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Diffusion Kurtosis Imaging With Free Water Elimination:
A Bayesian Estimation Approach

Quinten Collier,1* Jelle Veraart,1,2 Ben Jeurissen,1 Floris Vanhevel,3 Pim Pullens,3

Paul M. Parizel,3 Arnold J. den Dekker,1,4 and Jan Sijbers1

Purpose: Diffusion kurtosis imaging (DKI) is an advanced
magnetic resonance imaging modality that is known to be sen-
sitive to changes in the underlying microstructure of the brain.
Image voxels in diffusion weighted images, however, are typi-
cally relatively large making them susceptible to partial volume
effects, especially when part of the voxel contains cerebrospi-
nal fluid. In this work, we introduce the “Diffusion Kurtosis
Imaging with Free Water Elimination” (DKI-FWE) model that
separates the signal contributions of free water and tissue,
where the latter is modeled using DKI.
Theory and Methods: A theoretical study of the DKI-FWE model,
including an optimal experiment design and an evaluation of the rel-
ative goodness of fit, is carried out. To stabilize the ill-conditioned
estimation process, a Bayesian approach with a shrinkage prior
(BSP) is proposed. In subsequent steps, the DKI-FWE model and
the BSP estimation approach are evaluated in terms of estimation
error, both in simulation and real data experiments.
Results: Although it is shown that the DKI-FWE model parameter
estimation problem is ill-conditioned, DKI-FWE was found to
describe the data significantly better compared to the standard DKI
model for a large range of free water fractions. The acquisition pro-
tocol was optimized in terms of the maximally attainable precision
of the DKI-FWE model parameters. The BSP estimator is shown to
provide reliable DKI-FWE model parameter estimates.
Conclusion: The combination of the DKI-FWE model with
BSP is shown to be a feasible approach to estimate DKI param-
eters, while simultaneously eliminating free water partial volume
effects. Magn Reson Med 80:802–813, 2018. VC 2018 The
Authors Magnetic Resonance in Medicine published by
Wiley Periodicals, Inc. on behalf of International Society for
Magnetic Resonance in Medicine. This is an open access
article under the terms of the Creative Commons Attribution
NonCommercial License, which permits use, distribution
and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.
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INTRODUCTION

Diffusion kurtosis imaging (DKI) (1,2) is a magnetic reso-
nance imaging technique to probe the diffusion of water
molecules. The DKI model is a mathematical extension
of the commonly used diffusion tensor imaging (DTI)
model (3,4). Whereas DTI only quantifies the Gaussian
component of the diffusion of the water molecules, DKI
also allows to quantify the degree of non-Gaussianity. In
many biological tissues, including the brain, the DKI
model is generally considered to be a more accurate rep-
resentation of the signal compared to DTI since it is
known that tissue heterogeneity and biological restric-
tions in the tissue microstructure, such as cell mem-
branes and myelin sheets, cause the distribution of the
water diffusion to be non-Gaussian (1,5,6). Moreover,
DKI has been shown to be sensitive to certain pathologi-
cal microstructural changes that are not revealed using
DTI (7). These include, but are not limited to, changes
due to cancer (8,9), Alzheimer’s disease (10), Parkinson’s
disease (11,12), Huntington’s disease (13), epilepsy (14),
attention deficit hyperactivity disorder (15), traumatic
brain injury (16–18) and cerebral infarction (19–23).
Besides the diffusion metrics produced by DTI, for exam-
ple, fractional anisotropy (FA) and mean diffusivity
(MD), DKI also produces kurtosis related metrics like the
radial- (Kk), axial- (K?) and mean kurtosis (MK).

In many DTI and DKI brain studies, the model parame-
ters are derived from voxels presumably containing one
underlying tissue type, usually white matter. In reality
however, besides potentially containing multiple tissue
types, many voxels will also contain a fraction of free
water, often in the form of cerebrospinal fluid (CSF).
Although in most cases this free water volume is rela-
tively small, it may still have a large impact on the diffu-
sion signal because of its high diffusivity (24), 3 mm2=ms
compared to a typical MD � 1 mm2=ms for brain paren-
chyma. Moreover, the long T2 relaxation time of free
water in comparison of white matter will inflate the free
water signal fraction, further increasing its impact (25).
Among other effects, neglecting to account for free water
will lead to underestimation of FA and to an overestima-
tion of MD and MK. For example, in a voxel with
FA¼ 0.7 and MD¼0.8 mm2=ms, a free water signal frac-
tion of 0.1 will already reduce FA with more than 7%
and increase MD with more than 10%.

Free water contamination can generally be dealt with
in two ways, either during data acquisition or with
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post-acquisition correction strategies. During acquisition,
the free water signal can be suppressed with the fluid-
attenuated inversion recovery technique (FLAIR) (26–28)
or similar diffusion weighted inversion recovery sequen-
ces (29). Although these acquisition techniques succeed
in suppressing the free water signal to a large extent,
they also have several drawbacks. First, the scan time is
significantly longer compared to a ‘regular’ diffusion
acquisition while the signal-to-noise ratio (SNR) is typi-
cally lower. Furthermore, the use of cardiac gating is pre-
cluded, the specific absorption rate (SAR) increases and
the data is sensitive to artifacts specific to inversion
recovery sequences (24). These drawbacks explain the
interest in employing voxel based post-acquisition cor-
rection strategies.

