∆rnj(ϑrCBF,j), if n is even .
(7.2.4)

Eq. (7.2.4) can be extended to include the effect of BS in 2D MS readout:

rnj =

{
r1,jbnj , if n is odd

r1,jbnj − ∆rnj(ϑrCBF,j), if n is even,
(7.2.5)

where bn = {bnj}Nr

j=1 ∈ RNr×1 models inversion-recovery nulling for BS, under the assumption
that BS is perfect for the first acquired slice and with T1t the T1 relaxation time of tissue t,
i.e. bnj = 1− 2 · exp (−TInj/T1t,j), with TInj the optimal inversion time for perfect BS of the
first slice. More details on how to model TInj for SRR are provided in Appendix 7.B.

Following the recommendations of the ASL white paper (Alsop et al., 2015), a calibration
step is needed to translate CBF values in arbitrary units to absolute units of mL/100g/min
of tissue, by voxel-wise dividing the relative CBF map ϑrCBF by a HR proton density weighted
calibration image ρreg = {ρreg,j}Nr

j=1 ∈ RNr×1, registered to the HR reconstruction grid. In
this contribution, we assume ρreg to be a known image, acquired from a separate acquisition.
This calibration image is essentially a control image without background suppression acquired
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Figure 7.2.1: MS SRR acquisition scheme: (a) acquisition coordinate system; (b) k-space coverage;
(c) grid in image space; (d) slice dependent PLDs; (e) coronal LR MS images. The x-, y-, and
z-direction represent the frequency-, phase-, and slice-encoding direction, respectively.

with the same readout as the ASL data (Clement et al., 2022). As such, the HR CBF
parameter map is defined as ϑCBF = {ϑCBF,j}Nr

j=1 = {ϑrCBF,j/ρreg,j}
Nr

j=1 ∈ RNr×1. Note that
by replacing ϑrCBF with ϑCBF in Eq. (7.2.4), a calibrated version of the single-PLD pCASL
model for rn can be obtained.

7.2.3 Joint Bayesian estimation framework

7.2.3.1 Maximum a posteriori estimator

Let s̃ = {s̃n}2Nn=1 ∈ RNs×2N denote the set of 2N measured, noisy LR MS images with s̃n =
{s̃nl}Ns

l=1 ∈ RNs×1. Furthermore, let ϑ = [rT1 ϑTrCBF]
T ∈ R2Nr×1 and θ = {θn}2Nn=1 ∈ R6×2N

represent the perfusion parameters and the motion parameters to be estimated, respectively.
Following a Bayesian approach, the data s̃ and the parameters {ϑ,θ} are modeled as random
variables, where Bayes’ theorem gives an expression for the posterior distribution of the
parameters given the data:

p (ϑ,θ|s̃) =
p(s̃|ϑ,θ)p(ϑ)p(θ)

p(s̃)
, (7.2.6)

with p(s̃|ϑ,θ) the conditional probability distribution of s̃ given the parameters {ϑ,θ},
p(ϑ) and p(θ) the prior distributions that encapsulate the prior knowledge about ϑ and θ,
respectively, and with p(s̃) a normalization factor. When p(s̃|ϑ,θ) is viewed as a function of
the unknown parameters {ϑ,θ} given the data s̃, it is called the likelihood function.
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For a single coil acquisition, the noisy voxel intensities s̃nl can be modeled as Rician distributed
random variables, while for a multicoil acquisition, s̃nl are governed by a non-central chi
distribution (den Dekker & Sijbers, 2014). When the SNR is high enough (> 3), which is
typically the case for the low resolution voxels s̃nl , both distributions can be well approximated
by a Gaussian distribution. If the voxel intensities are additionally assumed to be statistically
independent and the standard deviation of the noise σ to be temporally and spatially invariant,
the likelihood function p(s̃|ϑ,θ) can be expressed as:

p(s̃|ϑ,θ) ∝ exp

(
−
1

2σ2

2N∑
n=1

Ns∑
l=1

(s̃nl − snl(ϑ,θn))2
)
. (7.2.7)

Furthermore, the prior distributions of the HR parameter maps r1 and ϑrCBF, which are
assumed to be smooth, are chosen as:

p(r1) ∝ exp
(
−
λr1

2
∥∆(r1)∥22

)
and p(ϑrCBF) ∝ exp

(
−
λϑrCBF

2
∥∆(ϑrCBF)∥22

)
,

(7.2.8)
respectively, where ∆(·) denotes the 3D discrete Laplace operator (Poot et al., 2013), and
λr1 > 0 and λϑrCBF > 0 are hyper-parameters that control the regularization strengths. For
the motion parameters θ, a non-informative prior p(θ) is adopted, assuming p(θ) to be
uniform over the range of values for which the likelihood function is non-negligible. The
maximum a posteriori (MAP) estimator then maximizes p(ϑ,θ|s̃) w.r.t. the parameters
{ϑ,θ}. Hence, by combining Eqs. (7.2.6)-(7.2.8), we obtain:

{ϑ̂, θ̂} =argmax
ϑ,θ
p(ϑ,θ|s̃) = argmin

ϑ,θ
[− ln p(ϑ,θ|s̃)] (7.2.9)

=argmin
ϑ,θ

[
2N∑
n=1

Ns∑
l=1

(s̃nl − snl (ϑ,θn))2 + λ′r1∥∆(r1)∥
2
2 + λ

′
ϑrCBF
∥∆(ϑrCBF)∥22

]
,

(7.2.10)

with λ′r1 = σ
2λr1 and λ′ϑrCBF = σ

2λϑrCBF regularization parameters to be selected by the user.
Note that σ does not have to be known or estimated in advance.

7.2.3.2 Optimization

The optimization problem in Eq. (7.2.9) is solved using the alternating minimization method,
also known as the cyclic block-coordinate descent (cBCD) method (Fessler & Kim, 2011;
Beck & Tetruashvili, 2013). In this method, the parameters {ϑ,θ} are split into two blocks
that contain the perfusion parameters ϑ, and the motion parameters θ, and the cost function
is successively minimized with respect to each block in a cyclic order:

ϑ̂(t+1) =argmin
ϑ

[
2N∑
n=1

Ns∑
l=1

(
s̃nl − snl(ϑ, θ̂(t)n )

)2
+ λ′r1∥∆(r1)∥

2
2 + λ

′
ϑrCBF
∥∆(ϑrCBF)∥22

]
(P.1)

θ̂(t+1) =argmin
θ

2N∑
n=1

Ns∑
l=1

(
s̃nl − snl(ϑ̂(t+1),θn)

)2
(P.2)

with ϑ̂(0) = ϑini the initial values of the HR parameter maps ϑ, and with θ̂(0) = θini the
initial values of the motion parameters θ, respectively. The procedure is terminated when
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a maximum number of iterations is exceeded, or when a convergence tolerance on the
relative difference of the tissue parameter estimates between consecutive iterations, defined
as E(t) = ∥ϑ̂(t) − ϑ̂(t−1)∥2/∥ϑ̂(t)∥2, is reached.

The alternating optimization routine requires suitable choices of the convergence toler-
ances and regularization weights, as well as choosing suitable solvers for model parameter
optimization problem (P.1), and the motion parameter optimization problem (P.2). To
efficiently solve the linear subproblem (P.1), the Conjugate Gradient Least Squares (CGLS)
algorithm was used, in which parameter maps were initialized with zeros. The inter-image
motion estimation problem (P.2), on the other hand, is nonlinear and adopts a particularly
simple structure when the signal model parameters remain fixed. If the elements of θ are
independent, problem (P.2) can be decoupled into 2N optimization problems that can be
solved efficiently by parallel operations. Each of these decoupled problems is minimized using
a trust-region Newton algorithm (Coleman & Li, 1994), with analytical expressions for the
Jacobian to speed up convergence.

7.2.3.3 Implementation

The proposed method was written in MATLAB and partially in C++. Computations were
performed on a computer with an Intel® CoreTM i7-6850K hexa-core CPU, with 32 GB
of RAM, and a single NVIDIA GeForce GTX 1080 GPU. The computational complexity
of the proposed algorithm is primarily defined by the Fast Fourier Transform (FFT)-based
image warping operators Mθn and Gn in Eq. (7.2.1) (Beirinckx et al., 2022). To speed
up reconstruction, the FFTs of these image warping operators were executed on the GPU.
Furthermore, while the forward model given by Eq. (7.2.1) treats Mθn and Gn as separate
operators, in our implementation we combined both operators to limit the number of FFTs and
to maximize computational efficiency. Linear operators D and B followed the implementation
of Beirinckx et al. (2022). MATLAB parallel computing tools were used to estimate θn for
each value of n separately when solving problem (P.2) of the alternating minimization method.
A single reconstruction took approximately 19 minutes for a simulated LR single-PLD pCASL
dataset (without motion optimization), and 1 hour 10 minutes for the in vivo LR single-PLD
pCASL dataset, respectively.

7.3 Methods

The proposed method, denoted as SRR-pCASL, was evaluated in simulation and in-vivo
experiments, where its performance was compared to that of the following reference meth-
ods:

C-pCASL Conventional acquisition of single-PLD pCASL data with 2D MS readout in which
each control-label image pair is acquired multiple times at a 3D isotropic high resolution,
with an inferior-superior slice-encoding direction, and with an ascending slice readout
order. The reconstruction and direct CBF mapping are performed using the same joint
Bayesian estimation framework as for SRR-pCASL.

BASIL Conventional acquisition of single-PLD pCASL data with 2D MS readout, similar
as for C-pCASL. From these data, CBF was quantified using the Bayesian Inference
for Arterial Spin Labeling (BASIL) method (Chappell et al., 2009; Groves et al.,
2009), which is part of the FSL toolbox (Smith et al., 2004; Woolrich et al., 2009).
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Default settings were used to process single-PLD data, as described by the BASIL
documentation guide and following the recommendations1 of the consensus paper
(Alsop et al., 2015). BASIL uses FSL’s mcflirt (Jenkinson et al., 2002) to correct for
motion between the ASL data and the calibration image. Note that this second reference
method is primarily included to verify C-pCASL as a benchmark for optimal traditional
CBF quantification w.r.t. SRR-pCASL. As such, a true one-to-one benchmarking
between BASIL and the proposed MAP estimation framework is not the main objective,
especially since the use of different prior information and motion correction strategies
in both approaches complicates a fair comparison.

In addition to the above methods a multiband (MB) imaging version to SRR-pCASL, C-
pCASL and BASIL was evaluated to partially prevent longitudinal relaxation effects due
to increasing PLD values for ascending slices during acquisition. The corresponding MB
augmented methods are denoted as SRR-pCASL-MB, C-pCASL-MB, and BASIL-MB,
respectively.

7.3.1 Simulation experiments

Simulation experiments were set up to evaluate the proposed SRR method for single-PLD
pCASL and compare its performance with that of the reference methods. First, to exclude
a possible bias in the CBF estimation introduced by misregistration when comparing the
different methods, a Monte Carlo simulation experiment was performed where the motion
parameters θn were set to 0 and no motion correction was performed. Second, a Monte Carlo
simulation experiment was performed in which the synthetic pCASL data were corrupted
with unwanted inter-image motion to evaluate the estimation of both CBF and motion
parameters. To guarantee realistic head movement, the inter-image motion parameters
{θn}2Nn=1 were chosen equal to an estimated set of motion parameters obtained using a rigid
registration routine2 on the in vivo LR SRR data. The obtained true reference motion
parameters for each of the 2N pCASL images in the simulation study are summarized in
Figs. 7.E.1-7.E.2.

1The compatibility with these recommendations was checked by setting BASIL’s ‘white paper mode’
option to "ON", i.e. the arterial transit time was set to 0, both T1 and T1b were set to 1.65 seconds, the
inversion efficiency was set equal to 0.9 for pCASL, and calibration with a provided proton density weighted
image was performed voxel-wise. In addition, following the default recommendations, BASIL’s adaptive
non-local spatial smoothing prior was used (Groves et al., 2009). This spatial smoothing prior is used for
CBF and is directly based on evidence in the data. It exploits the fact that neighboring voxels are likely to
have similar CBF values, i.e. CBF variation in the brain is relatively smooth. It is also adaptive, so that
in regions where the data does not support the use of smoothing the CBF image will not be smoothed.
Motion correction, which uses FSL’s mcflirt (Jenkinson et al., 2002) to estimate the motion between the
ASL data (and the calibration image), was only turned on for processing of the real data. Finally, the arterial
(macro-vascular) contribution flag was set to ”OFF” in BASIL to facilitate comparability to the proposed
method which currently implements the pCASL model omitting the local arterial contribution.

2The reference motion set θn was obtained from the in vivo LR SRR data using a procedure that involved
three repetitions of: (i) upsampling of the LR SRR data by applying the adjoint operator ATn =MT

θn
GTnBTDT

to each LR control and label image, (ii) calculation of the average HR control and rCBF maps from this
upsampled data using the recommended quantification formula in Eq. (7.2.2) and averaging over the number
of control-label pairs N, and (iii) motion estimation using subproblem (P.2) in which the HR control and
rCBF map remained fixed. The motion parameters that resulted from this procedure were then used as
reference motion component values.
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7.3.1.1 Synthetic data generation

Both for the simulations without and with motion, four different synthetic datasets were
generated, all having the same underlying HR ground truth parameter maps for CBF, PD
and the relaxation time T1t of tissue. These ground-truth parameter maps were generated
starting from a 216 × 180 × 180 HR brain phantom with labeled tissue classes supplied
by MRiLab (Liu et al., 2017) with a 1 mm3 isotropic resolution. Gray (GM) and white
matter (WM) CBF values of 65 mL/100g/min and 20 mL/100g/min, respectively, reported
for the healthy human brain, were assigned to the CBF map (Parkes et al., 2004; Zhang
et al., 2014; Fan et al., 2016). To assess the identification of hyperintensities (Maier et al.,
2021), we additionally simulated a hyperperfusion lesion of 113.75 mL/100g/min in GM and
50 mL/100g/min in WM, having a volume equal to 408 mm3 and 330 mm3, respectively.
Subsequently, the CBF, PD, and T1t maps were resampled onto a 72× 60× 60 grid using
cubic interpolation with a scale-variant kernel to prevent aliasing, matching a 3D isotropic
resolution of 3 mm typical for HR ASL data. Finally, each HR ground-truth parameter map
was zero padded to a 80× 80× 64 grid, such that it corresponds to the dimensions of the
reconstruction grid of the real data experiment (section 7.3.2). Starting from these ground
truth parameter maps, the following noiseless datasets were generated:

labeling
2D EPI 

readout
PLDbase

TR = + PLDbase + slice × read

slice × read

Label image Control image

…

TR

2D EPI 

readout

slice × read

Figure 7.3.1: A schematic representation of the pCASL timing diagram.

