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Abstract
This paper addresses the challenge of tomographic reconstruction from a limited number of views by using learning-based
approaches. Recent advancements in Plug-and-Play (PnP) algorithms have shown promise for solving imaging inverse prob-
lems by utilizing the capabilities of Gaussian denoising algorithms to handle complex optimization tasks. Traditional denoising
hand-crafted methods produce images with predictable features but require intricate parameter tuning and suffer from slow con-
vergence. In contrast, learning-based models offer faster performance and higher reconstruction quality, although they lack
interpretability. In this work, we propose training proximal neural networks (PNNs) to eliminate arbitrary artifacts and improve
the performances of PnP algorithms. These networks are obtained by unrolling a proximal algorithm designed to find a maximum
a posteriori (MAP) estimate, but within a fixed number of iterations, using learned linear operators. PNNs, grounded in optim-
ization theory, offer flexibility and can be adapted to any image restoration task solvable by a proximal algorithm. Additionally,
they feature much simpler architectures compared to traditional neural networks.
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1 Introduction
X-ray computed tomography (XCT) is now a well established technology with multiple uses in various domains. The typical
implementation and usage require a relatively large input number of projections, for recent experimental systems up to few thou-
sands of projections. However, for some particular applications, such as robotic CT [1] or static CT setups for characterization
or security inspection [2], the available data can be as low as few tens of projections.
Traditionally, conventional reconstruction methods such as Filtered BackProjection (FBP) can produce high-quality CT images
given a complete set of projections. However, in the framework of sparse-view CT reconstruction, FBP reconstruction leads
to strong artifacts. Standard approach to this ill-posed problem is model-based optimization that integrates a forward model
characterizing the image system and a regularizer imposing priors on the image. From this, we can solve the problem by using
various splitting algorithms such as Alternating Direction Method of Multipliers (ADMM) [24], Forward-Backward Splitting
[25] and recent studies demonstrated that Plug-and-Play methods effectively leverage the performance and convergence.
Initially, the main idea of PnP methods was introduced by [13], which implicitly handle the image priors by a powerful Gaussian
denoiser such as BM3D [12]. In the recent years, although there are many progresses in algorithms that leverage sophisticated
image priors such as transform-domain sparsity, learned dictionaries, more powerful DL denoisers have been introduced in nu-
merous studies [14]. More recently, Deep generative models such as Generative Adversarial Networks (GANs) [22] or diffusion
models [23] have also demonstrated the ability to handle those ill-posed inverse problem due to their ability to model complex
distribution but at the cost of high volume requirement of available datasets. Unlike traditional denoisers, convolutional neural
networks based Gaussian denoisers can handle various noise with a better computation time and better performance but the ar-
chitectures usually have high cost in training phase. Furthermore, using these denoisers can make PnP lose interpretability as
optimization problems as most image denoisers do not have optimization formulation.
Recently, PNNs have been also explored in this context of PnP [17], PnP methods using PNNs have been extensively evaluated
and applied in image restoration (e.g. [5, 11]) and in CT image reconstruction [19]. In [17], the authors have presented a
unified framework for building denoising PNNs with learned linear operators. PNNs have similar denoising performances to DL
denoisers, although being much lighter ( ∼ 1000 less parameters) and they are generally more robust in the PnP approaches.
Inspired by the ability of PnP methods to utilize off-the-shelf denoisers as an implicit prior, in this work, we study PNNs in
the context of CT reconstruction problem. While the data term can be solved independently, we improve the ability of denoiser
priors by training PNNs to eliminate arbitrary artifacts present in CT images.

Notation – In the remainder of this paper we will use the following notations. An element of RN is denoted by x. For every
n ∈ {1, . . . ,N}, the n-th coefficient of x is denoted by x(n). The spectral norm is denoted ∥ · ∥S. Let C ⊂ RN be a closed, non-
empty, convex set. The indicator function of C is denoted by ιC, and is equal to 0 if its argument belongs to C, and +∞ otherwise.
Let x ∈RN . The Euclidean projection of x onto C is denoted by PC(x) = argmin

v∈C
∥v−x∥2. Let ψ : RN → (−∞,+∞] be a convex,

lower semicontinuous, proper function. The proximity operator of ψ at x is given by proxψ(x) = argmin
v∈RN

ψ(v)+ 1
2∥v− x∥2.

