
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16388  | https://doi.org/10.1038/s41598-020-73036-w

www.nature.com/scientificreports

Unveiling water dynamics 
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X-ray dynamic tomographic microscopy offers new opportunities in the volumetric investigation of 
dynamic processes. Due to data complexity and their sheer amount, extraction of comprehensive 
quantitative information remains challenging due to the intensive manual interaction required. 
Particularly for dynamic investigations, these intensive manual requirements significantly extend the 
total data post-processing time, limiting possible dynamic analysis realistically to a few samples and 
time steps, hindering full exploitation of the new capabilities offered at dedicated time-resolved X-ray 
tomographic stations. In this paper, a fully automatized iterative tomographic reconstruction pipeline 
(rSiRt‑pWc‑Diff) designed to reconstruct and segment dynamic processes within a static matrix is 
presented. The proposed algorithm includes automatic dynamic feature separation through difference 
sinograms, a virtual sinogram step for interior tomography datasets, time-regularization extended 
to small sub-regions for increased robustness and an automatic stopping criterion. We demonstrate 
the advantages of our approach on dynamic fuel cell data, for which the current data post-processing 
pipeline heavily relies on manual labor. The proposed approach reduces the post-processing time by 
at least a factor of 4 on limited computational resources. Full independence from manual interaction 
additionally allows straightforward up-scaling to efficiently process larger data, extensively boosting 
the possibilities in future dynamic X-ray tomographic investigations.

X-ray tomography is a common imaging technique used to investigate the interior of samples in a non-invasive 
manner. Through tomographic microscopy, inner structures of an object can be reconstructed from a set of 
2D radiographs into a 3D volume. Dynamic computed tomography has extended static investigations to time-
evolving processes enabling to follow, for example, bubble growth in basaltic  foams1, cracking during in situ 
tensile  tests2, investigate in vivo the muscular mechanics of a blow-fly3 in 4D, observe in situ percolation threshold 
in multiphase magma  analogues4 and follow evolution of a metal foam at a record-breaking time-resolution of 
208 tomograms per  second5. As the ideal scan time for each dynamic sequence is bounded by the speed of the 
evolving process in question, both exposure time and angular sampling frequency are typically severely limited. 
When aiming to follow a rapidly evolving system in real-time, this results in tomograms that are highly noisy 
and degraded by undersampling artefacts. Extracting the evolving dynamics from these datasets requires typi-
cally data post-processing pipelines consisting of data reconstruction, registration, filtering and segmentation 
steps. Usually each single step requires parameter tuning and manual optimization. These intensive manual 
requirements significantly extend the total data post-processing time well beyond the actual computational 
time. Moreover, the parameters optimized for one dataset do typically not generalize well. Post-processing large 
amounts of data for multiple samples and different experimental conditions as often required in investigations 
of real-life processes becomes an insurmountable task. This reality leads either to cutting-edge experiments for 
which the acquired data are only partially analyzed, or to experimental plans limited to just a small range of the 
full parameter space. In both cases, the final results only marginally take advantage of the full potential of new 
dedicated time-resolved X-ray tomographic stations.
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Dynamic sub-second X-ray tomographic microscopy is an invaluable technique to investigate liquid water 
dynamics in polymer electrolyte fuel cells (PEFCs) during cell operation. Fuel cells are a promising technol-
ogy to decarbonize the mobility sector. Suboptimal water management during cell operation is though one of 
the major limiting factors for increasing its performance at high current density operations. To investigate the 
water dynamics during transient operation through X-ray tomography, it is necessary to push the scan time of 
the collected tomograms to the sub-second  regime6,7, leading to highly restricted angular sampling frequency 
and exposure time. Standard analytical reconstruction algorithms, such as filtered back-projection (FBP)8 and 
 Gridrec9,10, consider each time frame of a dynamic sequence independently without exploiting the additional 
information across the time sequence. In this way, they have limited ability to cope with undersampled and noisy 
datasets, leading to challenges in further data analysis and post-processing and so, increasing the necessary data 
analysis time significantly. As the gray level value of the reconstructed liquid water is very close to the values 
of the static structures and noise, isolating water signals directly from the reconstructed highly noisy dynamic 
volumes is not possible. Instead, a high-quality post operando dataset of the fuel cell in a dry state has to be 
acquired and aligned with the dry structures of each reconstructed dynamic time frame, each suffering from low 
signal-to-noise ratio (SNR). The aligned reconstructions are subtracted to obtain difference images containing 
only liquid water features and background noise, and further post processed by a dedicated ad hoc  pipeline11,12. 
Misalignments between the static and dynamic reconstructions lead to artefacts in the difference images, result-
ing in an increased risk of misidentified water features. In addition, due to varying imaging protocols between 
different experiments, full automatization of the segmentation and alignment pipeline is currently not possible 
as the post processing parameters are strongly dependent on the experimental protocols and therefore need to 
be individually adjusted.

Several research activities have been on-going to exploit the information available in the time-domain within 
the reconstruction to improve the spatial resolution of the reconstructed volumes and so to push the temporal 
resolution of the experiment even further. Ruhlandt et al.13 applied optical flow analysis to derive a motion model 
from the direct analytical reconstructions. The resulting model was then used to adjust the back-projection 
geometry of the analytical reconstructions and perform the final reconstructions on dynamically curved paths 
to overcome artefacts caused by the sample evolving faster than the temporal resolution of the experiment. 
While the motion artefacts were shown to be suppressed through the proposed approach, for highly noisy data-
sets additional care might still be required to reduce the noise level of the analytical reconstructions for further 
image post-processing.

Iterative reconstruction algorithms have been developed to overcome reconstruction quality limitations of 
analytical methods when noisy and undersampled datasets, typical in real experiments, are present. To con-
sider a time-sequence of data within iterative reconstruction, Kazantsev et al.14,15 proposed a spatial–temporal 
patch-based regularization technique to perform non-local image denoising by extracting information across 
the complete time-domain through weighted graphs. The resulting images are strongly denoised and superior 
in quality compared to standard filtered back-projection.

Another iterative approach aiming at improving the SNR of the reconstructed volumes, Motion Vector-based 
Iterative Technique (MoVIT), was proposed by Van Nieuwenhove et al.16. The algorithm uses deformation fields 
within the reconstruction process to exploit information available through the time sequence. The deformation 
field maps are estimated by applying a non-rigid registration between individually reconstructed volumes as a 
pre-processing step, and this information is then used during the final reconstruction procedure. The simulation 
and real-data applications were limited to consider a maximum of 3 adjacent time frames.