Dataset 1: LR 2D MS data (for SRR) Whole brain SRR single-PLD pCASL data was
simulated assuming the rotational acquisition scheme depicted in Fig. 7.2.1. The
acquisition settings, shown in Table 7.3.1, were chosen equal to those of the in vivo
SRR experiment described in section 7.3.2. N = 24 control-label image pairs, each with
a unique slice-encoding direction, were simulated by rotating the slice stack around the
virtual phase encoding axis, aligned in the anterior-posterior direction, in increments of
180/N degrees. The acquisition settings, which include a labeling duration τ = 1.8 s, a
time between the end of labeling and the start of readout of the first slice PLDbase = 1.8

s, Nslice = 16 slices with a thickness of 12 mm, an in-plane isotropic resolution of
3 mm, and a readout time per slice tread = 50 ms, correspond to a total scan time
T = 2N · (τ + PLDbase + Nslice · tread) ≈ 210s. A schematic representation of the
pCASL timing diagram is illustrated in Fig. 7.3.1. The LR control-label image pairs
were simulated as follows. Starting from the 3 × 3 × 3 mm3 HR ground truth CBF,
PD, and T1t maps described above, N = 24 HR whole-brain control-label image pairs
were generated using Eq. (7.2.5), each with a unique PLD map. Next, for each HR
control-label pair, a 3 × 3 × 12 mm3 LR version was computed using the SRR forward
model (Eq. (7.2.1)).

Dataset 2: HR 2D MS data Whole brain single-PLD data was simulated assuming a 2D
MS acquisition with an isotropic spatial resolution of 3 × 3 × 3 mm3. The acquisition
settings, which are tabulated in Table 7.3.1, were chosen identical to those of the in
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vivo experiment described in section 7.3.2, except for the use of MB imaging, which
was ignored in this dataset. Assuming Nslice = 40 slices with a thickness of 3 mm,
τ = 1.8 s, PLDbase = 1.8 s, and tread = 60 ms, N = 22 HR control-label image pairs
were simulated, leading to a longer total scan time than the in vivo experiment (see also
dataset 4). Starting from the HR ground truth CBF, PD, and T1t maps, Eq. (7.2.5)
was used to generate a HR control-label image pair where the PLD increased along the
inferior-superior slice-encoding direction, following the recommended ascending slice
readout order (Alsop et al., 2015). Subsequently, the HR image pair was blurred by
applying a spatially invariant 3D point spread function that corresponds with an MS
acquisition at 3D isotropic spatial resolution.

Dataset 3: LR 2D MS MB data (for SRR) To generate dataset 3, the procedure used to
generate dataset 1 was repeated assuming MB imaging with an MB factor equal to
2. That is, an MB version of dataset 1 was generated assuming that slice n and slice
n + Nslice/2, with n = 1, 2, . . . , Nslice/2, were acquired at the same time, hence with
the same PLD. The simultaneous acquisition of two slices with MB would reduce the
scan time of dataset 3 compared to dataset 1, although the labeling duration and the
PLD would still account for most of the scan time. The main advantage of MB will be
a closer to optimal BS over the whole volume.

Dataset 4: HR 2D MS MB data To generate dataset 4, the procedure used to generate
dataset 2 was repeated assuming MB imaging with an MB factor equal to 2. As such,
the acquisition settings were identical to those of the in vivo experiment described in
Table 7.3.2, resulting in the same total scan time as dataset 1 and the in vivo scan to
allow a fair comparison.

Finally, noise was added to the generated datasets. To facilitate an extensive Monte Carlo
study, for each dataset, NMC = 100 noise realisations were generated by adding zero-mean,
Gaussian distributed noise with standard deviation σ =

√
σ20 + σ

2
P , with σ0 the standard

deviation of the raw noise component, including thermal noise and scanner noise, and σP the
standard deviation of the physiological noise component (Krüger & Glover, 2001). Unlike σ0,
σP is proportional to the signal strength S, i.e., σP = cS, with c a scaling factor. Values for
σ0 and c in each dataset were chosen to match the temporal SNR (tSNR) values observed in
the in vivo data. To this end, a voxel-wise tSNR map was calculated from the conventional
HR 2D EPI data set (see Table 7.3.2), where the tSNR was defined per voxel as µ∆rnj/σ∆rnj ,
with µ∆rnj the temporal voxel-wise mean and σ∆rnj the temporal voxel-wise standard deviation
of the difference images {∆rn}Nn=1, obtained from the N single-PLD pCASL label-control
repetitions. Furthermore, an overall tSNR value was obtained by calculating the spatial
mean inside a brain mask of the voxel-wise tSNR map. This procedure resulted in a tSNR
ranging from approximately 0.2, in brain regions with almost no BS, to 3.4, in brain regions
with perfect BS. Subsequently, values for σ0 and c were tuned to match those tSNR values
in the simulated datasets. Fig. 7.3.2 shows the voxel-wise tSNR map obtained from the
conventional HR in vivo data alongside the tSNR maps used in the simulation experiment,
as well as a comparison in overall tSNR value. Note that for the LR control-label images of
dataset 1 and 3, the tSNR increased approximately 4-fold as a result of the increased slice
thickness of those images when using the SRR forward model (Eq. (7.2.1)), as signal scales
linearly with the imaged volume. The process of simulating (one noise realisation of) dataset
1 is summarized in a flowchart in Fig. 7.3.3 for the simulations with unwanted inter-image
motion, and in Fig. 7.3.4 for the simulations without motion.
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Figure 7.3.2: Coronal views and transverse slices of the voxel-wise temporal SNR maps of the
simulated datasets 1-4, and as calculated from the conventional HR in vivo 2D EPI dataset (see
Table 7.3.2). Dashed lines are used to indicate transitions between multibands. Note that for the HR
Datasets 2 and 4, and the Conventional HR Dataset, only a selection of 24 out of the 40 transverse
slices is shown. For each dataset, the overall tSNR measure is indicated, which was calculated by
taking the spatial mean inside a whole-brain mask of each voxel-wise tSNR map.

7.3.1.2 Parameter estimation

SRR-pCASL and SRR-pCASL-MB were applied to all noise realizations of dataset 1 and 3,
respectively, whereas C-pCASL & BASIL and C-pCASL-MB & BASIL-MB were applied to
dataset 2 and 4, respectively. For the simulation experiments with motion, the parameter
optimization routine used in C-pCASL, C-pCASL-MB, SRR-pCASL, and SRR-pCASL-MB
alternated between (P.1) and (P.2). For the outer loop iterations combining both (P.1) and
(P.2), a convergence tolerance on the relative difference of the tissue parameters between
consecutive iterations E(t) was set at Emin = 10−4, with a maximum number of 10 iterations.
Regarding the inner iterations, the convergence tolerance on the relative difference of the
tissue parameters between consecutive iterations for (P.1) was also set at Emin = 10−4, with
the maximum number of iterations set at 120. Each of the decoupled sub-problems of (P.2)
was solved using a lower bound of µ = 10−6 on the step size as convergence tolerance,
i.e. iterations end when ∥θ(t−1) − θ(t)∥2 < µ. The regularization parameters in (P.1) were
heuristically set to λ′r1 = 1.6 · 10

−3 and λ′rCBF = 2.0 · 10−5, balancing the trade-off between
the data consistency objective and the regularization objectives of the tissue parameter maps
r1 and ϑrCBF, respectively. To compare the estimation methods independent of the choice
of regularization parameters, the same values for λ′r1 and λ′rCBF were used for C-pCASL,
C-pCASL-MB, SRR-pCASL and SRR-pCASL-MB. For the simulations without motion,
only (P.1) was solved in the parameter optimization routine of C-pCASL, C-pCASL-MB,
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Figure 7.3.3: A flowchart of the data simulation process for single-PLD pCASL data using SRR,
in correspondence with the procedure outlined in Section 7.3.1. Coronal slices are shown for four
slice-encoding directions, illustrating the forward modelling of HR ground-truth parameter maps to
LR MS images with unwanted motion. Signal intensities of the control and label images are shown
in arbitrary units.
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Figure 7.3.4: A flowchart of the data simulation process for single-PLD pCASL data using SRR,
in correspondence with the procedure outlined in Section 7.3.1. Coronal slices are shown for four
slice-encoding directions, illustrating the forward modelling of HR ground-truth parameter maps to
LR MS images without unwanted motion. Signal intensities of the control and label images are
shown in arbitrary units.
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SRR-pCASL, and SRR-pCASL-MB, using the same tolerance settings and regularization
parameters for (P.1) as for the simulations with motion. For BASIL and BASIL-MB, motion
correction using FSL’s mcflirt was only turned on in the simulations with motion. To facilitate
voxel-wise division with the calibration image ρreg in the simulation experiments, the ρreg
image and the first control image were assumed to be perfectly aligned and the first control
image was used as a reference target image when estimating the motion of the other images,
both for the proposed framework and for BASIL.

7.3.1.3 Performance analysis

The CBF estimates obtained by the individual methods were compared based on a voxel-wise
analysis of the accuracy and precision of each method using the following performance
measures (Beirinckx et al., 2020, 2022):

Absolute relative bias (arBias) , which quantifies the accuracy of an estimator, calculated

as
∣∣∣(¯̂ϑCBF − ϑCBF)⊘ ϑCBF

∣∣∣, where ¯̂ϑCBF and ϑCBF refer to the CBF maps which

contain the element-wise sample mean of the NMC estimates ϑ̂CBF, and the true
reference values, respectively, and where ⊘ denotes the element-wise division operator.

Relative standard deviation (rSTD) , which quantifies the precision of an estimator, cal-
culated as(
NMC
NMC−1(ϑ̂CBF − ¯̂ϑCBF) ◦ (ϑ̂CBF − ¯̂ϑCBF)

)◦ 1
2

⊘ ϑCBF, where ◦ and the superscript ◦ 12
denote the Hadamard product and element-wise square-root operator, respectively.

Relative root-mean-squared error (rRMSE) , which is a combined measure of accuracy

and precision, calculated as
(
(ϑ̂CBF − ϑCBF) ◦ (ϑ̂CBF − ϑCBF)

)◦ 1
2 ⊘ ϑCBF.

In addition, the spatial mean of each of these performance measure maps was computed,
yielding arBias, rSTD, and rRMSE, respectively. To further assess image quality of the
estimated CBF maps compared to the ground truth HR CBF map, average structural similarity
index measure (SSIM) and peak SNR (PSNR) values were obtained for each method by
calculating the sample mean of the SSIM and PSNR values obtained for each of the NMC

realisations.

To assess the ability of the different frameworks to estimate motion, the following performance
measure was used:

Motion component root-(mean)-mean-squared-error (RMMSE) , which is defined as(
1
2N

∑2N
n=1 (θ̂n − θn) ◦ (θ̂n − θn)

)◦ 1
2

, where θn refers to the true reference value and

the operator (·) denotes the element-wise sample mean over the NMC estimates θ̂n.

Next, to visually compare the estimated CBF values against the reference CBF values,
a 2D scatter plot for each method was generated between ¯̂ϑCBF and ϑCBF. Addition-
ally, following the definition of Delbany et al. (2019), the SNR gain map ΓX,Y ∈ RNr×1

between method X and method Y was calculated as ΓX,Y = SNRX ⊘ SNRY . Here,
SNRX represents the average SNR map of the reconstructed CBF maps in the simula-
tion experiments for method X, which was calculated as the ratio of the element-wise
sample mean and standard deviation of the NMC estimates ϑ̂CBF,X for method X, i.e.,
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SNRX = ¯̂ϑCBF,X ◦
(
NMC
NMC−1(ϑ̂CBF,X − ¯̂ϑCBF,X) ◦ (ϑ̂CBF,X − ¯̂ϑCBF,X)

)◦(− 12)
. Note that ΓX,Y

incorporates both the SNR gain due to the use of a different acquisition strategy as well as
due to a different reconstruction algorithm being used between both methods. Finally, the
spatial mean of each SNR gain map was computed, yielding overall SNR gain values ΓX,Y
between the different methods.

Table 7.3.1: Acquisition settings for the synthetic data sets using 2D MS readout. A slice orientation
angle of 0° corresponds with the slice-encoding axis directed from left to right, and with the phase-
encoding axis perpendicularly directed from anterior to posterior. Each angle listed below is a rotation
of the slice-encoding axis around the phase-encoding direction counterclockwise. Therefore, a 90°
angle is consistent with an ascending slice order. These rotations are consistent with the rotations
visualized in Fig. 7.2.1.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
LR 2D MS HR 2D MS LR 2D MS MB HR 2D MS MB

Slices per slab Nslice (#) 16 40 16 40
Acquisition matrix 80 × 80 80 × 80 80 × 80 80 × 80
FOV [mm3] 240 × 240 × 192 240 × 240 × 120 240 × 240 × 192 240 × 240 × 120
Voxel size [mm3] 3 × 3 × 12 3 × 3 × 3 3 × 3 × 12 3 × 3 × 3
Labeling duration τ [ms] 1800 1800 1800 1800
PLDbase [ms] 1800 1800 1800 1800
PLD range1 [ms] 1800-2550 1800-3750 1800-2150 1800-2750
Slice readout time tread [ms] 50 60 50 60
# control-label pairs N 24 22 24 22
# slice encoding directions 24 1 24 1
Slice orientation angles2 [°] 0, 7.5, . . . , 172.5 90 0, 7.5, . . . , 172.5 90
Multiband factor ω n.a. n.a. 2 2
Theor. scan time3 T [min:s] 3:30 4:20 3:10 3:30

1 For a dataset with MB, the PLD range is given for a single band.
2 For the LR datasets, the slice orientation angles were chosen by rotating the slice stack around the virtual

phase encoding axis in increments of 180/N degrees. For N = 24, each rotational increment is equal to
7.5°.

