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Abstract A method to build a 3D statistical shape model of
horticultural products is described. The framework consists
of two parts. First, the surfaces of the horticultural products,
which are extracted from X-ray CT scans, are registered to
obtain meaningful correspondences between the surfaces. In
the second part, a statistical shape model is built from these
corresponded surfaces, which maps out the variability of the
surfaces and allows to generate new, realistic surfaces. The
proposed shape modelling method is applied to 30 Jonagold
apples, 30 bell peppers, and 52 zucchini. The average geo-
metric registration error between the original instance and
the deformed reference instance is 0.015 ± 0.011 mm for
the apple dataset, 0.106 ± 0.026 mm for the bell pepper
dataset, and 0.027 ± 0.007 mm for the Zucchini dataset. All
shape models are shown to be an excellent representation
of their specific population, as they are compact and able to
generalize to an unseen sample of the population.
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Introduction

Capturing the variability in geometry of vegetables and fruit
is important in many aspects of food processing, such as
object detection and shape prediction (Costa et al. 2011).
Rakun et al. (2012) used digital camera images to detect
fruit for automatically picking fruit using robots. Prominent
shapes were detected by Canny edge detection and Hough
transformation. With a statistical shape model, fruit could
be detected from one single view, while simultaneously esti-
mating the 3D shape. Peng and Lu (2006) predicted the
firmness of apple fruit from multispectral scattering images.
Light scattering profiles are influenced by the shape of the
apple. With a statistical shape model, the shape of the apple
could be estimated from limited views to reduce the shape
influence, to improve the firmness prediction. Barnea et al.
(2016) used RGB-D images to detect fruit hanging on a tree.
They combined color with the 3D surface normal features,
3D plane-reflective symmetry, and image plane highlights
from elliptic surface points to provide shape-based detection
of fruits in 3D space regardless of their color. Their method,
however, assumes fruit to be symmetric.

In Zadravec et al. (2013), a regression analysis was used
to predict the final size of fruit based on the diameter at
different growth stages. Statistical shape models could be
used to incorporate a more complex description of the shape
in the regression, likely improving the prediction results.
Moreover, statistical shape models could be valuable to esti-
mate the volume of a fruit from one single view (Iqbal et al.
2011), or to search for a correlation between the stages
of growth (Stajnko et al. 2013). A challenging problem
is the estimation of the 3D shape to build high-resolution

http://crossmark.crossref.org/dialog/?doi=10.1007/s11947-017-1979-z&domain=pdf
mailto:femke.danckaers@uantwerpen.be


Food Bioprocess Technol

dose maps for radiation treatment of heterogeneous food
products (Borsa et al. 2002; Kim et al. 2007), as it is impor-
tant to determine the required irradiation dose. Statistical
shape models could lead to a more accurate description of
the 3D shape, which would in turn allow to better predict
dose deposits. Geometry modelling of food is important
for the food engineering domain (Goni et al. 2007; 2008).
Realistic 3D models of Conference pears have served to
develop nondestructive methods for measuring fruit firm-
ness (Jancsok et al. 2001). Fruit storage designers may use
fruit shape models to evaluate the effect of the shape of the
fruit on airflow characteristics and thus cooling uniformity
(Dehghannya et al. 2010; Muhammad 2015; Scheerlinck
et al. 2004; Verboven et al. 2006; Ho et al. 2011), or to solve
stacking problems (Delele et al. 2008).

Statistical shape models are widely used in medical
imaging research in a very similar way for modelling organs
like the brain (Crum et al. 2016), the heart (Bruse et al.
2016), to model bones like the incudomallear complex
(Soons et al. 2016), or the femur (Blanc et al. 2012; Dijck
et al. 2014). Shape modelling, however, is relatively novel
in food science.

To build a shape model, the correspondences between
the surfaces in the object class have to be determined. One
option is to annotate the corresponding points manually, but
this is time-consuming and error prone. A more feasible
option is surface registration. With this technique, corre-
sponding points are automatically found by registering each
object with the same template surface.

