
Efficient X-ray projection of triangular meshes based on ray
tracing and rasterization

P. Paramonova,b, J. Rendersa,b, T. Elberfelda,b, J. De Beenhouwera,b, and J. Sijbersa,b

aimec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
bDynXlab: Center for 4D Quantitative X-ray Imaging and Analysis, Antwerp, Belgium

ABSTRACT

X-ray based inspection often relies on triangular meshes, for example to inspect objects that were manufactured
from CAD models. In this work, we present three complementary implementations of X-ray mesh projectors,
obtained by adapting state-of-the-art rendering techniques to the simulation of X-ray imaging. The first technique
is rasterization, where the interaction of each triangle with the X-ray beam is simulated in parallel using the
NVIDIA CUDA toolkit. The second approach is ray tracing, where the interaction of each ray with the mesh
is simulated in parallel using the NVIDIA OptiX framework. Both recursive and non-recursive versions of ray
tracing are described. The simulated XCT setup is described in terms of a cone beam projection geometry that
is compatible with the corresponding geometry in the ASTRA toolbox. All three projectors were benchmarked
on a series of tests with varying resolution of both the mesh and the detector. The rasterizer exhibited the best
computation time in most benchmark scenarios, coupled with the best scalability w.r.t. both the mesh size and
the detector size. However, the recursive ray tracing approach offers more capabilities towards implementing
additional optical effects such as refraction.

Keywords: X-ray imaging, rasterization, ray tracing, mesh model, GPU computing

1. INTRODUCTION

X-ray computed tomography (XCT) is widely applied in industry as a 3D imaging technique for non-destructive
testing (NDT). A typical approach is based on a full 3D XCT imaging of the inspected sample, followed by a
conversion of the reconstructed voxel representation to a surface mesh for comparison with a reference Computer
Aided Design (CAD) model.1,2 An alternative approach for X-ray based inspection compares X-ray projections
of the sample with those simulated from either a reference voxel representation3 or a CAD model.4 Both options
require efficient tools for accurate and effective simulation of forward X-ray projections of 3D meshes.

A well-known approach to simulate X-ray projections is based on Monte Carlo simulations.5,6 Although
being the most physically accurate, it is also extremely computationally expensive due to the need of casting a
large number of photons as to keep the signal-to-noise ratio of the simulated projections at an acceptable level.
It becomes particularly cumbersome for full XCT simulations, when radiographs have to be simulated from a
large number of viewing angles. Hence, simpler techniques based on either ray tracing7,8 or rasterization9,10

have been proposed for both radiograph and XCT simulation. Both approaches assume that X-rays propagate
strictly along straight lines. In the ray tracing approach, the attenuation detected by the corresponding pixel is
approximated by a single line integral computed along the source-pixel path. The X-ray beam is then modelled by
a set of rays that are cast towards the centers of the detector pixels. Another way of computing ray attenuation
is by arranging the simulation in a “triangle-wise” order instead of “pixel-wise”. This can be accomplished by
rasterization, which is a rendering technique based on looping over the mesh triangles and finding pixels they
cover.11

In this paper, we describe and analyze both ray tracing and rasterization algorithms for X-ray projection sim-
ulation. In our implementation, the representation of the projection geometry is compatible with the volumetric

Further author information: (Send correspondence to P.Paramonov)
P.Paramonov: E-mail: pavel.paramonov@uantwerpen.be



Figure 1: An example of the ”Standford Bunny” mesh (103 faces) projected with the circular cone beam
projection geometry.

projectors of the open source tomography toolbox ASTRA.12 Firstly, we describe their effective implementa-
tions that leverage NVIDIA technologies for parallel computing (NVIDIA CUDA toolkit13 for rasterization, and
NVIDIA OptiX14 for ray tracing). Then, we compare their efficiency in different simulation scenarios and discuss
their strong and weak points.

