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ABSTRACT
As the interaction of light with the Earth surface is very com-
plex, spectral reflectances are composed of nonlinear mix-
tures of the observed materials. Nonlinear mixing models
have the disadvantage that not all spectra of a hyperspectral
dataset necessarily follow the same particular mixing model.
Moreover, most models lack a proper interpretation of the es-
timated parameters in terms of fractional abundances. In this
paper, we present a semi-supervised nonlinear unmixing tech-
nique that overcomes these problems. In a first step, we ap-
ply a kernelized simplex volume maximization to select an
overcomplete set of endmembers that precisely describe the
hyperspectral data manifold. In a second step, this set is used
as ground truth data in a supervised learning approach to gen-
erate fractional abundance maps from the entire dataset. For
this, three methods are presented, based on kernelized sparse
unmixing, feedforward neural networks, and gaussian pro-
cesses. The proposed method is validated on simulated data,
a dataset obtained by ray tracing, and a real hyperspectral im-
age.

1. INTRODUCTION

To estimate the fractional abundances of the different materi-
als within a hyperspectral pixel, the error between the pixels
true reflectance spectrum and the spectrum that is generated
by a particular mixing model is minimized. Traditionally, the
linear mixing model (LMM) is assumed, which is valid when
the incoming rays of light interact with a single pure material
in the pixels instantaneous field of view (IFOV) before reach-
ing the sensor. The reconstruction error can be minimized us-
ing the Fully Constrained Least Squares Unmixing procedure
(FCLSU) [1], that takes the physical non-negativity and sum
to one constraints of the fractional abundances into account.

To model multiple interactions of the light with more than
one pure material, nonlinear mixing models have been devel-
oped. Some examples are the bilinear mixing models that de-
scribe the interaction of an incident ray of light with two pure
materials [2], extensions of these, e.g. the multilinear mixing
model (MLM) [3], and intimate mixture models such as the
Hapke model [2].

One of the unsolved problems is that not all spectra of
a hyperspectral dataset may follow the same particular mix-
ing model. Another problem is that most nonlinear mixing

models are unable to properly interpret and link the esti-
mated model parameters to the actual fractional abundances.
Recently, we proposed a model-independent supervised non-
linear unmixing method [4], that learns a mapping between
the actual nonlinear spectra and linearly mixed spectra, after
which FCLSU can be applied to obtain the actual fractional
abundances. The disadvantage of this method is that it re-
quires a large number of ground truth mixed pixels. In this
work, we propose a semi-supervised approach, hereby limit-
ing the required number of training data.

The first step in the approach is the use of SAGA [5], a
method that uses kernelized simplex volume maximization
(KSVM) to pick an overcomplete set of endmembers from
the hyperspectral dataset that characterizes the manifold hull.
Among the selected endmembers, some may be spectra of
pure materials but most of them are in itself mixture of pure
materials. In a second step, the overcomplete set of endmem-
bers and their actual fractional abundances are used as ground
truth training data in a supervised learning approach to gener-
ate fractional abundance maps of the entire dataset. For this,
three methods are presented, based on kernelized sparse un-
mixing, feedforward neural networks, as in [4], and gaussian
processes.

2. METHODOLOGY

In [5], SAGA, a kernelized extension of Nonnegative Ma-
trix Factorization (NMF) is presented. NMF decomposes a
given matrix of spectra X = [x1, · · · ,xn] into a product of
an endmember matrix F ({fi}li=1 ∈ Rd

+) and a matrix of
abundances G ({gi}ni=1 ∈ Rl

+). ‖X− FG‖2 is minimized
under the nonnegativity and sum to one constraints.

SAGA performs the matrix factorization, after projecting
the original dataset onto an infinite dimensional feature space
(X→ φ(X)). ‖φ(X)− φ(F)G‖2 is then minimized.

SAGA performs the matrix factorization in two steps.
In the first step, kernelized simplex volume maximization
(KSVM) is used to generate an overcomplete set of end-
members F. The selected points are supposed to precisely
characterize the data manifold (see Fig. 1). To characterize
a nonlinear data manifold, a large number of data points is
required. But the intrinsic dimensionality of the dataset can
be very low. Among the overcomplete set of selected end-
members, few will be pure materials while most are in itself



Fig. 1: (a) A dataset X sampled from a U-shaped manifold;
(b) a convex hull (simplex) embeds the dataset and describes
each data point by barycentric coordinates; (c) selection of an
overcomplete set of points to characterize the manifold hull.