3 Defined as T = 2N · (τ + PLDbase + Nslice · tread/ω)

7.3.2 Real data experiment

The performance of the proposed SRR-pCASL method was also evaluated using in vivo brain
MS single-PLD pCASL data from a healthy volunteer (adult, male, 29 years old), acquired
using a 32-channel head coil on a 3 Tesla-scanner (Achieva, Philips Healthcare). Ethical
approval from the local institutional review board was obtained and an informed consent
was signed by the volunteer. The pCASL data was acquired using a single-shot 2D EPI
readout method, as recommended by (Alsop et al., 2015). LR MS data for SRR as well
as conventional MB MS data directly acquired at high resolution were collected using the
acquisition settings tabulated in Table 7.3.2. Data sets were acquired without slice gap. A
larger FOV for the LR data set compared to that of the conventional HR data set is needed
because the entire brain has to be within the FOV for each rotation angle. Also note that,
even though the readout time is significantly longer when acquiring 40 slices instead of 16,
this results in only 2 control-label image pairs less for the conventional HR dataset compared
to the LR dataset, given a fixed total scan time for both protocols (see Table 7.3.2). This
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Table 7.3.2: Acquisition settings for SRR data and conventionally acquired data using 2D MS
readout. A slice orientation angle of 0° corresponds with the slice-encoding axis directed from
left to right, and with the phase-encoding axis perpendicularly directed from anterior to posterior.
Each angle listed below is a rotation of the slice-encoding axis around the phase-encoding direction
counterclockwise. Therefore, a 90° angle is consistent with an ascending slice order. These rotations
are consistent with the rotations visualized in Fig. 7.2.1.

LR 2D MS HR 2D MS MB

Slices per slab (#) 16 40
Acquisition matrix 80 × 80 80 × 80
FOV [mm3] 240 × 240 × 192 240 × 240 × 120
Voxel size [mm3] 3 × 3 × 12 3 × 3 × 3
TR [ms] 4400 4800
Labeling duration [ms] 1800 1800
PLDbase [ms] 1800 1800
PLD range1 [ms] 1800-2550 1800-2750
Number of control-label pairs 24 22
Number of slice encoding directions 24 1
Slice orientation angles [°] 0, 7.5, . . . , 172.5 90
SMS (multiband factor) n.a. yes (factor 2)
Total scan time [min:s] 3:30 3:30

1 For the conventional HR data, the PLD range is given for a single band.

is a direct consequence of the fact that the labeling duration and the PLD take up most
of the scan time. In addition to the pCASL data, a proton density weighted calibration
image was acquired at isotropic high resolution for absolute CBF quantification. CBF map
estimates were obtained from the LR MS data using the proposed SRR-pCASL method, and
compared to the CBF maps estimated from the conventional MS MB data using BASIL-MB
and C-pCASL-MB. For the acquisition of the conventional HR MS ASL data, an MB factor
of 2 was used to limit ASL signal loss in the upper part of the brain. In contrast, MB was
not used in the acquisition of the LR SRR-pCASL data because an MB acquisition required
a mandatory calibration scan to be performed before the acquisition of each LR image pair
with adjusted slice orientation. As a result, the condition of equal total scan time for the
conventional HR dataset and the SRR-pCASL dataset would no longer apply.

The parameter optimization routine used in C-pCASL-MB and SRR-pCASL alternated
between (P.1) and (P.2). For the outer loop iterations combining both (P.1) and (P.2), a
convergence tolerance on the relative difference of the tissue parameters between consecutive
iterations E(t) was set at Emin = 10−3, with a maximum number of 10 iterations. Regarding
the inner iterations, the convergence tolerance on the relative difference of the tissue
parameters between consecutive iterations for (P.1) was also set at Emin = 10−3, with the
maximum number of iterations set at 120. Each of the decoupled sub-problems of (P.2)
was solved using a lower bound of µ = 10−3 on the step size as convergence tolerance,
i.e. iterations end when ∥θ(t−1) − θ(t)∥2 < µ. Regularization weights for the in vivo
reconstructions were heuristically set at λ′r1 = 8 · 10

−3 and λ′rCBF = 1 · 10−4, again similar
for C-pCASL-MB and SRR-pCASL. The in vivo data for BASIL-MB was motion corrected
using FSL’s mcflirt (Jenkinson et al., 2002).
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7.4 Results

7.4.1 Simulation experiments

7.4.1.1 Simulation experiments without motion

Table 7.4.1 summarizes the results of the whole brain simulation CBF mapping experiments
in terms of the average SSIM, PSNR, arBias, rSTD, and rRMSE, for BASIL, C-pCASL, and
SSR-pCASL (with and without MB). For each performance measure, the best performing
framework is highlighted in green. It follows from Table 7.4.1 that SRR-pCASL consistently
resulted in higher average SSIM and PSNR values compared to traditional CBF quantification
with BASIL and C-pCASL. Of all methods studied, SRR-pCASL-MB outperformed the other
approaches in terms of average SSIM and PSNR. C-pCASL-MB had the lowest arBias value
of all methods, and performed best in terms of overall accuracy. SRR-pCASL and SRR-
pCASL-MB had the lowest rSTD values, outperforming the other methods in terms of overall
precision. In terms of overall RMSE, being a measure that incorporates both accuracy and
precision, SRR-pCASL outperformed BASIL and C-pCASL, having an rRMSE value that is
about 30% and 32% smaller than that of C-pCASL and BASIL, respectively. The addition of
MB provided consistent improvement for each performance measure for each method, except
for SRR-pCASL-MB where the arBias value slightly increased. Yet, combining SRR-pCASL
with MB, resulting in SRR-pCASL-MB, provided a notable improvement in CBF estimation
precision and RMSE. Indeed, rSTD and rRMSE for SRR-pCASL-MB decreased with about
14% and 10% compared to SRR-pCASL, respectively.

Table 7.4.1: Quantitative performance measures with standard error (SE) for the whole brain
simulation experiment without motion, calculated over NMC = 100 reconstruction results for CBF
mapping, for each respective readout scheme and reconstruction framework. For each performance
measure, the value of the best performing strategy is highlighted in green.

BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB
value SE value SE value SE value SE value SE value SE

SSIM 0.9833 1e-4 0.9846 1e-4 0.9927 1e-4 0.9894 1e-4 0.9905 1e-4 0.9940 1e-4
PSNR [dB] 30.97 0.02 30.99 0.01 32.33 0.01 32.28 0.03 32.17 0.01 32.45 0.01
arBias [%] 7.15 0.02 5.87 0.02 4.59 0.01 5.33 0.02 4.12 0.01 4.79 0.02
rSTD [%] 17.15 0.03 17.29 0.03 11.71 0.02 13.87 0.02 13.81 0.02 10.07 0.02
rRMSE [%] 19.27 0.04 18.76 0.03 13.07 0.02 15.42 0.02 14.81 0.02 11.68 0.02

Fig. 7.4.1 shows coronal CBF maps estimated with each reconstruction framework as well
as their absolute value of the rBias, rSTD, and rRMSE. Different aspects stand out. First,
SRR-pCASL outperformed single-orientation pCASL in terms of CBF estimation accuracy, as
illustrated by the coronal mid-slice of the arBias. For example, for BASIL a clear bias existed
for gray matter estimates in the outer edges of the brain, while for C-pCASL there existed a
significant bias in some voxels in the upper part of the brain. The latter may be attributed
to the SNR of the ASL signal becoming critically low in these slices, which have the longest
effective PLDs and the lowest degree of BS. For SRR-pCASL, the accuracy of the CBF
estimation was more uniform across the brain, with no apparent differences between tissue
types, or between top or lower parts of the brain. Second, the rSTD of the CBF estimates
obtained using BASIL and C-pCASL increased from the lower parts of the brain towards the
top parts of the brain (third row of Fig. 7.4.1). When using SRR-pCASL, on the other hand,
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Ref BASIL C-pCASL SRR-pCASL

CBF [mL/100g/min]
20 40 60 80 1000

35%0% 7% 14% 21% 28%
Rela�ve RMSE

SRR-pCASL-MB

120

BASIL-MB C-pCASL-MB

30%0% 6% 12% 18% 24%
Rela�ve standard devia�on

0% 4% 8% 12% 16%
Absolute value of rela�ve bias

20%

Figure 7.4.1: Coronal mid-slices of the CBF estimates and the corresponding quantitative perfor-
mance measures for the whole brain simulation experiment without motion. The first row shows the
numerical ground truth (left), followed by the estimated CBF maps for each method. Next, rows
2-4 show the absolute value of the relative bias, relative standard deviation, and relative RMSE,
respectively, computed from the NMC = 100 simulations.

the precision of CBF estimation was much more uniform, per tissue type, throughout the
brain (Fig. 7.4.1). Furthermore, the addition of MB led to a reduction of the rSTD for each
method. Whereas for BASIL-MB and C-pCASL-MB the precision improvement was limited
to slices acquired in the second band only, for SRR-pCASL-MB these improvements were
obtained across the whole brain. Third, in terms of rRMSE, SRR-pCASL clearly outperformed
the other methods without MB, as indicated by the visibly darker rRMSE maps in the fourth
row of Fig. 7.4.1. Here, the same trends as for the precision maps in Fig. 7.4.5 are visible,
showing both an increase in the rRMSE for ascending slices during acquisition for BASIL
and C-pCASL, and a more uniform rRMSE of the CBF estimation across brain regions for
SRR-pCASL.

Fig. 7.4.2 (left) shows the locations of the transverse slices that were selected to visualize
the variations in CBF estimation on a slice level. Each transverse slice is characterized by a
unique PLD and degree of BS, depending on the acquisition settings of the processed dataset
for each CBF estimation method. Ground truth values of CBF for these slice locations are
given in the leftmost column of Fig. 7.4.3, including the GM and WM hyperperfusion lesions
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Figure 7.4.2: Top left: locations of the transverse slices for the whole brain simulation experiment
(shown in Fig. 7.4.3). Bottom left: locations of the transverse slices for the real data experiment
(shown in Fig. 7.4.16). In addition, coronal mid-slice views of the slice-dependent effective PLD
matrix are shown for each approach, reflecting the increase in PLD along the slice-encoding direction,
starting from a PLDbase value of 1.8 seconds. Since for SRR-pCASL the effective PLD matrix
rotates with the slice orientation of each LR image (see Fig. 7.2.1), only the effective PLD matrix
corresponding with a slice orientation angle of 90° is shown for SRR-pCASL and SRR-pCASL-MB,
consistent with an ascending slice order. Note that missing data in the bottom panel is due to these
scans not being acquired in the real data experiment.

denoted by the white arrows in the fourth axial slice. Fig. 7.4.3 also shows the rRMSE maps
for each slice location and method. Only slices D and E, which were positioned halfway and
at the beginning of the second band, respectively, showed a lower rRMSE for BASIL-MB and
C-pCASL-MB compared to BASIL and C-pCASL, respectively. Whereas for BASIL-MB and
C-pCASL-MB the rRMSE improvement was limited to slices acquired in the second band
only, for SRR-pCASL-MB these improvements were obtained across all slices. Axial slice
views of the absolute value of the rBias and the rSTD maps, corresponding with the slice
locations of Fig. 7.4.2, are shown in Figs. 7.4.4-7.4.5. Furthermore, to appreciate resolution
enhancements and to ease a qualitative and visual comparison of the CBF map estimated
by each method, Figs. 7.4.6-7.4.7, show orthogonal slice views of the simulated 2D control
images for each simulated dataset in comparison with the estimated HR CBF map per
framework, and zoomed close-ups of this CBF map in comparison with the ground truth
CBF map as a reference, respectively.

Additionally, to demonstrate that the potential of SRR is not confined to a particular
resolution, an extra simulation experiment was performed where a 2× 2× 2 mm3 CBF map
was super-resolution reconstructed from LR pCASL images with a resolution of 2×2×16 mm3.
Acquisition settings and results for this additional simulation experiment are summarized in
Table 7.C.1 and Fig. 7.D.1 in Appendix 7.D.

Next, Fig. 7.4.8 shows the average estimated CBF values against the reference CBF values
in a 2D scatter plot for BASIL (left), C-pCASL (mid), and SRR-pCASL (right) without
(top) and with (bottom) MB. As indicated by the narrower distribution (i.e. better precision)
and the higher number of voxels that match the ground truth values (i.e. better accuracy),
SRR-pCASL and SRR-pCASL-MB outperformed the other methods.
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Figure 7.4.3: Relative RMSE maps for CBF, calculated from the reconstruction results of the
whole brain simulation experiment without motion. For each method, five transverse slices are
shown, corresponding with the slice letter convention in Fig. 7.4.2. Overall relative RMSE values
are summarized in Table 7.4.1. The numerical ground truth CBF map is shown in column 1. Both
hyperperfusion lesions are indicated by white arrow marks in slice B of this ground truth CBF map.

Table 7.4.2: The overall SNR gain (ΓX,Y ) with standard error (SE) between reconstruction methods
as assessed by the whole brain simulation experiment without motion, calculated over the NMC = 100

reconstruction results for CBF mapping. Note that row labels refer to method X, while column
labels refer to method Y , in line with the definition of ΓX,Y in Section 7.3.1.3.

ΓX,Y BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB
value SE value SE value SE value SE value SE value SE

BASIL 1.000 0.000 1.047 0.001 0.709 0.001 0.845 0.001 0.859 0.001 0.623 0.001
C-pCASL 0.973 0.001 1.000 0.000 0.686 0.001 0.822 0.001 0.831 0.001 0.604 0.001
SRR-pCASL 1.446 0.001 1.505 0.001 1.000 0.000 1.200 0.001 1.217 0.001 0.875 0.001
BASIL-MB 1.252 0.001 1.310 0.001 0.870 0.001 1.000 0.000 1.017 0.001 0.754 0.001
C-pCASL-MB 1.251 0.001 1.302 0.002 0.867 0.001 0.998 0.001 1.000 0.000 0.750 0.001
SRR-pCASL-MB 1.674 0.001 1.748 0.002 1.153 0.001 1.371 0.001 1.389 0.001 1.000 0.000
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Figure 7.4.4: Absolute value of relative bias maps for CBF, calculated from the reconstruction
results of the synthetic whole brain simulations without motion. For each method, five transverse
slices are shown, corresponding with the slice letter convention in Fig. 7.4.2.