2. ALGORITHMS FOR X-RAY PROJECTION SIMULATION

All of our projectors simulate the propagation of monochromatic X-rays along straight lines. A set of rays is
generated from a point source, each ray aiming towards the center of the corresponding detector pixel. The
detected attenuation Ii is found for each pixel as a sum of ray path segments lj inside the mesh with the
corresponding attenuation coefficient µj :

Ii =
∑
j

µj lj . (1)

To obtain correct projections, all projectors require the mesh to be watertight. Although our implementation
does not support functionally graded materials by, e.g., representing them with adaptive tetrahedral meshes,15

projection of heterogenous objects is still possible by nesting the meshes that correspond to homogeneous material
regions.

To describe the XCT imaging setup, our implementation relies on the notation of a projection view and a
projection geometry, as it is defined in the ASTRA toolbox. The projection view is a combination of a source
position, detector position, size, and orientation. Running the projector on a single projection view results
in a single radiograph. The projection geometry combines multiple projection views, necessary for obtaining
a sinogram. In this work, a circular cone beam projection geometry with a point source was used in the
computational experiments. It is described by the distances from the mesh to the detector and from the source
to the detector, the size and the resolution of the detector, and a set of projection angles (see Fig. 1).

2.1 Rasterization

This algorithm projects each triangle to the detector plane, and computes its input to the ray attenuation for
the pixels that it covers, as it is depicted in Fig. 2. To that end, each of the three triangle vertices are projected
onto the detector, determining the hit region. For all the pixels in the hit region, it is determined if the pixel
center is inside the projected triangle. For those pixels that are inside the projected triangle, the distance from
the source to the triangle face is computed, multiplied by the attenuation coefficient, and added to the value
recorded at that pixel. If the triangle face normal points towards the source (front face), the distance value is
assigned a negative sign (l− in Fig. 2b). If the normal points away (back face), the distance value is positive (l+

in Fig. 2b).



(a) Detector hit region (b) Face inputs to the detected attenuation

Figure 2: Steps in the rasterization algorithm: (a) hit region (gray area) is found, (b) face input is added to the
pixel attenuation.

Our implementation provides a CUDA kernel that implements this procedure for every triangle of the mesh.
The total sum of the distances that equates to the distance the simulated ray travels through the object is found
by applying the CUDA atomic sum operation. Because all the ray-triangle intersections are processed in an
unordered way, rasterization needs the information about mesh hierarchy to be given explicitly to be able to
project nested meshes. The same reason makes it difficult to add refraction and reflection into rasterization.

2.2 Non-recursive ray tracing with NVIDIA OptiX

By “non-recursive” ray tracing we refer to a procedure that runs only once per every ray, and allows to find all
the intersections along the ray path. To that end, we implemented two kinds of OptiX programs: ray generation
and any-hit. In the ray generation program, the ray origin and initial direction is calculated according to the
chosen projection geometry and current projection view. All rays are cast from a point source towards a regular
grid of detector pixels. In the any-hit program, the same rule as in rasterization algorithm is applied to every
ray-triangle intersection, i.e., l− or l+ distance is found and added to the pixel attenuation (see Fig. 2b).

The non-recursive OptiX projector is similar to rasterizer is the sense that it performs the same operation
but in the different order. Just like the rasterization algorithm, it requires prior information on mesh hierarchy
for the correct projection of nested meshes.

2.3 Recursive ray tracing with NVIDIA OptiX

Similar to the non-recursive case, ray tracing starts with ray generation program, but instead of finding all the
intersections in one run, only the hit points closest to the source are calculated. These hit events are processed
in the OptiX closest-hit program, after which tracing starts again from the hit point. This recursive procedure
terminates when no more intersections can be found, i.e., when OptiX reports a ray miss event and executes
miss program.

Unlike the previous two projectors, recursive ray tracing automatically keeps track on the mesh hierarchy.
On top of easier support for the nested meshes, the direction of the ray can be updated using Snell’s at every
intersection, if refraction is considered.

