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Abstract
We propose a new method for denoising of 3D CT scans with few data. Like any other form of imaging data, CT scans are
susceptible to noise and artifacts. Noise in CT scan images is not only stochastic, but can be frequency dependent and introduced
by the measuring device itself or by signal processing algorithms. Unfortunately, most state-of-the-art Deep Learning methods
are mainly focusing on denoising random noise only. Therefore, we propose a new method for denoising 3D CT scans, which
is based on a 3D AutoEncoder, a GAN, and self-supervised learning. Our method works not only on random noise but also
the frequency dependent noise. It exploits the fact that, in a CT scan image, an object’s features are similar between different
regions and easy to be encoded. In contrast, the features of structured noise are very different from the object, while the random
noise is pixel-wise independent. Our method can be trained on few data, with or without ground truth, and is computationally
inexpensive. Our experiments show that our method outperforms other methods in terms of several metrics, and outperforms
most state-of-the-art methods in terms of computational efficiency.
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1 Introduction
Image denoising is an operation that estimates a clean, unknown image x from a measured image y polluted with a noise per-
turbation n, where y = x+n. The noise term n includes both random noise and structured noise. In x-ray radiography, structured
noise may be induced by detector gain, or by reconstruction techniques.
The goal of denoising is to find x from y or, equivalently, to estimate n. This is an ill-posed problem, as we cannot get a unique
solution from an image with noise. Instead, we pursue noise reduction, which aims to decrease the noise while minimizing the
loss of the features in the underlying noiseless image.
Traditionally, denoising is accomplished by acting on a noisy input image only. Some traditional methods, such as Bilateral
Filtering [16], TV-based regularization [2], and Non-local Means Denoising [1], reduce noise at the cost of distorting the image
and can lead to loss of valuable details on some specific parts of the image[13].
Different from the spatial domain methods, the transform domain methods, such as Wavelet-based denoising [5] and BM3D [4],
are based on the idea that the noise and the image have different characteristics. Transform domain methods transform the noisy
image y into another domain and try to reduce the noise in that domain. The BM3D method achieves high quality results, but the
computational complexity is high, and the method does not perform well on high level noise.
One of the disadvantages of traditional denoising methods is the large number of hand-tuned parameters, and that their perform-
ance highly depends on prior knowledge of the noise characteristics. In contrast, many recent methods, such as RedNet [9]
and RDN [21], involve the use of convolutional neural networks. Their performance compares favorably to traditional methods,
and one important feature is that they are able to deal with several levels of noise although they were trained with only one
model. However, these methods require numerous training data, which has to be a composition of pairs of noisy images and their
corresponding clean target images.
In early 2019, a method called Noise2Void (N2V) [11], a self-supervised training scheme, was proposed. It does not require
noisy image pairs, nor clean target images. It allows training directly on the body of data. However, this method requires much
more computational time for prediction. Another problem for self-supervised methods is that they cannot be competitive with
models trained on image pairs. Furthermore, N2V does not allow to distinguish between the signal and structured noise that
violates the assumption that for any given signal the noise is pixel-wise independent.
Methods based on neural networks are nowadays achieving great success in image denoising. However, most previous approaches
based on deep learning do not perform well in case of structured noise. There are many reasons for this. First, the structured
noise is not pixel-wise independent, as is the case for random noise. Second, the structured noise is not easy to be modeled by
a neural network. Third, not many pairs of images containing structured noise along with the corresponding clean images are
available.
In this paper, a 3D denoising network based on a 3D AutoEncoder [8], a GAN [7], and self-supervised learning [12] is introduced.
Our method requires only a single CT reconstruction image for training, and the training can be done by both supervised and
self-supervised learning, with or without ground truth. Our method achieves the best performance in terms of several metrics
compared to state-of-the-art methods, while the computational efficiency is also the best among Deep Learning methods, even
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(a) Architecture of Generator
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(b) Architecture of Discriminator
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Figure 1: Illustrations of the architecture of our network.

better than most of the traditional methods. Moreover, our method works on random noise and frequency dependent noise, which
is the main difference between our method and other methods.

2 Our method
We propose a new method based on a 3D AutoEncoder, a GAN, and self-supervised learning. Thanks to the 3D AutoEncoder
architecture, our method is able to learn structured noise in three dimensions. By introducing a discriminator into our network for
computing adversarial loss, we improve the quality of the denoising results. Furthermore, by adopting self-supervised learning
and DiffAugment [22], we not only realize training the network with few data in supervised learning mode, but also training the
network in self-supervised learning mode.