Finally, Table 7.4.2 summarizes the overall SNR gains between the different methods. Here,
SRR-pCASL outperformed the other methods in terms of SNR of the estimated CBF map, as
illustrated by the overall SNR gains over BASIL and C-pCASL, even if these methods exploited
MB during acquisition. The SNR gain was maximal when SRR-pCASL was combined with
MB.
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Figure 7.4.5: Relative standard deviation maps for CBF, calculated from the reconstruction results
of the synthetic whole brain simulations without motion. For each method, five transverse slices are
shown, corresponding with the slice letter convention in Fig. 7.4.2.
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Figure 7.4.6: Orthogonal slice views of simulated HR 2D control images with high through-plane
resolution (3× 3× 3 mm3), without multiband (top panel, column 1) and with multiband (top panel,
column 4), and simulated LR 2D control images with low through-plane resolution (3×3×12 mm3),
without multiband (bottom panel, columns 1-2) and with multiband (bottom panel, columns 4-5).
For illustration purposes, only two slice orientation angles (0° and 90°) are shown for the 2D LR
control images (see also Fig. 7.2.1). Simulated control images are compared to the corresponding HR
CBF map estimates reconstructed with BASIL (top panel, column 2), C-pCASL (top panel, column
3), BASIL-MB (top panel, column 5), C-pCASL-MB (top panel, column 6), and the proposed
SRR-pCASL (bottom panel, column 3) and SRR-pCASL-MB (bottom panel, column 6), respectively.
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BASIL C-pCASL BASIL-MB C-pCASL-MBSRR-pCASL SRR-pCASL-MBRef Ref (zoom)

1008040200

CBF [mL/100g/min]

Figure 7.4.7: Orthogonal slice views with zoomed close-ups showing the high-resolution CBF map
estimated with BASIL (column 3), C-pCASL (column 4), BASIL-MB (column 6), C-pCASL-MB
(column 7), and the proposed SRR-pCASL (column 5) and SRR-pCASL-MB (column 8), compared
to the ground truth CBF map as a reference (columns 1-2) for the whole brain simulation experiment
without motion.
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Figure 7.4.8: 2D histograms between reference values and estimated values for all methods, as
assessed by the whole brain simulation experiment without motion. CBF values are given in
mL/100g/min. The dashed line represents identity. Points below correspond to underestimation and
points above to overestimation, compared to the reference value. For each method, values were
averaged over the NMC = 100 estimates.
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7.4.1.2 Simulation experiments with motion

Table 7.4.3: Quantitative performance measures with standard error (SE) for the whole brain
simulation experiment with motion, calculated over NMC = 100 reconstruction results for CBF
mapping, for each respective readout scheme and reconstruction framework. For each performance
measure, the value of the best performing strategy is highlighted in green.

BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB
value SE value SE value SE value SE value SE value SE

SSIM 0.9705 1e-4 0.9845 1e-4 0.9920 1e-4 0.9825 1e-4 0.9900 1e-4 0.9936 1e-4
PSNR [dB] 28.56 0.02 30.79 0.01 31.54 0.01 30.41 0.03 31.86 0.01 32.29 0.01
arBias [%] 15.86 0.05 6.27 0.02 5.51 0.02 12.92 0.04 4.61 0.02 5.37 0.02
rSTD [%] 10.41 0.03 17.30 0.03 11.70 0.02 8.35 0.02 13.85 0.02 9.87 0.02
rRMSE [%] 20.75 0.05 18.95 0.03 13.54 0.02 16.55 0.04 15.07 0.02 11.84 0.02

RMMSE value SE value SE value SE value SE value SE value SE

tx [mm] 0.2 0.1 0.0016 3e-4 0.0020 3e-4 0.3 0.1 0.0021 3e-4 0.0028 4e-4
ty [mm] 0.11 0.03 0.0034 4e-4 0.017 1e-3 0.18 0.03 0.0006 2e-4 0.0094 8e-4
tz [mm] 0.27 0.06 0.0015 2e-4 0.019 1e-3 0.56 0.09 0.0019 3e-4 0.042 2e-3
α [deg] 0.8 0.2 0.0004 1e-4 0.0106 9e-4 0.8 0.2 0.0005 2e-4 0.021 1e-3
β [deg] 0.20 0.05 0.0004 1e-4 0.0019 4e-4 0.3 0.1 0.0004 1e-4 0.0042 6e-4
γ [deg] 0.5 0.2 0.0014 3e-4 0.0022 3e-4 0.8 0.2 0.0010 2e-4 0.0043 6e-4

Table 7.4.3 summarizes the obtained quantitative performance measures for the whole brain
simulation CBF mapping experiments with motion. It follows from Table 7.4.3 that the
need to estimate unwanted motion during the CBF reconstruction degrades the average
SSIM, PSNR, arBias, and rRMSE value for each method. This effect is most pronounced
for BASIL and BASIL-MB, where motion between the pCASL images was corrected using a
registration routine prior to CBF quantification. Without any exception, the addition of MB
provided consistent improvement for each performance measure for each method. Similar to
the simulations without motion, C-pCASL-MB had the lowest arBias value of all methods,
and performed best in terms of overall accuracy. For BASIL and BASIL-MB, the arBias value
decreased by more than a factor of 2 compared to the simulations without motion, indicating
a considerable drop in accuracy. In terms of overall precision, quantified by the rSTD value,
C-pCASL and SRR-pCASL performed very similar compared to the simulations without
motion (Table 7.4.1), whereas BASIL and BASIL-MB showed a noticeable improvement in
rSTD. In terms of overall RMSE, SRR-pCASL clearly outperformed the other approaches
without MB, having an rRMSE value that is about 34% and 28% smaller than that of
BASIL and C-pCASL, respectively. A similar observation is true when MB was added, with
SRR-pCASL-MB outperforming the other methods in terms of overall RMSE, having an
rRMSE value that is about 24% and 21% smaller than that of BASIL-MB and C-pCASL-MB,
respectively. For BASIL and BASIL-MB, which apply an adaptive spatial smoothing to the
estimated perfusion image, the increased precision (reduced rSTD) somewhat compensates
for the reduced accuracy (increased arBias), compared to the simulations without motion
(Table 7.4.1). This compensating effect also follows from Fig. 7.4.9, which shows coronal
mid-slices of the CBF estimates and the corresponding quantitative performance measures
for the simulation experiment with motion. As indicated by the coronal mid-slice of the
arBias (second row of Fig. 7.4.9), a clear bias existed for BASIL and BASIL-MB in all areas
of the brain, whereas a reduced precision was observed of the rSTD map (third row of
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Figure 7.4.9: Coronal mid-slices of the CBF estimates and the corresponding quantitative perfor-
mance measures for the whole brain simulation experiment with motion. The first row shows the
numerical ground truth (left), followed by the estimated CBF maps for each method. Next, rows
2-4 show the absolute value of the relative bias, relative standard deviation, and relative RMSE,
respectively, computed from the NMC = 100 simulations.

Fig. 7.4.9), most notably for gray matter voxels. Axial slice views of the absolute value of
the rBias and the rSTD maps, corresponding with the slice locations of Fig. 7.4.2, are shown
in Figs. 7.4.12-7.4.13.

In addition, Table 7.4.3 also summarizes the motion component RMMSE for each of the six
rigid motion components. The proposed framework using joint motion estimation clearly
outperformed the BASIL reference method in terms of the motion component RMMSE, with
C-pCASL (without and with MB) performing best. Although RMMSE values for C-pCASL
are lower than for SRR-pCASL, this does not result in lower rRMSE values, indicating
that the benefits of a SRR acquisition with rotated slice-encoding and low through-plane
resolution, i.e. more optimal BS and more constant PLD across slices, can outplay small
inaccuracies/imprecision in motion estimation. The effect of an improved estimation of
motion parameters is also visible from Fig. 7.4.11, where C-pCASL and SRR-pCASL, without
and with the use of MB, result in a narrower distribution (i.e. better precision) and a higher
number of voxels that match the ground truth values (i.e. better accuracy), compared to
BASIL.
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Figure 7.4.10: Relative RMSE maps for CBF, calculated from the reconstruction results of the
whole brain simulation experiments with motion. For each method, five transverse slices are shown,
corresponding with the slice letter convention in Fig. 7.4.2. Overall relative RMSE values are
summarized in Table 7.4.3. The numerical ground truth CBF map is shown in column 1. Both
hyperperfusion lesions are indicated by white arrow marks in slice B of this ground truth CBF map.

Finally, as can be seen from Table 7.4.4, which summarizes the overall SNR gains between
the different methods for the simulation experiment with motion, SRR-pCASL outperformed
C-pCASL and C-pCASL-MB. However, BASIL and BASIL-MB outperformed the proposed
approach in terms of SNR of the estimated CBF map, with a maximal SNR gain for when
BASIL was combined with MB. The increased SNR of BASIL may be attributed to the
increase in spatial regularisation as a result of its adaptive smoothing prior, which also explains
the increased precision (lower rSTD) and reduced accuracy (higher arBias) in Table 7.4.4. To
further support this observation and indicate the increased smoothness in the reconstruction
results of BASIL, particularly for gray matter, Fig. 7.4.14 shows orthogonal slice views with
zoomed close-ups of the HR CBF maps estimated with the different approaches, compared
to the ground truth CBF map as a reference.
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Figure 7.4.11: 2D histograms between reference values and estimated values for all methods,
as assessed by the whole brain simulation experiment with motion. CBF values are given in
mL/100g/min. The dashed line represents identity. Points below correspond to underestimation and
points above to overestimation, compared to the reference value. For each method, values were
averaged over the NMC = 100 estimates.

Table 7.4.4: The overall SNR gain (ΓX,Y ) with standard error (SE) between reconstruction methods
as assessed by the whole brain simulation experiment with motion, calculated over the NMC = 100

reconstruction results for CBF mapping. Note that row labels refer to method X, while column
labels refer to method Y , in line with the definition of ΓX,Y in Section 7.3.1.3.

ΓX,Y BASIL C-pCASL SRR-pCASL BASIL-MB C-pCASL-MB SRR-pCASL-MB
value SE value SE value SE value SE value SE value SE

BASIL 1.000 0.000 1.872 0.003 1.273 0.002 0.888 0.001 1.537 0.003 1.086 0.002
C-pCASL 0.589 0.001 1.000 0.000 0.694 0.001 0.497 0.001 0.830 0.001 0.592 0.001
SRR-pCASL 0.863 0.001 1.489 0.001 1.000 0.000 0.719 0.001 1.207 0.001 0.849 0.001
BASIL-MB 1.253 0.002 2.203 0.003 1.487 0.002 1.000 0.000 1.741 0.002 1.252 0.002
C-pCASL-MB 0.758 0.001 1.291 0.001 0.874 0.001 0.608 0.001 1.000 0.000 0.734 0.001
SRR-pCASL-MB 1.049 0.002 1.810 0.002 1.210 0.001 0.863 0.001 1.445 0.001 1.000 0.000
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Figure 7.4.12: Absolute value of relative bias maps for CBF, calculated from the reconstruction
results of the synthetic whole brain simulations with motion. For each method, five transverse slices
are shown, corresponding with the slice letter convention in Fig. 7.4.2.
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Figure 7.4.13: Relative standard deviation maps for CBF, calculated from the reconstruction results
of the synthetic whole brain simulations with motion. For each method, five transverse slices are
shown, corresponding with the slice letter convention in Fig. 7.4.2.
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Figure 7.4.14: Orthogonal slice views with zoomed close-ups showing the high-resolution CBF map
estimated with BASIL (column 3), C-pCASL (column 4), BASIL-MB (column 6), C-pCASL-MB
(column 7), and the proposed SRR-pCASL (column 5) and SRR-pCASL-MB (column 8), compared
to the ground truth CBF map as a reference (columns 1-2) for the whole brain simulation experiment
with motion.
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7.4.2 Real data experiment

Fig. 7.4.15 shows orthogonal mid-slice views of an HR-MB 2D EPI control image acquired
with high through-plane resolution (3×3×3 mm3) and MB, and an LR 2D EPI control image
with low through-plane resolution (3× 3× 12 mm3) acquired with a slice orientation angle
of 0°, corresponding with the acquisition settings summarized in Table 7.3.2. Fig. 7.4.15
also shows the HR CBF map estimates obtained with BASIL-MB, C-pCASL-MB, and SRR-
pCASL, respectively. Note that for the LR 2D EPI in vivo data set, SRR-pCASL successfully
recovered the fine details from the set of LR images.

3.0 x 3.0 x 12.0 mm33.0 x 3.0 x 3.0 mm3 3.0 x 3.0 x 3.0 mm3

1209060300

CBF [mL/100g/min]

HR-MB 2D EPI BASIL-MB SRR-pCASLLR 2D EPIC-pCASL-MB

Figure 7.4.15: Orthogonal slice views for the real data experiment showing a HR-MB 2D EPI control
image acquired with high through-plane resolution (3× 3× 3 mm3) and multiband (first column),
and a LR 2D EPI control image with low through-plane resolution (3× 3× 12 mm3) corresponding
with a slice orientation angle of 0° (column 4), compared with the HR CBF map estimates obtained
with BASIL-MB (second column), C-pCASL-MB (third column), and SRR-pCASL (column 5),
respectively.

In addition, a series of transverse slices at different locations in the brain of the estimated
HR quantitative CBF maps is shown in Fig. 7.4.16 for BASIL-MB, C-pCASL-MB, and the
proposed SRR-pCASL. The locations of these transverse slices are highlighted on a coronal
view of the CBF map reconstructed with BASIL-MB in Fig. 7.4.2 (bottom left). As indicated
in Fig. 7.4.2, slices A and B correspond with later acquired slices in the first MB segment
for BASIL-MB and C-pCASL-MB, while the other four slices are acquired relatively early in
the second MB segment. When comparing the different methods, two aspects stand out.
First, as can be observed in Fig. 7.4.16, the HR CBF maps reconstructed using SRR-pCASL,
C-pCASL-MB and BASIL-MB are comparable in terms of absolute values and visualized
anatomical structures. This clearly demonstrates the feasibility of combining SRR with
single-PLD pCASL. Second, the reconstructed slices shown in Fig. 7.4.16 for the proposed
SRR-pCASL approach all have comparable CBF values, reflecting the relative uniformity in
SNR throughout all regions in the brain. The CBF maps obtained from the conventional
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HR MS data using C-pCASL-MB and BASIL-MB, on the other hand, clearly suffer from
low SNR in the superior slices of the first MB segment (slices A and B in Fig. 7.4.16). For
these slice locations, the proposed SRR-pCASL outperforms C-pCASL-MB and BASIL-MB
in terms of reconstruction quality of the underlying anatomy.
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Figure 7.4.16: Transverse slices at different locations in the brain of the estimated HR (3× 3× 3
mm3) CBF maps for the different real data approaches. In the first row the estimated CBF map
is shown for the proposed SRR-pCASL on the LR dataset (SRR-pCASL), and in the following
rows the estimated CBF map is shown for C-pCASL on the HR dataset with multiband factor 2
(C-pCASL-MB), and BASIL on the HR dataset with multiband factor 2 (BASIL-MB), respectively.
The CBF maps estimated with SRR-pCASL all have comparable CBF values, which reflects the
relative uniformity in average SNR throughout all regions in the brain as a consequence of acquiring
the LR images with a rotational acquisition strategy. C-pCASL-MB and BASIL-MB, on the other
hand, suffer from low SNR in the posterior slices of the first multiband segment (Slice A and B) due
to longer effective PLDs and limited background suppression. Slice positions correspond with those
given in Fig. 7.4.2.