3. SIMULATION RESULTS

To benchmark the implemented projectors, we prepared a series of Stanford bunny-based meshes with a varying
number of faces - from 102 to 106 (cfr. Fig. 1). To measure execution time, we ran every simulation 10 times and
took the average recorded time. For the OptiX projectors, we pre-launched the scripts without time measurement
to let OptiX run JIT compilation of the PTX code before the benchmark starts. Every run simulated a circular
cone beam XCT setup with 250 projection angles and varying detector resolution. In Fig. 3, a comparison between
the computation times of XCT simulations with different projectors is shown for various detector resolutions. All



102 103 104 105 106

faces, #

0.02

0.04

M
ea

n 
ru

nt
im

e,
 se

c.
rasterizer
optix:recursive

optix:non-recursive

(a) 256× 256

102 103 104 105 106

faces, #

0.05

0.10

M
ea

n 
ru

nt
im

e,
 se

c.

rasterizer
optix:recursive

optix:non-recursive

(b) 512× 512

102 103 104 105 106

faces, #

0.1

0.2

0.3

0.4

M
ea

n 
ru

nt
im

e,
 se

c.

rasterizer
optix:recursive

optix:non-recursive

(c) 1024× 1024

102 103 104 105 106

faces, #

0.25

0.50

0.75

1.00

1.25
M

ea
n 

ru
nt

im
e,

 se
c.

rasterizer
optix:recursive

optix:non-recursive

(d) 2048× 2048

Figure 3: Computation time comparison for the different detector size.

forward projection simulations were run on a workstation with a GeForce RTX 2080 graphics card. The operating
system was Ubuntu 20.04, the versions of NVIDIA CUDA and NVIDIA OptiX are 10.2 and 7.4 respectively, the
display driver version was 510.73.05.

In all performance tests except one, the rasterizer exhibits lower computational time than both of the OptiX-
based projectors. Unlike ray-tracing implementations, it scales well with respect to the detector resolution. The
only scenario when rasterization was slower than the non-recursive OptiX projector was with a combination of
high-poly mesh with large detector pixels. This causes many faces to overlap from the viewpoint of a single
detector pixel, which results in a great number of collision tests in atomic summation and increased waiting time
for the CUDA threads. The scalability w.r.t. the mesh size for all of the projectors peaks for the largest detector
size, with the rasterizer showing almost no growth in computational time up to 106 faces. It also demonstrated
the best scalability w.r.t. the detector size: the rasterizer projector slowed down ca. 20 times on a switch from
256 × 256 to 2048 × 2048 pixels, while the same switch resulted in about 40 times slower execution for the
recursive OptiX projector, and about 44 times longer computation time for the non-recursive OptiX projector.

Although ray tracing does not perform as well as rasterization, the main advantage of the latter technique
is the ability to implement more sophisticated light propagation models. Light refraction and reflection can be
naturally included into the recursive implementation. On top of that, our implementation of the recursive OptiX



projector supports automatic handling of nested meshes, while both rasterization and non-recursive ray tracing
require either the user to explicitly specify the information on mesh hierarchy, or a separate routine that deducts
the hierarchy.

4. CONCLUSION

In this paper, three approaches to efficiently simulate X-ray projections from triangular meshes, as well as their
GPU implementations, were described and benchmarked. The first approach is based on rasterization and was
implement with the NVIDIA CUDA toolkit, while the others are the two versions of the ray tracing technique
and were implemented with the NVIDIA OptiX framework. The rasterization-based projector demonstrated the
lowest computational time in most simulation scenarios coupled with good scalability with respect to the detector
resolution and mesh size. However, it has limited capabilities for further improving the X-ray propagation model
(e.g., by including refraction), which limits its application to the domain of conventional XCT. On the other
hand, the light propagation model can be relatively easily improved in the recursive OptiX projector, which can
make it applicable to other types of XCT, such as edge illumination phase contrast imaging.