2.1 Network Architecture
The network consists of a generator and a discriminator. The generator is a 3D AutoEncoder composed of an Encoder and a
Decoder. The Encoder is composed of 4 encoding blocks. Each encoding block is composed by 3 downsampling blocks, each
of which is a composition of a 3D convolutional layer, a batch normalization layer, and a GeLU layer. The output channel
of each block is [4, 16, 64, 256]. The Decoder is composed of 4 decoding blocks. Each decoding block is composed by 3
upsampling blocks, each of which is a composition of a 3D transposed convolutional layer, a batch normalization layer, and a
GeLU layer. The output channel of each block is [256, 64, 16, 4]. The Discriminator is also a 3D convolutional neural network.
It has 4 downsampling blocks, each of which is a composition of a 3D convolutional layer, a batch normalization layer, and a
LeakyReLU layer. The output channel of each block is [4, 16, 64, 256]. An MLP layer is added to the end of the discriminator.
The MLP layer has two linear layers, one with GeLU activation and the other with sigmoid activation. The output dimension of
each layer is [16, 1]. Please refer to Fig. 1 for more details.
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2.2 Self-supervised Learning
Generally, supervised learning is performed for a specific task with a large labeled dataset, which usually comes from expensive
manual labeling. Because of the expensive manual labeling and the large labeled dataset requirement for supervised learning,
self-supervised learning has been proposed as a promising alternative[12].
Our approach to self-supervised learning is training the network on predicting a missing part of its input from the observed parts.
In particular, we erase a random part of the input and train the network to reconstruct the missing part. This approach is based on
the idea that the missing noiseless signal is much more likely to be reconstructed from its surroundings than the missing noise.

2.3 Loss Function
The mean-squared error (MSE) is adopted as the loss function to measure the quality of the generated image. However, an
Autoencoder with only MSE loss usually tends to over-smooth images, which is poorly related to the human perception of image
quality[18]. To overcome this problem, we introduce a discriminator loss function. The adversarial loss has been shown to be
a powerful loss which enables the reconstructed images to keep texture information. Thus, our loss function is the sum of MSE
loss and adversarial loss:

L = Ladv +Lmse where Lmse =
1
N

N

∑
i=1

(Ŷi −Yi)
2 and Ladv(G ,D ,X ,Y ) = Ey[logD(y)]+Ex[log(1−D(G (x))] (1)

Where Ladv is the adversarial loss, Lmse is the mean squared error loss, Ŷi is the reconstructed image, Yi is the target image, G
is the generator, D is the discriminator, Ey is the expectation of the output of the discriminator, and Ex is the expectation of the
output of the generator.

3 Experiment Setup
3.1 Data
Our training data stemmed from a CT scan of a single bone. The data was composed of a noisy 3D volume and a ’clean’ target
3D volume. The target volume is obtained with the same CT scan setup as the noisy volume but with more projections and
averages of each projection to obtain a high SNR image.
The noisy data were acquired with 600 mm of source-to-detector distance, 105 mm of source-to-sample distance and 550 pro-
jections. The voxel size was 26.0 µm, the tube voltage was 160.0 V, the tube power was 25.0 W, the exposure time was 67.0
ms, and the number of averages was 1. The start angle was 0.0 degrees, and the last angle was 360.0 degrees. We obtained the
high SNR target images by averaging and acquiring 10 projections at each projection angle and with 900 projection angles. All
images are obtained with our FlexCT device [14]. Since our dataset is from a real CT scan, our noisy projection data consists of
all kind of noise, including random noise and structured noise.
Input and target data are reconstructed with Feldkamp, Davis, and Kress(FDK) [6] algorithm on the raw CT projections after flat
field correction and log transform. The volume size is 2155×1120×1120. For pre-processing, we linearly normalize the image
intensity to [0, 1] and crop the data to a fixed size of 2155×768×768.

