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Abstract—Deep learning-based (DL) solutions are increasingly
been adopted for 2D/3D registration as they can achieve faster 3D
reconstructions from 2D radiographs compared to classical meth-
ods. This study proposes a novel semi-supervised DL-network
for 2D-3D registration, in which an atlas is registered to two
orthogonal radiographs. The deformation of the atlas is composed
of an affine transformation and a local deformation constrained
by a B-spline-based statistical deformation model. The validaton
of the network on digitally reconstructed radiographs from
22 femur CT images shows that the atlas can accurately be
registered.

Index Terms—2D/3D registration, deep-learning, digitally re-
constructed radiographs, statistical deformation model

I. INTRODUCTION

The three-dimensional (3D) reconstruction of bones from
two-dimensional (2D) radiographs is crucial in many biomed-
ical engineering domains, such as kinematical studies, pre-
operative planning, implant design and post-operative evalu-
ations [1], [2]. The reconstruction is known to be a degen-
erate, ill-posed problem, because of the limited number of
projections. To resolve the ambiguity of the reconstruction,
classical methods tackle the problem as a registration of a 3D
atlas to the 2D projections. Statistical models have frequently
been adopted to constrain the possible local deformations in
a physical way [3], [4].

Much research in 2D/3D registration has recently turned to
deep learning (DL) solutions to achieve real-time 3D recon-
structions [5], being essential for intraoperative guidance and
robotic-assisted surgeries [6], [7]. In contrast to the classical
methods, current DL approaches often do not register an
atlas to the radiographs, but directly decode the 3D image
values from the encoded 2D image, ignoring the fundamental
degenaracy of the problem.

Being composed of one or two 2D image encoders and
a 3D decoder, these networks require a method to bridge
between the different dimensionalities of the feature maps
[8]–[10], which lacks any connection with the actual physical
image generation process. Also, the combination of different
projection directions is not physically well founded. The 3D
registration to biplanar radiographs is often, by construction,
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limited to orthogonal radiographs [9], [10], because of the way
in which both directional feature maps are combined.

Cone-beam projections from 3D volumes can actually be
simulated by integrating the attenuation along a ray throughout
the volume and has previously been integrated in neural
networks [11], [12]. Gao et al. generalised the concept of
spatial transformers to perspective projections, providing a
much simpler and computational efficient way to simulate
cone-beam projections [13].

In this paper, we propose a semi-supervised end-to-end
neural network, which differs from the encoder-decoder archi-
tectures proposed in the current literature. Instead, our network
estimates a registration field like 3D/3D registration networks
[14]. The registration field, being learned from a 3D atlas
image and two radiographs, warps the atlas image such that
the forward projection of it matches the input radiographs.
The deformation field is fully parameterised by an affine
transformation and a B-spline-based statistical deformation
model (SDM). To the authors’ knowledge, this is the first
study to present a DL-approach for 2D/3D registration with a
B-spline-based SDM.

II. METHODOLOGY

A. B-spline-based statistical deformation model

The B-spline-based statistical deformation model is con-
structed from Ns training CT images, which were registered
beforehand to an atlas image V ∈ IRVx×Vy×Vz by a B-spline-
based free-form deformation (FFD). The B-spline coefficients
C are defined on a coarse regular lattice of B-spline control
points with size (L+3)×(M+3)×(N+3). The displacement
field that brings the atlas into alignment with each training
volume, is expressed as the 3D B-spline tensor product of 1D
cubic B-spline coefficients C:

TFFD(C) =

3∑
r=0

3∑
s=0

3∑
t=0

Br(u)Bs(v)Bt(w)Cl+r,m+s,n+t.

(1)
where Bi are B-spline basis functions. The indexes −1 ≤ l ≤
(L + 1), −1 ≤ m ≤ (M + 1), −1 ≤ n ≤ (N + 1) are the
indexes of the grid control points, while u, v,w are the relative
positions of the image space coordinate in the lattice. As the
size of the control point lattice is much smaller than the size



of the atlas image, the B-spline FFD gains speed compared to
a regular FFD.

The B-spline-based SDM is computed as the singular value
decomposition on the set of Ns B-spline coefficients. The
SDM expresses any feasible B-spline coefficient vector as a
linear combination of the eigenvectors pk of the decomposi-
tion:

C({αk}) = C̄ +

Nm∑
k=1

αkσkpk, (2)

where σk are the associated singular values to the eigenvectors
pk. The vector C̄ is the average B-spline coefficient vector.
The weights {αk} will act as the model parameters and Nm ≤
Ns − 1 is the number of selected modes in the model. Each
instance C({αk}) determines a forward FFD from the atlas
to a floating image by (1).