As stated above, simulation experiments were performed for BASIL-MB and C-pCASL-MB,
mimicking the same MB factor of 2 as in the real data HR pCASL experiment. Note that the
stability of the CBF values across slices in SRR-pCASL (see Fig. 7.4.16) is consistent with
the uniform RMSE of CBF estimation from LR MS data shown in the simulation experiment
(see Fig. 7.4.3). Furthermore, the higher quality of the CBF map obtained using SRR-pCASL
compared to that of BASIL-MB or C-pCASL-MB in regions of the brain that were imaged
last within the MB segment (see the first two slices shown in Fig. 7.4.16) matches with
the difference in RMSE of CBF estimation between both methods in those same regions
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as predicted in the simulation experiment (see Fig. 7.4.3). While it is difficult to compare a
qualitative assessment (real data) with a quantitative measurement of RMSE (simulation
data), it is reasonable to assume both effects are correlated. It serves as an indication of the
validity of the simulation experiment.

7.5 Discussion

In this contribution, we introduced a model-based SRR framework for single-PLD pCASL
MRI. The framework, which integrates inter-image motion estimation, provides direct whole
brain 3D isotropic high resolution CBF mapping from a set of 2D multi-slice control-label
image pairs with a low through-plane resolution and slice orientations that are pair-wise
rotated around a common phase encoding axis. Simulation and real data results show that
this SRR acquisition strategy enables improved CBF mapping compared to the conventional
2D MS single-PLD pCASL acquisition scheme in which control-label image pairs are directly
acquired at the target isotropic resolution with equal acquisition settings for each image pair,
while using the same scan time. Our findings are discussed in more detail below.

7.5.1 Differences with existing techniques

We would like to point out that this contribution differs noticeably from another multi-image
super-resolution resolution study for (pC)ASL, presented by Shou et al. (2021). In that work,
the SLIce Dithered Enhanced Resolution (SLIDER) super-resolution technique proposed by
Setsompop et al. (2015) is integrated with 2D SMS pCASL and a constrained slice-dependent
background suppression (CSD-BS) scheme (Shao et al., 2018). Our approach improves
upon the method presented by Shou et al. (2021) in various aspects. First, SLIDER relies on
sub-voxel spatial shifts in the slice direction, whereas in our approach the slice orientations
are rotated around the phase-encoding axis, which yields a more effective sampling of the
k-space (Plenge et al., 2012). Previous studies that compared translational (i.e., sub-voxel
shift) and rotational SRR schemes confirmed the superiority of the latter (Shilling et al.,
2009; Nicastro et al., 2022). Furthermore, unlike the SRR-pCASL method proposed in this
chapter, the SLIDER-SMS pCASL method proposed by Shou et al. (2021) does not estimate
CBF directly from the LR images, nor does it integrate simultaneous motion estimation,
which may introduce a bias due to error propagation. Moreover, the SLIDER-SMS pCASL
method assumes a perfect slice profile, whereas our SRR-PCASL method models the slice
profile as a more realistic smoothed box function (Poot et al., 2010). In addition, the long
total scan time and lack of motion compensating steps of the SLIDER-SMS pCASL method
increase the susceptibility to motion artifacts, which Shou et al. (2021) identify as a limitation
of their study. As demonstrated in this contribution, the proposed SRR-pCASL framework
integrates an inter-image motion model making it less susceptible to motion artifacts.

7.5.2 Improved CBF quantification from single-PLD pCASL data

Comparing the CBF estimation of the different approaches in the simulation experiment
without motion, the proposed SRR-pCASL framework for LR MS pCASL data showed superior
CBF parameter mapping RMSE compared to both C-pCASL and BASIL for processing of
conventional HR MS pCASL data (see Fig. 7.4.1, Fig. 7.4.3 and Table 7.4.1). In addition,
our results showed that SRR-pCASL consistently resulted in higher average SSIM and PSNR
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values compared to C-pCASL and BASIL (see Table 7.4.1), indicating a better perceived
image quality compared to the ground truth CBF map. Next, it was also demonstrated
that the SRR-pCASL acquisition strategy, when combined with a MAP estimator, provides
high resolution CBF maps with a more uniform and on average higher precision than CBF
maps obtained with C-pCASL and BASIL (see Table 7.4.1, Fig. 7.4.1, and Fig. 7.4.5). This
increased precision can be attributed to a two-fold gain in SNR, as provided by SRR-pCASL.
First, SRR images are acquired with a low through-plane resolution, which increases the SNR
as signal strength scales with the slice thickness (Delbany et al., 2019). Second, using a
low through-plane resolution reduces the number of slices that need to be acquired to cover
the same field-of-view (FOV) compared to higher through-plane resolution. As a result, for
each LR image, the average effective PLD is shorter and the average level of BS improves
compared to standard 2D MS acquisitions (see Fig. 7.5.1), which boosts the SNR throughout
the entire volume. By augmenting each method with a MB factor of 2, which accelerates
image acquisition and hence provides a more constant and on average better BS as well as a
more constant PLD across slices, the SNR gain could be further maximized resulting in an
additional improvement in CBF parameter mapping precision and RMSE for each method
(see Fig. 7.4.5, Fig. 7.4.3, Tables 7.4.1 and 7.4.2). As calculated from our simulations
without motion, this SNR gain was maximal when SRR-pCASL was combined with MB,
relative to the other methods, with the non-MB version of SRR-pCASL even outperforming
the MB versions of BASIL and C-pCASL in terms of SNR gain (see Table 7.4.2). Apart
from the improved SNR, and although the labeling duration and the PLD inherently account
for most of the time of the pCASL sequence, another advantage of lowering the spatial
resolution in SRR-pCASL readout is a reduction of the scan time of an individual image,
allowing to acquire more images within a certain amount of time compared to the acquisition
of images with high spatial resolution.

Figure 7.5.1: A schematic representation of 2D MS readout with a high (left) and a low (right)
through-plane resolution, both with an ascending acquisition order, as recommended for ASL (Alsop
et al., 2015). Assuming the acquisition of an HR and an LR slice take up the same amount of scan
time, the highlighted slices in green in both readout schemes will have the exact same effective PLD
and level of BS. Regardless of the difference in SNR due to the difference in spatial resolution, the
overall shorter effective PLD and the overall higher level of BS in the LR readout scheme will result
in a higher SNR of the ASL signal on average throughout the brain.
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7.5.3 Joint estimation of CBF and motion parameters

Besides the potential of SRR-pCASL to improve the traditional SNR/resolution/scan-time
trade-off in ASL, the integration of a motion model and the single-PLD quantification
model in the proposed SRR-pCASL reconstruction framework allows motion parameters
and CBF parameters to be estimated directly and simultaneously. As such, a conventional
two-step approach is avoided where HR perfusion-weighted images are reconstructed prior to
voxel-wise quantification of CBF values. This benefit of the joint estimation of the motion
and CBF parameters to avoid propagating errors originating from pre-registration routines
(Beirinckx et al., 2022), was confirmed in the simulation experiment with motion, where it
was shown that the proposed framework using joint motion estimation outperformed BASIL
with FSL’s mcflirt as a pre-registration routine in terms of motion component RMMSE
(see Table 7.4.3). We also observed slightly better RMMSE values for C-pCASL than for
SRR-pCASL, even when both approaches used the same Bayesian optimization framework
with the same tolerance settings and regularization parameter selection. This may be the
result of a combination of factors including cost function complexity, i.e. large-angle rotations
are involved the SRR-pCASL forward model to compensate for the rotational acquisition,
and sub-optimal hyper-parameter selection, but further research is required to investigate this
discrepancy. Nevertheless, SRR-pCASL consistently resulted in lower CBF mapping RMSE
values compared to C-pCASL in the simulations with motion (see Fig. 7.4.9, Fig. 7.4.10, and
Table 7.4.3), indicating that the benefits of an SRR acquisition with rotated slice-encoding
direction and low through-plane resolution, i.e. more optimal BS and more constant PLD
across slices, provides a gain in precision that can compensate for small remaining inaccuracies
in motion estimation compared to C-pCASL.

Although a thorough evaluation of BASIL and FSL’s mcflirt was not the main scope of this
contribution, it is worth emphasizing that default usage of these tools on motion corrupted
pCASL data should be done with some precaution. As discussed in Appendix 7.E, for one
control-label image pair of the simulated HR pCASL data sets corrupted with realistic motion,
we noticed consistent outliers in the motion parameter component estimation that resulted
from the pre-registration routine using mcflirt. This forced us to consider this image pair
as an outlier and to discard it from the CBF quantification using BASIL. The obligatory
use of outlier correction steps, and the added question on the basis of which criteria such
correction steps should be evaluated, constitutes another unnecessary step towards accurate
CBF quantification. The advantage of estimating CBF and motion parameters in a single
integrated approach without any form of outlier correction, as proposed in this contribution,
offers clear added value in that respect.

Further, we also observed an increased adaptive smoothing of BASIL in the simulations with
motion, which resulted in an increased rSTD precision measure for BASIL (see Fig. 7.4.9,
Fig. 7.4.13, and Table 7.4.3). As a result, BASIL and BASIL-MB outperformed the proposed
approaches in terms of SNR gain (see Table 7.4.4). However, as indicated by our results, this
over-smoothing of BASIL resulted in a significant reduction in accuracy, as confirmed by the
arBias measure (see Fig. 7.4.9, Fig. 7.4.12, and Table 7.4.3), and a significant deterioration
of BASIL in terms of RMSE compared to the simulation experiment without motion (see
Fig. 7.4.10). In conclusion, similar to the simulations without motion, SRR-pCASL clearly
outperformed BASIL and C-pCASL in terms of overall RMSE (see Fig. 7.4.9, Fig. 7.4.10
and Table 7.4.3).
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Following the extensive simulation studies, the SRR-pCASL framework was also validated
on in vivo brain data, and compared to a single-PLD pCASL experiment on conventional
pCASL data acquired with MB directly at HR (see Table 7.3.2). When comparing SRR-
pCASL to the conventional HR pCASL experiment, two aspects stand out. First, the CBF
maps reconstructed using SRR-pCASL (Fig. 7.4.16, top row), are comparable in terms of
visualized anatomical structures to the CBF maps obtained from the conventional MS data
using BASIL (Fig. 7.4.16, bottom row), and C-pCASL (Fig. 7.4.16, middle row), the last
two approaches using data directly acquired at HR. Second, in certain slices (i.e. slices
A-B of Fig. 7.4.16), SRR-pCASL appears to even outperform the conventional HR pCASL
experiment in terms of reconstructing the underlying anatomy. This is a direct consequence
of the benefit of acquiring LR data for SRR-pCASL in terms of SNR. Furthermore, the
reconstructed slices of the CBF map shown in Fig. 7.4.16 for the SRR-pCASL experiment
all have comparable signal intensities. This reflects the relative uniformity in average SNR
throughout all regions in the brain related to the SNR benefits of acquiring LR pCASL
images while using a rotational acquisition strategy. For the CBF map obtained from the
conventional HR MS data, slices A-B shown in Fig. 7.4.16 clearly suffer from the low SNR
due to long effective PLDs and limited BS. Similar as observed in the simulation experiment
with motion, the adaptive regularization of BASIL-MB compensates for the low SNR by
over-smoothing these slices A-B of the estimated CBF map, which were both acquired
at the end of the first multiband (see Fig. 7.4.2). In comparison to BASIL-MB, such an
over-smoothing effect was not observed in the CBF maps reconstructed with C-pCASL-MB
(which uses a Laplacian prior) from the same conventional HR pCASL data set, where higher
CBF intensities in the first multiband could be observed (see the coronal and sagittal views
in Fig. 7.4.15). Moreover, the stability of the CBF values across slices for SRR-pCASL (see
Fig. 7.4.16) is consistent with the uniform precision of CBF estimation from LR MS data
using SRR-pCASL shown in the simulation experiment (see e.g. Fig. 7.4.9 and Fig. 7.4.13).
Furthermore, the higher quality of the CBF map obtained from the SRR-pCASL experiment
compared to that of the HR ASL experiment in regions of the brain that were imaged latest
within the multiband segment (see the first two slices shown in Fig. 7.4.16) matches with
the difference in RMSE of CBF estimation between both methods in those same regions as
predicted in the simulation experiment (see Fig. 7.4.10). While it is difficult to compare a
qualitative assessment (real data) with a quantitative measurement (simulation data), it is
reasonable to assume both effects are correlated. It serves as an indication of the validity of
the simulation experiment. Moreover, a qualitatively comparable CBF parameter mapping
occurs for C-pCASL compared to BASIL, clearly indicative of the validity of using C-pCASL
as a benchmark against SRR-pCASL in our in vivo experiment.