The time-interlaced model-based iterative reconstruction algorithm (TIMBIR)17 reconstructs dynamic objects 
by exploiting an interlaced view sampling scheme during data acquisition together with a 4D model-based itera-
tive reconstruction algorithm. The approach aims at modelling the measurement noise, detector non-idealities 
and spatial–temporal correlations of the 4D object and has shown high reconstruction quality with decreased 
motion artefacts, especially when the sample is changing during each tomogram and interlaced data sampling 
is applied.

Myers et al.18–20 proposed a reconstruction algorithm combining elements from both discrete tomography and 
compressed sensing. The algorithm exploits simulated static projections to reconstruct the dynamic components 
separately and thresholds each dynamic reconstruction based on the expected SNR of the reconstruction. The 
work was later extended to a probability-driven algorithm based on maximum a posteriori (MAP)  estimation21,22. 
Another compressed sensing-based solution, proposed by Chen et al.23, exploits a prior image reconstructed 
with a standard analytical reconstruction algorithm (filtered back-projection) from the union of interleaved 
dynamical datasets to constrain the iteratively reconstructed individual time frames. Nikitin et al.24 proposed a 
4D tomographic reconstruction method to avoid reconstruction artefacts caused by sample evolvement during 
data acquisition. The implemented method, based on the concept of compressed sensing, decomposes dynamic 
datasets in the temporal domain using basis functions. The basis functions depend on the motion of the object 
and are selected according to the measured data. Furthermore, regularization is performed by minimizing the 
L1-norm for both spatial and temporal derivatives by adopting the primal–dual Chambolle–Pock  algorithm25.

Van Eydhoven et al.26 introduced in 2015 an iterative reconstruction algorithm (rSIRT-PWC) designed to 
follow fluid flow through porous media. Time-regularization through piece-wise constant function fitting of each 
pixel’s attenuation value is exploited within the reconstruction to push the obtained image quality of strongly 
undersampled dynamic datasets and moreover, to exploit the properties of advancing fluid-air boundary within 
the reconstruction. The rSIRT-PWC algorithm assumes the time-varying object to consist of stationary (the solid 
matter) and dynamic regions (the fluid flow). The attenuation curve of a particular voxel in the dynamic region 
is modeled by a piecewise constant function over time, in accordance with an advancing fluid/air boundary. The 
algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. 
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However, as for the other methods described above, several parameters need to be tweaked in order to push the 
reconstructed image quality to its maximum.

While the rSIRT-PWC algorithm offers an interesting possibility to exploit the continuity information across 
the available dynamic time sequence through time-regularization, it still relies, in a first step, on prior seg-
mentation of the solid matter to separate the stationary region from the areas allowed to change through time 
(dynamic), which are continuously estimated and updated throughout the reconstruction process. For datasets 
with limited SNR, such as operando X-ray tomographic microscopy of fuel cells, extracting these dynamic and 
stationary regions from the reconstructed volumes and aligning the corresponding masks in a nearly perfect 
manner requires significant amount of manual labor. Moreover, as these sub-second dynamic experiments deliver 
as many as 10 tomograms per second for extended time periods, processing each of these large datasets prior to 
the algorithm application is infeasible.

To overcome these limitations, we propose a rSIRT-PWC-DIFF algorithm extended for interior tomography 
datasets, designed to reconstruct and segmented noisy datasets in a highly automatized manner enabling efficient 
scalability to large data volumes. The proposed algorithm operates on difference sinograms to separate the static 
and dynamic regions of the sample in a fully automatized manner. As no prior information of the static pixel loca-
tion is needed, the proposed algorithm can be applied to reconstruct several datasets without manual interaction, 
making it ideal for cases where prior segmentation of the static features is difficult. In addition, the robustness of 
the time-domain function fitting step for highly noisy datasets is increased by considering small sub-regions (5 × 5 
pixels) with a Gaussian weighting scheme instead of single pixels. Though the proposed algorithm protocol has 
been developed to overcome the current restrictions specifically in fuel cell data reconstruction, its application 
is not limited to fuel cells but can be applied to any dataset where evolving dynamics are present.

Methods
Background. Tomography model. The underlying tomography model is introduced for a 2D case assum-
ing parallel beam geometry. Its extension to 3D is trivial.

The object of interest, represented on a pixel grid of N pixels, is denoted by a column vector x =
(

xj
)

∈ R
N . 

A vector p =
(

pi
)

∈ R
M is a collection of the log-corrected measured projection values or phase-retrieved 

projections of the object x from all measured angular positions, typically distributed homogeneously between 0 
and 180 degrees. The projection data p and object x are connected by p = Wx where W =

(

wij

)

∈ R
M×N is a 

collection of weights that models the contribution of each pixel j to the projected value at index i.
Due to the ill-posedness of the system, it is typically infeasible to directly solve x from the system of linear 

equations. Analytical reconstruction methods, such as filtered back-projection (FBP)27, are accurate when enough 
angular views of the object are available. Limited angular views or high sparsity in angular sampling lead instead 
to streak artefacts deteriorating the reconstruction quality. Iterative reconstruction algorithms address these 
limitations by exploiting prior information of the sought object, while minimizing the difference between the 
forward-projected estimated reconstruction and the measured projection data in an iterative manner.

Conventional SIRT. The Simultaneous Iterative Reconstruction Technique (SIRT)28,29 is an algebraic itera-
tive reconstruction algorithm where the object x is considered to consist of an array of unknowns, represented 
by algebraic equations. Starting from an initial reconstruction x(0) , typically a zero vector, the SIRT algorithm 
updates the reconstruction at iteration k by

where R =
(

rij
)

∈ R
M×M and C =

(

cij
)

∈ R
N×N are the diagonal matrices with the inverse row and column 

sums of W , respectively. The algorithm is known to converge to a solution of

Conventional rSIRT‑PWC. Van Eydhoven et al. introduced in 2015 an iterative reconstruction algorithm devel-
oped to follow in 4D dynamic fluid flow through a solid  matrix26. The region-based SIRT with intermediate 
piecewise constant function estimation (rSIRT-PWC) algorithm, based on conventional SIRT, exploits prior 
knowledge of the dynamic and static regions of the sample to improve the spatial resolution of the reconstruc-
tions, resulting in improved spatial and temporal resolution of the experiment. The static and dynamic regions 
of the object are separated through masking (often requiring segmentation). The static regions are reconstructed 
using all available data across the complete time sequence, so to increase the sampling frequency, and a static 
mask is applied to extract the static pixels from the reconstructed high-quality image. Simultaneously, each of 
the dynamic time frames is reconstructed separately and a dynamic mask is applied to extract the respective 
dynamic pixels.