Current methods to build shape models of horticultural
products are either based on 2D contour models (Sayinci
et al. 2015; Moreda et al. 2012), whereas only a limited
number of views is characterized, or simplified 3D mod-
els based on contours (Rogge et al. 2015; Mebatsion et al.
2011). The disadvantage of this technique is that the objects
have to be star-shaped, so each point of the surface must be
reachable with a straight line from a common center without
intersecting the surface. In the work of Torppa et al. (2007),
the shape of potato tubers is approached with ellipsoids,
combined with spherical harmonics. However, the use of
simple 3D geometrical shapes, such as cylinders, spheres, or
ellipsoids, may be too restrictive to describe the complexity
of object shapes.

Tornincasa et al. (2016) and Ling et al. (2007)
approached the shape of a hazelnut by starting from a
conceptual model, which was modified based on some mea-
sured features. With our suggested approach, the entire
shape of the object is characterized. Therefore, our tech-
nique is applicable to more complex shapes, which may lead
to better and more accurate decisions in the applications.

The main goal of our work is to introduce a surface
registration framework that provides an accurate geometric

fit while maintaining the correspondences and apply it
to capture the shape variability of horticultural products
(Danckaers et al. 2014). Correspondences between the sur-
faces are obtained by elastic surface registration. An initial
alignment step is added to improve correspondence com-
pared to Amberg et al. (2007). With these correspondences,
a model can be generated that is compact, (i.e. has few
parameters), is highly specific, (i.e. only describes horticul-
tural products of a certain class), but also with sufficient
generalization ability to be able to describe new instances of
that class.

The first part of the framework is 3D elastic surface reg-
istration to obtain correspondences. Amberg et al. (2007)
presented an algorithm in which each vertex is displaced
separately by an affine transformation matrix. They intro-
duced a stiffness parameter in the registration procedure,
causing a vertex to be displaced along with its neighbors.
During the iterations, the stiffness value is decreased, allow-
ing a more elastic deformation, which results in a good
geometric fit, but often suboptimal correspondences. In
our approach, an initializing globally affine step is added.
Therefore, using only translation of the vertices is suffi-
cient. Furthermore, no landmarks are needed. Therefore, the
overall computation time is reduced and the correspondence
quality is improved (Danckaers et al. 2014). In the sec-
ond part of our framework, a shape model is built from the
corresponded surfaces by performing principal component
analysis (PCA) on the corresponding points of the popula-
tion (Cootes et al. 1995). In this model, the mean surface
and the main variations are incorporated. The last part is the
parameterization of the statistical shape model. Because of
the correspondences, any shape that can be formed by the
model can also be fit with CAD primitives and consequently
can be used for finite element methods such as CFD, e.g. to
simulate airflows in fruit packages.

Materials and Methods

Data Collection

Datasets of three types of fruit and vegetables were scanned
in 3D to validate our algorithm. In particular, 30 Jonagold
apples and 30 bell peppers were scanned using micro-CT.
To this end, a set of 938 2D radiographic images were
equiangularly acquired over 187◦ and are reconstructed to
a 3D tomography. The result is a 3D image that repre-
sents the X-ray attenuation properties of the scanned object.
In this case, the data was acquired with a microfocus X-
ray CT (AEA Tomohawk, Philips, The Netherlands) using
a Philips HOMX 161 X-ray source. The resulting images
had an isotropic voxel size ranging between 83 to 138μm.
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The outer surface of each instance was extracted from the
reconstructed objects.

For the zucchini dataset, 52 instances were scanned with
an Artec EvaTM structured light scanner, with a resolution
of the scanner is 0.5 mm and an accuracy of 0.1 mm. This
3D scanner is able to acquire 2M points per second and has
an angular field of view of 30 × 21◦.

The width, depth, and height of the instances were mea-
sured. The average dimensions of the cultivars are shown in
Table 1. All harvesting dates were within the optimal com-
mercial picking window for each cultivar, as determined
by the Flanders Centre of Postharvest Technology (VCBT,
Belgium).

