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ABSTRACT

Due to the complex interaction of incident light with inti-
mately mixed materials, the relationship between acquired re-
flectance spectra and the composition of materials is highly
nonlinear. Spectral variability due to changes in illumina-
tion and acquisition conditions further complicates the un-
mixing procedure. In this work, we propose a method to
accurately characterize a nonlinear simplex by a Bézier sur-
face, by utilizing training samples. The fractional abundances
of a test sample can be estimated by reconstruction of its re-
flectance spectrum on the Bézier surface. Moreover, the pro-
posed method is made invariant to changes in the acquisition
and illumination conditions. Experiments are conducted on
simulated and real laboratory-generated mineral powder mix-
tures. The experimental results confirm the potential of the
proposed methodology.

Index Terms— Hyperspectral image, nonlinear unmixing,
intimate mixtures

1. INTRODUCTION

Hyperspectral unmixing techniques estimate the fractional
abundances of the different materials contained within the
field of view of a pixel by minimizing the error between the
measured spectral reflectance and the spectrum that a particu-
lar mixing model generates. The most popular mixing model
in the remote sensing community is the linear mixing model
(LMM). The LMM assumes that any incident ray of light
interacts with a single pure material in the pixel instantaneous
field of view before reaching the sensor. By considering
the physical non-negativity and sum to one constraint of the
fractional abundances, the Fully Constrained Least Squares
Unmixing procedure (FCLSU) was proposed [1].

As the interaction of light with the Earth’s surface is very
complex, nonlinear unmixing models have been developed
[2, 3]. Bilinear mixing models (e.g., PPNM [4]) assume that
an incident ray of light interacts with two pure materials be-
fore reaching the sensor. To explain higher-order interactions,
multilinear mixing models (e.g., [5]) and intimate mixture
models (e.g., [6, 7]) have been developed.

Some attempts have been made to learn the nonlinearity
of a dataset by applying supervised machine learning [8, 9,

10, 11]. For example, in [10, 11], a mapping between the ac-
tual nonlinear spectra and linearly mixed spectra was learned
by utilizing training samples. The FCLSU procedure can then
be applied to obtain the fractional abundances of test samples.
A major disadvantage of these supervised methods is the lack
of generalizability [12]. The trained model does not perform
well on test samples when the training and test samples lie on
different data manifolds. This occurs due to the variability of
the acquired datasets, caused by changes in acquisition and
illumination conditions [12]. To tackle both nonlinearity and
spectral variability, we developed a robust supervised unmix-
ing method for nonlinear hyperspectral unmixing of binary
mixtures [12].

In this work, we design a framework that is suitable to
accurately characterize higher dimensional (2 < the number
of pure material) nonlinear data manifolds. The method as-
sumes that any nonlinear data manifold can be reconstructed
by utilizing a Bézier surface of a certain degree. To recon-
struct a Bézier surface, training samples in the form of con-
trol points are required. Estimating the fractional abundances
of test samples then boils down to minimizing the reconstruc-
tion error between the input spectrum and the Bézier surface.
To tackle the spectral variability, a transformation function
between the training and test data manifolds is learned by uti-
lizing the spectral reflectance of the pure materials (endmem-
bers). To validate our strategy, we produced a hyperspectral
data set of 36 different clay powder mixtures. To introduce
spectral variability, each sample was acquired by two differ-
ent sensors: an ASD spectroradiometer and a snapscan short-
wave infrared (SWIR) hyperspectral camera.

2. HYPERSPECTRAL DATA MODELING USING A
BEZIER SURFACE

2.1. characterization of nonlinear data manifolds

In [12], we have developed a method for accurately estimat-
ing the composition of binary powder mixtures that combines
spectral mixture modeling [13] with machine learning. This
method was further improved in [14]. This method assumes
that a data manifold sampled by a number of binary mix-
tures with varying compositions is a curve in spectral space
between the two pure minerals. The relative arc length be-



tween a mixture and the two endmembers can be regarded
as a proxy for its fractional abundances, the relation between
both is obtained by machine learning.

In order to make the methodology in [14] applicable to
mixtures of more than two materials, we require a framework
that can accurately characterize higher dimensional nonlinear
simplices. For this, we will utilize the properties of higher
dimensional Bézier surfaces. A Bézier surface is a nonlinear
surface that can be reconstructed by interpolation of a num-
ber of control points. A general nt" order Bézier surface has
% control points, where p denotes the number of end-
members. As an example, take ternary mixtures, for which
the Bézier surface is defined as:
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fractional abundances. The fractional abundances obey both
the non-negative constraint and the sum-to-one constraint.
a'BI~y* describes control points. The higher the value of n,
the better the reconstruction. In Fig. 1, we depict the frac-
tional abundances of the control points with a Bézier surface
of order n = 7. As can be observed, the fractional abun-
dances of the control points uniformly cover the probability
simplex. Estimating the fractional abundances of any test
sample then boils down to minimization of reconstruction
error between the input spectrum and the spectrum generated

by applying Eq. (1).
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Fig. 1. The ternary diagram of three material mixtures.