7.5.4 Model assumptions and prospective extensions.

It is worth highlighting that the proposed SRR framework is generic as other ASL models
can be incorporated analogously. The current framework adopts the CBF quantification
model prescribed by Alsop et al. (2015), which assumes that all labeled blood has arrived in
the imaging voxel before the start of the readout (i.e., ATT from the labeling plane to the
readout slice is assumed to be lower than the PLD), and has stayed intravascularly while
decaying with the T1 relaxation time of blood. However, it has been shown that such model
is sensitive to variations in the ATT of the labeled blood (Alsop & Detre, 1996), implying the
need for sufficiently long PLD. If the PLD is shorter than the ATT, the risk of macrovascular
artifacts (i.e., labeled blood in proximal arteries rather than the distal capillaries or tissue)
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and ASL signal void (i.e., the labeled blood has not arrived yet in distal voxels resulting in
ASL signal loss in these voxels) will increase. To address such issues, future work could
focus on the extension of the proposed model-based SRR framework with a (nonlinear)
multi-PLD pCASL model. Such a model allows to estimate the ATT parameter to improve
the accuracy of CBF estimation (Buxton et al., 1998), and has already been applied for
direct CBF mapping in combination with model-based reconstruction (Maier et al., 2021).
Furthermore, a preliminary phantom simulation study in which the potential of SRR with
multi-PLD pCASL was explored, has already been published as a conference proceeding
(Bladt et al., 2017). In such an approach, each LR MS image is characterized by a unique
slice orientation as well as a unique PLD time, allowing the estimation of both CBF and
ATT. However, given the nonlinear nature of the multi-PLD pCASL model as well as the
increased number of parameters to be estimated, the computational cost of the optimization
is expected to increase. Note, also, that although such ASL model extensions may improve
the accuracy of the estimated parameter maps, the addition of extra parameters to be
estimated comes at the expense of a reduced precision. Furthermore, it is often assumed
that the reduction in data averaging when using multiple time point protocols (required when
acquiring the data in a matched scan time with a single-PLD protocol) leads to a reduction
in the precision of the CBF estimates (Alsop et al., 2015; Dai et al., 2017; Teeuwisse et al.,
2014), which could outweigh the benefits of correcting for ATT effects. At this point, future
work could focus on investigating to what extent this reduction in CBF precision can be
compensated for by the gain in precision associated with the use of SRR-pCASL. Overall,
the effects of accuracy and precision should be carefully weighed against each other.

In this contribution, the calibration image ρ was acquired from a separate acquisition at
the target resolution, i.e., the resolution of the reconstructed ϑrCBF map, followed by
a multi-modal registration step to align ϑrCBF and ρ, which then allowed absolute CBF
quantification via voxel-wise division of ϑrCBF and ρreg to a HR CBF parameter map ϑCBF.
An alternative approach could be to integrate the registration with the calibration image
ρ as part of the cyclic block-coordinate descent optimization scheme in section 7.2.3.2,
resulting in an additional set of motion parameters θρ ∈ R6×1 to be estimated simultaneously
with {ϑ,θ}. This approach would avoid a separate calibration step, and could reduce a
potential bias from propagating registration errors. However, similar to the addition of a
multi-PLD model, the effects of accuracy and precision should be carefully considered as the
estimation of additional motion parameters could come at the cost of a reduced precision.
Furthermore, the benefit of simultaneous estimation of θρ must be weighed against the extra
computational cost associated with such estimation. In particular, modeling θρ requires the
introduction of an extra (computationally intensive) image warping operator in the numerator
of the single-PLD pCASL signal model in Eq. (7.2.2). While image operators Mθn and Gn
are currently combined in one warping operation to maximize computational efficiency, an
additional image warping operator for θρ would demand a full operator call for every forward
pass in the cost function. The latter would cause a significant increase in the computational
cost of the framework. Therefore, in this contribution, the decision was made to consider
the calibration step separately. Future work is encouraged to further investigate the impact
of joint calibration on CBF quantification and computation time.
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7.5.5 Limitations.

In our current implementation, the signal in the voxels of the LR images is assumed to
be Gaussian distributed, which is a valid assumption for sufficiently high SNR. The MAP
estimation then becomes a least-squares optimization, which can be solved efficiently as a
linear optimization problem. However, other data distributions may apply when the SNR
condition is not met, or when other coil acquisition setups, e.g. using parallel imaging, are
used. In that case, the log likelihood can take a nonlinear form, resulting in a nonlinear
optimization problem that requires more advanced computational solvers. Future work could
focus on investigating the impact on CBF estimation when other data distributions, as well
as spatial and temporal variations in the noise standard deviation maps of the LR images,
are used.

The comparison between the considered CBF estimation frameworks depends on the imposed
prior information on the unknown parameter maps, as well as the tuning of the associated
regularization weights. While the SRR-pCASL framework uses a Laplacian prior (cfr. Section
7.2.3.1), and regularization weights can be chosen equally for SRR-pCASL and C-pCASL,
BASIL uses an adaptive non-local spatial smoothing prior based on CBF variations in the brain,
without a priori user-selected regularization weights. In order to compare the performance
of the different methods in a reliable manner, ideally, the level of regularization should
be the same in all reconstructions. At the same time, tuning regularization weights of a
multiple regularization parameter selection problem as proposed, remains a difficult problem.
In the current contribution, the hyper-parameters of the prior distributions in Eq. (7.2.8)
were heuristically selected to be minimally intrusive in the reconstruction, balancing the
trade-off between the data consistency objective and the regularization objectives of the
tissue parameter maps. This approach may be sub-optimal.

A more fair comparison between SRR-pCASL, C-pCASL-MB and BASIL-MB in the real data
experiments would be achieved when MB was (not) used in all experiments. One could argue
that the current real data comparison was skewed in favour of the conventional HR ASL
experiment, because MB was only used for HR ASL data acquisition. However, this choice
was made for two reasons. On the one hand, a MB factor of 2 was used in the HR ASL
experiment, as otherwise there would have been practically no ASL signal remaining in most
of the upper part of the brain. As this was a proof-of-concept study, being able to verify
whether the SRR-pCASL reconstructed CBF maps showed anatomical details comparable
to those of BASIL-MB was more important than a true one-to-one comparison of the
conventional HR ASL and SRR-pCASL experiment. On the other hand, MB was not used
in the SRR-pCASL experiment, because MB acquisition required a calibration scan to be
performed before acquisition of each LR image. This would have taken up too much of the
available total scan time. Future work that investigates whether the SRR acquisition strategy
can be combined with MB more efficiently, to allow for a more fair comparison between both
strategies, is highly encouraged. As demonstrated in our simulation study without motion,
the use of MB in SRR-pCASL-MB provided an additional improvement in relative RMSE
of about 10% compared to SRR-pCASL, largely contributed to by the increased estimation
precision.

Finally, the SRR-pCASL protocol needs to be validated on more subjects in order to demon-
strate its intra- and inter-subject robustness. Ideally, data should be acquired repeatedly in
individual subjects, in order to be able to determine sample standard deviations for CBF map
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estimates, similarly to the analysis done in simulations. This would allow to quantify the
performance of SRR-pCASL and C-pCASL in more detail. In addition, CBF map estimates
obtained using our SRR-pCASL method for 2D MS readout should be further compared with
results obtained using recommended segmented 3D readout schemes. We anticipate that
motion robustness and through-plane blurring are two effects where the proposed SRR-pCASL
method with joint motion estimation offers potential improvements over segmented 3D
readout.

7.5.6 Anticipated clinical impact and future perspectives.

Our research also highlights some advantages that could potentially have profound clinical
impact. The FOV of the LR pCASL data for SRR-pCASL provides wider coverage in the
slice direction (192mm) compared to the conventional HR data (120mm), acquired in the
same total scan time. On the one hand, this wider coverage is required for SRR because the
entire brain has to be within the FOV for each rotation angle. On the other hand, it offers a
potential advantage to applications where such large coverage is required. An advantage, for
example, is that the labeling plane can be scanned, which is not standard for conventional
ASL acquisitions. Directly visualizing the labeling plane can offer valuable information for
off-resonance correction schemes that investigate B0 field inhomogeneity distortions in the
labeling plane (Berry et al., 2019). In addition, the larger coverage would potentially allow
perfusion quantification in deep brain structures such as the brain stem, cerebellum, and
even the spinal cord (Shou et al., 2021). These brain structures are important nodes of the
structural and functional networks of the human brain. However, to date, very few perfusion
measurements have been performed in these structures.

Further, we anticipate that the combination of a rotated SRR acquisition strategy with MB
imaging (also known as SMS) offers great promise to overcome some of the limitations
of ultra-high-field (UHF; 7T and higher) ASL techniques (Teeuwisse et al., 2010). The
added value of such a combined acquisition strategy seems twofold. First, image SNR
increases both with field strength (Gardener et al., 2009), and due to acquisition with low
through-plane resolution and increased effectiveness of BS associated with SRR and MB, as
clearly demonstrated in this contribution (see also Fig. 7.5.1). Second, the combination of
SRR with MB offers an attractive approach to increase the currently limited spatial coverage
at these higher field strengths (Ivanov et al., 2017), since both several spatially distributed
imaging slices are excited and the through-plane resolution of each slice is increased.

It is worth discussing whether the proposed SRR approach can be extended to pCASL with
3D readout. Super-resolution reconstruction is conventionally defined as the recovery of high-
frequency components corrupted by aliasing (Kang & Chaudhuri, 2003). In 2D multi-slice
imaging, aliasing occurs in the through-plane direction, which facilitates SRR. However, there
is consensus that super-resolution in MRI is not achievable in-plane (Greenspan et al., 2002;
Scheffler, 2002; Plenge et al., 2012), nor in true 3D acquisitions, since the Fourier encoding
scheme excludes aliasing in frequency and phase encoding directions. Notwithstanding the
aliasing condition, the proposed estimation framework is fully compatible with 3D pCASL data
(provided that the slice selection profile is turned off). In that case, the reconstruction will
mainly benefit from the joint estimation of CBF and motion parameters, while the potential
resolution gain is expected to be marginal. At the same time, 3D readout remains subject to
several disadvantages, including spatial blurring due to T2 decay and a high sensitivity to
(intra-scan) motion. These disadvantages could complicate resolution enhancement using LR
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3D ASL scans. In particular, it is crucial that such effects are included in the forward model
for (iterative) reconstruction which connects the ground truth CBF map to the observed
data.

Finally, the combination of the proposed SRR acquisition strategy with alternative ASL
labeling approaches, such as Hadamard time encoding (in the context of multi-PLD pCASL)
(Teeuwisse et al., 2014), and velocity selective encoding (Qin et al., 2022), seems worth
investigating and is suggested as a possible extension of this work.

7.6 Conclusion

This contribution has introduced a model-based super-resolution reconstruction framework
for single-PLD pCASL MRI, building on a joint Bayesian estimation framework that aims to
estimate motion-corrected 3D isotropic high-resolution quantitative CBF maps from a set
of 2D multi-slice control-label image pairs acquired with low through-plane resolution and
rotated slice-encoding direction. The framework has been validated in synthetic whole brain
simulations and on in vivo human brain data, demonstrating successful CBF quantification
while providing a more uniform distribution of PLD, improved SNR, and increased effectiveness
of BS compared to conventional 2D MS readout with ascending slice order and isotropic
resolution in the same scan time, even when multiband is applied in the latter. By improving
upon existing disadvantages of 2D MS readout, the proposed framework provides a promising
alternative to the recommended segmented 3D readout schemes, which to date remain
sensitive to inter-shot motion and through-plane blurring due to T2 decay along the long
echo trains.
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Appendices

7.A Slice-dependent PLD

When using a conventional 2D multi-slice readout strategy for pCASL with subsequently
acquired slices, distal slices will have longer effective PLDs than proximal slices. This slice-
dependent effective PLD can be represented using a function that maps each ordered triplet
of HR grid coordinates to a voxel value holding the effective PLD, i.e., PLD : D ⊂ N30 7→ R,
where D = { (i , j, k) | i = 1, . . . , u; j = 1, . . . , v ; k = 1, . . . , w ; and u, v , w ∈ N0 }, with
Nr = u × v × w . Assuming that the base PLD value, PLDbase, increases by a multiple of
the slice readout time, tread, for ascending slices in a conventional 2D multi-slice pCASL
acquisition, the (i , j, k)th voxel value of PLD is defined as:

PLD(i , j, k) = PLDbase + tread · h(k) , (7.A.1)
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with h : N0 7→ N, h = { h(k) | k = 1, . . . , w and w ∈ N0 }, a function that defines the
integer multiplication factor for the k th slice of PLD:

h(k) =
1

ζ
[(k − 1) mod ϱ− ((k − 1) mod ϱ) mod ζ] , (7.A.2)

where ζ is equal to the anisotropy factor, defined as the ratio of the through-plane resolution
to the in-plane resolution, and with ϱ the number of HR slices per band, i.e. the ratio of
the total number of HR slices to the multiband factor. The application of function h is
illustrated in Fig. 7.A.1.

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 1 1 1 2 2 2 3 3 3

0 0 0 1 1 1 0 0 0 1 1 1

�

ℎ �

ℎ �

band 1 band 2

�

� 6� = 3

� = 12

Figure 7.A.1: Illustration of Eq. (7.A.2) where function h operates on a 1-dimensional HR grid
vector k = 1, . . . , 12, oriented along the slice-encoding dimension, using an anisotropy factor ζ = 3,
with ϱ = 12 (i.e., no SMS), and with ϱ = 6 HR slices per band when SMS with multiband factor 2
is modelled.

When using a SRR acquisition strategy, 2D multi-slice images are acquired with anisotropic
voxel size, where each LR image samples the HR scene in a distinct fashion to ensure that
the acquired data contains complementary information about the HR image or HR parameter
maps to be reconstructed. In this contribution, the LR images are acquired with varying slice-
encoding directions (Fig. 7.2.1). Consequently, effective PLD values will vary according to the
assumed slice-encoding direction of each LR image. Under the assumption that no labeling
of cerebral blood is present at an infinitely long PLD, the effective PLD values of the nth HR
pCASL image rn can be modelled using a function PLDn = {PLDnj}Nr

j=1 ∈ RNr×1:

PLDn =

{
∞, if n is odd

M−1
θn

G−1n PLD, if n is even ,
(7.A.3)

where M−1
θn
∈ RNr×Nr and G−1n ∈ RNr×Nr denote the exact inverse warping operators of

operators Mθn and Gn, respectively, which are required to anticipate image warping in the
super-resolution forward model (7.2.1). Note that in this work, similar to (Ramos-Llordén
et al., 2017; Beirinckx et al., 2022), image warping is implemented very efficiently with
Fast Fourier Transforms (FFT). With the FFT approach, Mθn (or Gn) can be shown to be
unitary, which means that its inverse M−1

θn
is equal to MH

θn
∈ RNr×Nr , where the superscript

H denotes the adjoint or Hermitian conjugate. Hence, the warping operator Mθn is easily
reversible, i.e. when applied to an image, the image can be retrieved by applying MH

θn
to the

output of this operation.