To further improve the dynamic reconstructions, suffering from high noise level and undersampling artefacts, 
the algorithm exploits piecewise constant functions (PWC) to model each single dynamic pixel’s attenuation 
curve over the complete time sequence, so incorporating time regularization within the reconstruction procedure. 
Through the PWC fitting, noise is effectively suppressed and the reconstruction accuracy of the dynamic region 
is significantly  improved26. These dynamic and static reconstructions are finally merged for each time frame, 
obtaining a full 4D reconstruction of the dynamic object in high-quality.

In addition to masks, iteration parameters have to be manually selected. This algorithm foresees nested 
loops of rSIRT reconstructions and PWC time-regularization steps. It is therefore necessary to select the total 

x(k) = x(k−1) + CWTR
(

p−Wx(k−1)
)

,

argminx
(

� Wx − p �2R

)

.
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number of iterations as well as the number of rSIRT iterations performed prior to the first PWC fitting and the 
number of rSIRT iterations performed between each of the following PWC steps in addition to the total num-
ber of PWC steps. Depending on the sample, tweaking these parameters can have a significant impact on the 
reconstruction quality while it is typically difficult to know a priori which set of parameters would lead to the 
optimal reconstruction.

rSiRt‑pWc‑Diff. While the conventional rSIRT-PWC algorithm has shown superior reconstruction per-
formance on a neutron tomography dataset compared to the standard analytical reconstruction (FBP), the 
requirement of static and dynamic masks is a major limiting factor for datasets for which such masks are dif-
ficult and/or time-consuming to obtain. In addition, several iteration parameters need to be specified prior to 
reconstruction. In case of many in situ time-resolved experiments as fuel cell imaging, an adaptation to accom-
modate interior tomography datasets is also necessary. To overcome these limitations, an adapted rSIRT-PWC-
DIFF algorithm was developed. A detailed description of the proposed algorithm is presented in the following 
sub-sections.

Difference sinogram approach. In the proposed rSIRT-PWC-DIFF algorithm, dynamic and static masks are 
no longer required, as the dynamic and static pixels are separated through an automated sinogram subtraction 
step. If a static scan or a static time frame of the object is available, the corresponding static sinogram SS can be 
subtracted from the dynamic sinogram SDn for each time step n, as

The resulting difference sinograms SDiff n
 contain only dynamic changes and noise for each time frame n and 

can be further used in the rSIRT-PWC-DIFF algorithm to reconstruct dynamic changes for each time frame n . 
Simultaneously, the dry sinogram SS is considered to reconstruct the static regions of the object. If the number 
of angular views between the static sinogram SS and the dynamic sinograms SDn is not equal, interpolation can 
be applied to the sinograms prior the subtraction step.

Sinogram alignment. Ideally, angular information for each projection image is available and can be directly 
used to align the static and dynamic sinograms prior to the subtraction step. To generalize the proposed algo-
rithm for datasets without angular information, a cross-correlation-based sinogram alignment step was imple-
mented. In the sinogram alignment step, for each time frame n maximum cross-correlation30 (∗) between the 
dynamic sinogram SDn and the static sinogram SS is computed as

The maximum correlation position is used to shift the dynamic sinograms SDn so to align them with respect to 
the static sinogram SS . This alignment process is fully automatized within the proposed algorithm. If the angular 
information is available, it can be applied directly to align the sinograms.

The cross-correlation step identifies the main structural similarities between the sinograms from the super-
imposed data and among the tested registration approaches produces the best alignment between the sinograms. 
For other types of samples, alternative registration methods based for instance on mutual  information31 could 
also potentially be exploited. Any possible mismatch between the static structures of the dry and dynamic data-
sets, for example due to membrane swelling (“Effects of membrane swelling” section), translates as artefacts 
in the subtracted sinograms. When a standard analytical reconstruction algorithm, such as FBP, is applied to 
reconstruct these difference sinograms, misalignment artefacts become visible in the reconstructed images. 
However, when an iterative reconstruction algorithm, such as SIRT, is considered instead, these misalignment 
artefacts are partly suppressed during the iterative forward- and back-propagation steps and so, not significant 
in the reconstructed images.

Virtual sinogram for interior tomography. To increase the versatility of the proposed algorithm, further devel-
opments were made to extend it to interior tomography (INT) problems. In INT, the object support is fully or 
partly outside of the field of view (FOV) of the detector. This geometry often occurs in medical imaging, material 
science and biology applications where high spatial resolution information of a smaller region of interest (ROI) 
is required. If INT projections are reconstructed with standard iterative or analytical algorithms without special 
consideration, the reconstructions will suffer from strong  artefacts32,33, compromising any further analysis of the 
reconstructed volume. To minimize these artefacts, a fully automatized virtual sinogram  step34 was incorporated 
within the reconstruction algorithm.

In the virtual sinogram step, the INT sinogram is first edge-padded and a standard FBP reconstruction is 
performed. The pixels outside of the resolution circle (the largest circle fitting into the reconstruction grid) are 
then suppressed to zero to create an artificial object boundary. This modified object, now possessing an artificial 
compact support, is further forward projected to create a virtual sinogram, simulating now a standard sinogram 
where the object and its boundary are completely within the FOV. This virtual sinogram, further edge-padded, 
can then be used for iterative reconstruction.

Curve fitting on sub‑regions. The curve fitting (PWC) part of the conventional approach was further developed 
to improve its robustness for highly noisy and slightly misaligned datasets. Instead of the gray level value of sin-
gle pixels, the 2D Gaussian weighted average value of small sub-regions of 5 × 5 pixels was used to emphasize the 

SDiff n
= SDn − SS

max ((SS∗SDn)[t]) = max(
∑

d

SS[d]SDn[d + t])
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direct neighborhood of each pixel during the fitting procedure. The image borders were padded prior to weight-
ing. While the sub-region size can be adjusted, it is important to note that larger regions may lead to reduction 
in size or vanishing of small structures. For datasets with a very limited SNR, this compromise might however 
be necessary for successful curve fitting and further data processing. Thanks to the Gaussian weighting scheme, 
in this work, the used 5 × 5 pixel sub-regions did though not negatively impact the spatial resolution.