Methods

In the following sections, the different steps for building a
statistical shape model and describing this model with CAD
primitives are explained.

Alignment Initialization

Before bringing the surfaces into correspondence, the ref-
erence surface is rigidly aligned to the target surface by
matching their principal axes. Therefore, the optimal rota-
tion matrix and translation vector are calculated by the
following steps:

1. The centroids cS and cT of the uncentered source (Su)
and uncentered target (Tu) surface, respectively, are
determined. These centroids are subtracted from each
point of the surface to align both datasets to the center,
resulting in the centered source matrix S ∈ R

3×nS and
centered target matrix T ∈ R

3×nT , with nS the number
of source vertices and nT the number of vertices in the
target surface.

cS = 1

nS

nS∑

i=1

Su
∗,i (1)

cT = 1

nT

nT∑

i=1

Tu∗,i (2)

Table 1 Average and standard deviation of the dimensions of the fruit
and vegetables in millimeters

Apple Bell pepper Zucchini

Width 82.28 ± 3.66 69.30 ± 11.41 83.36 ± 13.30

Depth 81.81 ± 4.18 68.07 ± 11.81 70.17 ± 1.97

Height 84.50 ± 4.74 84.23 ± 9.72 284.04 ± 38.71

2. The covariance matrices of S and T are computed, to
obtain the symmetric matrices CS ∈ R

3×3 and CT ∈
R

3×3, respectively.

CS = 1

nS − 1
(S · ST ) (3)

CT = 1

nT − 1
(T · TT ). (4)

3. The singular value decompositions (SVD) of both
matrices CS and CT are calculated to find the princi-
pal axes of each surface. The columns of both US and
UT correspond with the eigenvectors of CS and CT ,
respectively.

CS = USWSUT
S (5)

CT = UT WT UT
T (6)

4. The rotation matrix R is found by

R = US · UT
T (7)

and applied to the vertices of the source surface S.
5. The source and target vertices S and T are translated by

cS .

The alignment algorithm is schematically visualized in
Fig. 1.

Surface Correspondence

In the surface registration part, the reference surface is reg-
istered to a target surface, such that the geometric distance
between those surfaces becomes minimal while retaining
optimal point correspondences. The approach is the same
as the RN-ICP-T algorithm, which is also described in
previous work of the authors (Danckaers et al. 2014). In
the first stage, a closest point correspondence is presumed.
Throughout the iterations, the point correspondences grad-
ually improve because of the improved geometric fit. The
reference surface is uniformly resampled by the Poisson-
disk sampling algorithm (Corsini et al. 2012; Cignoni et al.

Fig. 1 Schematic 2D visualization of the alignment of two surfaces.
The red and blue ellipse represent the source and target surface, respec-
tively. First, the centroids of both surfaces are calculated. Next, the
surfaces are aligned to the origin. The following step is rotation of the
source surface such that its principal axes align with those of the target
surface. Finally, both surfaces are translated to the optimal location by
the centroid of the source surface
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2008). A global rigid registration and an elasticity modu-
lated registration are iteratively repeated. During the itera-
tions, the stiffness gradually decreases, allowing the surface
to become more elastic throughout the iterations to assure a
robust registration algorithm. Hence, in the first iterations,
a rough alignment is performed to avoid getting stuck in
a local minimum, while in the last iterations, the surface
will be highly elastic to ensure a perfect geometric fit. The
framework is illustrated in Fig. 2.

In the first step of the iterative process, the surfaces are
rigidly aligned. To that end, corresponding points are found
using normal-ray casting from each vertex of the reference
surface to the target surface. The intersection point that lies
on the target surface and is not necessarily a vertex may be
a corresponding point. A number of constraints are imposed
on the corresponding points:

1. The normal of the intersection has to point in the same
direction (within a tolerance of 30◦) as the normal of
the source point.