The Fenchel-Legendre conjugate function of ψ is given by ψ∗(x) = supv∈RN v⊤x−ψ(v). When ψ = λ∥ · ∥1 is the ℓ1 norm, then
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ψ∗ = ιB∞(0,λ ) corresponds to the indicator function of the ℓ∞-ball centred in 0 with radius λ > 0, i.e., B∞(0,λ ) = {x ∈ RN |
(∀n ∈ {1, . . . ,N}) −λ ≤ x(n) ≤ λ}.

2 Background and inverse problem formulation
CT reconstruction aims to find an estimate of an image x, from noisy measurements y ∈ RM . The present contribution focuses
on the the following general inverse problem:

y = Ax+n, (1)

where A ∈ RM×N is the forward operator and n is the measurement noise. Since Sparse-View CT reconstruction is an ill-posed
inverse problem, the prior which is also called regularisation need to be adopted to constrain the solution space. From Bayesian
perspective, a common method to reconstruct x is to rely on a maximum a posteriori (MAP) approach,

x̂MAP = argmax
x

log p(y | x)+ log p(x),

where logp(y | x) represents the log-likehood of the observation y and logp(x) delivers the priors of x. More formally, we can
define the estimate x̂MAP ∈ RN as a minimizer of a penalized least-squares objective function. A general formulation of this
problem is to find

x̂MAP = argmin
x∈RN

F(x), (2)

where
F(x) :=

1
2
∥Ax−y∥2

2 +λg(Dx)+ ιC(x), (3)

C ⊂ RN is a closed, convex, non-empty constraint set, λ > 0 is a regularisation parameter, D : RN 7→ R|F| is a linear operator
mapping an image from RN to a feature space R|F|, and g : R|F| → (−∞,+∞] denotes a proper, lower-semicontinous, convex
function. To be specific, the data term ensures that the solution adheres to the degradation process, while the prior term enforces
the solution to follow the desired data distribution. The function g and the operator D are chosen according to the type of images
of interest. For instance, functions of choice for piece-wise constant images are those in the family of total variation (TV)
regularizations [8], which can be expressed as an ℓ1 (or an ℓ1,2) norm composed with a linear operator performing horizontal
and vertical finite differences of the image. More generally, D can be chosen as a sparsifying operator (e.g., wavelet transform
[6, 7, 16]), and g as a function promoting sparsity (e.g., ℓ1). For any choice of g and D, the parameter λ > 0 is used to balance
the penalization term (i.e., function g◦D) with the data-fidelity term (i.e., least-squares function).
Model-based methods – Traditionally, (3) can be solved by using model-based optimization methods with proximal splitting
methods. These methods are suitable for handling composite objectives but usually involve a time-consuming iterative inference.
As example, in this work, we focuse on the forward-backward splitting method which is given by:

Let x0 ∈ RN ,
For t = 0,1, . . .⌊

xt+ 1
2
= xt − γ PC

(
A⊤ (Axt −y)

)
,

xt+1 = proxγλg(Dx)(xt+ 1
2
),

(4)

Plug-and-Play Priors – The idea of PnP algorithms is to replace the penalization term (often handled by a proximity operator)
by a powerful denoiser. There are multiple choices of denoisers, that can be classified into two main categories: hand-crafted
denoisers (e.g. BM3D [12]) and learning-based denoisers (e.g., DnCNN [14] and UNet [15]). In this work, we focus on the
widely adopted approach of denoising a noisy image z through a maximum a posteriori (MAP) estimation framework. The MAP
estimate x†