For DTI, multiple strategies have already been proposed
(30,31) of which the free water elimination (FWE) model
is probably most widely used (32). FWE models the diffu-
sion signal by combining a free water compartment with a
tissue compartment described by the DTI model, effec-
tively making FWE a bi-tensor model. A downside of this
model is that the inverse problem of estimating its parame-
ters is ill-conditioned, causing conventional estimation
techniques like non-linear least squares (NLS) model fit-
ting or maximum likelihood (ML) estimation to produce
diffusion parameter estimates that may differ several
orders of magnitude from their true underlying values
(33). To deal with the ill-conditionedness of this model fit-
ting problem, prior knowledge can be included, for exam-
ple in the form of a set of constraints, a regularization term
(32) or a statistical prior (31).

In this work, we extend the DKI model to also include a
free water compartment. The model is referred to as the
“Diffusion Kurtosis Imaging with Free Water Elimination”
(DKI-FWE) model. To address the ill-conditionedness of
the model fitting problem, we propose to use a Bayesian
estimation technique with a shrinkage prior (BSP). First,
the optimal b-values for the acquisition of the diffusion
weighted data are determined using a Cram�er-Rao lower
bound (CRLB) optimization procedure (34). The goodness
of fit of DKI-FWE is subsequently compared to that of the
standard DKI model using the generalized likelihood ratio
test. Finally, simulation and real data experiments are per-
formed to evaluate the performance of the proposed com-
bination of the DKI-FWE model with a BSP estimator in
terms of estimation error. This performance is compared
to that of two other combinations of model and estimator,
namely (i) the DKI-FWE model combined with a con-
strained ML estimator, and (ii) the DKI model combined
with a BSP estimator.

THEORY

Diffusion Kurtosis Imaging Model

The diffusion of water molecules in tissue can be
detected as an attenuation of the measured magnetic res-
onance signal intensity. The DKI model approximates
the natural logarithm of the magnitude of the noise-free
diffusion weighted signal Sðb; gÞ by a second-order
Maclaurin series expansion in powers of the diffusion
weighting strength b (35,36):

ln S b; g; hDKIð Þð Þ ¼ ln S0ð Þ � b
X3

i;j¼1

gigjDij

þ b2

6

X3

i¼1

Dii

3

 !2 X3

i;j;k;l¼1

gigjgkglWijkl

þOðb3Þ: [1]

Here, S0 denotes the non-diffusion weighted signal and
gi the ith component of the normalized diffusion weight-
ing gradient direction vector g. Dij represents the ijth ele-

ment of the fully symmetric second order diffusion
tensor D, which can be characterized by 6 independent
elements: hD ¼ fDijgi�j�3. Furthermore, Wijkl represents
the ijklth element of the fully symmetric fourth order dif-
fusion kurtosis tensor W , which can be characterized by
15 independent elements: hW ¼ fWijklgi�j�k�l�3. In sum-
mary, the DKI model is parameterized by 22 independent

parameters: hDKI ¼ ½S0; hD; hW �.

Diffusion Kurtosis Imaging with Free Water Elimination
Model

We propose a two-compartment model:

Sðb;g; hDKI ; f Þ ¼ ð1� f ÞStissue þ fScsf ; [2]

where the signal contribution of the tissue, Stissue, is

non-specifically represented by the DKI model (1), f is
the fraction of the diffusion signal that corresponds to
the free water compartment (also known as the free
water fraction) and Scsf denotes the signal contribution
of the free water compartment, which can be modeled
as:

Scsf ¼ S0e�bd; [3]

with the assumption of d ¼ 3 mm2=ms, the diffusivity of

free water at body temperature. The DKI-FWE model (2)
is parameterized by 23 independent parameters
h ¼ fhDKI ; fg. A disadvantage of the DKI-FWE model, is
that the corresponding model fitting problem is ill-
conditioned or, if the diffusion in the tissue is isotropic,
even ill-posed.

Bayesian Shrinkage Prior Estimation

To deal with the inherent ill-conditionedness of the
inverse problem of fitting the DKI-FWE model to data,
we propose to use a Bayesian estimation approach with
a shrinkage prior (BSP). BSP has already shown promis-
ing results when applied to the Intravoxel Incoherent

Motion (IVIM) model (37–40), which is also a bi-
exponential diffusion model that gives rise to an ill-
conditioned parameter estimation problem. The BSP
method is based on Bayes’ theorem which states that the
posterior distribution of the parameters h given the data
y; pðhjyÞ, can be expressed as:

pðhjyÞ ¼ pðyjhÞ
pðhÞ pðyÞ; [4]

where pðyjhÞ denotes the conditional distribution of y
given h. When viewed as a function of the parameter h
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for a given outcome y; pðyjhÞ is called the likelihood

function, which is denoted as Lðh; yÞ. The functions pðhÞ
and pðyÞ denote the prior distributions of h and y,

respectively. Each factor in Equation [4] will be dis-

cussed shortly in the sections below. For a more exten-

sive description of the BSP estimator and its

implementation, we refer the reader to the work by

Orton et al. (38).