2. The distance between corresponding points has to be
smaller than 20× the average distance between the two
surfaces as measured from the previous iteration. In the
first iteration, the previous average distance is set to
infinity.

3. The casted ray may not intersect the source and target
surface multiple times before reaching the correspond-
ing point.

If no corresponding point is found, it has no influence on
the alignment of the surfaces. Based on the correspond-
ing points, a linear least squares alignment is performed
to determine the transformation matrix that minimizes the
distance between the corresponding points.

In the elastic part of the registration, the vertices are
allowed to move separately, while motion is restricted by a
stiffness parameter β that regulates the strength of the con-
nection with the neighboring vertices and which gradually

decreases during the iterations. Hence, the movement of
neighboring vertices is constrained, resulting in similar
movements of neighboring vertices, as displayed in Fig. 3.
By applying weights to each vertex, the influence of this
vertex can be set. If no corresponding point for a vertex of
the source mesh is found, its weight is set to zero. In that
case, this vertex simply moves along with its neighboring
vertices. Let n be the number of vertices of the surface and
e the number of edges.

The weights corresponding to the vertices are stored as
elements of the diagonal matrix W ∈ R

n×n, which are either
0 or 1. In this algorithm, the weight can be either 0 or 1.
Matrix S ∈ R

n×3 and matrix T ∈ R
n×3 hold the coordinates

of the corresponding source and target vertices, respectively.
The optimal translation vectors, the matrix Xt ∈ R

n×3, are
found by solving following linear system:
[

βM
WI

]
Xt =

[
0

W(T − S)

]
, (8)

with M ∈ R
e×n the incidence matrix of the reference sur-

face that indicates the start- and end vertex of each edge.
The rigid registration step and elastic registration steps are
iteratively repeated until convergence is reached, which is
calculated by comparing the current distance between the
source and reference surface dt and the previous distance
between the source and reference surface dt−1. Convergence
is reached if

|dt − dt−1|
dt

< 0.001.

Building a Shape Model

This part of our framework consists of building a statisti-
cal shape model based on the corresponded surfaces that
resulted from the surface registration part. The process is
shown in Fig. 4. To build a shape model, it is important
that the surfaces are superimposed by optimally translating

Fig. 2 The surface registration
framework

β

β
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β β/5 β/10 β/20 β/100
Fig. 3 Influence of the elasticity parameter on the elastic surface
deformation, shown from two viewpoints. In each figure, the target
surface is visualized in transparent white and the deformed source in

blue. The left example is created with a very high stiffness factor. The
right example is created with a very low stiffness factor. From left to
right, the stiffness factor decreases

and rotating the surfaces. The optimal poses are determined
by Procrustes alignment (Dryden and Mardia 1998; Gower
1975; Kendall 1989).

The model is built by performing PCA on the matrix
containing the corresponding points to compute the eigen-
vectors and eigenvalues of the covariance matrix across
all training shapes. This corresponding points matrix X ∈
R

N×3n is given by

X =

⎡

⎢⎢⎢⎣

x0,0 y0,0 z0,0 . . . x0,n y0,n z0,n

x1,0 y1,0 z1,0 . . . x1,n y1,n z1,n

...
...

...

xN,0 yN,0 zN,0 . . . xN,n yN,n zN,n

⎤

⎥⎥⎥⎦ ,

with n the number of points and N the number of shapes.
The i-th row of this corresponding points matrix is denoted
by xi .

In the statistical shape model, the mean surface x̄ and
the main variances � are incorporated. The population of N

shapes is represented by a point cloud with N points in a 3n-
dimensional space, where each point represents a vegetable
or fruit. This cloud can be represented by N − 1 eigen-
mode vectors, where the first eigenmode corresponds to the

direction of the largest variance in the population, the sec-
ond eigenmode corresponds to the second direction of the
largest variance perpendicular to the first, etc.

The calculation of the statistical shape model is as fol-
lows. First, the average shape vector x̄ is calculated by

x̄ = 1

N

N∑

i=1

xi . (9)

The normalized corresponding points matrix X̂ is given by

X̂ =

⎡

⎢⎢⎢⎣

x0 − x̄
x1 − x̄

...

xN − x̄

⎤

⎥⎥⎥⎦ .