Automatic stopping criterion. An automatic stopping criterion for selecting the optimal number of iterations 
was defined. For this purpose, the proposed algorithm was first run for 700 rSIRT-DIFF iterations without apply-
ing the function fitting step. After every 10 iterations, the current reconstruction estimate was compared to the 
reconstruction obtained 10 iterations earlier through the Euclidean L2-norm, defined for images x and y as

The normalized L2-norm was plotted as a function of the number of iterations and its gradient was calculated. 
Several gradient slopes were selected for further analysis (Fig. 1) and the corresponding reconstructions were 
post-processed by applying a single PWC fitting step. The obtained reconstructed dynamics (here water) were 
compared to a ground truth segmentation through sensitivity (true-positive-rate), specificity (true-negative-
rate)35 and the dice  coefficient36. The metrics are defined as:

L2
(

x, y
)

=

√

(x − y)2.

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN+ FP

Dice =
2× TP

2× TP+ FP+ FN

Figure 1.  Automatic stopping criterion evaluation. Euclidean L2-norm (red curve) between the current and 
previous reconstruction estimate of PEFC_1 sample (“Real data” in “Materials” section) was measured after 
every 10 iterations for a total of 700 iterations. The gradient of the L2-curve was estimated and reconstruction 
quality measured at selected gradient slope positions. The gradient slope (blue curve) within region 
[−0.001,−0.008] was identified to correspond to the highest reachable reconstruction quality. The droplet 
diameter is 100 pixels.
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where TP are true-positive pixels (water reconstructed as water), FP are false-positive pixels (air reconstructed 
as water), TN are true-negative pixels (air reconstructed as air) and FN are false-negative pixels (water recon-
structed as air). Based on quantitative and qualitative analysis (Fig. 1) on both simulated (“Simulated phantom” 
section) and real data (“Real data” section), a gradient slope within a region of [−0.001,−0.008] was identified 
as an optimal stopping point for the rSIRT-DIFF iterations and starting point for the PWC step. In this gradient 
slope region, the reconstructions recover the sample features successfully without emphasizing noise, leading to 
a desirable starting point for the time-regularization. Moreover, within this gradient slope region the reconstruc-
tion quality remained stable indicating only a low dependence on the iteration number around its optimum. If 
the iteration number is not high enough, the water features are instead not properly defined. Too many iterations 
lead to noisy reconstructions. Additional rSIRT-DIFF/PWC fitting step loops as proposed  in26 did not improve 
the reconstruction quality. In addition to the higher computational load, more loops tend to increase the level 
of noise in the reconstructed volumes. The described analysis was conducted on a simulated fuel cell phantom 
with high and moderate noise levels (“Simulated phantom” section) and on two real fuel cell datasets (“Real 
data” section). For all considered cases, the normalized L2-curve was behaving in a similar manner, only its 
relative position was shifted in y-direction. In all cases the optimal stopping point was identified to correspond 
to a gradient slope of [−0.001,−0.008] , which consistently with Fig. 1 was reached with 100–200 iterations. The 
same optimal gradient slope, obtained for both simulated and real fuel cell data, was found to be independent 
on image size and contrast. Therefore, for all fuel cell samples the number of rSIRT-DIFF iterations was set, to 
maximize computational performance, to 100, followed by a single PWC fitting step. For completely different 
types of samples (for instance sandstone or catalytic materials), the optimal value for the gradient slope has to 
be confirmed.

Algorithm protocol. To apply the proposed rSIRT-PWC-DIFF algorithm, we propose the following protocol 
described in Fig. 2:

1. Align and subtract sinograms to extract the dynamic changes (“Sinogram alignment” section).
2. If the dataset was acquired in interior tomography geometry, apply the virtual sinogram step (“Virtual sino-

gram for interior tomography” section).

Figure 2.  Algorithm protocol flowchart. The algorithm protocol begins by automatically pre-processing the 
sinograms to extract the dynamic components. If the required number of iterations is not yet set for the current 
sample type, the protocol moves automatically to the “Automatic initialization” module. Once the number of 
required iterations has been determined, the pipeline proceeds automatically to the “Automatic reconstruction 
and feature extraction” step. The set iteration number will be directly re-used for other datasets of similar sample 
types: the “Automatic initialization” step will be skipped and the protocol will automatically transition from the 
pre-processing to the reconstruction step.
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3. Automatic initialization: For each new sample type, run rSIRT-DIFF once for a large number of iterations 
(suggested 700). Automatically stop iterations when the gradient slope of the L2-curve reaches the interval 
[− 0.001, − 0.008] (“Automatic stopping criterion” section).

4. Reconstruct with the rSIRT-PWC-DIFF algorithm:

a. Run rSIRT-DIFF for the number of iterations based on the gradient slope estimation (step 3).
b. Apply one iteration of time-regularization (PWC) to 5 × 5 pixel sub-regions of the dynamic reconstruction.

Step 3 has to be performed once for each sample type to determine the desired number of iterations cor-
responding to the specified gradient slope region. Once the stopping point has been automatically detected, 
the algorithm can be further applied in a faster manner by directly applying the chosen number of iterations 
without estimating the L2-norm. If the number of rSIRT-DIFF iterations specified by the gradient slope is used, 
additional loops of reconstruction and time-regularization steps were not found to improve the reconstruction 
quality further. Therefore, for optimized performance and computational load, one single cycle of reconstruction 
and time-regularization is recommended.

Results
In this section, reconstruction results of the rSIRT-PWC-DIFF algorithm are presented for a simulated fuel cell 
phantom (“Simulated phantom” section) and two dynamic X-ray tomographic microscopy datasets of a fuel cell 
(“Real data” section). The reconstructions were completed with MATLAB (2018b) using the ASTRA  toolbox37–39 
and exploiting a Tesla V100 GPU card for accelerated computations.