Likelihood Function

The probability density function (PDF) for voxel i,

pðyijhiÞ, describes the probability of measuring a certain

value yi given the parameter vector hi. Under general

conditions (41,42), an MR magnitude signal is Rician

distributed (43,44):

pðyijhiÞ ¼
yi

s
exp � y2

i þ SðhiÞ2

2s2

 !
I0

yiSðhiÞ
s2

� �
: [5]

Here, I0 denotes the zeroth order modified Bessel func-

tion of the first kind and r is the standard deviation of

the Gaussian noise disturbing the underlying complex

data. If the PDF (5) is viewed as a function of the

unknown parameter vector hi for a given observation yi,

it is called the likelihood function, which is denoted as

Lðhi; yiÞ.

Prior Distributions

The components of the parameter vector h are assumed

to be Gaussian distributed across the region of interest

(ROI). For this work, the ROI will include the entire

brain. The distribution of the parameter f however, will

deviate significantly from a Gaussian distribution

because it is constrained between 0 and 1, with around 2

=3th of the voxels having a free water fraction in the 0

� f � 0:25 range (45). Therefore, during the estimation

procedure, a transformation f ! F is introduced:

F ¼ log ðf Þ � log ð1� f Þ. Besides the fact that the distribu-

tion of F now much more resembles a Gaussian distribu-

tion, the implicit constraints on f: 0 � f � 1 are now also

respected for all possible values of F. To support the

assumption of Gaussian distributed DKI-FWE model

parameters, Supporting Figure S3 shows the distribu-

tions of all parameter estimates. The prior distribution of

the parameters can be written as a multivariate Gaussian

distribution:

pðhijl;RmÞ ¼ j2pRmj�1=2exp � 1

2
ðhi � lÞTR�1

m ðhi � lÞ
� �

;

[6]

where l is a 23 � 1 vector containing the mean of every

DKI-FWE parameter across the ROI and Rm denotes the

23 � 23 ROI covariance matrix that models the variance

of, and correlations between parameters. In the BSP

approach, l and Rm are jointly inferred from the data.

Only the Gaussian shape is imposed on the prior distri-

bution. Jeffreys’ prior is used as a non-informative

hyper-prior to express uncertainty on the hyper-

parameters l and Rm: pðl;RmÞ ¼ jRmj�1=2 (46–48). Finally,

the prior distribution is multiplied with a uniform distri-

bution puðhiÞ to confine the parameter estimates to a bio-

logically plausible range and to deal with extreme

outliers in the parameter distributions after the initializa-

tion step:

puðhiÞ ¼
1 for lb � hi � ub

0 for hi < lb or hi > ub
:

(
[7]

Here lb and ub, denote the lower and upper bounds on

hi, respectively, and are set as to confine hi to this range.

The imposed constraints can be found in Table 1. The

term ’shrinkage’ in BSP describes the effect of this prior

on the final estimates. In voxels where the estimation

problem is severely ill-conditioned and parameter uncer-

tainties are high, estimates can significantly diverge from

the true value when no prior information is taken into

account. The BSP prior will shrink these estimates

toward the center of the distribution, thereby better con-

ditioning the problem.

Posterior Distribution

When the prior distributions pðhijl;RmÞ; puðhiÞ and likeli-

hood function Lðhi; yiÞ are known for each voxel, one can

determine the posterior distribution pðh; l;RmjyÞ over

both the voxel-wise parameters hi and the ROI mean and

covariance parameters l and Rm, using Bayes’ theorem

(4):

pðh;l;RmjyÞ ¼
puðhÞpðl;RmÞ

YNv

i¼1

Lðhi; yiÞpðhijl;RmÞ

pðyÞ ; [8]

where Nv denotes the number of voxels. The prior distri-

bution pðyÞ only serves as a normalizing constant that

does not depend on the model parameters. Therefore it

does not need to be evaluated during the estimation pro-

cedure. The posterior PDF summarizes the state of

knowledge about the parameters after the data y are

observed. Estimators of the parameters are given by the

expected values with respect to this posterior PDF.

These estimators minimize the Bayesian mean squared

error (MSE), where the mean is taken over all realiza-

tions of the parameters and the data (49). Unfortunately,

the high dimensional integrals needed to determine the

Table 1
Lower and Upper Bounds Imposed on Parameter Estimates. Bounds of the DTI Model Parameters Are in mm2/ms.

Parameter(s) lb ub

ln ðS0Þ 0 inf
Dxx;Dyy;Dzz;Wxxxx;Wxxyy;Wxxzz;Wyyyy;Wyyzz;Wzzzz 0 2.5
Dxy;Dxz;Dyz;Wxxxy;Wxxxz;Wxxyz;Wxyyy;Wxyyz;Wxyzz;Wxzzz;Wyyyz;Wyzzz �2.5 2.5

F �7.6 7.6
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expectation values cannot be calculated analytically.

Markov Chain Monte Carlo (MCMC) approaches, how-

ever, are an established solution to solve these integrals

numerically (50). After disregarding a sufficient number

of initialization samples (Ni¼ 1500) and subsequently

taking sufficient samples (Ns¼ 15,000), the estimates of

the parameters of interest are approximated by the aver-

age over all Ns samples. The MCMC procedure was ini-

tialized using a voxel-wise constrained NLS (cNLS) fit of

the DKI-FWE model. For the cNLS fit, the lsqnonlin
MATLAB function (51) was used with the trust-region-

reflective algorithm (52,53) and the constraints from

Table 1.