Then, the normalized N × N covariance matrix D is com-
puted as follows:

D = 1

N − 1
X̂X̂T . (10)

Next, the eigenvalues � and eigenvectors � are obtained
from the SVD of this covariance matrix D as

D = UD�DUT
D, (11)

Fig. 4 Framework for building
a statistical shape model. First, a
reference surface is registered to
each surface of the population.
From these registered surfaces, a
statistical shape model is built reference

target overlay Procrustes registered

statistical
shape
model
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where � ∈ R
3n×3n is the diagonal matrix that holds

the eigenvalues corresponding to the eigenvectors in the
columns of the matrix � ∈ R

N×3n, which is calculated by

� = X̂ · UD. (12)

Any instance y can be approximated by the average
surface x̄ and a weighted sum of principal component
parameters � as follows:

y = C(x̄ + �b), (13)

where C is a rigid transformation matrix. The vector b holds
the shape parameters, which are normally distributed with a
certain standard deviation, calculated by PCA. This means
that a new, realistic surface can be formed by adapting the
shape model parameters.

Description with CAD Primitives

For simulation applications, such as CFD and FEM environ-
ments, a shape must be representable with CAD primitives,
which are basic geometric shapes such as spheres, cubes,
toroids, cylinders, pyramids, and b-splines. These are con-
sidered to be primitives in 3D modelling because they are
the building blocks for many other shapes and forms. To use
a shape model of vegetables or fruit in a CAD environment,
shape parameterization is needed.

Parameterization of a surface is the task of defining a map
between the surface and a simple parameter domain, such
as a plane, sphere, or cylinder. Such a map links each point
of the surface with a coordinate in the space of the parame-
ter domain. In this paper, the surfaces are represented with
a triangle mesh and the map is only defined explicitly for
the vertices. Parameterization can be seen as the result of
a continuous deformation of the surface into the parameter
domain. By parameterizing the shape model, each instance
in the model can be easily described with a set of basis
functions, like spherical harmonics or B-splines.

The cylindrical parameter domain is chosen in order to
be able to select the poles. Therefore, two holes are man-
ually created in the top and bottom of the surface, to be
able to work in this domain (Huysmans et al. 2005). A map-
ping from the cylinder to the triangle mesh of the surface
is needed. Therefore, the surface mesh is represented by a
progressive mesh. With this representation, the number of
triangles is reduced until the simplest shape, an open prism
with six vertices, is left. This simple shape can be easily
parameterized by equidistant placement of its six vertices
on the two boundaries of the cylindrical domain. The next
levels in the progressive mesh are parameterized by insert-
ing the removed vertices one at a time and optimizing their
positions on the cylinder in a way that the mapping between

the cylinder and the surface introduces a minimum of distor-
tion. After re-inserting all vertices, the parameterization of
the original surface is obtained and each vertex has a (u, v)

coordinate in the cylindrical coordinate system.
The statistical shape model is parameterized by only

parameterizing the average surface. Because of the corre-
spondence, all instances of the model also have B-spline
parameter coordinates. With this technique, the point-based
models can be described by B-splines, which describe a
surface by a set of control points. The 3D locations of
the control points are optimized to obtain the best surface
approximation. This is a very compact representation and is
suited for CAD and finite-element environments.

Results and Discussion

Surface Registration

To obtain meaningful correspondences, a reference surface
was registered to each surface of the population. For each
class, a reference surface was randomly chosen from the
population. The apple was resampled to 30,000 points, the
bell pepper to 40,000 points, and the zucchini to 13,000
points. The reference surface of each class was registered
to each surface of the population. The stiffness parameter
decreased linearly from 50 to 1. Registering one instance
took ± 1 min CPU time for 30 iterations. Then, the average
surface was calculated and served as a new template surface
to register to each instance to avoid a bias towards a specific
shape of the population. In Fig. 5, the deformation of the
reference surface to a target surface of the bell pepper object
class is visualized through the iterations. From the results of
this registration, a statistical shape model was built.