B. Pseudo-inversion

The forward FFD of (1) can be used to warp a floating
image backwards to the atlas image domain. For 2D/3D
registration, however, this 3D floating image is unknown, and
one needs to warp the atlas image backwards by the inverse
of (1), which is computationally expensive to compute in case
of a regular FFD. We therefore apply the pseudo-inversion
algorithm on the B-spline coefficients themselves [4]. First,
the forward displacement corresponding to the coefficients
C is calculated by (1). Next, a fixed-point based inversion
calculates the inverted displacement on only the control points
[15]. Finally, the backward B-spline coefficients Cbck on the
control points are recursively determined [16]. The 3D B-
spline tensor product of (1) applied on those backward B-
spline coefficients TFFD(Cbck) yields the displacement field
that can warp the atlas to the floating image. Fore more details
we refer the reader to [4].

C. Projective spatial transform

We use the projective spatial transformer (ProST) from [13]
to simulate a 2D perspective projection image Î ∈ IRSx×Sy

from a 3D volume V̂ . This method defines a fixed canonical
grid G ∈ IRSx×Sy×K of K sampling points, uniformly dis-
tributed along each ray connecting the source and each pixel of
the 2D detector plane. Given a particular projection geometry,
this canonical grid can be transformed by an affine transforma-
tion Tgeom in order to represent the actual projection geometry.
The 3D image volume can be interpolated at the transformed
grid positions Tgeom(G). The cone-beam projection is then
obtained by integrating along each ray, which is equivalent to
a “parallel projection” of the interpolated volume:

Î(i,j) =

K∑
k=1

(V̂ ◦ (Tgeom(G)))(i,j,k). (3)

In contrast to [13], we define two fixed projection angles
corresponding to lateral (LAT) and anterior-posterior (AP)
projections. Instead of rotating the projection geometry, we
apply the affine transformations in the image domain itself to
solve the pose problem.

D. Registration network architecture

The registration network estimates a registration field Ψ
that maps the atlas image V (with associated label map S)
to the moving image space, such that the forward projection
of the warped atlas, V ◦Ψ, matches the input DRR’s Ii, with
i ∈ {AP,LAT}. The registration field Ψ can be decomposed
into an affine transformation T and a local deformation φ,
which is constrained by the SDM. Both components are fully
parameterised by respectively 7 affine parameters (rotation,
translation and isotropic scaling) and Nm PC weights {αk} of
the SDM. The two sets of parameters are separately regressed
by two sequential networks, depicted in Figure 1.

First a U-net with skip-connections, similar to [14], learns
a 3D volumetric feature map V̂ ∈ IRVx×Vy×Vz×Nf from the
3D atlas image V , with Nf = 16 the number of features. The
U-net consists of 4 encoder layers and 6 decoder layers with
skip connections in between.

The resulting 3D feature map is projected by a ProST layer,
along the AP and lateral direction. Note that the projected
feature maps Îi still have the same number of features as
the volumetric feature map V̂ . The input DRR’s Ii are first
convolved such that it has also the same number of features.
The ProST output Îi and the convolution of the input DRR Ii
are concatenated into a 2-channel 2D image and fed to a 2D
encoder. Each projection direction i has its own encoder. Each
of the four encoder levels consists of a strided convolution, a
batch-normalisation layer and a Leaky-Relu activation. Each
level reduces the spatial size of the feature map by a factor two
and doubles the number of features. At each encoder level, the
AP and lateral features (and the preceding combined features)
are concatenated and convolved.

The accumulated 2D feature map at the last encoder level
is flattened and fed to a dense layer which regresses the seven
parameters of the affine transformation T between the floating
image and the atlas. The bias and kernel weights of the dense
layer are initialised by respectively zero and a narrow normal
distribution, such that the initial affine transformation during
training is close to identity.

The 3D feature map V̂ is warped by the affine transfor-
mation T by a spatial transform layer [17]. The transformed
3D features are fed into a similar network as before in order
to regress the Nm PC weights α, which determine the B-
spline coefficients C through (2). The pseudo-inversion on C
yields the backward B-spline coefficients which determine the
backward B-spline-based deformation field φ through (1). The
composition of the affine transformation T and the backward
B-spline-based deformation φ is given by: T ⊕φ = T +φ◦T .