Maximum Likelihood Estimator and Cram�er-Rao Lower
Bound

The ML estimator ĥML is defined as the value of h that

maximizes the likelihood function Lðh; yÞ, that is,

ĥML ¼ arg max
h

Lðh; yÞ: [9]

The ML estimator is asymptotically both unbiased and

efficient (54). Indeed, for an increasing number of obser-

vations, the PDF of the ML estimator tends to a normal

PDF with the true values of the parameters as expecta-

tions and the CRLB as covariance matrix, where the

CRLB is defined as the inverse of the Fisher information

matrix IðhÞ, which in turn is defined as (54)

IðhÞ ¼ E
@ln pðyjhÞ

@h

@ln pðyjhÞ
@hT

� �
: [10]

The so-called Cram�er-Rao inequality states that for any

unbiased estimator ĥ:

covðĥÞ � I�1ðhÞ � CRLBðhÞ: [11]

In other words, the CRLB provides a theoretical lower

bound on the variance of any unbiased estimator of h

(49,55). In this work, often hard constraints are imposed

on the ML estimator. These constraints are needed to

deal with the ill-conditionedness of the parameter esti-

mation problem and are chosen the same as described in

Table 1.

METHODS

Real Data Acquisition and Post-Processing

For the real data experiments in the subsections below, a

diffusion weighted MRI data set of a healthy, 27-year-old

male volunteer was acquired using a 3T Siemens MAG-

NETOM PrismaFit system. An EPI/spin echo (SE) diffu-

sion weighted pulse sequence was used with a 96 � 96

acquisition matrix which resulted in an image with an

isotropic voxel size of 2.5 mm. We acquired 36 slices

with an inter slice gap of 30%, an echo time (TE) of 73

ms and pulse repetition time (TR) of 4000 ms. The diffu-

sion weighted gradient settings that were used consisted

of six b¼ 0 images and three b-values shells (b¼0.25,

1.15, 2.00 ms=mm2) with 60 non-collinear magnetic field

gradient directions for each of the non-zero b-value

shells. The gradient directions were generated using
electrostatic repulsion resulting in a unique set of 60
directions for each shell (56,57). Reversed phase encoded
b¼ 0 images were acquired to allow for correction of sus-
ceptibility distortions. The total acquisition time was
12:56 min.

The first step in the post processing pipe-line was the
denoising of the dMRI data by exploiting its inherent
redundancy using random matrix theory (58). Next,
Gibbs ringing correction based on local interpolation in
k-space was applied (59). Finally, the data was corrected
for susceptibility, eddy current distortions, and subject
motion using the “Topup” (60) and “Eddy” (61) tools in
FSL.

Ill-Conditionedness of the DKI-FWE Model Fitting Problem

To illustrate the ill-conditionedness of the DKI-FWE
model fitting problem, the condition number of the rele-
vant Fisher information matrix IðhÞ is determined, where
a high condition number indicates ill-conditioning. An
ill-conditioned Fisher information matrix is known to be
a major symptom of problems of (approximate) noniden-
tifiability, highly correlated estimates, and poor preci-
sion (62–64). In the extreme case of a singular Fisher
information matrix, the condition number of that matrix
is infinite, the model parameters are unidentifiable, and
the CRLB does not exist (54). For reasons of comparison,
the condition number j of the Fisher information matrix
IðhÞ is determined for both the DKI-FWE and DKI model.
It is calculated in a real data slice as (65):

kðIðhÞÞ ¼ jjIðhÞ�1jj2jjIðhÞjj2: [12]

where jj 	 jj2 denotes the 2-norm operator and kðIðhÞÞ is
evaluated at the parameter estimates obtained from a
voxel-wise constrained ML estimator fit.

DKI-FWE Optimal Experiment Design

In this experiment, the b-values in the acquisition proto-
col are optimized in terms of the CRLB (34). During the
optimization procedure, for simplicity, the number of
shells in the acquisition is assumed to be fixed to 4 or 5.
Acquisition protocols with less than four shells are not
considered because of the associated increase in ill-
conditionedness of the DKI-FWE model parameter esti-
mation problem (see Supporting Figs. S1 and S2). We do
not explicitly incorporate non-diffusion weighted images
in the optimization protocol, but instead give the diffu-
sion weighted shells the freedom to have a diffusion
weighting of 0. The number of measurements in each
shell is chosen in correspondence with the acquired real
data: 6 measurements in the lowest shell and 60 in the
other shells. Gradient directions were obtained using a
electrostatic repulsion algorithm (66).

Since the optimal b-values will depend on the
unknown parameters to be estimated, 10 sets of 100 vox-
els were simulated containing DKI-FWE model parame-
ter values that are representative for white matter
containing a possible partial CSF volume. To achieve
this, white matter voxels were randomly selected from a
real data set, after which the DKI model was voxel-wise
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fitted using an unconstrained weighted linear least

squares (WLLS) fit (67). Selection of white matter voxels

was done from a white matter mask composed of voxels

with FA � 0.5, after which voxels containing potential

partial volume effects, based on MD � 1:5mm2=ms, were
removed. Subsequently, a uniformly distributed random

CSF partial volume fraction was added to the voxel. The

optimization algorithm was set to minimize the follow-

ing function:

f ðbÞ ¼
XNv

i¼1

XNp

j¼1

CRLBjjðb; g; hiÞ [13]

with Nv¼ 100, Np¼23 the number of model parameters

and CRLBjjðb; g; hiÞ the jth diagonal CRLB element in

function of the b-values b given a set of gradient direc-
tions g and underlying DKI-FWE model parameters hi.