Although this approach can characterize the nonlinearity
of a hyperspectral dataset accurately, it suffers from spectral
variability caused by variations in the illumination conditions
and acquisition conditions.

2.2. Tackling spectral variability

Random scaling effects caused by illumination variations can
be removed by projecting all spectra onto the unit hypersphere
(i.e., dividing the spectra by their length). A manifold is trans-
formable to other environmental and acquisition conditions.
As an example, think of mixtures of the same pure materials,
measured by another sensor, for which the spectra will lie on
a different manifold. When we assume that these two data
manifolds are linearly related, the new manifold can be trans-
formed into the original one. For this, we require the end-
member spectra and the incenter of both manifolds. First, the
arc lengths between the corresponding endmember pairs are
calculated. On the unit hypersphere, the arc length between
any two spectra is simply given by the angle between them
and can be computed by just calculating the arc cosine of their
dot product. Additionally, the arc length between endmem-
bers and the incenters is required. The incenters of the man-
ifolds are obtained by utilizing the methodology proposed in
[15]. From these arc lengths, a transformation matrix between
the two manifolds can be calculated that includes translation,
rotation, and scaling.

To determine the fractional abundance of a test mixture,
first, the arc lengths between the mixture and the endmembers
are determined. Then, these arc lengths are transformed into
the original trained manifold. Finally, the spectrum for which
the arc lengths match those of the mixture is constructed on
the Bézier surface, and its corresponding fractional abun-
dances are obtained by inverting Eq. (1). In this work, the
proposed methodology will be denoted by Bézier supervised
unmixing (BSU).

3. EXPERIMENTS

3.1. The Data
3.1.1. Simulated Data

To demonstrate that Bézier surfaces can accurately character-
ize nonlinear data manifolds, we simulated a Hapke dataset
(see Figure 2 (b)) by constructing spectral mixtures of three
homogeneous clay powders that follow the Hapke model
[6]. The spectral reflectance of three pure clay powders,
i.e., Kaolin, roof clay, and calcium hydroxide (Ca(OH)s) are
acquired by an ASD spectroradiometer and used as endmem-
bers (see Fig. 2(a)). The ASD spectroradiometer generates
spectra of 2151 bands, ranging from 350 nm to 2500 nm
with a step size of 1 nm. 1036 spectra were generated with
uniformly and randomly distributed fractional abundances.
36 uniformly sampled spectra (n = 7) will be used as con-
trol points (see red circles in Figure 2(b)). We refer to this
dataset as the spectroradiometer-simulated dataset. Similarly,
we simulated a Hapke dataset by acquiring the clay powders
with a hyperspectral snapscan camera (IMEC), generating
spectra of 100 bands, ranging from 1120 nm to 1675 nm.



We refer to this dataset as the camera-simulated dataset (see
Figure 2(c)). In both datasets, each spectrum was multiplied
by a random factor between 0.5 and 2 to introduce variability
due to changes in the acquisition and illumination angles.

3.1.2. Real Data

We prepared 36 samples by homogeneously mixing three
clay powders (Kaolin, roof clay, and calcium hydroxide).
All possible combinations of these powders were considered,
i.e., 3 pure clay powders, 3 binary combinations (Kaolin-roof
clay, Kaolin-calcium hydroxide, Roof clay-calcium hydrox-
ide), and 1 ternary combination (Kaolin-roof clay-calcium
hydroxide). Within each clay combination, samples with dif-
ferent mixture fractions are generated so that the ground truth
fractional abundances uniformly cover the three-dimensional
simplex, with a step size of 14.286 % mass ratios. In this way,
6 unique mixtures are generated for each binary clay combi-
nation and 15 for the ternary clay combination, making a total
of 33 mixtures. These mixtures correspond to the required
control points for a Bézier surface of order n = 7 (see Fig.
1). The three pure clay powders occupy the corners of the
simplex, all binary mixtures lie on the lines connecting two
powders while the ternary mixtures lie inside the simplex.

Mixtures were produced by weighing and combining the
pure components. For each sample, we fixed the total weight
to 10 g (precision of scale 0.001 g). To produce a homoge-
neous mixture, each 10 g sample was put inside a glass bottle
that was rotated continuously for five minutes. Using the par-
ticle densities of the pure clays, we converted the weight to
volume fraction by:
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where p denotes number of pure materials, M is the mass
fraction of component j, and p; its density. These samples
were further put inside a clear plastic jar with an interior di-
ameter of 3.048 cm and a height of 1.524 cm. Approximately
3 g of the mixtures was required to fill the sample holder.
These samples were further compacted and smoothened us-
ing a stamp compactor.

The spectral reflectances of these samples were acquired
by two different hyperspectral sensors: an ASD spectrora-
diometer and a SWIR hyperspectral camera. Although the
original frame size of the raw images acquired by the hyper-
spectral camera was 150x 150 pixels, we manually clipped
70x70 pixels from the center of the images to remove the
edge of the sample holders. Since no spatial variation be-
tween the spectra was observed, the mean spectrum of the
clipped image was considered for further analysis.
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Fig. 2. (a) Spectral reflectance of pure clay powders (end-
members) acquired by the ASD spectroradiometer (full line)
and the hyperspectral camera (dashed); (b) PCA reduced
Hapke data manifold (spectroradiometer-simulated dataset).
; () PCA reduced Hapke data manifold (camera-simulated
dataset). Here blue dots denote the nonlinearly mixed data,
and red circles denote the control points.