Simulated phantom. Standard setting. To test and quantify the developed algorithm performance, a 
dedicated fuel cell phantom was created (Fig. 3, Section “Simulations” in “Materials”). The difference between 

Figure 3.  Reconstruction results for a simulated dynamic phantom. The ground truth phantom (first column) 
is shown at time frames 1, 15 and 30, cropped to the region-of-interest. The water droplets (highlighted by 
orange rectangles in (a) in the gas channel and gas diffusion layers are evolving in time. The corresponding FBP-
DIFF (second column), rSIRT-DIFF (third column) and rSIRT-PWC-DIFF reconstructions (fourth column) 
are considered for comparison. (a) Reconstructions are presented for time frames 1 (first row), 15 (second row) 
and 30 (third row). All reconstructions were completed using difference sinograms to separate the dynamic 
(water) structures from the static areas. Separate dynamic and static reconstructions were merged to obtain 
the presented reconstructions. (b) Zooms in a reconstructed region at time step 30. (c) Reconstructions of the 
dynamic (water) structures, prior merging with the reconstruction of the static matrix. (d) Magnification of 
reconstructed dynamic (water) structures at time step 30.
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the ground truth phantom and the reconstructions was estimated by the relative root mean squared error 
(RRMSE), defined as,

where x is the reconstructed image, y the ground truth phantom and i the time frame.
Reconstructions obtained with the rSIRT-PWC-DIFF algorithm were compared to standard FBP (Parzen 

filter) and rSIRT reconstructions of a difference sinogram (FBP-DIFF and rSIRT-DIFF respectively) without 
the function fitting step. For rSIRT-DIFF and rSIRT-PWC-DIFF, a positivity constraint was enforced by setting 
negative pixel values to zero during the iterative process. For both iterative methods, a total of 100 iterations 
was considered based on the defined stopping criterion (“Automatic stopping criterion” section), followed by a 
single PWC-fitting for rSIRT-PWC-DIFF. The RRMSE metric was measured within three regions: full region-
of-interest (ROI), static ROI and dynamic ROI, selected by applying corresponding masks. Results for all three 
reconstruction methods are presented in Table 1.

The error measures in Table 1 show superior reconstruction performance for all three ROIs when the rSIRT-
PWC-DIFF algorithm was applied. In comparison to FBP-DIFF, the proposed algorithm improves the recon-
struction of the full ROI by a factor of 6.7. The quality in the static ROI was improved by a factor of 8.8 while in 
the dynamic ROI by a factor of 3.1. Comparing the results for rSIRT-DIFF and rSIRT-PWC-DIFF, it is evident 
that including the PWC step improves the reconstruction quality in all three ROIs, and in particular of a fac-
tor of 1.13 in the dynamic (water) region. These improvements are also clearly visible in Fig. 3, presenting an 
example of the reconstructions obtained with the three algorithms and ground truth phantom for the merged 
and dynamic-only reconstructions. Increased sharpness in the static, fibrous structures (Fig. 3a,b) could be 
achieved by considering a high-resolution static scan, as typically done in fuel cell imaging experiments (“Real 
data” in “Materials” section).

Effects of membrane swelling. During fuel cell operation, the hydration of the polymer electrolyte membrane 
can change, which leads to swelling or shrinkage of the membrane, such that the corresponding bright area 
within the cell center (Fig. 3) changes its thickness accordingly. Due to this swelling, all dry structures within the 
GDLs are repositioned by the increasing membrane layer size, causing a mismatch between the dry structures 
of the dry and wet (dynamic) scans. Typically, 1 to 2 pixels (2.75–5.5 µm) relative shift between some of the dry 
and wet scans’ dry structures can be observed in X-ray tomographic volumes.

To quantify the effects of membrane swelling on the rSIRT-PWC-DIFF reconstruction quality, membrane 
swelling of 0 to 8 pixels was simulated (Fig. 4a) for the dynamic fuel cell phantom. The water reconstruction 
accuracy was quantified through sensitivity (true-positive-rate), specificity (true-negative-rate) and the dice 
coefficient (Section Automatic stopping criterion). The rSIRT-PWC-DIFF reconstructions were obtained by 
completing 100 iterations of rSIRT-DIFF, chosen based on the stopping criterion (Section Automatic stopping 
criterion) and followed by a single PWC fitting step. The reconstruction quality was evaluated by comparing the 
dynamic reconstructions (water) without merging the static structures to the ground truth dynamic phantom 
(water only) between time steps 10 and 30. Results are presented in Fig. 4b,c.

As demonstrated in Fig. 4b, the sensitivity of the reconstruction remains at 90% or above for mild swelling 
of maximum 6 pixels, decreasing with increasing swelling. This is also supported by qualitative analysis: Fig. 4c 
reveals that increasing the applied swelling translates to amplified differences between the reconstructed and 
ground truth phantom as the misalignment artefacts of the moving static structure boundaries become visible 
and pronounced, leading to decreased reconstruction accuracy. These artefacts could be partially suppressed by 
aligning the dry scan independently for the anode and cathode sides of the cell prior subtraction, as it is typically 
done in practice. The dice coefficient (Fig. 4b) was found to remain between 91 and 88% for all applied swellings. 
The specificity was found to remain stable at 99% for all considered swelling scenarios.

Real data. The proposed algorithm performance was evaluated on two dynamic Polymer Electrolyte Fuel 
Cell (PEFC) synchrotron tomographic datasets described in the “Materials” section. For PEFC_1, the rSIRT-
PWC-DIFF reconstructions were computed for a time sequence of 30 consecutive time frames and for PEFC_2 
a total of 10 consecutive time frames were considered, based on pre-evaluation of the water dynamics in the data 

RRMSE(x) =

√

√

√

√

∑

i

(

x(i)− y(i)
)2

∑

i

(

y(i)
)2

Table 1.  Average relative root mean squared error (RRMSE) estimates and their standard deviations for the 
dynamic fuel cell phantom reconstructions computed using a difference sinogram with FBP (FBP-DIFF), 
rSIRT (rSIRT-DIFF) and rSIRT-PWC-DIFF. The error metric was computed for the full ROI, the static ROI 
and the dynamic ROI. Static and dynamic ROIs were separated for evaluation using corresponding masks. The 
metrics were calculated for 100 fuel cell phantoms, each having randomized fiber and water content.