Minimizing this function corresponds to minimizing the

sum of CRLB variances of the DKI-FWE model parame-

ters, averaged over a set of representative model parame-

ter values.
The accuracy of the DKI model is b-value dependent

(see Equation [1]). Although the precision of DKI estima-

tors would benefit from a large b-range, simulations indi-

cate that limiting the b-range is necessary to provide a

reasonable trade-off between precision and accuracy

(68). Since optimization based on the CRLB relies on
unbiased estimators and hence focuses on precision

only, we need to enforce an upper bound on b to avoid

severe loss in accuracy. In this study, we choose bmax

¼ 2 ms=mm2.

Generalized Likelihood Ratio Test: DKI-FWE vs DKI Model

In the next experiment, the statistical significance of

introducing the extra free water volume fraction parame-
ter f in the DKI-FWE model is studied. That is, we test

the null hypothesis H0: f¼ 0 (corresponding with the

standard DKI model) against the alternative hypothesis

H1: f 6¼ 0 (corresponding with the DKI-FWE model). For

this purpose, we use the generalized likelihood ratio test

(GLRT) (49,69). The generalized likelihood ratio, denoted

by L, is defined as:

KðyÞ ¼
sup hDKI

LðhDKI; f ¼ 0; yÞf g
sup hDKI;f

LðhDKI; f ; yÞf g ; [14]

where the numerator of L is the likelihood function Lð
hDKI; f ; yÞ evaluated at the unconstrained ML estimates of
the unknown parameters under H0, whereas the denomi-

nator is the likelihood function evaluated at the uncon-

strained ML estimates of the unknown parameters under

H1. In this work, we assume the MRI data to be Rician

distributed (42). For nested models, such as the ones

compared in the current hypothesis test, the modified

test statistic DðyÞ ¼ �2ln KðyÞð Þ is known to be asymptot-

ically x2 distributed with 1 degree of freedom when H0

is true (70). Employing the GLRT principle, H0 is
rejected if and only if DðyÞ > g, with c a fixed constant

that is specified by fixing the significance level of the

test. In this work, the significance level of the GLRT was

set to 0.05 for all experiments.

The GLRT was applied on both simulated and real

data. For the simulations, DKI parameters were taken
from a conservative white matter mask from the real data

set in the same way as described in the “DKI-FWE opti-
mal experiment design” section. A free water volume

fraction, uniformly distributed between 0 and 1, was

subsequently added. Rician distributed data was gener-
ated with an SNR ranging from 10 to 40, where the SNR

was defined as m=s, with l the average noiseless non-
diffusion weighted signal. For each f-value and SNR

level, data from 2000 voxels was simulated using the

same acquisition protocol as described in the real data
acquisition section.

DKI-FWE Model with BSP Estimator: Estimation Error
Study

This section describes two experiments that study the
proposed combination of the DKI-FWE model with the

BSP estimation technique in terms of the error distribu-
tions and robustness. In the first experiment, the BSP

estimator was compared to the more common con-

strained ML estimation technique for the estimation of
the DKI-FWE model parameters. The choice to use con-

strained ML estimation as a comparison was motivated
by the fact that both estimators take the Rician distribu-

tion of the MRI data into account. Furthermore, note that

constrained ML estimator is equivalent to using a Bayes-
ian estimation approach with a uniform prior distribu-

tion over the constraining region (38). The constrained
ML estimator was implemented in MATLAB (51) using

the fmincon function with the interior-point algorithm

(71–73). The applied constraints were taken from Table
1. In the second experiment, the BSP estimates of the

DKI-FWE and standard DKI model parameters were com-
pared. This gives insight in the effect of incorporating a

free water compartment on the estimates of DKI

parameters.
In summary, three different combinations of diffusion

model and estimation technique were tested: DKI-FWE

with BSP, DKI-FWE with constrained ML estimation and
DKI with BSP estimation. As in the GLRT experiment,

these combinations were evaluated in both simulations

and real data. For the simulations, 2500 voxels with the
same white matter DKI parameter set as in the “optimal

experiment design” section were combined with realistic
free water fractions sampled from a representative distri-

bution taken from literature (45). The simulation data

was Rician distributed with SNR¼17.5. The acquisition
protocol is identical to the one described in the real data

acquisition section.

RESULTS

Ill-conditionedness of the DKI-FWE model

The condition numbers of the DKI-FWE and DKI parame-
ter estimation problems are shown in Figure 1. It is clear

that in general, DKI-FWE yields larger condition num-
bers, indicating a more ill-conditioned problem. The his-

togram in Figure 1c also shows that even though for

most voxels the condition number stays within a reason-
able range, the DKI-FWE model fit produces a

806 Collier et al.



considerable amount of condition numbers that become

so large that they even exceed the upper bound of this

plot (i.e., kDKI�FWE > 15e4). This indicates the need for

more advanced estimators that are able to handle these

ill-conditioned problems.