MAP ∈ RN is defined as the solution to a penalized least-squares optimization problem. Specifically, it is formulated
as:

x†
MAP = argmin

x∈RN
F(x), (5)

where
F(x) :=

1
2
∥x− z∥2

2 +νg(Dx)+ ιC(x), (6)
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C ⊂ RN is a closed, convex, non-empty constraint set, ν > 0 is a regularization parameter proportional to δ 2, D: RN → R|F|

is a linear operator mapping an image from RN to a feature space R|F|, and g : R|F| → (−∞,+∞] denotes a proper, lower-
semicontinous, convex function.
Hence the objective of this section is to follow a similar approach as in [11], and to plug the proposed unfolded PNNs in a FB
algorithm to solve (3). Following the approach proposed in [11], the PnP-FB algorithm is given by

Let x0 ∈ RN ,u0 ∈ R|F|

For t = 0,1, . . .⌊
yt = xt − γA⊤ (Axt −y) ,
(xt+1,ut+1) = f K

yt ,λγ,Θ(yt ,ut),

(7)

where, for every t ∈ N, f K
yt ,λγ,Θ is the denoising model which is designed to approximate the proximity operator associated with

the regularization term and will be discussed in the next section. In algorithm (7), parameters (λ ,γ) are given as inputs of f K
yt ,λγ,Θ.

Precisely, the regularization parameter ν for the denoising problem (5) is chosen to be the product between the regularization
parameter λ for the restoration problem (3) and the stepsize of the algorithm γ , i.e., ν = λγ .

3 Methodology
In this section, we describe the chosen architecture and the training procedure of our Learned Sparse-View Proximal Operator
approach and compare it with the state-of-the-art methods on the task of 2D sparse-view fan-beam computed tomography. Our
goal is to adopt the unfolded denoising Proximal Neural Networks then fine tuning it to adapt with sparse-view data.

3.1 Deep Strongly Convex Chamboll-Pock with Learned Normalized Operator (DScCP-LNO)
A strategy to solve (5)-(6) consists in applying the Strongly Convex Chambolle-Pock (ScCP) algorithm to problem (5). The
associated iterations can be reformulated as:

for k = 0,1, . . . xk+1 = PC

(
µk

1+µk
(z−D⊤uk)+

1
1+µk

xk

)
,

uk+1 = proxτk(νg)∗

(
uk + τkD

(
(1+αk)xk+1 −αkxk

))
,

(8)

where x0 ∈ RN and u0 ∈ R|F|, PC is the projection function onto constraint set C. Note that when, for every k ∈ N, αk = 1, then
algorithm (8) reduces to standard iterations of the primal-dual Chambolle-Pock algorithm [9]. When αk = (1+ 2ζ µk)

−1/2 it
leads to ScCP and when αk = 0, it leads to the classical Arrow-Hurwicz algorithm [10].

Deep Strongly convex Chambolle-Pock denoising model – The unfolding DScCP building block is then given below:

f K,DScCP
z,ν ,Θ (x0,u0) = LDScCP

z,ν ,ΘK
◦ · · · ◦LDScCP

z,ν ,Θ1
(x0,u0), (9)

where, for every k ∈ {1, . . . ,K},

uk = Lν ,Θk,D ,D (xk−1,uk−1) = ην ,k,D
(
Wk,Dx+Vk,Du+bk,D

)
xk = Lz,Θk,P ,P(xk−1,uk) = ηk,P

(
Wk,Px+Vk,Pu+bk,P

)
(x̃k,uk) = LDScCP

z,ν ,Θk
(xk−1,uk−1)

xk = (1+αk)x̃k −αkxk−1.

with 
Wk,D = τkDk,D ,

Vk,D = Id,
bk,D = 0,
ην ,k,D = proxτk(νg)∗ ,

and


Wk,P = 1

1+µk
,

Vk,P =− µk
1+µk

Dk,P ,

bk,P = µk
1+µk

z,

ηk,P = PC .