The average error between the source surface and the
deformed reference surface for each class is shown in Fig. 6
and summarized in Table 2. The largest errors appeared
around the top of the surfaces, where the stem was located.
The bell pepper surfaces had the largest errors, because
the shape and length of the stem greatly varies over the
instances.

The correspondence quality was evaluated for the bell
pepper model by manually placing a marker on the top (of
the cut off stem) and a marker on the bottom of the input
surfaces. Those marker points were also annotated on the
average surface and loaded on each instance incorporated in
the model. Next, the Euclidean distance between the man-
ually placed marker and automatically loaded marker was
calculated. The results of this analysis are shown in Table 3.

The correspondence error on the bottom of the bell pep-
per is relatively high. It is difficult to manually annotate
this point, because there are no clear features on the bot-
tom of a bell pepper, so the inter- and intra-observer errors
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Fig. 5 Iterative shape
deformation of a reference bell
pepper towards a target bell
pepper. For each iteration, the
deformed reference mesh in
orange and the original reference
mesh is visualized in light gray iteration 0 30157 22

are large. Moreover, because there are no distinct features
on the bottom, even for suboptimal correspondences the
similarity criteria, such as the directions of the normals have
to be in the same direction within a tolerance of 30◦, are eas-
ily achieved. Once a bad correspondence is found, it is very
unlikely that the algorithm is capable of correcting this.

The geometric and correspondence errors can perhaps be
reduced by adding more vertices to the reference surface or
lowering the convergence ratio. The more vertices on the
reference surface, the better a shape can be captured. How-
ever, computation time and memory requirements increase
with the number of vertices. Lowering the convergence
threshold could possibly lead to better results on the stem
and bottom.

Shape Model

In Fig. 7, the first five shape modes of the bell pepper shape
model are visualized, since these modes represent over 80%
of the variation. The first mode represents mainly the size of
the bell pepper. The second mode shows the ratio between
width and height. The third mode describes the location
and curvedness of the lobes. The characteristics described
in the following modes are harder to interpret. They mostly
describe the curvature of the bottom of the bell pepper.

It is assumed that a statistical shape model describes a mul-
tidimensional Gaussian distribution of the object’s shape.
As an example, the model was truncated to 5 eigenmodes,

because the first components mostly describe the shape.
Five samples were randomly generated by generating a
weight vector b. These weights were between + 3 standard
deviations and − 3 standard deviations of their respective
shape mode and followed the Gaussian distribution. Some
randomly generated instances are visualized in Fig. 8.

Description with CAD Primitives

Surface parameterization was applied to the average sur-
face of the apple shape model to be able to describe each
model instance with basis functions. In Fig. 9, the aver-
age apple surface with iso-parametric curves is shown. The
apple surface was approximated by B-splines with differ-
ent numbers of control points. While the size and global
shape of an apple can already be described with a 4 × 4
grid of control points, the difference between the original
and the approximation was clearly visible. An approxima-
tion with 32 × 32 control points was nearly identical to the
original apple model. Therefore, the parameterized shape
model could serve as a model in CAD and finite-element
environments, so simulations could be performed with these
models.

Moreover, the parameterized shape model is a much
more compact and memory efficient representation of the
triangle model. For example, the triangle model of the apple
consisted of 30,000 points requiring 703 kB of storage per
surface. On the other hand, the most detailed parameterized

average error [mm]
average error [mm]

average error [mm]
0.10

0.075

0.05

0.025

0.0

0.10

0.075

0.05

0.025

0.0

1.0

0.75

0.5

0.25

0.0

Fig. 6 Geometric error maps of the apple, bell pepper and zucchini. The errors were calculated for each instance in the population and averaged
per object class
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Table 2 Average and standard deviation of the distance between the
deformed reference surface and target surface in millimeters

Apple Bell pepper Zucchini

0.015 ± 0.011 0.106 ± 0.026 0.027 ± 0.007

apple shape consisted of 32 × 32 control points only requir-
ing 24 kB per surface. So the required memory for the
parameterized shape is almost 30 times smaller than for
the triangle model. In addition, for the triangle model, the
vertex connectivity has to be stored while for the B-spline
representation, the connectivity is implicit.