3.2. Experimental Setup

The following unmixing methods were used as competing
methods in the experiments: Linear unmixing: FCLSU [1],
Bilinear unmixing: PPNM [4], Multilinear unmixing: MLM
[5] and the Hapke model [6]. For these four methods, the uti-
lized endmembers are the ones, acquired by the hyperspectral
sensors. For the binary mixtures, the Robust supervised un-
mixing method (RSM) ( [14]) is applied, using training sam-
ples obtained from one out of two sens ors.

All quantitative comparisons are provided by the abun-
dance root mean squared error (RMSE), i.e. the error between
the estimated fractional abundances (A) and the ground truth
fractional abundances (A):
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where p and m denote the number of endmembers and the
number of mixed spectra respectively.

Abundance RMSE =

3.3. Unmixing Experiments
3.3.1. Simulated Dataset

To demonstrate that our method can accurately character-
ize nonlinear manifolds and transform one manifold onto
another, in Fig. 3, we show the control points (black dots)
obtained from the spectroradiometer-simulated dataset and
the transformed control points (red circles) of the camera-
simulated dataset. In general, the transformed control points
lie close to the true control points. A relatively large error for
some control points (binary mixtures of Kaolin and Calcium
hydroxide) indicates that the Hapke model is highly sensitive
to the reflectance values of the material. In particular, the
spectra of Ca(OH), from the spectrometer and camera are
quite different (see Fig. 2(a) ).

Table 1 shows the abundance root mean squared error for
all unmixing methods applied to the camera-simulated dataset
(see Section 3.1.1). For both RSM and BSU, training samples
(control points) were obtained from the spectroradiometer-
simulated dataset. To match the spectral range of the spec-
troradiometer and the camera-simulated datasets, unmixing
methods were applied only using the wavelength region [1120
- 1675 nm]. Because RSM can be applied only on binary
mixtures, the performance of all unmixing methods on binary
mixtures is shown separately. As can be observed, the Hapke
model accurately estimated the fractional abundances from
the camera-simulated dataset, when no random scaling is in-
troduced. This is because the Hapke model was used to sim-
ulate this dataset. Neither linear nor bilinear/multilinear mix-
ing models could perform well, suggesting that these models
are not suitable to characterize the nonlinearity of intimate
mixtures. When random scaling was introduced, the Hapke
model fails and the other mixing models perform worse than
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Fig. 3. PCA reduced Hapke data manifold. @ Here

black dots denote the control points obtained from the
spectroradiometer-simulated dataset while the red circles de-
note the transformed control points of the camera-simulated
dataset.

without scaling, showing that none of the unmixing models
are invariant to spectral variability. RSM was the best per-
former (see Table 1 (with random scaling)) for the binary mix-
tures while BSU outperformed others on the ternary mixtures.

Table 1. RMSE (Camera-simulated dataset). The best perfor-
mances are shown in bold.

FCLSU PPNM MLM Hapke RSM BSU

Binary mixtures 20.55 30.21  20.55  0.00 446 5.12
(no random scaling)

Binary mixtures 48.82 3636 4633 49.09 446 5.12
(with random scaling)
Ternary mixtures 21.05 3550 21.05  0.03 - 5.99
(no random scaling)
Ternary mixtures 39.26 36.44  36.85 42.13 - 5.99

(with random scaling)

3.3.2. Real Dataset

In the final experiment, we applied the proposed method to
the real dataset acquired by the IMEC hyperspectral camera
(see Section 3.1.2). For both RSM and BSU, training samples
were obtained from the spectroradiometer dataset. As can be
observed from Table 2, except for RSM and BSU, none of the
unmixing methods could perform well for this dataset. The
main reason for the lower performance of the Hapke model is
that the mineral particles in these mixtures are non-spherically
shaped and behave as anisotropic scatterers. Similar to the
simulated dataset, RSM outperformed others for binary mix-
tures while BSU was the best performer for estimating the
fractional abundances of ternary mixtures.



Table 2. RMSE (Real dataset acquired by the IMEC hyper-
spectral camera). The best performances are shown in bold.

FCLSU PPNM MLM Hapke RSM BSU
Binary mixtures 11.52 16.89 1146 12.68 2.63 2.89
Ternary mixtures ~ 11.08 18.19 11.05 14.01 4.08

4. CONCLUSIONS

In this work, we proposed a method to accurately estimate
the composition of intimately mixed samples. Moreover, the
proposed method is made invariant to spectral variability,
caused by changes in the acquisition and illumination con-
ditions. The proposed method was validated on a simulated
dataset and a dataset generated in laboratory settings and in
cross-sensor situations. In future work, we will validate the
proposed method on a multisensor hyperspectral benchmark
dataset that we recently generated.
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