7.B Background suppression

Background suppression (BS) can be used to increase the SNR of the ASL signal by
suppressing the physiological noise component that scales with the signal intensity in the
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label and control images. BS can be achieved using a combination of a saturation pulse and a
certain number of inversion pulses applied to the imaging volume (Garcia et al., 2005; Maleki
et al., 2012). By timing these inversion pulses correctly with the readout excitation, the
longitudinal magnetization of the static background tissue will pass through zero at the time
of readout. For imaging methods that employ a single excitation per repetition time (TR),
such as the segmented 3D approaches, BS can be highly effective, as the null point of the
magnetization can be timed to coincide with the excitation pulse. However, in 2D multi-slice
readout for pCASL, used for SRR, an excitation pulse is used for each individual slice and
slices are acquired subsequently resulting in different slice acquisition times. As a result, BS
can be optimal for one slice, but is progressively less efficient for other slices.

Under the assumption that BS is perfect for the first acquired slice and that signal in
subsequent slices recovers towards equilibrium with T1 of tissue, the slice-dependent variation
of optimal inversion time points for BS in a conventional 2D multi-slice pCASL acquisition
with ascending slice order, can be represented as a function TI: D ⊂ N30 7→ R, where
D = { (i , j, k) | i = 1, . . . , u; j = 1, . . . , v ; k = 1, . . . , w ; and u, v , w ∈ N0 }, with
Nr = u × v × w . Similar to the definition of slice-dependent PLD values in Eq. (7.A.1),
it is assumed that inversion times increase by a multiple of the readout time per slice for
ascending slice numbers. As such, the (i , j, k)-th voxel value of TI is defined as:

TI(i , j, k) = T1(i , j, k) · ln(2) + tread · h(k) , (7.B.1)

with h following the same definition as in Eq. (7.A.2).

For a SRR acquisition, the optimal inversion times for perfect background suppression of each
slice will depend on the corresponding slice-encoding direction of each separate acquisition.
Therefore, for each HR pCASL image rn, the corresponding ∆n = {TInj}Nr

j=1 ∈ RNr×1 can
be modelled as:

TIn =M−1
θn

G−1n TI . (7.B.2)

Next, let bn = {bnj}Nr

j=1 ∈ RNr×1 represent a vector that models the T1 relaxation factor for
inversion-recovery nulling for BS, assuming TR ≫ T1 and a perfect 180° RF inversion pulse
(Barral et al., 2010), with

bnj = 1− 2 · exp
(
−
TInj
T1,j

)
. (7.B.3)

Then, Eq. (7.2.4) can be extended to include the effect of background suppression:

rnj =

{
r1,jbnj , if n is odd

r1,jbnj − ∆rnj , if n is even.
(7.B.4)

7.C Linear forward model

It follows from Eq. (7.2.4) that the HR images rn can be modelled as a linear function of
the parameter vector ϑ = [rT1 ϑTrCBF]

T ∈ R2Nr×1:

rn(ϑ) = Anϑ (7.C.1)
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where An ∈ RNr×2Nr represents the block matrix operator:

An =


[
INr 0Nr

]
, if n is odd[

INr diag(vn)
]
, if n is even ,

(7.C.2)

whose matrix elements are given by

An =




1 0 . . . 0 0 0 . . . 0

0 1
. . .

... 0 0
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 . . . 0 1 0 . . . 0 0

 , if n is odd


1 0 . . . 0 vn,1 0 . . . 0

0 1
. . .

... 0 vn,2
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 . . . 0 1 0 . . . 0 vn,Nr

 , if n is even ,

(7.C.3)

with INr ∈ RNr×Nr the identity matrix, 0Nr ∈ RNr×Nr the zero matrix, diag(vn) ∈
RNr×Nr a diagonal matrix with the elements of vn = {vnj}Nr

j=1 = {−∆rnj/ϑrCBF,j}
Nr

j=1 ={
−δ−1 exp (−PLDn,j/T1b)

}Nr

j=1
∈ RNr×1 on its diagonal. Consequently, when combining

Eq. (7.C.1) with the linear SRR forward model operators in Eq. (7.2.1), the overall forward
model in SRR-pCASL remains linear, which allows for efficient solving of (P.1) using linear
optimization routines.

Table 7.C.1: Acquisition settings for the synthetic data set using 2D MS readout, that was used
for the additional simulation experiment with adjusted resolution. A slice orientation angle of 0°
corresponds with the slice-encoding axis directed from left to right, and with the phase-encoding
axis perpendicularly directed from anterior to posterior. Each angle listed below is a rotation of the
slice-encoding axis around the phase-encoding direction counterclockwise. Therefore, a 90° angle is
consistent with an ascending slice order. These rotations are consistent with the rotations visualized
in Fig. 7.2.1.

Extra Dataset
LR 2D MS

Number of slices per slab Nslice 12
Acquisition matrix 120 × 120
FOV [mm3] 240 × 240 × 192
Voxel size [mm3] 2 × 2 × 16
Labeling duration τ [ms] 1800
PLDbase [ms] 1800
PLD range [ms] 1800-2350
Number of control-label pairs N 24
Number of slice encoding directions 24
Slice orientation angles [°] 0, 7.5, . . . , 172.5
Multiband factor ω n.a.
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7.D Extra simulation experiment
In order to demonstrate that the potential of SRR is not confined to a particular resolution,
an additional simulation experiment was performed where a 2 × 2 × 2 mm3 CBF map
was super-resolution reconstructed from LR images with a resolution of 2 × 2 × 16 mm3.
Acquisition settings for this addition simulation experiment are summarized in Table 7.C.1.
Fig. 7.D.1 shows the result of this extra simulation experiment side-by-side with the original
simulation experiment where a 3× 3× 3 mm3 CBF was reconstructed. No unwanted patient
motion was simulated for this experiment.

LR 2D LR 2D SRR-pCASL LR 2D LR 2D SRR-pCASL

3.0 x 3.0 x 3.0 mm 3

(0°) (90°)

2.0 x 2.0 x 16.0 mm3 2.0 x 2.0 x 2.0 mm3

(90°) (0°)

120

90

60

30

0

C
B

F
 [

m
L/

1
0

0
g

/m
in

]

3.0 x 3.0 x 12.0 mm 3

Figure 7.D.1: Orthogonal slice views of simulated LR 2D control images with low through-plane
resolution compared to the HR CBF map estimates reconstructed with SRR-pCASL, for the original
acquisition protocol using LR images with a resolution of 3× 3× 12 mm3 as input (left), and the
new acquisition protocol using LR images with a resolution of 2× 2× 16 mm3 as input (right), as
summarized in Table 7.C.1. For illustration purposes, only the slice orientation angles corresponding
with a slice orientation of 0° and 90° are shown for the 2D LR control images (see also Fig. 7.2.1).

7.E Motion parameter estimates
The motion parameter estimates for the simulation experiment with motion, both without
and with the use of multiband, are summarized in Figs. 7.E.1-7.E.2. Each figure shows the
true reference motion component values θn = {θnk}6k=1 being used to corrupt each image
number, n = 1 . . . 2N, in the whole brain simulations with added motion. Next, Fig. 7.E.1
and Fig. 7.E.2 also show the mean motion parameter component θnk , where the mean was
calculated over the NMC estimates for each image number n. In addition, for each component
and framework combination, the RMSE was plotted using a barplot, where the RMSE value

was calculated per motion component as RMSE(θnk) =
((
θnk − θnk

)2) 1
2

, where θnk denotes

the sample mean of the NMC estimates of the motion component k for image number n,
and where (·) denotes the element-wise sample mean operator over the NMC estimates.
Note that, in line with the definitions in Section 7.2.2, pCASL images rn were pairwise
ranked in alternating order as control-label-control-label-. . . . As highlighted by the red bars
in Fig. 7.E.1 and Fig. 7.E.2, the control-label image pair corresponding with image numbers
39 and 40 was discarded from the CBF quantification routine in BASIL and BASIL-MB due
to consistent outliers of the estimated motion parameter components that resulted from the
pre-registration routine using FSL’s mcflirt.
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Figure 7.E.1: Graphs of the mean motion component estimate and associated RMSE, for each image
number and respective framework without the use of multiband, calculated over the NMC = 100

results for the whole brain simulation experiment with motion. The true reference values for each
motion component are shown in column 1. The outlier discarded control-label image pair for BASIL
is annotated in red.
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Figure 7.E.2: Graphs of the mean motion component estimate and associated RMSE, for each
image number and respective framework using multiband, calculated over the NMC = 100 results
for the whole brain simulation experiment with motion. The true reference values for each motion
component are shown in column 1. The outlier discarded control-label image pair for BASIL-MB is
annotated in red.
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8
Conclusions and Future Perspectives

The overall goal of this dissertation was to develop improved methods for motion-robust
quantitative magnetic resonance imaging (qMRI) of the brain, specifically focusing on
the use of model-based super-resolution reconstruction (SRR) as a technology to optimize
the trade-off between spatial resolution, signal-to-noise ratio, and scan time in qMRI.

As outlined in the Prologue, our society is experiencing rapid growth and aging, resulting in
an increased prevalence of neurodegenerative disorders and age-related diseases, underscoring
the urgent need for timely disease detection to impede or delay their progression. This
demand emphasizes the need for reliable and easily accessible quantitative biomarkers
capable of identifying diseases before clinical symptoms manifest. MRI, renowned for its
excellent soft tissue contrast and inherent patient safety, is a preferred biomedical imaging
tool. However, its widespread use as a biomarker detection tool encounters one particular
challenge. Conventional MRI relies on qualitative image contrast evaluation, complicating
the quantitative comparison of tissue properties within and between scans or subjects.
Transitioning to quantitative MRI (qMRI), as emphasized in Chapter 3, is crucial to overcome
these limitations, enabling absolute quantification of tissue characteristics independent of
experimental design, thereby enhancing diagnostics.

Unfortunately, the dissemination of qMRI faces challenges such as low spatial resolution,
low signal-to-noise ratio (SNR), and long scan times. These long scan times, required
to compensate for the low SNR and spatial resolution, can impact patient comfort and
compliance, increase the risk of motion artifacts, and reduce patient throughput. To address
the need for rapid MRI techniques, without compromising the spatial resolution or SNR
of the MR scans, this thesis employs model-based super-resolution reconstruction as
an advanced image reconstruction tool. As discussed in Chapter 4, SRR addresses
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certain deficiencies (blur, SNR loss, etc.) evident in existing MRI resolution enhancement
techniques. Additionally, the presence of aliased frequency content along the through-
plane dimension of 2D multi-slice MRI acquisitions serves as a foundational prerequisite
for the application and efficacy of SRR. Furthermore, as also highlighted in Chapter 4
and throughout the contributions of this thesis, the utilization of SRR in MRI mandates a
meticulous selection of acquisition strategy coupled with an accurate physical modeling of the
imaging process. Regarding the latter, this thesis provides a comprehensive guidebook of
the essential components and considerations required for the mathematical formulation
and construction of a model-based SRR framework for quantitative MRI, including the
utilization of image coordinate transformations for image warping, point spread function
blurring, volumetric resampling, and the implementation of realistic noise models for magnitude
MR data. Also, a clear distinction exists in the MR image reconstruction formulation,
differentiating between anatomical SRR aimed at estimating a single high-resolution MR
image and the more intricate model-based SRR for qMRI, which integrates a biophysical
MR signal model into the forward model to estimate multiple high-resolution quantitative
parameter maps.

In an attempt to gradually elaborate the expansion and complexity of the proposed method,
Chapter 5 first described the proof-of-concept of joint motion and qMRI parameter estimation
on small-image checkerboard-like phantoms, using T1 mapping as the MR relaxometry model
of choice. By means of an extensive Monte Carlo simulation study with benchmarking
against three alternative SRR approaches – one without motion estimation, and two
with motion correction as a preprocessing step – the potential of augmenting model-based
SRR for quantitative T1 mapping with joint inter-image motion estimation was explored.
In particular, employing model-based super-resolution reconstruction using a maximum
likelihood estimation framework, leveraging prior data knowledge to estimate motion and
model parameters, demonstrated a substantial reduction in potential bias in the estimated
T1 map caused by motion. This improvement was observed when compared to a previously
reported SRR-based T1 mapping approach, in which motion registration was applied as a
preprocessing step prior to T1 mapping.

However, to further extend and validate the use of the model-based SRR with joint motion
estimation on real data, a more advanced physical forward modeling of the MR acquisition of
low-resolution contrast-weighted scans from the underlying high-resolution parameter maps
was required, including, among others, an updated blurring model that takes into account
the slice selection profile of a 2D multi-slice acquisition and a realistic Rician noise model for
magnitude data. Moreover, the method needed to be generally applicable for other biophysical
signal models besides T1 relaxometry. Therefore, in Chapter 6, a rigorous unified framework
for model-based super-resolution reconstruction with joint patient motion estimation
using a Bayesian maximum a posteriori estimator was proposed. The framework allows
the joint estimation of 3D isotropic high-resolution tissue parameter maps and inter-image
motion parameters from a set of multi-slice contrast-weighted magnitude images with a low
through-plane resolution. Additionally, to facilitate the framework’s applicability to other
imaging modalities beyond MR relaxometry, we have designed it to be modular with respect
to both the quantitative signal model and the assumed distribution of the MR data. To
underline the framework’s strength and importance for qMRI, we have validated its use in
both synthetic whole brain simulations and by using two in vivo human brain data sets, for
T1 and T2 relaxometry parameter mapping, respectively. It has been demonstrated that the
proposed SRR framework provides a more detailed delineation of brain structures and
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shows superior motion parameter estimation and improved quantitative tissue parameter
mapping root-mean-square error compared to state-of-the-art SRR approaches.