DKI-FWE Optimal Experiment Design

Averaged over 10 sets of 100 voxels, the optimization

procedure yields four b-values with a mean and standard

deviation of 0:00060:000; 0:36360:001;1:18760:004;

2:00060:000 ms=mm2. The optimization procedure is

also repeated with 5 shells. The results for the 5 shells

optimization procedure always reduce to the results of

the 4 shell optimization, that is, one of the aforemen-

tioned b-values appears twice.

Generalized Likelihood Ratio Test: DKI-FWE vs DKI Model

Simulation Experiments

The results of the GLRT simulation experiments are

shown in Figure 2a. Here, the ML estimate of the proba-

bility of success Ps in a given binomial trial based on the

number of times the DKI-FWE was found to successfully

describe the data significantly better compared to the

DKI model, is plotted against the free water fraction f.

The 95% confidence interval is visualized by colored

bands around the plots. It is clear that for both f¼0 and

f¼ 1, the DKI-FWE model is reduced to the standard DKI

model or an isotropic diffusion model, respectively, and

DKI-FWE offers no advantage over DKI. For free water

volume fractions in the approximate range of

0:2 < f < 0:8, however, DKI-FWE succeeds in describing

the data significantly better than the standard DKI model

for a large number of voxels, even for low SNR values.

Real Data Experiments

Next, a slice from a b0 image from the real data set is

shown for anatomical reference in Figure 2b. In this

image, the voxels in which the extended DKI model

describes the data significantly better than the standard

DKI model are indicated in red. Note that these signifi-

cant voxels are found throughout the entire brain, but

mostly on the border of CSF regions and brain tissue

(indicated by the green contour plots).

Bayesian Shrinkage Prior and DKI-FWE Study

The BSP estimator was first compared to the ML estima-

tor for the estimation of the DKI-FWE model parameters.

Next, the DKI-FWE model was in its turn compared to

the standard DKI model, where the model parameters for

both models were estimated using the BSP estimator.

The error of a metric x was defined as: errorðxÞ ¼
xestimated � xtrue.

Simulation Experiments

Figure 3 shows the error distributions of f, FA, MD, and

MK from the simulation experiments. The BSP estimator

with the DKI-FWE model shows relatively narrow and

symmetric peaks, indicating a high precision. Moreover,

the BSP estimator also has a high accuracy as indicated

FIG. 1. Condition numbers in a real data slice for (a) the Diffusion
Kurtosis Imaging (DKI) model and (b) the “Diffusion Kurtosis Imag-
ing with Free Water Elimination” (DKI-FWE) model. Panel (c)

shows the histograms of the condition numbers of both the DKI
and DKI-FWE fit. Condition numbers larger than 15e4 have been

set to 15e4 for visual clarity.

FIG. 2. a: The maximum likelihood estimate of the probability of

success Ps where the DKI-FWE model is significantly better at
describing the data compared to the standard DKI model for sim-

ulated data in function of the true free water signal fraction f. Col-
ored bands indicate the 95% confidence interval (b) B0 image
overlayed with the voxels where the DKI-FWE model describes

the data significantly better compared to the standard DKI model
(red). Cerebrospinal fluid (CSF) regions are indicated with a green

contour plot.
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by the associated error distributions that are centered

around zero. The ML estimators of the same DKI-FWE

model, however, exhibit lower precision compared to

BSP. Finally, the BSP estimator using the DKI model

underestimates FA and overestimates MD and MK. Table

2 summarizes the respective error distributions in terms

of the root MSE (RMSE).

Real Data Experiments

Next, the same combinations of models and estimators

as in the simulation experiments were applied on the

real data set. Figure 4 shows the BSP estimates of vari-

ous DKI-FWE model metrics. The associated ML esti-

mates of the DKI-FWE model metrics are shown in

Supporting Figure S4. Figure 5 shows the difference

maps of each DKI-FWE metric determined using both

estimators (¼ BSP - ML). Here, one should note that

even though both estimators produce very similar results

in most voxels, in all maps multiple spurious voxels

appear where the ML estimator is unable to deal with

the ill-conditionedness of the DKI-FWE model. The

difference between BSP and ML is, however, best visual-

ized when looking at the distributions of their respective

parameter estimates, shown in Figure 6. Here, it is clear

that the ML estimator often produces estimates on the

upper and lower boundaries of the imposed constraints,

as opposed to the BSP estimator. Figure 6 also shows

that, although a Gaussian prior is imposed on the param-

eter distributions during the BSP estimation, the BSP

parameter distributions can still differ to a large extent

from the Gaussian shape and maintain their original

distribution.
Figures 7 and 8 show the BSP estimates of various DKI

model metrics and their difference with the associated

DKI-FWE model metrics, respectively. Notice the FA

estimated with the standard DKI model to be substan-

tially lower than that of the DKI-FWE model, especially

in regions around the CSF where large free water volume

fractions can be expected. In the same regions, MD and

MK tend to be substantially higher for the standard DKI

model. These findings are all in agreement with the sim-

ulation experiments. For the real data figures, a mask of

f> 0.85 was used to represent CSF regions. Inside this

mask, FA, MD, and MK values were removed because

these diffusion properties have no meaning as they are

tissue specific and require a minimal amount of signal to

reliably represent the tissue compartment.