Model Performance

Compactness, generalization ability, and specificity are
widely used measures (Davies 2002; Zihua 2011) for quan-
tifying the correspondence quality of a statistical shape
model. In this section, the different model performance
measures were calculated per object type.

Compactness

A compact model is a model that can represent all shapes
of the class with as little parameters as possible. Preferably,
a shape model can be described with few modes. The com-
pactness is expressed as the sum of variances of the model,

C(m) =
m∑

i=1

λi, (14)

where λi is the variance in shape mode i and C(m) is the
compactness using m modes.

In Fig. 10, the compactness graph for each object class
is shown. The cumulative variance was normalized for each
model so that the total was 100%. The compactness test
shows that the apple model captured more than 85% of the
shape variation with the first 10 modes. The bell pepper
model captured more than 90% of the shape variation with
the first 10 modes.

Note that the zucchini model is a very compact model,
since only five modes were needed to describe over 99% of
the total population. This is because the main shape variance
is size, which was described by the first mode.

Table 3 Average and standard deviation of the distance between the
manually annotated markers and automatically derived markers from
the shape model on 10 bell pepper instances in millimeters

Stem Bottom Average

3.97 ± 2.60 4.84 ± 3.15 4.41 ± 2.32

Generalizability

Generalizability is defined as the degree to which the model
can be generalized from the study sample to the entire popu-
lation. The shape model should allow to describe all shapes
of the specific class, and not only the shapes of the training
set. If a model is over-fitted to the training set, it will not be
able to generalize to unseen samples.

Generalizability G(m) was measured by performing
leave-one-out tests, where a shape model was built by using
all training shapes but one. Next, the left-out shape was
described by adapting the shape parameters of the model.
Generalizability was calculated as the mean error over all
left-out shapes,

G(m) = 1

Nt

Nt∑

i=1

||xi − x′
i (m)||2, (15)

where xi is the left-out shape and x′
i (m) is the attempted

description using the shape model with m modes. The num-
ber of trials, or objects in the model, is represented by
Nt .

In Fig. 11, the generalizability graph for each object class
is shown. The generalizability error was calculated in mm

per vertex. The error of fitting the apple model to an unseen
apple surface was smaller than 1.9 mm from five shape
modes. For the bell pepper shape model, an error of less than
3.5 mm occurred when predicting a shape using the first five
shape modes. The outer surface of a zucchini could be fit
with an error of 1.6 mm from five modes.

Specificity

A specific model can only represent instances of the object
class that are similar to those in the training set. Speci-
ficity was measured by generating an amount of shapes (Nt )

by generating a random parameter vector with m modes.
Each sample was compared to the most similar shape in the
training set. The specificity measure can be expressed as

S(m) = 1

Nt

Nt∑

i=1

||yi − y′
i (m)||2, (16)

where y′
i are shape examples generated by the model and yi

is the nearest member of the training set to y′
i .

In Fig. 12, the specificity graph for each type of surface
is shown. The specificity error was calculated in millimeters
per vertex. The specificity test proved that all three mod-
els were able to generate shapes that resemble those in the
training set.
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mode 1 mode 2 mode 3 mode 4 mode 5

+3σ

-3σ

average
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Fig. 7 A front view and a top view of the first five shape modes of the bell pepper shape model, plus and minus three standard deviations

Discussion

The most innovative feature of this algorithm is that it leads
to accurate statistical shape models of objects with com-
plex, possibly non-star-shaped topologies. The shapes were
described in a detailed, realistic way, compared to the cur-
rent 2D contour models or simplified 3D models based on
contours. The algorithm is applicable to vegetables and fruit
with a shape more complex than star-shaped (Rogge et al.
2015). Star-shaped means that each point of the surface is
reachable with a straight line from a common center without
intersecting the surface, which was not the case for some of

the bell pepper instances. Therefore, the algorithm can also
be applied to, e.g. mushrooms and bananas.