E. Network loss function

The network loss-function, used to evaluate the registra-
tion quality during training, consists of a normalised cross-
correlation (NCC) between the warped atlas and the ground-
truth CT-image Vgt, and a Dice loss between the warped atlas
label map and the ground-truth label map Sgt. Both metrics are



Fig. 1. Architecture of the end-to-end 2D/3D registration network. The network takes as input two 2D DRR’s and a 3D atlas and estimates a deformation
field which is parameterised by 7 affine parameters and 29 PC weights {αk}. Both parameter sets are separately regressed by two identical networks. For
the first network we indicate the number of features at each level, which are identical for the second network.

evaluated after the affine registration and after the B-spline-
based deformation:

L = γ(NCC(Vgt, V ◦ T ) +NCC(Vgt, V ◦ (T ⊕ φ))) (4)
+ δ(Dice(Sgt, S ◦ T ) +Dice(Sgt, S ◦ (T ⊕ φ))) (5)

+ ζ
∑

α2
k, (6)

with γ = 1.0, δ = 0.1 and ζ = 10−3 weighting factors
to balance the different loss terms. The last term is the
Mahalanobis distance and acts as a regularisation on the PC
weights. It favors instances C of the SDM that are close to
the average C̄.

III. EXPERIMENT

A. Dataset

The training dataset consists of 40 CT-images of naked
cadaver femur bones. The validation dataset was acquired
separately on different patients and constitutes of 22 CT
images, from which the femur bone was masked. The SDM
was built on the training dataset. Based on the compactness
of the SDM, we have selected the first Nm = 29 variation
modes from the SDM as they account for up to 99 % of the
shape variability in the training data set. The other modes are
regarded as noise and discarded from the set of degrees of
freedom optimised by the registration network.

The training and validation datasets were augmented off-
line by applying random affine transformations on the 3D CT-
data, resulting in 1200 and 330 images respectively. From the
transformed CT volumes near AP and lateral digitally recon-
structed radiographs (DRR) were simulated with DeepDRR
software [11]. The AP and lateral orientations of the femur
were defined based on the femoral shaft and neck axis. Pose
variations around the perfect AP/lateral view were allowed
within a range of 30◦ internal/external rotation and within a
range of 10◦ extension/flexion and abduction/adduction.

TABLE I
AVERAGE VALIDATION METRICS

Dice ASSD (mm)
Initial 0.515 ± 0.083 8.48 ± 1.49
Affine 0.855 ± 0.038 2.16 ± 0.54
Affine + SDM 0.908 ± 0.018 1.29 ± 0.21

The volume size and voxel spacing of the CT volumes and
of the atlas equal (192×128×192) and (0.66×0.66×1) mm3

respectively. The size and pixel spacing of the DRRs equal
(141× 213) and (0.9× 0.9) mm2 respectively.

B. Results

The entire model, including the pseudo-inversion of the B-
spline coefficients and the ProST layer, was implemented in
Tensorflow. The network was trained by Adam optimizer for
50 epochs with a learning rate of 10−5, on a NVIDIA Tesla
V100 GPU.

The trained model was evaluated on the validation dataset
in terms of the Dice metric and the average signed surface
distance (ASSD). The average metric values are tabulated
in Table I. Figure 2 shows two examples of the 2D/3D
registration. Ground-truth and estimated surface models were
created from the ground-truth label map and the warped atlas
label map respectively. The unsigned distance between those
surface models highlight the anatomical features, like the
greater and lesser trochanter, as challenging parts to register
accurately.

IV. DISCUSSION

This study presents an end-to-end DL-approach to 2D/3D
registration, which differs from the typical encoder-decoder
network architectures [5]. Instead of directly decoding the in-
tensity values of a 3D volume without guarantees on feasibility



Input DRR’s (AP+LAT) Ground-truth Warped atlas Warped label map Distance error

Fig. 2. Registration of the 3D atlas to orthogonal pairs of DRR’s (left columns). The third to fifth column show the same coronal slice of the ground-truth
CT-volume, the warped atlas volume together with the deformed grid and the warped label map on top of the ground-truth CT-volume. The last column shows
the surface model generated from the deformed atlas segmentation map with the unsigned surface distance error represented by the color map.

and smoothness of the reconstruction, this model estimates a
deformation field that warps the atlas image.

Although we used lateral and AP radiographs in this study,
the network is not limited to this particular combination of
projections, nor to orthogonal projections. The network can
be trained for any combination of projection geometries, as
long as the calibration is known beforehand. In the future we
will investigate how re-training the network for each different
projection geometry can be avoided.

The network as presented in this study is semi-supervised.
The training of the network relies on the auxiliary ground-
truth volumetric CT-volume and label map associated to the
DRR. This type of data is not always available however. Future
research could address unsupervised learning schemes for such
cases.

As the network is trained on DRR’s, the model might not
generalise well yet to real experimental radiographs. This will
be tackled in future work by augmenting the DRR appearance
during training or by including style transfer prior to the
network.
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