mixtures of pure materials.
In the second step, the matrix G is determined by Ker-

nelized Fully Constrained Sparse Unmixing (KFCSU). This
amounts to solving n independent problems of estimating the
columns of G:

gi = argmin
gi

‖φ(xi)− φ(F)gi‖2 (1)

s.t.
∑l
j=1 gji = 1, gji ≥ 0,∀j. To enforce sparsity (λ <

l), the previous constraints are replaced by
∑λ
j=1 gji =

1,
∑l
j=λ+1 gji = 0, gji ≥ 0,∀j. As a result, the fractional

abundances of the hyperspectral pixels in terms of the over-
complete set of endmembers are obtained:

φ(xi) = g1iφ(f1)+· · ·+gλiφ(fλ)+0φ(fλ+1)+· · ·+0φ(fl)
(2)

To estimate the true fractional abundances of a hyperspec-
tral pixel, we propose to use a supervised approach in which
we assume that the actual fractional abundances of the se-
lected endmember set are known as ground truth. We then as-
sume that the actual abundances of a pixel will be composed
of the ground truth abundances by the same linear combina-
tion as in (2):

ai = g1iaf1 + · · ·+ gλiafλ + 0afλ+1
+ · · ·+ 0afl (3)

where afj is the ground truth fractional abundance of end-
member fj and ai is the estimated true fractional abundance
of the data point xi.

As an alternative strategy to obtain the fractional abun-
dances, the ground truth abundances are applied to generate
linearly mixed spectra of the overcomplete endmember set.
After that, the mapping of their true reflectance spectra to
these linearly mixed spectra is learned. When applying the
learned map to the pixels spectra X, linear spectral Xl are
obtained. Finally, these mapped spectra are unmixed by us-
ing FCLSU to estimate the fractional abundances.

The learning of this mapping can be performed in differ-
ent ways. One way is the use of a feedforward neural network
(NN), as in [4].

Another way to learn the nonlinear relationship between
the input (X) and output (Xl) is given by gaussian processes
(GP) [6]. GP is a bayesian method, in which the distribu-
tion of an infinite number of gaussian shaped basis functions
is chosen as prior. Determining the posterior distribution is
similar to specifying a gaussian kernel function:

k(xi,xj) = σ2
f exp

(
−

d∑
b=1

(
xbi − xbj

)2
2l2b

)
(4)

where σ2
f is a scaling factor, and lb is a characteristic length-

scale for each band. The mean prediction for each data point
according to GP is given by [6]:

xl = f(x) = Xl[K(X,X) + σ2
nI]

−1k∗ (5)

where k∗ = k(x,x∗) is the vector of kernel functions be-
tween a test sample and the n training points and K(X,X) is
the matrix of kernel functions between the n training points.
σ2
n is the image noise variance. These model parameters are

optimized by maximizing the marginal likelihood in the train-
ing dataset.

After the mapping of the nonlinear spectra to the linear
model is learned, either by NN or GP, the mapped spectra are
unmixed by FCLSU to estimate the fractional abundances.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we validate the three proposed methods, i.e.
the use of KSVM along with KFCSU, NN, and GP respec-
tively.

3.1. Simulated data

In a first experiment, we generated 30000 nonlinear data
points by using the Hapke model ([2]) and by randomly
choosing three pure spectra from the USGS dataset. These
spectra contain 224 bands with wavelengths in the range
383-2501 nm. The fractional abundances to mix these spec-
tra were generated uniformly and randomly from the unit
simplex.

The KSVM technique was used to select a limited num-
ber of points from the nonlinear data manifold, unmixing was
performed using KFCSU, and Equation (3) was applied to
generate the fractional abundances. Similarly, the fractional
abundances of points selected by KSVM are applied to learn
a mapping to the linear model by using either NN or GP, after
which FCLSU was applied for an estimation of the abundance
maps.

Figure 2 plots the average and standard deviation of the
root mean squared error (RMSE) between the estimated and
the true fractional abundance values for 100 runs (different
sets of pure spectra and fractional abundances) as a function
of the applied number of training samples. For this dataset,



GP clearly outperforms the other two methods, and low errors
are obtained while a very limited amount of training samples
is required.
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Fig. 2: RMSE (100 runs) obtained by the three proposed
methods in function of the applied number of training sam-
ples.

3.2. Samson data

In the second experiment, the Samson dataset [7] was used,
which can be downloaded from 1. In this dataset, fractional
abundances of three pure materials (soil, tree, water) for 9025
(95× 95) pixels are available.

We selected 40 pixels using KSVM and used these for
training, while the remaining 8985 pixels were used for
testing the methods. Figure 3 displays the ground truth abun-
dance maps, the abundance maps estimated by KFCSU, GP,
and NN respectively, and the absolute differences between
the ground truth and estimated abundance maps (rescaled
to the maximal difference that was obtained over all three
methods). For this dataset, KFCSU outperformed the other
two methods. The obtained abundance RMSEs (%) for this
dataset were 5.79, 7.68, and 9.20 for KFCSU, GP, and NN
respectively. For comparison, when selecting the 40 training
points randomly (100 runs) instead of using KSVM, the ob-
tained RMSEs were 6.89±1.00, 8.93±1.12, and 11.43±2.57
for KFCSU, GP, and NN respectively.