In this work, we employed the Learned Normalized Operators (LNO) framework, as detailed in [5], due to its better perform-
ance. Specifically, for each k ∈ {1, . . . ,K}, the operators Dk,P were defined to be equal to the adjoints D⊤

k,D of Dk,D . These
operators, along with τk and µk, were included as learnable parameters in Θk,D and Θk,P . Notably, Dk,D are allowed to differ
across the layers k ∈ {1, . . . ,K}. In pratice, the operators Dk,P : RN →R|F| are equivalent to 2D convolution operator with kernel
size 3×3 over an input image for each layer.
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3.2 Pre-trained Gaussian denoising model
We consider two sets of images: the training set (xs,zs)s∈I of size |I| and the test set (xs,zs)s∈J of size |J|. For both sets, each
couple (xs,zs) consists of a clean image xs of size Ns , and a noisy version of this image given by zs = xs+εs with εs ∼N (0,δ 2Id)
for δ > 0.
Training strategy for unfolded denoising networks – The network parameters are optimized by minimizing the ℓ2 empirical
loss between noisy and ground-truth images:

Θ̂ ∈ Argmin
Θ

1
|I| ∑s∈I

L (xs,zs;Θ) (10)

where
L (xs,zs;Θ) :=

1
2
∥xs − f K

zs,δ 2,Θ

(
zs,D1,D (zs)

)
∥2,

and f K
zs,δ 2,Θ

the unfolded networks described in Section 3. The loss (10) will be optimized in Pytorch with Adam algorithm
[18] and the standard DScCP is trained on variable noise, considering random values of δi ∼ U ([0,0.1]) during the training
procedure.

3.3 Leveraged by Sparse-View training
To leverage the ability of denoiser priors, we propose to apply another strategy of training process on the architecture on a
sparse-view dataset. The learning set include reconstructions performed both in full-view and sparse-view configurations, all
using the standard FBP method. Full-view slices use 1200 projections and they account as ground truth, while sparse-view cases
are generated with a reduced subset of projections. More specifically, for each sample we generated sparse-view reconstructions
by varying the number of projection views between 10 and 600, thus producing a range of under-sampled reconstructions.
This selection process generated a training database consisting of sparse-view and full-view pairs. Our implementation uses
tomography operators from ASTRA Toolbox [21].
We then consider two sets of images: the training set (xs,zs)s∈I of size |I| and the test set (xs,zs)s∈J of size |J|. For both sets,
each couple (xs,zs) consists of a full-view image reconstruction xs of size Ns obtained from simulated projections without noise,
and a sparse-view version of this image zs obtained from a reduced number of simulated projections including acquisition noise.

Sparse-view training strategy for unfolded denoising networks – The network parameters are optimized by minimizing the
ℓ2 empirical loss between noisy and ground-truth images:

Θ̂ ∈ Argmin
Θ

1
|I| ∑s∈I

L (xs,zs;Θ) (11)

where
L (xs,ys;Θ) :=

1
2
∥xs − f K

ys,β ,Θ

(
ys,D1,D (zs)

)
∥2,

The loss (11) will be optimized in Pytorch with Adam algorithm [18] and hyperparameter β is chosen to be adapted with the
number of projection views.

(1) (2)

Figure 1: (1) The groundtruth xs is computed using the FBP algorithm from the dense-view project data, (2) sparse-view recon-
struction zs with 30 projections is computed using FBP algorithm.
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4 Experiments
4.1 Datasets
Walnut-CBCT dataset – Our first tests with the proposed algorithm were on a public data collection of Cone-Beam Computed
Tomography (CB-CT) scans of walnuts, for which we gracefully thank the authors [20]. Each walnut is of size about 30mm. A
source of 40 kV is used for acquisition. The detector is binned to 768×972 pixels, each of side 0.1496mm. During acquisition,
source-object distance is of 66mm and that of object-detector is of 199mm. For each walnut, 1201 images are acquired. Since
our aim is to develop a reconstruction method for fan-beam acquisition, we only consider the central slice of each scan. We split
the dataset into a training set of 40 walnuts and a test set of 2 remaining samples.
W3D dataset – The cargo dataset is simulated using CIVA software [26] developed by CEA List (see Fig. 2). The dataset
contains 13 cargos scans and their corresponding sinogram. Each cargo are identical (and of side around 2300mm) and includes
16 objects of varying size and shapes (based on parallelepipeds and hollow cylinders). Cargos are made of iron and each object
inside is made of one of the following material: carbon, aluminum, iron, wood and water. Fan beam acquisition is simulated, with
a source-axe distance of 9831mm and an axe-detector distance of 1907mm. A 6MeV source is considered, and the detector is of
length 1200 pixels and pixel size of 3.2mm. For each cargo, 1200 angles views are simulated for the full views reconstruction,
and the corresponding 2D scan (of size 1200×1200 pixels) is obtained using FBP algorithm. In this works, we split the cargos
into a training set of 10 cargos and a test set of remaining cargos.