ACKNOWLEDGMENTS

The research was supported by the Research Foundation- Flanders (FWO)(G090020N, G0F9117N, G094320N,
S003421N, 11D8319N) and EU Interreg Flanders-Netherlands Smart*Light (0386).

REFERENCES

[1] De Chiffre, L., Carmignato, S., Kruth, J.-P., Schmitt, R., and Weckenmann, A., “Industrial applications of
computed tomography,” CIRP Annals - Manufacturing Technology 63(2), 655 – 677 (2014).

[2] Thompson, A., Maskery, I., and Leach, R., “X-ray computed tomography for additive manufacturing: A
review,” Measurement Science and Technology 27(7) (2016).

[3] van Dael, M., Verboven, P., Dhaene, J., Van Hoorebeke, L., Sijbers, J., and Nicolai, B., “Multisensor X-ray
inspection of internal defects in horticultural products,” Postharvest Biology and Technology 128, 33–43
(2017).

[4] Presenti, A., Sijbers, J., and De Beenhouwer, J., “Dynamic few-view X-ray imaging for inspection of CAD-
based objects,” Expert Systems with Applications 180 (2021).

[5] Langer, M., Cen, Z., Rit, S., and Létang, J. M., “Towards Monte Carlo simulation of X-ray phase contrast
using GATE,” Optics Express 28(10), 14522 – 14535 (2020).

[6] Sanctorum, J., De Beenhouwer, J., and Sijbers, J., “X-ray phase contrast simulation for grating-based
interferometry using GATE,” Optics Express 28(22), 33390–33412 (2020).

[7] Jacobs, F., Sundermann, E., De Sutter, B., Christiaens, M., and Lemahieu, I., “A fast algorithm to cal-
culate the exact radiological path through a pixel or voxel space,” Journal of Computing and Information
Technology 6(1), 89 – 94 (1998).

[8] Vidal, F. P., Garnier, M., Freud, N., Létang, J. M., and John, N. W., “Simulation of X-ray attenuation on
the GPU,” in [Theory and Practice of Computer Graphics 2009, TPCG 2009 - Eurographics UK Chapter
Proceedings ], 25–32 (2009).

[9] Kooa, J., Dahla, A. B., Bærentzena, J. A., Chenb, Q., Balsb, S., and Dahla, V. A., “Shape from projections
via differentiable forward projector for computed tomography,” Ultramicroscopy 224, 113239 (May 2021).

[10] Renders, J., De Beenhouwer, J., and Sijbers, J., “Mesh-based reconstruction of dynamic foam images using
X-ray CT,” in [2021 International Conference on 3D Vision (3DV) ], 1312–1320, IEEE (2021).

[11] Parker, S. G., Friedrich, H., Luebke, D., Morley, K., Bigler, J., Hoberock, J., McAllister, D., Robison, A.,
Dietrich, A., Humphreys, G., McGuire, M., and Stich, M., “GPU ray tracing,” Communications of the
ACM 56(5), 93 – 101 (2013).

[12] van Aarle, W., Palenstijn, W. J., Cant, J., Janssens, E., Bleichrodt, F., Dabravolski, A., Beenhouwer, J. D.,
Batenburg, K. J., and Sijbers, J., “Fast and flexible X-ray tomography using the ASTRA toolbox,” Opt.
Express 24, 25129–25147 (Oct 2016).



[13] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable parallel programming with CUDA,”
Queue 6(2), 40 – 53 (2008).

[14] Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M.,
Morley, K., Robison, A., and Stich, M., “OptiX: A general purpose ray tracing engine,” ACM Transactions
on Graphics 29(4) (2010).

[15] You, Y., Kou, X., and Tan, S., “Adaptive tetrahedral mesh generation of 3D heterogeneous objects,”
Computer-Aided Design and Applications 12(5), 580 – 588 (2015).


	INTRODUCTION
	Algorithms for X-ray projection simulation
	Rasterization
	Non-recursive ray tracing with NVIDIA OptiX
	Recursive ray tracing with NVIDIA OptiX

	Simulation results
	Conclusion