FBP-DIFF rSIRT-DIFF rSIRT-PWC-DIFF

Full ROI 1.21 ± 7.3E−4 0.32 ± 5.1E−4 0.18 ± 7.8E−4

Static ROI 1.15 ± 6.3E−4 0.29 ± 2.1E−4 0.13 ± 4.2E−4

Dynamic ROI 3.04 ± 0.05 1.11 ± 0.02 0.98 ± 0.01
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and availability of manual segmentations for quality comparison. The number of iterations was chosen based on 
the stopping criterion (“Automatic stopping criterion” section), resulting in 100 rSIRT-DIFF followed by a single 
PWC fitting step with 5 × 5 pixel sub-regions.

Figure 4.  Membrane swelling effect assessment in a simulated dynamic phantom. (a) The dynamic fuel cell 
phantom at time frame 30 with simulated membrane swelling. The increased volume of the platinum layer 
(bright rectangular area) pushes the static fibrous structures, causing a mismatch in the dry structure positions 
between the dry (no swelling) and dynamic (swelling) simulated data. (b) Sensitivity and dice coefficient 
of the rSIRT-PWC-DIFF reconstruction of water versus membrane swelling size in pixels. The metrics and 
their standard deviations were considered between the ground truth phantom and the rSIRT-PWC-DIFF 
reconstruction for time steps 10 to 30, completed with a total of 100 rSIRT-DIFF iterations, followed by a single 
PWC fitting. (c) Difference image between the dynamic rSIRT-PWC-DIFF reconstruction and ground truth 
phantom of water at time frame 30. When no swelling is applied (top), slight reconstruction errors are visible at 
the water boundaries. These errors get more pronounced with increased swelling (middle and bottom) due to 
shifting dry boundaries.
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Reconstruction results. The rSIRT-PWC-DIFF reconstructions of the PEFC_1 are presented in Fig. 5a (mid-
dle column) for time frames 1, 10, 11, 12, 20 and 30, cropped to the area containing the dynamic changes. The 
reconstructions are compared to the manual segmentations (left column) and standard Gridrec reconstructions 
(right column). For both samples, the manual segmentations were generated by aligning the dynamic Gridrec 
reconstructions to an additional high-quality dry Gridrec reconstruction of the sample (1000 projections with 
1 ms exposure time) followed by an image subtraction step, resulting in images containing only dynamic changes 
(water) and  noise11. These subtracted images were further post-processed to generate the final segmentations for 
each time  frame12. In addition, for PEFC_1 a static mask containing GDL fiber structures has been applied to 
the manually segmented images as a post-processing step to exclude any fiber structures misclassified as water. 
For comparison, the same mask was applied as a post-processing step to the rSIRT-PWC-DIFF reconstructed 
images. The reconstructions were evaluated through sensitivity, specificity and dice coefficient measures (“Auto-
matic stopping criterion” section), results are presented in Table 2.

As revealed by Fig. 5a, the rSIRT-PWC-DIFF reconstructions are visually in good agreement with the manual 
segmentations. The dynamic changes, most rapid at time steps 10 to 12 (Fig. 5b), are well captured while slight 
misalignment artefacts in the manual segmentations (bright curve at the right side of Fig. 5c) are successfully 
suppressed in the rSIRT-PWC-DIFF reconstructions. Moreover, Fig. 5c reveals small water structures disappear-
ing and re-appearing in the manual segmentations, while the structures remain stable in the rSIRT-PWC-DIFF 
reconstructions. This qualitative performance is supported by the error metrics in Table 2: high sensitivity of 
97% is reached across the time sequence while the specificity is 99% and the dice coefficient 94%. Even slightly 

Figure 5.  Reconstruction results for the PEFC_1 dataset. (a) Comparison of the recovered water from a fuel cell 
sample (PEFC_1) between manual segmentations (left column) and rSIRT-PWC-DIFF reconstructions (middle 
column). The manual segmentations have been created from standard Gridrec reconstructions (right column) 
by applying an ad hoc post-processing  pipeline12. Each row represents a single time step from the continuous 
time sequence of a total of 30 time frames. (b) Zoom to the large droplet evolving strongly between time steps 
10 and 12. The left columns (S) correspond to the manual segmentations, the right columns (R) to the rSIRT-
PWC-DIFF reconstructions. (c) Zoom to time steps 11, 12 and 20, revealing small structures disappearing and 
re-appearing in the manual segmentations (left column). The same features were found to remain stable in the 
rSIRT-PWC-DIFF reconstructions (right column). The misalignment artefacts in the manual segmentations 
(bright curve) are suppressed in the iterative reconstructions.
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higher sensitivity and dice coefficient can be expected if manual segmentations are post-processed to exclude 
any slight misalignment artefacts.

For the PEFC_2 sample, the rSIRT-PWC-DIFF reconstructions are presented in Fig. 6a (middle column) 
for time frames 1, 5 and 10, cropped to the area containing the dynamic changes. For comparison, the manual 
segmentations (left column) and standard Gridrec reconstructions (right column) are presented. For the manual 
segmentations of PEFC_2 no additional post-processing step to exclude fibers has been considered and so, 
this step has been omitted for the rSIRT-PWC-DIFF reconstructions as well. The manual segmentations were 
found to suffer from misalignment artefacts (Fig. 6a) due to sub-optimal alignment of the dry and dynamic 
reconstructions prior the subtraction step. To avoid evaluating such artefacts in the iterative reconstructions, the 
reconstruction quality was measured only in chosen sub-regions (Fig. 6a) for which the segmentations could be 
visually confirmed successful based on the original Gridrec reconstructions. The sensitivity, specificity and dice 
coefficient measures (“Automatic stopping criterion” section) are reported in Table 2.

Figure 6 shows high agreement between the manual segmentations and the rSIRT-PWC-DIFF reconstruc-
tions. While the dynamic process was found to proceed at moderate speed, the slight changes through the time 
sequence (Fig. 6b,c) are captured well while the stable water features are correctly reconstructed and remain 
static through the time sequence. Moreover, the misalignment artefacts (Fig. 6a) are found to be suppressed in 
the rSIRT-PWC-DIFF reconstructions (Fig. 6d). The qualitative comparison is supported by the quality metrics 
considered at chosen sub-regions (Fig. 6a) and presented in Table 2: the sensitivity of the reconstructions across 
the time sequence was 92%, with high specificity of 98% and dice coefficient of 93%.