To emphasize the flexibility of the proposed model-based SRR framework with joint motion
estimation, we extended its application to the more advanced scenario of Arterial Spin Labeling
MRI for brain perfusion quantification. This involved establishing a research collaboration
with colleagues at the Leiden University Medical Center in the Netherlands, leveraging
their expertise and scanner hardware for acquiring pCASL data. As extensively detailed
in Chapter 7, we introduced a new SRR framework for brain perfusion quantification
using pseudo-continuous Arterial Spin Labeling (pCASL), which is capable of estimating
3D isotropic high-resolution quantitative cerebral blood flow (CBF) maps from a series of
single-post-labeling-delay (single-PLD) pCASL control-label image pairs. These images were
acquired with low through-plane resolution and rotated slice-encoding direction in a 2D
multi-slice readout scheme. Building upon the SRR framework from Chapter 6, we jointly
estimated motion between control and label images within a Bayesian estimation framework.
This enabled accurate and precise CBF quantification without propagating pre-registration
errors, while effectively leveraging prior knowledge of tissue properties and noise statistics.
The rotation of the slice-encoding direction for each control-label image pair, along with the
lower through-plane resolution, ensured a more uniform PLD distribution throughout the
brain and enhanced background suppression efficacy. Consequently, this approach significantly
improved SNR compared to conventional 2D multi-slice readout strategies, where CBF
quantification is hindered by perfusion SNR slice dependence. Validation was performed
both qualitatively and quantitatively through synthetic whole brain simulations and in vivo
human brain data. Results demonstrated superior cerebral blood flow estimation in terms
of root-mean-square error compared to a state-of-the-art approach using conventional 2D
multi-slice readout strategies, even with additional hardware acceleration techniques like
multiband applied in the latter. This SRR-pCASL framework addresses existing limitations
of 2D multi-slice readout for pCASL and presents a promising alternative to the currently
recommended segmented 3D readout schemes, which are sensitive to inter-shot motion and
through-plane blurring due to T2 decay along long echo trains. Future research may include
direct comparison of 3D readout and 2D SRR readout schemes for pCASL imaging within
the same time frame. Additionally, continued investigation into the optimal experimental
design of the SRR acquisition strategy with multiband, which has shown significant gains in
CBF estimation precision in simulations, is warranted.

Multiple ways forward from the presented research can be identified, including challenges
inherent in joint optimization reconstruction frameworks involving different sets of parameters,
such as tuning multiple regularization hyperparameters and handling nonlinear parame-
ter coupling. Investigating whether these hyperparameters can be (implicitly) learned from
training data, potentially through the use of recurrent inference machines (RIMs) (Putzky
& Welling, 2017; Lønning et al., 2019), variational networks (Hammernik et al., 2018),
or alternative learning-based methods, represents a promising research line. Ideally, such
methods should be transferable across various modalities and MRI types, addressing also
concerns of data scarcity of high-resolution isotropic quantitative parameter maps. Concur-
rently, advancements in MRI acquisition sequences are vital to support (super-resolution)
reconstruction frameworks, with a focus on delivering data and contrast-weighted images
within clinically acceptable scan times. For instance, the research discussed in Chapter 6 on T2
parameter mapping optimized the MESE sequence for acquiring low-resolution T2-weighted
data. Although such sequence suits the acquisition of multiple images at different TEs, it
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remains a time-consuming readout scheme. Recent developments in sequence protocols,
such as the GRAPPATINI sequence for T2-weighted imaging (Hilbert et al., 2018), may
further facilitate the integration of SRR for quantitative T2 parameter mapping into clinical
practice. However, it’s important to recognize the inherent limitations in MRI dictated by the
relaxation timescales of biological tissues, which cannot be easily circumvented. Therefore,
it remains imperative to underline the necessity for parallel advancements in both acquisition
and reconstruction techniques.

Moreover, beyond the biophysical signal models explored in this thesis for MR relaxometry
and perfusion MRI, ongoing research is delving into more advanced qMRI models with
additional parameters to address existing limitations in physical modeling. For instance,
the implementation of a nonlinear multi-regime multi-PLD pCASL model with model-based
SRR has been briefly explored in checkerboard-like simulations (Bladt et al., 2017), and
could be extended to real data validation experiments in line with the promising results for
single-PLD pCASL in Chapter 7. This would allow for simultaneous high-resolution parameter
mapping of both the cerebral blood flow and the arterial transit time. While such advanced
models offer potentially more accurate estimations, the incorporation of multiple additional
parameters carries the risk of a reduced precision. As such, parameter estimation should
carefully monitor the impact on accuracy and precision, and the statistical performance of
different signal models with alternative parameterizations needs to be thoroughly evaluated
and compared. Optimal experimental design studies, where experiments are designed
so as to minimize the variance of unbiased estimators towards the theoretically predicted
Cramér-Rao lower bound, are essential to ensure that collected data is informative and
precise to guarantee robust quantitative imaging. These studies should consider acquisition
parameters such as the number of contrast-weighted images, the choice of TE, TI, and
PLD values, parallel imaging, the impact of post-processing steps, and the number of slice
encoding orientations, for SRR acquisitions in particular. Ideally, the optimal experiment
should be repeatable and generally applicable across different MRI exams (brain, joints,
etc.) and patient demographics, despite the inherent challenges posed by patient-specific
variations.

The effectiveness of AI-based methods in radiology hinges on the quality of the training
datasets and the machine learning models. These algorithms are trained using large datasets
of images. The diversity and size of these datasets are crucial in developing robust AI models
that can generalise well to new, unseen images. For some AI-based methods targeted at
resolution enhancement in MRI it is crucial that high-resolution isotropic data is available. In
this context, SRR can play a pivotal role in unrolling AI-based methods, by generating
high-resolution datasets retrospectively from low-resolution scans, that can in turn be used as
training data for AI or deep learning methods. In a recent study, the method developed in this
thesis was used to construct high-resolution FLAIR images from low-resolution orthogonal
FLAIR scans, demonstrating potential applications in lesion segmentation of MR scans of
people with Multiple Sclerosis (MS) (Giraldo et al., 2023).

Finally, MRI accessibility remains low and extremely inhomogeneous around the world.
According to the 2020 Organisation for Economic Co-operation and Development (OECD)
statistics (OECD, 2021), there are approximately 65,000 installations of MRI scanners
worldwide (∼7 per million inhabitants) compared to ∼200,000 for CT and ∼1,500,000 for
ultrasound scanners. The distribution of MRI scanners is mainly concentrated within high
income countries, with scarce availability in low and middle income countries and in rural
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areas. Consequently, approximately 70% of the world’s population have little to no
access to MRI. The cost-prohibitive nature of high-field superconducting MRI scanners
present itself as a major stumbling block. In particular the need for specialized hardware,
dedicated RF-shielded hospital spaces, high maintenance costs for helium refill/re-liquification,
and highly-trained personnel (Liu et al., 2021). The applicability of MRI is further limited
by various contraindications for use (e.g., metal implants or claustrophobia) and limited
accessibility. Additionally, patient age complicates access to MRI, as older patients tend
to be more immobile, frailer, or more likely to have metallic implants. Ultimately, these
factors present a major roadblock to MRI accessibility in healthcare. Recently, therefore, MRI
research has been pivoting towards more accessible, low-cost MRI technologies, operating
at ultra-low-field strengths (Arnold et al., 2023). Ultra-low-field MRI (ULF MRI) holds
clear potential in creating a new class of low-cost MRI technologies for accessible healthcare,
with scanners that are simple to onboard, maintain, and operate. ULF MRI holds several
inherent attractions when compared to conventional high-field MRI, including the use of
open-magnet configurations to reduce claustrophobia, low acoustic noise levels during scans,
low sensitivity to metallic implants, and low RF specific absorption rate (Liu et al., 2021). In
essence, ULF MRI can be operated routinely in a doctor’s office, an elderly care facility, or at
someone’s own doorstep – thereby enhancing accessibility for elderly individuals with limited
mobility, a need for caregiver assistance, claustrophobia, or metal implants. Consequently,
ULF MRI could revolutionize large-scale brain health screening, crucial for addressing the
growing number of brain diseases cases in our rapidly aging society and preventing healthcare
systems from strain. Unfortunately, similar to qMRI, clinical adoption of ULF MRI is
lagging behind due to its long scan time requirements. For ULF MRI, long scan times
are currently necessary to compensate for the low SNR and low spatial resolution, inherent
to current scanner designs and imaging at reduced magnetic field strengths. As explained
in Chapter 3, scanners that operate in the low magnetic field regime typically suffer from
reduced image quality that stems from the low Boltzmann polarization at those magnetic field
strengths, resulting in weak nuclear magnetic resonance signals. Accordingly, images obtained
at low-field suffer from low SNR, which can be mitigated in part by increased acquisition times
(Marques et al., 2019). Alas, prolonged scan times are disadvantageous as they increase
the risk of patient motion artifacts while also reduce throughput and patient comfort. Given
this existing need for optimizing the trade-off between SNR, spatial resolution, and scan
time, similar as for qMRI, the research in this dissertation could therefore also be viewed
in the context of this ongoing effort to develop ULF technologies. In fact, the synergistic
combination of model-based SRR with ULF MRI presents an opportunity to optimize
the existing trade-off between SNR, spatial resolution, and scan time. Specifically,
SRR could facilitate the direct estimation of high-resolution images or parameter maps from
sets of low-resolution ULF MRI scans, enabling accurate and precise biomarker detection
within limited scan durations. As such, the proposed research could further promote the
development of a performant ULF MRI technology, enabling patient-centric and site-agnostic
MRI scanners to fulfill unmet clinical needs across various global healthcare sites, while also
opening the door to democratizing MRI for low and middle-income countries.
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List of Abbreviations
1D one-dimensional
2D two-dimensional
3D three-dimensional
ACL anterior cruciate ligament
AD Alzheimer’s disease
ADC apparent diffusion coefficient
AF anisotropy factor
AI artificial intelligence
arBias absolute relative bias
ASL arterial spin labeling
ATT arterial transit time
BASIL Bayesian inference for Arterial Spin Labeling
BELSPO Belgian Science Policy
BET Brain Extraction Tool
BIDS Brain Imaging Data structure
BOLD Blood oxygenation level dependent
BS background suppression
BW bandwidth
CAIPIRINHA Controlled Aliasing in Parallel Imaging Results in Higher Acceleration
CASL continuous arterial spin labeling
cBCD cyclic block-coordinate descent
CBF cerebral blood flow
CCI cubic convolution-based interpolation
CGLS conjugate gradient least squares
CI confidence interval
C-pCASL conventional pseudo-continuous arterial spin labeling
CS compressed sensing
CSD-BS constrained slice-dependent background suppression
CSF cerebrospinal fluid
CT computed tomography
CUDA Compute Unified Device Architecture
CV curriculum vitae
DICOM Digital Imaging and Communications in Medicine
DFT discrete Fourier transform
DSC dynamic susceptibility contrast
DTI diffusion tensor imaging
EIBALL European Imaging Biomarkers Alliance
EM electromagnetic
EPI echo-planar imaging
ESR European Society of Radiology
ETL echo train length
FA flip angle
FDA Food and Drug Administration (US)
FE frequency encoding
FFT fast Fourier transform
FID free induction decay
fMRI functional magnetic resonance imaging
FOV field of view
FSE fast spin echo
FSL FMRIB Software Library
FWHM full with at half maximum
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FWO Fonds voor Wetenschappelijk Onderzoek
GB gigabyte
GCV generalized cross validation
GE gradient echo
GM gray matter
GRAPPATINI GRAPPA + MARTINI
GRAPPA generalized auto-calibrating partially parallel acquisition
GRASE gradient-and-spin-echo
GRE gradient recalled echo
GT ground truth
HPC High Performance Computing
HR high-resolution
HS hippocampal sclerosis
IBP iterative back projection
IDFT inverse discrete Fourier transform
IES inter echo spacing
IFFT inverse fast Fourier transform
IR inversion recovery
ISMRM International Society for Magnetic Resonance in Medicine
IVIM intravoxel incoherent motion
JMLE joint maximum likelihood estimator
LL Look-Locker
LLS linear least squares
LM Levenberg-Marquardt
LR low-resolution
LS least squares
MAP Maximum a Posteriori
MARTINI Model-based Accelerated Relaxometry by Iterative Nonlinear Inversion
MATLAB matrix laboratory
MB multiband
MC Monte Carlo
MD mean diffusivity
MESE multi-echo spin echo
MI mutual information
ML maximum likelihood
MLE maximum likelihood estimator
MPRAGE magnetization prepared rapid acquisition gradient echoes
MR magnetic resonance
MRF magnetic resonance fingerprinting
MRI magnetic resonance imaging
MS multi-slice
MS multiple sclerosis
MSE mean squared error
MSK musculoskeletal
NDAC neurodegenerative diseases and cancer
NDAD neurodegenerative disorders and age-related diseases
NIfTI Neuroimaging Informatics Technology Initiative
NIST National Institute of Standards and Technology
NLLS nonlinear least squares
NMR nuclear magnetic resonance
OECD Organisation for Economic Co-operation and Development
PASL pulsed arterial spin labeling
pCASL pseudo-Continuous Arterial Spin Labeling
PD proton density
PDF probability density function
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PE phase encoding
PET positron emission tomography
PI parallel imaging
PLD post-labeling delay
POCS projection onto convex sets
PSF point spread function
PSNR peak signal-to-noise ratio
PVE partial volume effects
QIBA Quantitative Imaging Biomarkers Alliance
qMRI quantitative MRI
RAM random access memory
rCBF relative cerebral blood flow
RF radio frequency
RMSE root-mean-square-error
RMMSE root-(mean)-mean-square-error
ROI region of interest
rRMSE relative root-mean-square-error
rSTD relative standard deviation
SA signal averages
SAR specific absorption rate
SE spin echo
SE standard error
SENSE sensitivity encoding
SLIDER SLIce Dithered Enhanced Resolution
SMS simultaneous multi-slice
SNR signal-to-noise ratio
SR super-resolution
SRR super-resolution reconstruction
ss-EPI single-shot echo planar imaging
SSIM structural similarity index measure
SSP slice selection profile
STD standard deviation
STORM Super-resolution Tomographic Reconstruction for MRI
T1w T1-weighted
T2w T2-weighted
TAPIR T1-mApping-with-Partial-Inversion-Recovery
TE echo time
TF turbo factor
TGV total generalized variation
TI inversion time
TR repetition time
TSE turbo spin echo
tSNR temporal signal-to-noise ratio
TV total variation
UHF ultra-high-field
ULF ultra-low-field
UTE ultrashort echo time
UPRE unbiased predictive risk estimator
VFA variable flip angle
VOI volume of interest
VSASL velocity-selective arterial spin labeling
WLLS weighted linear least squares
WM white matter
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