3.2 Training
The split-ratio of the training, validation, and test dataset is 0.8 : 0.1 : 0.1, randomly sampled from the CT scan dataset. After
loading the data into memory, a 3-D patcher randomly selects patches from the training dataset. The patch is cropped to a fixed
size of 64×64×64 and linearly normalized to [0, 1].
For supervised learning, our input is the noisy volume, and our target is the clean volume. A data augmentation technique
described in 2.2 is used to generate more training data. In particular, we randomly select a 3D region of size R(0,0.5× 64)3

from the input data and erase it, where R(a,b) is a random number in [a, b]. For self-supervised learning, both the input and
target are the noisy volume. As described in 2.2, we apply the same random erasing technique for self-supervised learning. In
this way, the network can learn to efficiently map the signal into latent space, and reconstruct the signal from latent space, while
discarding the random noise.
We introduce DiffAugment[22] to augment the data. We developed our own 3D diff-augment. In particular, we applied two
diff-augment, one is rotation, the other is translation. Rotation rotates the image by a random angle in [0, 90, 180, 270] on each
axis. Translation translates the image by a random distance in [−0.125×64, 0.125×64] on each axis. We trained our model on
a TPU [10] v3 node with 8 TPU cores, 96 CPU cores, and 334 GB of memory for 10,000 epochs.
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Figure 2: Visualization results of different methods on an example slice with zoom-in details. Input: input data, target: target
data, bilateral filter: Bilateral filter denoising, non-local means: Non-local means denoising, total-variation: Total-variation
denoising, wavelet: Wavelet denoising, srad: Speckled Reducing Anisotropic Diffusion, bm3d: Block-matching 3D, noise2void:
Noise2Void, rednet: REDNET, DPIR: Deep Plug-and-Play Image Restoration, RDN: Residual Dense Network, ours(un-sup):
our methods trained with un-supervised pipeline, ours(sup): our methods trained with supervised pipeline.

4 Comparison and Results
4.1 Comparison with traditional methods
We compared our method against 5 traditional methods: Bilateral filtering [16], non-local means(NLM) [1], total-variation
denoising [2], wavelet denoising [5], Speckled Reducing Anisotropic Diffusion [20], and Block Matching 3D [4] .

Bilateral filtering is an edge-preserving, denoising filter. It averages pixels based on their spatial closeness and radiometric
similarity. In our experiment we set the window size for filtering to max(5,2× ceil(3×σspatial +1)), and σspatial to 1.

NLM (non-local means denoising) builds a pointwise estimation of the image, where each pixel is obtained as a weighted
average of pixels centered at regions that are similar to the region centered at the estimated pixel. In our experiment we set
the patch size to 7 pixels, and the maximal distance in pixels where to search patches used for denoising to 11 pixels, and
the cut-off distance in gray levels to 0.1.

TV (Total variation)-based denoising is based on the statistical fact that natural images are locally smooth and the pixel intensity
gradually varies in most regions. In our experiment we set the ε value to 0.0002, and maximum iteration to 200.

The wavelet transform decomposes the input data into a scale-space representation, and concentrates signal and image features
in a few large-magnitude wavelet coefficients. In our experiment we are using Daubechies Wavelet with filter length
of 2 pixels, and we apply BayesShrink thresholding, which is an adaptive thresholding method that computes separate
thresholds for each wavelet sub-band as described in [3].

SRAD (Speckled Reducing Anisotropic Diffusion) is proposed by Yu et al. [20]. It is a specialized anisotropic diffusion filter for
speckled data. The core of this idea is modeling the speckle noise which is removed through solving a differential equation
in partial derivatives.

BM3D (Block-matching and 3D filtering) matches with adjacent image blocks, several similar blocks are integrated into a
three-dimensional matrix, filtered in three-dimensional space, and the result is inversely transformed and fused to two-
dimensional space to form a denoised image.
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Methods MSE PSNR SSIM TIME(s)

Bilateral Filter 0.0231±0.0103 17.032±1.427 0.421±0.040 0.182
Non-local Means 0.0170±0.00003 17.684±0.007 0.578±0.0015 1.910
Total Variation 0.0171±0.00003 17.669±0.007 0.576±0.0012 0.0498
Wavelet 0.0188±0.0012 17.259±0.008 0.315±0.0016 0.0120
SRAD 0.0178±0.00002 17.494±0.006 0.551±0.0008 12.157
BM3D 0.0168±0.00006 17.742±0.016 0.570±0.0016 4.230

Noise2Void 0.0173±0.00023 17.618±0.058 0.387±0.0093 47.613
Ours(usp) 0.0166±0.00002 17.791±0.005 0.590±0.0011 0.123

REDNET 0.0082±0.00016 20.846±0.088 0.504±0.0060 3.389
DPIR 0.0031±0.00003 25.150±0.044 0.530±0.0009 1.427
RDN 0.0023±0.00001 26.462±0.025 0.646±0.0018 1.347
Ours(sp) 0.0008±0.00003 30.697±0.153 0.684±0.0015 0.123

Table 1: A comparison between different methods on various metrics

Methods MSE PSNR SSIM TIME(s)

Ours(usp) 0.0151±0.00015 18.210±0.043 0.569±0.0028 0.123
Ours(sp) 0.0013±0.00011 28.891±0.352 0.677±0.0023 0.123

Table 2: Performance on other bone CT images

We adopt the implementations of the above traditional methods from Scikit-image [17] ver 0.18.3. Scikit-image is a Python
package with a collection of algorithms for image processing. All the parameters are set to default values except those explicitly
mentioned above.