Discussion
We have introduced the rSIRT-PWC-DIFF algorithm, designed to reconstruct and segment, in an unsupervised 
manner, dynamic, low SNR interior tomography datasets consisting of static and dynamic structures without 
prior knowledge of the sample composition and its inner features. The proposed algorithm exploits difference 
sinograms between static and dynamic tomograms to directly extract dynamic features automatically without 
need for prior reconstruction and segmentation. Time regularization in terms of a piecewise constant function 
fitting (PWC) approach is applied to 5 × 5 pixel sub-regions with a Gaussian weighting scheme, so to effectively 
suppress noise within the dynamic reconstructions. Moreover, a stopping criterion was implemented to deter-
mine automatically the number of required rSIRT iterations and the starting point of the time-regularization step. 
Strive for automatization has been guiding this work: prior knowledge and input required by the algorithm has 
been strongly minimized. In this way, the algorithm can be applied unsupervised to large datasets with hundreds 
of time steps and to datasets of different samples.

Currently the algorithm works on single slices independently assuming that the sample is stable in the verti-
cal direction, while drifts in the axial plane are automatically accounted for. To generalize the approach further, 
it is necessary in the future to include sinogram alignment in 3D. In this way any arbitrary drift in the vertical 
direction, not uncommon in evolving samples, could also be corrected during the alignment process, so to 
minimize any misalignment artefacts.

The current sinogram alignment is sufficient for aligning scans for which the relative position of the sample 
with respect to the rotation axis has remained stable. However, in cases where the sample position relative to the 
rotation center has changed significantly between scans, the current sample alignment will result in reconstruc-
tion artifacts arising from disagreeing sinogram shapes. In such cases we recommend to perform the current 
alignment procedure on a selection of lines (batches), the selection size depending on the amplitude of the rela-
tive sample position change, so to achieve an optimized alignment. Alternatively, an additional pre-processing 
step can be performed, in which the scans are first reconstructed (e.g. with FBP), coarsely aligned and after this, 
forward projected for final alignment followed by subtraction and the proposed iterative reconstruction. By 
default, the approach aligns sinograms assuming stable relative sample position for faster computation.

Currently the reconstruction, exploiting a GPU for the rSIRT iterations, is performed in approximately 
2.5 min for one slice with 30 time steps (PEFC_1 dataset). To expand the possible applications for large-scale 
datasets, improvements in computational efficiency are foreseen. For accelerated reconstruction, an interesting 
possibility is to exploit approximated algebraic  filters40–42 to obtain reconstructions with comparable image qual-
ity to SIRT with the computational effort of FBP. Moreover, further improvement of the efficiency of the time-
regularization step is envisaged through neural networks which have already demonstrated impressive results 
in improving the tomographic reconstruction quality when used as a post-processing  tool43,44.

For datasets with highly limited SNR and complicated sample structures, common in time-resolved X-ray 
tomographic microscopy investigations, the typical data processing pipeline includes data reconstruction, reg-
istration, filtering and segmentation, each step requiring manual parameter tuning and optimization. Once 

Table 2.  Sensitivity, specificity and dice coefficient between the rSIRT-PWC-DIFF reconstructions and 
manual segmentations for PEFC_1 and PEFC_2 datasets. For PEFC_1 each metric was computed over the 
whole image plane and averaged over the time sequence. For PEFC_2 the metrics were averaged over the time 
sequence at chosen sub-regions due to remaining misalignment artefacts in the segmented images (Fig. 6a).

Dataset Sensitivity Specificity Dice

PEFC_1 0.97 0.99 0.94

PEFC_2 0.92 0.98 0.93
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the optimal parameters have been identified, the pipeline can be typically applied to a time sequence with only 
minor parameter tweaking and manual intervention. Unfortunately, the parameters do though not generalize 
well, requiring a new parameter evaluation when experimental conditions or samples are modified. These major 
manual requirements considerably extend the total data post-processing time, limiting possible dynamic analysis 
realistically to a few samples and time steps. The proposed algorithm protocol offers a significant reduction in 
manual labor while delivering robust and high-quality reconstructions. This was demonstrated by automati-
cally extracting liquid water dynamics from sub-second fuel cell X-ray tomographic microscopy datasets. The 
post-processing pipeline used so far to extract water dynamics from reconstructed images relies on subtracting 
a dry scan from dynamic scans. Manual tuning and supervision are unavoidable to optimally adjust the scan 
alignment and filtering parameters for these SNR-limited data to obtain segmented water. The parameters are 
dataset specific and need to be adjusted for each experiment individually. Despite careful alignment, remaining 
misalignment artefacts are inevitable, leading to the need for careful post-processing to avoid such artefacts 
appearing as falsely detected water in the final segmented images. For good quality data of a single cell, consid-
ering 100 full volume time steps, the complete process from raw data to segmented water requires in the best 
case 2 weeks of work, significantly dominated by the necessary manual interaction and not by the computation 
distributed on a maximum of 15 CPU nodes. In case of challenging image quality or completely new cell types 
and materials, additional manual tuning and exploration of the parameter space might be necessary, extending 
the processing time from 2 weeks up to 1 month. Thanks to the generalization of the stopping criterion, the 
proposed algorithm enables to perform reconstruction and segmentation of comparable data fully automatically 