DISCUSSION

To address the problem of CSF partial volume effects in

DKI, the DKI-FWE diffusion model was introduced in

this work. The DKI-FWE parameter estimation problem

is, however, shown to be ill-conditioned, demonstrating

FIG. 3. Error distributions of f (a), fractional
anisotropy (FA) (b), mean diffusivity (MD) (c),

and mean kurtosis (MK) (d), for 3 different dif-
fusion model and estimation technique com-

binations: BSP with the DKI-FWE model (solid
blue), ML with the DKI-FWE model (dashed
red) and BSP with the standard DKI model

(dotted yellow).

Table 2
RMSE of Estimates of f, FA, MD and MK for 3 Different Diffusion

Model and Estimator Combinations: BSP with the DKI-FWE
Model, ML with the DKI-FWE Model and BSP with the Standard
DKI Model

f FA MD MK

BSP (DKI-FWE) 0.070 0.049 0.073 0.180
ML (DKI-FWE) 0.101 0.095 0.158 0.380

BSP (DKI) / 0.143 0.338 0.647
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the need for parameter estimation techniques that can

deal with this ill-conditioned nature. A Bayesian

approach with a shrinkage prior was therefore proposed

to estimate the DKI-FWE model parameters.

Optimal b-values for Precise DKI-FWE Model Parameter
Estimation

First, using the CRLB, an acquisition protocol with four
distinct b-values: b¼ 0, 0.36, 1.19, and 2 ms=mm2, was
found to be optimal in terms of the maximally theoreti-
cal attainable precision of the parameter estimators. The
acquisition protocol that was used to acquire the real
human data approximates this optimal protocol. Using
the CRLB, we were able to quantify the loss in preci-
sion as a result of using a slightly different acquisition
protocol compared to the optimized one. The precision
e of an acquisition protocol is defined here as the root
of the average of the diagonal CRLB elements (except
for S0):

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

22

X22

i¼1

CRLBii

vuut [15]

The average relative difference in precision of the param-
eter estimates between the optimal acquisition protocol
and the one used to acquire the data was found to be
around 4%. To remain sensitive to the free water signal,
the lowest nonzero b-value should not be chosen too
high. At b¼ 0.36 ms=mm2, the free water signal intensity
is just 34% of that of the non-diffusion weighted signal.
Choosing the lowest b-value to be b¼ 0.75 for example,

would lead to a 41% drop in precision. Supporting Fig-
ure S5 gives a visual representation of these results.

Statistical Significance of Introducing a Free Water
Compartment in DKI

Extending mathematical models by introducing extra
parameters, as done in this work, can introduce the risk

FIG. 4. Real data maps of DKI-FWE model metrics (f, FA, MD, and MK) using the BSP estimator.

FIG. 5. Real data difference maps of DKI-FWE model metrics (f, FA, MD, and MK) between the BSP estimator and the ML estimator.

FIG. 6. Distribution of BSP estimator (blue) and ML estimator

(orange) parameter estimates of a selection of four parameters
from the DKI-FWE model in a real human data set. CSF was
masked out to make parameters representative of brain tissue.
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of overfitting the data. A statistical study based on the
GLRT, however, indicates that this is not the case for the
DKI-FWE model compared to DKI. Both simulation and
real data experiments support that for a substantial
amount of voxels, DKI-FWE is significantly better at
describing the data compared to DKI, especially in
regions where free water partial volumes in the approxi-
mate range of 0:2 < f < 0:8 are expected. When the f-
fraction is very close to either 0 or 1, the DKI-FWE
model essentially reduces to the DKI model or an isotro-
pic diffusion model, respectively, and offers no improve-
ment over DKI.

Effect of the DKI-FWE Model on Diffusion Metrics
Compared to DKI

We showed that ignoring free water compartments in DKI

studies can have a considerable effect when relating DKI

metrics solely to tissue. The change in FA and MD can be

understood most intuitively by considering separating an

isotropic signal compartment with high diffusivity from a

normal tissue compartment. Removing an isotropic com-

partment will evidently raise the FA while removing a

compartment with high diffusivity will lower MD. The

decreased MK in FWE-DKI compared to DKI can be

explained analytically because it is known that diffusional

heterogeneity increases the kurtosis (6). Separating a high

diffusivity compartment from the signal, will thus reduce

the diffusional heterogeneity and subsequently reduce the

kurtosis. This effect can also be seen in Table 2 where the

RMSE of DKI is 3 to 7 times larger than that of the DKI-

FWE model. In Figure 8 the effects on the DKI metrics can

be seen as either red or green regions in the respective FA
and MD or MK difference maps. Note that these differences
are most distinct around CSF regions.

Bayesian Estimation for DKI-FWE Model Parameters

A downside of the DKI-FWE model is that it leads to an
ill-conditioned parameter estimation problem. The BSP
approach is shown to be able to estimate the DKI-FWE
model parameters in a robust way. A constrained ML
estimation approach will result in a loss in precision, as
is indicated by the broader error distributions in Figure
3, and produce a considerable number of parameter esti-
mates that lie on the upper or lower bounds of the
applied constraints, as shown in Figure 6. BSP on the
other hand, produces accurate and precise parameter
estimates, while still respecting the underlying parame-
ter distributions. These findings are also quantified in
Table 2 and confirm that BSP substantially outperforms
ML estimation in terms of the RMSE.