3.3. Ray tracing data

The third experiment was performed by using a dataset gener-
ated by ray tracing. It represents an orchard with mixtures of
three endmembers: soil, weed patches, and citrus trees, [8].
This dataset contains ground truth fractional abundances for

1http://www.escience.cn/people/feiyunZHU/
Dataset_GT.html

(a) Ground truth abundance maps
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Fig. 3: Samson dataset. (a) Ground truth abundance maps
for soil, tree, and water respectively; (b) estimated abundance
maps, from top to bottom, by KFCSU, GP, and NN respec-
tively; (c) absolute differences between estimated and ground
truth abundance maps, from top to bottom, by KFCSU, GP,
and NN respectively.

400 (20 × 20) pixels. We selected 10 pixels by KSVM and
used these for training while the remaining 390 pixels were
applied for testing the methods.

Figure 4 displays the ground truth abundance maps, abun-
dance maps estimated by the three methods, and the abso-
lute differences between the ground truth and estimated abun-
dance maps. For this dataset, GP outperformed the other
two methods. The abundance RMSEs (%) for this dataset
are 5.73, 2.06, and 3.46 for KFCSU, GP, and NN respec-

http://www.escience.cn/people/feiyunZHU/Dataset_GT.html
http://www.escience.cn/people/feiyunZHU/Dataset_GT.html


tively. For comparison, when selecting the 10 training sam-
ples randomly (100 runs) instead of using KSVM, the ob-
tained RMSEs were 8.87±2.21, 4.33±2.43, and 11.19±4.71
for KFCSU, GP, and NN respectively.

(a) Ground truth abundance maps

(b) Estimated abundance maps

(c) Absolute differences

Fig. 4: Ray tracing data set. (a) Ground truth abundance maps
for soil, weed, and tree respectively; (b) estimated abundance
maps, from top to bottom, by KFCSU, GP, and NN respec-
tively; (c) absolute differences between estimated and ground
truth abundance maps, from top to bottom, by KFCSU, GP,
and NN respectively.

4. CONCLUSIONS

In this paper, we proposed a model-independent semisuper-
vised method for nonlinear spectral unmixing of hyperspec-

tral data. The method is a combination of a simplex vol-
ume maximization step to extract an overcomplete endmem-
ber set that precisely describes the nonlinear manifold and
three supervised approaches to estimate the fractional abun-
dances. Experiments on simulated data, a ray tracing dataset
and a true hyperspectral image show that this method is very
promising. In future work, we will apply this method to pa-
rameter estimation of physical reflectance models.

Acknowledgement
The research presented in this paper is funded by BELSPO
(Belgian Science Policy Office) in the frame of the STEREO
III programme – project GEOMIX (SR/06/357).

5. REFERENCES

[1] J. W. Boardman, “Geometric mixture analysis of imaging
spectrometry data,” in IEEE Intern. Geosci Remote Sens.
Symp., 1994, pp. 2369–2371.

[2] R. Heylen, M. Parente, and P. Gader, “A review of nonlin-
ear hyperspectral unmixing methods,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp.
1844–1868, 2014.

[3] R. Heylen and P. Scheunders, “A multilinear mixing
model for nonlinear spectral unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 1, pp. 240–251, 2016.

[4] B. Koirala, R. Heylen, and P. Scheunders, “A neural
network method for nonlinear hyperspectral unmixing,”
in IEEE Intern. Geosci Remote Sens. Symp., 2018, pp.
4233–4236.

[5] Nicolas Courty, Xing Gong, Jimmy Vandel, and Thomas
Burger, “Saga: sparse and geometry-aware non-negative
matrix factorization through non-linear local embed-
ding,” Machine Learning, vol. 97, no. 1, pp. 205–226,
2014.

[6] C.K.I. Williams C.E. Rasmussen, Gaussian Processes for
Machine Learning, The MIT Press, New York, 2006.

[7] Feiyun Zhu, Ying Wang, Bin Fan, Shiming Xiang, Ge-
ofeng Meng, and Chunhong Pan, “Spectral unmixing via
data-guided sparsity,” IEEE Trans. Image Process., vol.
23, no. 12, pp. 5412–5427, 2014.

[8] B. Somers, L. Tits, and P. Coppin, “Quantifying nonlinear
spectral mixing in vegetated areas: Computer simulation
model validation and first results,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1956–
1965, 2014.


	 Introduction
	 Methodology
	 Experimental results and discussion
	 Simulated data
	 Samson data
	 Ray tracing data

	 Conclusions
	 References