Figure 6.  Reconstruction results for the PEFC_2 dataset. (a) Comparison of the recovered water from a fuel cell 
sample (PEFC_2) between manual segmentations (left column) and rSIRT-PWC-DIFF reconstructions (middle 
column). The manual segmentations have been created from standard Gridrec reconstructions (right column) 
by applying an ad hoc post-processing  pipeline12. Each row represents a single time step from the continuous 
time sequence of a total of 10 time frames. The manual segmentation suffers from misalignment artefacts (blue 
dashed rectangle at T5). To avoid considering these artefacts during accuracy evaluation, the reconstruction 
quality measures (sensitivity, specificity and dice coefficient) were computed only for chosen sub-regions 
(yellow rectangular areas), for which the segmentation was considered accurate based on visual comparison 
with the original Gridrec reconstructions. (b–d) Zoom to the evolving structures indicated by red rectangles in 
(a). (S) panels correspond to manual segmentations, (R) panels to the rSIRT-PWC-DIFF reconstructions. The 
misalignment artefacts in the manual segmentations (S) (red rectangle in (d)) are suppressed in the iterative 
reconstructions (R).
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in 1 week on a single GPU node. In addition, thanks to the subtraction step performed prior to back-projection 
and time-regularization, misalignment artefacts are optimally suppressed. As the algorithm is completely inde-
pendent from manual intervention, it can be easily scaled up to efficiently process even larger data amounts by 
utilizing additional GPUs and parallelization. The reduced total post-processing time as well as the fully automa-
tized protocol will open up new possibilities in dynamic X-ray investigations (e.g. exploration of a considerably 
larger experimental parameter space), for which the manual effort required by conventional pipelines would 
represent an unsurmountable obstacle. Though this algorithm has been designed to meet especially the needs 
and requirements of fuel cell reconstruction, it is not limited solely to fuel cell imaging applications but can be 
applied to any dynamic dataset for which either a static reference scan or time frame is available. Thanks to the 
high-quality reconstructions of limited SNR datasets delivered by the proposed rSIRT-PWC-DIFF in a highly 
automatized manner, it will be possible to push the temporal resolution of dynamic tomography experiments even 
further to the sub-second scan time region and beyond and efficiently deal with the related large data volumes.

Materials
Simulations. The fuel cell phantom was designed to mimic the static structures of an operando X-ray 
tomographic microscopy fuel cell  setup45: a flow field with two gas channels was placed both on the anode 
and cathode sides of the cell together with a gas diffusion layer (GDL) consisting of thin, randomly distributed 
carbon fibers. A bright layer was added between the anode and cathode GDLs to mimic the polymer electrolyte 
membrane coated with Pt-based catalyst. A total of 100 phantoms were simulated with randomized GDL fiber 
structure on a 400 × 400 pixel grid, each having one larger droplet randomly positioned in one of the channels. In 
addition, 2 to 20 smaller droplets were randomly chosen and positioned within the GDL. All simulated droplets 
were evolving in time.

Poisson distributed noise, assuming an incoming beam intensity of 5 × 103 photons per pixel, was applied to 
the standard simulated data to simulate strongly noisy images and to avoid algorithm overfitting. The estimated 
SNR of the simulated FBP reconstructions was a factor of 3.7 lower than the SNR of the phase retrieved Gridrec 
reconstructions of the real data (“Real data” section), leading to a performance assessment for strongly noisy 
imaging conditions.

The membrane swelling was simulated by shifting all dry and dynamic structures in the wet simulated scans 
in vertical direction while the dry scan phantom remained unchanged. To ensure that most misclassifications are 
related to misalignment, a reduced Poisson distributed noise, compared to the previous experiment was applied. 
The chosen incoming beam intensity of 30 × 103 photons per pixel lead to a comparable SNR in a simulated FBP 
reconstruction as measured in phase retrieved Gridrec reconstruction of real data (“Real data” section).

Real data. Two dynamic Polymer Electrolyte Fuel Cell (PEFC) synchrotron tomographic datasets were col-
lected at the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the 
Swiss Light Source (SLS) at the Paul Scherrer Institut,  Switzerland46. Both PEFCs had a diameter of approximately 
5 mm and were mounted on the rotation stage. For both experiments, a high-numerical-aperture  macroscope47 
providing a 4 × magnification was coupled with a 150 µm thick LuAG:Ce scintillator (Crytur, Turnov, Czech 
Republic) to convert the X-rays into visible light. The in-house developed GigaFRoST  detector48 was exploited to 
enable continuous data acquisition at the maximum rate of nearly 8 GB s−1. The radiograms were acquired using 
filtered polychromatic radiation with a peak energy of approximately 20 keV. To match the required time resolu-
tion, the horizontal field of view was reduced to approximately 4 mm, leading to interior tomography datasets.

The first cell (PEFC_1) (flow field plates made of BMA5, SGL Technologies; membrane electrode assem-
bly: Gore Primea A510.1/M815.15/C510.4 with a 15 µm thick membrane and anode/cathode Pt loadings of 
0.1/0.4 mg/cm2; GDL: Toray TGP-H-060, Toray Industries Inc.) was connected from above with two long tubes 
which provided the cell with continuous gas flows, enabling continuous cell rotation during operation. To avoid 
blurring artefacts caused by continuous sample rotation during data acquisition, 300 evenly distributed projec-
tions of the PEFC_1 sample were collected between 0 and 180 degrees. The exposure time was set to 0.3 ms for 
each projection image, leading to a total scan time of 0.1 s per tomogram. The collected images were 1440 × 1100 
pixels with a pixel size of 2.75 µm. A single dry scan was also collected with the same experimental parameters. 
Five sets of tomographic datasets were acquired, each consisting of 60 continuous time steps. The data for the 
first 3 sets (3 × 60 scans) are available in  TomoBank49.

For the second cell (PEFC_2) (flow field plates made of BMA5, SGL Technologies; membrane electrode 
assembly: Gore Primea A510.1/M815.15/C510.4 with 15 µm thick membrane and anode/cathode Pt loadings 
of 0.1/0.4 mg/cm2; GDL: SGL 28BC, SGL Carbon), a heated fluid rotary union was developed to exploit con-
tinuous gas flow and sample rotation at elevated operation temperature during the experiment. A total of 120 
tomograms were collected continuously, each time frame consisting of 299 homogenously distributed projec-
tions. The scan time was set to 0.1 s per tomogram, leading to an exposure time of 0.33 ms for each projection. 
The collected images were 1440 × 1000 pixels with a pixel size of 2.75 µm. A single dry scan was collected with 
the same experimental parameters.

Prior to reconstruction, all projection images were dark and flat-field corrected, followed by phase  retrieval50 
using the processing pipeline available at TOMCAT 51. Paganin phase retrieval was applied together with a decon-
volution step to enhance the contrast between different materials while aiming to maintain the spatial resolution, 
typically compromised by the phase retrieval  procedure52.

Data availability
The PEFC_1 dataset is available in TomoBank (https ://tomob ank.readt hedoc s.io/en/lates t/sourc e/data/docs.
data.dynam ic.html#foam-data). The PEFC_2 dataset and the code are available upon request.

https://tomobank.readthedocs.io/en/latest/source/data/docs.data.dynamic.html#foam-data
https://tomobank.readthedocs.io/en/latest/source/data/docs.data.dynamic.html#foam-data
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