A limitation of the BSP estimator is its computational
expense. Although our current implementation is very
slow, around 10 s per voxel implemented in MATLAB
(51) running on a 2.80GHz Intel(R) Core(TM) i7 desktop
PC, it is relevant as proof-of-concept. Nonetheless, fur-
ther developments and optimization to speed up the
algorithm are required to enable more routine use of the
technique. One such approach could be to employ super-
vised machine learning (74).

Another important consideration to make is that the pro-
posed BSP method uses a global prior, inferred from all
voxels of the brain. In future work, we will investigate the

FIG. 7. Real data maps of DKI model metrics (FA, MD, and MK) using the BSP estimator.

FIG. 8. Real data difference maps between the DKI-FWE model and the DKI model in terms of their common model metrics (FA, MD,
and MK). Both model parameters are estimated using the BSP estimator.
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effect of ROI size on the accuracy of the estimator, espe-

cially in case of the diseased brain. Indeed, large lesions in

the brain will interfere with the prior distribution, poten-
tially biasing the parameter estimates in healthy voxels and

thereby introducing a confounding factor in any subsequent

statistical analysis. Vice versa, parameter estimates in lesion

voxels might also be affected by using a global prior (39).

TE-Dependency of the DKI-FWE Model

Note that the reported free water fractions are basically

T2-weighted signal fractions instead of the biophysi-

cally more relevant volume fractions. Since the T2

relaxation time of free water is an order of magnitude

longer than the T2 relaxation time of white matter, the

free water signal decays slower. As a consequence, for
any given TE, the estimated free water signal fraction

exceeds the actual volume fraction. This can be quanti-

fied with the following expression for the free water sig-

nal fraction f in function of the free water volume

fraction fv (75):

f ¼ fve�TE=T2;CSF

fve�TE=T2;CSF þ ð1� fvÞe�TE=T2;WM
: [16]

Literature reports free water volume fractions in deep

white matter of 1–2% (76). Assuming T2;WM ¼ 69ms (77),

T2;CSF ¼ 1250ms (78,79) and TE ¼ 73ms, this would lead
to free water signal fractions of 2.7–5.3%. This is in line

with the free water signal fractions of (3.9 6 5.5)% that

we find in the deep white matter in our study.
The TE dependency of the free water signal fraction

can be exploited to estimate the actual volume fraction.

We recently showed that including the T2 signal decay

of both compartments, the (DKI-)FWE model fitting
problem gets better conditioned without the need for

regularization (80). However, such an approach requires

the acquisition of diffusion-weighted images at different

TEs, which makes it inapplicable to most available data

sets.

CONCLUSION

In conclusion, the DKI-FWE model, an extension to the

DKI model that incorporates a free water compartment,

is introduced. To deal with the ill-conditioned nature

of the associated parameter estimation problem, a
Bayesian approach with shrinkage prior is proposed.

Both simulation and real data experiments indicate that

the combination of the DKI-FWE model with BSP is a

feasible approach to estimate DKI parameters, while

simultaneously eliminating free water partial volume
effects.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig. S1. Real data maps of DKI-FWE model metrics (f, FA, MD and MK)
using the BSP estimator for the 4 shell acquisition protocol with b50; 0:25;
1:15; 2:00 ms=lm2 (top row), a 3 shell acquisition protocol with b50:25;
1:15; 2:00 ms=lm2 (middle row) and a 3 shell acquisition protocol with b50
; 0:25; 2:00 ms=lm2 (bottom row). Model parameters were estimated using
the BSP estimator as described in the manuscript. The data set that was
used is the same one as the data set described in the manuscript. Note
the difference in f, MD and MK maps of the 3 shell protocols compared to
the 4 shell protocol.
Fig. S2. Condition number of the Fisher information matrix for the 4 shell
acquisition protocol with b50; 0:25; 1:15; 2:00 ms=lm2 (left), a 3 shell acqui-
sition protocol with b50:25; 1:15; 2:00 ms=lm2 (middle) and a 3 shell acqui-
sition protocol with b50; 0:25; 2:00 ms=lm2 (right). Condition numbers were
attained as described in the manuscript. The underlying parameter values
used for determining the FIM are the same for all acquisition protocols and
where determined based on the 4 shells protocol as described in the
paper. The data set that was used is the same one as the data set
described in the manuscript.
Fig. S3. Histograms (blue) and associated Gaussian distribution fits (red) of
all 23 parameters of the DKI-FWE model. The DKI model is fitted in an
unconstrained and weighted least squares sense to whole brain real data
without CSF. The F parameter distribution is determined using simulations
based on a realistic distribution of f 45.
Fig. S4. Real data maps of DKI-FWE model metrics (f, FA, MD and MK)
using the ML estimator.
Fig. S5. The average precision over all DKI-FWE model parameters (except
S0), calculated using the diagonal CRLB elements, in terms of the value of
the lowest (a) or middle (b) non-zero b-value shell of the DKI-FWE model
acquisition protocol. All other b-values are kept equal to the associated
optimized acquisition protocol b-values.

DKI With Free Water Elimination 813


	l
	l
	l
	l
	l
	l