Figure 2: Visualization of cargo scanning simulation using CIVA software.

4.2 Training details and parameters
We train and evaluate the models with Pytorch using AD L4 GPUs using 5 Gb memory. To show the effectiveness of the method,
we train our model with a batch-size of 3 in case of W3D dataset and batch-size of 4 in Walnut Dataset, we use the Adam
optimizer with a fixed learning rate of 10−3. We do not have any checkpoint selection strategy on our model and it takes about 2
hours to train a DSCCP-model with K = 10, F = 12 for both training phases.

4.3 Results
Walnut-CBCT Dataset – In this experiment, we evaluate the model’s performance when trained exclusively on Gaussian noise
perturbations applied to ground truth images. The test was conducted using the 42nd sample of the Walnut dataset. The model’s
performance was assessed by comparison to a TV-based reconstruction method [3], the ground truth, and a sparse-view FBP
reconstruction. Quantitative comparisons are provided through the Peak Signal-to-Noise Ratio (PSNR) computed for the entire
image. The results demonstrate that DScCP-LNO outperforms the TV-based method both qualitatively and quantitatively, with
parameters carefully chosen to preserve as many critical image features as possible.
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Ground truth FBP sparse view TV Ours (K = 10,F = 12)
14.83 dB 22.50 dB 24.30 dB

Figure 3: Qualitative and PSNR comparison for the central slice of 42th Walnut test sample with 30 projections.

W3D Dataset – This experiment focuses on a more realistic application scenario where artifacts are more prominent, posing
greater challenges for accurate reconstruction. The test was conducted on the 11th sample of the dataset. The performance
of the model was compared to a TV-based reconstruction method [3], the ground truth, and a sparse-view FBP reconstruction.
Figure 4 illustrates the results for a sparse-view scenario with 30 projections and a reconstruction grid of 1200× 1200 pixels.
Zoomed-in regions from the image center, shown in the second row, highlight the qualitative differences. The model successfully
suppresses artifacts while preserving essential features, surpassing alternative methods. Quantitative comparisons underscores
the robustness of the proposed approach in challenging scenarios.

Ground truth FBP sparse view TV Ours (K = 10,F = 12)
14.85 dB 23.40 dB 26.20 dB

Figure 4: Qualitative and PSNR comparison for the 11th W3D test sample with 30 projections.
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5 Discussion and conclusions
In this work, we propose training a tailored Proximal Neural Network (PNN) model, specifically the DScCP-LNO model [5],
on sparse-view CT datasets. Our findings reveal that post-training the model on sparse-view datasets significantly enhances
reconstruction quality by effectively reducing streak artifacts. Notably, the experiments demonstrate the model’s ability to achieve
robust CT reconstructions using minimal training data, as evidenced by its success with the limited W3D dataset (10 cargos).
This underscores the potential of PNNs to deliver high-quality results even in data-constrained scenarios.
Compared to traditional Total Variation (TV) methods, our approach not only mitigates artifacts but also better preserves critical
image details often lost with TV. This highlights the advantages of PNNs in balancing computational efficiency with superior
reconstruction performance. The next phase of this research will extend the algorithm to static CT setups, where the source
points are distributed across a rectangular support, further exploring its applicability in practical scenarios.
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