By applying surface registration to a dataset, all instances
were in correspondence with each other. The geometric
errors and correspondence errors between the deformed ref-
erence surface and the target surface were small, so the
registration result is a good representation of the input sur-
face. Geometric and correspondence errors could possibly
be reduced by changing the stiffness parameters. A small
stiffness value leads to a better geometric fit, because the
vertices can move more freely to the optimal position. On
the other hand, chances are higher that a vertex migrates
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Fig. 8 Randomly generated
horticultural products, created
by applying a random weight
vector to the first five
eigenmodes of the shape model

to an incorrect location because of this freedom. Once a
bad correspondence is found and the surface is incorrectly
deformed, the algorithm is not capable of correcting this
mistake. A large stiffness value leads to a less optimal geo-
metric fit, but the overall shape of the source surface is
maintained, increasing the chances of a good correspon-
dence. Other possibilities to reduce the errors are increas-
ing the number of vertices and a more strict convergence
criterion.

The algorithm was capable of rapidly generating 3D sta-
tistical shape models that were accurate and compact, while
the randomly generated surfaces were similar to the surfaces
of their respective training sets. Therefore, a broad dataset
of realistic instances can be produced, e.g. simulation pur-
poses.

B-spline surface approximation of the shape model was
shown. Because the model was parameterized, all instances
that can be formed by the model were also parameterized.
Therefore, a statistical shape model can provide input to
generate CAD models, which can be loaded in CFD and
FEM environments. As a result, the shape model is employ-
able in stacking algorithms (Delele et al. 2008). Moreover,
the parameterized shape model is a more compact repre-
sentation of the triangle model, as less numbers have to be
stored.

The software for the described algorithms was written in
C++ and based on the Visualization ToolKit (VTK) libraries
(Schroeder et al. 2006). VTK is an open-source software
system for 3D computer graphics, image processing, and
visualization.
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Fig. 9 Upper row: top view of parameterized apple shape model with iso-parametric curves. B-spline approximations with different number of
control points on the B-spline grid. Bottom row: distance, in millimeters between the original surface and the approximation
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Fig. 10 The compactness measure for the three types of horticultural products. The cumulative variance was normalized for each model so that
the total was 100%
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Fig. 11 The generalizability measure for the three types of horticultural products, in millimeters per vertex. The error flags represent the standard
errors on the mean distance
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Fig. 12 The specificity measure for the three types of horticultural products, in millimeters per vertex. The error flags represent the standard
errors on the mean distance

Conclusions

In this paper, an algorithm for building a statistical shape
model of horticultural products was proposed. First, the
surfaces from the training set were brought into corre-
spondence with each other. Experiments on the surface
registration algorithm proved that the technique is appli-
cable to complex shapes and results in a good geometric
fit and good correspondences. From these corresponded
surfaces, the statistical shape model was built. The model
performance tests showed that our method for building a sta-
tistical shape model results in a good representation of the
population of the object class, as the shape model is able
to generate realistic horticultural product shapes that dif-
fer from those in the training set. Furthermore, the model
was a compact representation of the shape population and
could easily generalize to a formerly unseen instance of the
model’s object class.

By parameterizing the surface, the shape model and
every instance that can be formed by the shape model
were described by CAD primitives. Therefore, a statistical
shape model is an effective tool for simulation software.
Our approach of modelling and subsequent parameteriza-
tion is also applicable to other horticultural product shapes.
Specifically for elongated shapes, like pears, bananas, and
cucumbers, cylindrical parameterization can be useful.

The developed surface registration and modelling tech-
niques proposed in this paper are also applicable to other
horticultural products of more complicated, non-spherical
topology.
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