4.2 Comparison with deep learning methods
We compared our methods against an unsupervised DL method: Noise2Void, as well as 3 supervised DL methods: REDNET,
RDN and DPIR.

Noise2Void is a method that allows to be trained directly on the data, which could be single noisy image, to be denoised. It
denoises images by using a masking procedure wherein the neural network learns to fill in pixel gaps in the noisy image.
To compare with Noise2Void, we adopted the code shared by the author. We trained the model for 100 epochs on our
dataset until the loss converged. All parameters were kept default as in the original code.

REDNET (Residual Encoder-Decoder Network) is a supervised deep learning network which is composed of multiple layers of
convolution and de-convolution, and these layers are linked with skip-layer connections. We built this network based on
the paper and trained it on our own dataset with 50 epochs until the loss converged.

DPIR (Deep Plug-and-Play Image Restoration network) explores a way to combine both supervised deep learning and model-
based denoising methods by first training a highly flexible and effective CNN denoiser, then plugs it as a modular part into
a half quadratic splitting based iterative algorithm. We adopted the shared code and pre-trained weights from the authors’
repository and fine tuned it on our dataset for 100 epochs until the loss converged.

RDN (Residual Dense Network) is a supervised deep learning network which is able to fully exploit the hierarchical features
from all the convolutional layers with its residual dense network. We built this network based on the paper and trained it
on our own dataset with 300 epochs until the loss converged.

4.3 Results
We compare the methods by using the following metrics: Mean Squared Error (MSE), Peak Signal-to-Noise Ratio(PSNR), and
Structural Similarity(SSIM) [19]. As shown in table 1 and figure 3, our supervised method achieves 0.0008 on MSE, 30.697
on PSNR, and 0.684 on SSIM, these are the best performances among all the methods in this comparison. Our self-supervised
method outperforms the other self-supervised methods and the traditional methods on all the metrics. Please refer to figure 2 for
intuitive examples of the comparison.
Moreover, both our supervised and self-supervised methods are much faster than other deep learning methods and most of the
traditional methods on inference. Our method takes 0.123 seconds to denoise a 768×768 image, which is about 7.5 times faster
than the PridNet method, about 28 times faster than the RedNet method, and about 35 times faster than the BM3D method. The
comparison is run on an instance with 96 CPU cores and 334 GB of memory.
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Methods MSE PSNR SSIM TIME(s)

Ours(usp) 0.0134±0.000005 18.712±0.007 0.578±0.00006 0.123
Ours(sp) 0.0009±0.000001 30.203±0.006 0.691±0.0001 0.123

Table 3: Performance on wood branch CT images

(a) MSE (b) PSNR (c) SSIM (d) Average compute time per image.

Figure 3: Performance of different methods.

5 Conclusion and Discussion
In this work, we proposed a deep learning method for 3D CT imaging denoising. We explored the possibility to learn denoising
from 3-dimensional data and to improve the image quality with an additional discriminator network.
The proposed method can be trained in supervised more with ground truth data or in unsupervised mode without ground truth
data. Our method requires very few data in the training phase, in fact, it can be trained on only one single 3D CT volume, although
in general this is believed to be very difficult[15]. Our random patch selection method and 3D diffaugments technique make it
possible to train on very limited data. This is valuable for medical imaging, in which ground truth data is nearly impossible to
obtain and image acquisition is expensive.
The comparison with other methods includes various traditional methods, supervised and unsupervised deep learning methods
and shows that our method performs much better than the traditional methods and other state-of-the-art deep-learning denoising
methods on both visual and metrics quality. Also, our method is more computationally efficient than the other deep-learning
methods and a number of traditional methods. Furthermore, our method works on structured noise reduction, which is not shown
in other methods and is a very important feature for real CT imaging. Our method works on different kinds of CT images such
as bone CT images or wood branch CT images, as shown in Table 2 and Table 3.
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